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class of algebras or a variety of algebras (for mathematical properties ofsuch classes, see [3], [10], and [11]).An equational theory T is said to be �nitely based if it can be de�nedby a �nite set of identities. If an equational theory T is �nitely based, wemay wish to determine the least number of equations needed to de�ne thetheory T , in particular, to determine whether T is one-based. It is knownthat every �nitely based variety of lattices is two-based and that it is one-based i� it is either the variety of all lattices or else the trivial variety ofone-element lattices de�ned by x = y (cf. [7] and [8]).This paper has two parts. First, we improve several results on the va-riety of all lattices. In particular, we simplify McKenzie's absorption basisfor lattice theory, present a reduction schema containing two unary func-tions for single identities, and �nd a single identity for lattice theory muchshorter than those previously reported. Second, we show that the theory ofweakly associative lattices is one-based and that every subvariety of weaklyassociative lattices that is de�nable with absorption laws is one-based.The automated theorem-proving program Otter [6] was used in a sub-stantial way to obtain the results in this paper, and we present some of theproofs found by Otter. Because the practical use of automated theoremproving is new and not widely known, we also indicate howOtter was used.In many cases, our goal was to �nd identities that have particular proper-ties as well as to prove properties of identities; in some of those cases, weused Otter to generate a large set of candidates and ran Otter searcheswith members or subsets of the candidates. We stress that Otter was notused as a proof checker; rather, it searched for proofs, and we think of thoseproofs as Otter's.2 Single Identities for Lattice TheoryAn absorption equality has a variable as one side of the equality symboland a term with at least one other variable as the other side. Most \nice"varieties satisfy absorption laws, for example,x� (x� y) = y; in Abelian groups and rings;x ^ (x _ y) = x; in lattices:In contrast, the variety of all semigroups does not satisfy any absorptionlaw. 2



If a lattice variety is one based, it must be de�nable by a single absorptionlaw, and as a prelude, we must have a basis consisting entirely of absorptionidentities. The simplest previously known absorption basis for lattice theory(in terms of ^ and _) was McKenzie's [7], consisting of the four identitiesy _ (x ^ (y ^ z)) = y; (1)y ^ (x _ (y _ z)) = y; (2)((x^ y) _ (y ^ z))_ y = y; (3)((x _ y) ^ (y _ z)) ^ y = y: (4)McKenzie �rst constructed a single identity, containing 34 variables, for lat-tice theory [7]; then G. Gr�atzer asked for a short identity de�ning lattices[2]. Padmanabhan's reduction schema [9], along with McKenzie's absorp-tion basis above, yields a single identity with just seven variables; however,written without abbreviation, it has length 355 (where length is the countof symbols, including variables, \^", \_", and \=", but not parentheses).2.1 A Simpler Absorption Basis for Lattice TheoryThe program MACE [5], which searches for models and counterexamples,was used to show that McKenzie's absorption basis (1){(4) is independent.The automated theorem-proving program Otter [6] was then used to ex-amine variants of (1){(4) in which terms are commuted. After many Ottersearches, it was discovered that the pair (1) and (4) can be replaced withthe following variant of (4):((y _ x) ^ (y _ z)) ^ y = y: (5)Lemma 1 The set of identities f(2), (3), (5)g is a basis for the variety ofall lattices.We list here an equational proof found by Otter, starting with f(2),(3), (5)g and deriving f(1), (4)g. The justi�cation \m ! n" indicatesparamodulation from m into n, that is, equality substitution, using (aninstance of) m, into a subterm of (an instance of) n; \:i, j, : : :" indicatessimpli�cation with i; j; : : :; and \ip" indicates that the equation is reversedso that the more complex side is on the left.Proof (found by Otter 3.0.3d on gyro at 3.33 seconds).3



3 x ^ (y _ (x_ z)) = x [(2)]5 ((x^ y) _ (y ^ z)) _ y = y [(3)]8,7 ((x_ y) ^ (x _ z)) ^ x = x [(5)]9 ((x^ y) _ y) _ y = y [3 ! 5]11 x ^ (x _ y) = x [5 ! 3]13 ((x^ y) _ (y ^ z)) ^ y = (x^ y) _ (y ^ z) [5 ! 11]24,23 (x _ y) ^ x = x [3 ! 7]27 (x _ (x ^ y)) _ x = x [7 ! 5]30,29 x _ (x ^ y) = x [7 ! 13 :24,8, ip]31 x _ x = x [27 :30]38,37 x ^ (y _ x) = x [31 ! 3]40,39 (x ^ y) _ y = y [9 ! 23 :38, ip]45 (x _ y) _ x = x _ y [23 ! 29]55 x _ (y _ x) = y _ x [37 ! 39]67 (x ^ y) ^ (z _ y) = x ^ y [39 ! 3]69 x _ (y ^ x) = x [39 ! 45 :40]106,105 ((x_ y) ^ (y _ z)) ^ y = y [55 ! 7]224 (x _ y) _ (z ^ y) = x _ y [67 ! 69]677 x _ (y ^ (x^ z)) = x [29 ! 224 :30]Line 106 is (4), and line 677 is (1).2.2 A New Reduction SchemaPadmanabhan's reduction schema in [9] isp(p(x; y; y); u; p(p(x; y; y); f(y); z)) = y; (6)where p is a majority polynomial. This is equivalent to the setfp(y; y; x) = y; p(y; x; y) = y; p(x; y; y) = y; f(y) = yg: (7)(To build a single identity for a theory satisfying a majority polynomial andaxiomatized with an absorption basis, say of size n, one can apply the lemmain [9] n � 1 times, then substitute the result in the reduction schema.)Lemma 2 The identityp(p(x; y; y); p(x; p(y; z; f(y)); g(y)); u) = y (8)4



is equivalent to the setfp(y; y; x) = y; p(y; x; y) = y; p(x; y; y) = y; f(y) = y; g(y) = yg: (9)Proof (found by Otter 3.0.3d on gyro at 0.28 seconds).4,3 p(p(x; y; y); p(x; p(y; z; f(y)); g(y)); u) = y [(8)]5 p(p(x; p(y; z; z); p(y; z; z)); p(x; z; g(p(y; z; z))); u) = p(y; z; z) [3 ! 3]7 p(p(x; y; y); p(x; p(z; p(y; u; f(y)); g(y)); g(y)); v) = y [3 ! 5 :4,4,4]10,9 p(p(p(x; y; y); y; y); y; z) = y [3 ! 7]16,15 p(x; x; y) = x [9 ! 9]19,18 p(p(x; y; y); p(x; y; g(y)); z) = y [9 ! 5 :10,10,10]22 p(p(x; y; y); p(x; p(z; y; g(y)); g(y)); u) = y [15 ! 7]33,32 p(x; y; g(y)) = y [18 ! 18 :19,16, ip]40 p(x; p(y; z; f(y)); g(y)) = y [3 ! 18 :4,16, ip]42 p(p(x; y; y); y; z) = y [22 :33,33]44 p(x; y; f(x)) = x [42 ! 40]47,46 p(x; y; y) = y [42 ! 44, ip]50,49 f(x) = x [44 ! 46, ip]53,52 p(x; y; x) = x [44 :50]55 g(x) = x [32 ! 52, ip]Lines 16, 47, 50, 53, and 55 establish one direction of the equivalence; theother is established by inspection.The reduction schema (8) was found by automatically generating can-didate schemas with Otter, then with each, searching with Otter for aproof of the preceding type.With the new reduction schema, because we have f(y) = y and g(y) = y,we apply the lemma of [9] n� 2 times instead of n� 1 times. With the newlattice theory absorption basis of size n = 3, instead of n = 4, we can builda single identity with just one application of the lemma. Using a variant ofthe majority polynomial used to build the length 355 identity, we can builda single identity of length 139, again with 7 variables, for lattice theory.2.3 A Simpler Single Identity for Lattice TheoryThe reduction schema (8) and the majority polynomialp(x; y; z) = (x ^ z) _ (y ^ (x _ z)) (10)5



satisfy the three identities(x ^ y) _ (x ^ (x _ y)) = x; (11)(x ^ x) _ (y ^ (x _ x)) = x; (12)(x ^ y) _ (y ^ (x _ y)) = y: (13)To simplify construction of a single identity (producing a shorter one), wecan use the fact that these identities are built in to the reduction schema. Inparticular, if an absorption basis for lattice theory contains the above threeidentities, those three identities need not be used in the construction of asingle identity.Lemma 3 The absorption identities((x^ y) _ (y ^ z))_ y = y; (14)((x_ (y _ z))^ (u_ y))^ y = y; (15)union the three built-in identities f(11), (12), (13)g are a basis for the varietyof all lattices.Note that (14) is the same as (3).Proof (found by Otter 3.0.3d on gyro at 0.82 seconds).3 (x ^ y) _ (x ^ (x _ y)) = x [(11)]5 (x ^ x) _ (y ^ (x _ x)) = x [(12)]7 (x ^ y) _ (y ^ (x _ y)) = y [(13)]9 ((x^ y) _ (y ^ z)) _ y = y [(14)]11 ((x_ (y _ z)) ^ (u _ y))^ y = y [(15)]14,13 x _ x = x [7 ! 9]15 (x ^ x) _ (y ^ x) = x [5 :14]19 ((x^ y) _ (y ^ z)) ^ y = (x^ y) _ (y ^ z) [9 ! 3 :14]26,25 x ^ x = x [13 ! 7 :14]27 x _ (y ^ x) = x [15 :26]31 (x _ (x ^ y)) _ x = x [25 ! 9]39 ((x_ y) ^ (z _ x)) ^ x = x [13 ! 11]41 ((x_ (y _ z)) ^ y) ^ y = y [13 ! 11]47 (x ^ y) _ y = y [27 ! 9]51 (x ^ (y ^ x)) _ x = x [27 ! 3 :26]6



54,53 (x ^ y) ^ y = x ^ y [47 ! 3 :14]56,55 (x _ (y _ z)) ^ y = y [41 :54]57 (x _ (x ^ y)) ^ x = x _ (x ^ y) [31 ! 3 :14]78,77 (x _ y) ^ x = x [51 ! 55]79 x _ (x ^ y) = x [57 :78, ip]94,93 x ^ (x ^ y) = x ^ y [3 ! 77]99 (x _ y) _ x = x _ y [77 ! 79]112,111 (x ^ y) _ x = x [79 ! 3 :94,26]115 (x ^ y) ^ x = x ^ y [111 ! 19 :112]160,159 x ^ (y _ (x_ z)) = x [55 ! 115 :56]223,222 ((x_ y) ^ (x _ z)) ^ x = x [99 ! 39]Lines 9, 160, and 223 are (3), (2), and (5), respectively.The pair (14) and (15) was found by automatically searching with manycandidate sets for proofs of the preceding type.Theorem 1 The identity(((x^ y) _ (y ^ (x_ y)))^ z) _ (((x^ (((x1 ^ y) _ (y ^ x2))_y))_ (((y ^ (((x1 _ (y _ x2)) ^ (x3 _ y))^ y))_ (u ^ (y_(((x1 _ (y _ x2))^ (x3 _ y))^ y))))^ (x_ (((x1 ^ y) _ (y^x2))_ y))))^ (((x^ y) _ (y ^ (x _ y)))_ z)) = y (16)is a single identity for the variety of all lattices.Proof. With (14) and (15), we need not apply the lemma in [9] to builda single identity. With the reduction schema (8) we can simply substitute(14) and (15) for f(y) and g(y). The result, written in terms of ^ and _, is(16). (It has length 79, again with 7 variables.)3 Weakly Associative LatticesHere we prove that the variety of all weakly associative lattices (WAL) isone-based. We then show that every �nitely based subvariety of WAL thatis de�nable by absorption laws is also one-based.7



3.1 WAL is One-basedWe take as our starting point the following basis for WAL [1].x ^ x = x, x _ x = x, (W1,W10)x ^ y = y ^ x, x _ y = y _ x, (W2,W20)((x _ z) ^ (y _ z))^ z = z, ((x ^ z) _ (y ^ z))_ z = z, (W3,W30)(x _ z) ^ z = z, (x ^ z) _ z = z. (W4,W40)Clearly, (W4) follows from (W1) and (W3), and dually, (W40) follows from(W10) and (W30); henceforth we omit (W4,W40).The ternary polynomial (10) is a majority polynomial for WAL as wellas for lattice theory. Therefore, if we can �nd an absorption basis for WAL,we can construct a single identity for WAL. Since the built in identities(11){(13) hold for WAL, we can attempt the same sort of construction asfor lattice theory in Sec. 2.3.With a sequence of Otter searches, we tested many pairs of absorptionidentities, adding each pair to (11){(13) and attempting to derive the set(W1, W10, W2, W20, W3, W30). Otter succeeded with the pair((x _ y) ^ (z _ x))^ x = x; (17)((x ^ y) _ (z ^ x)) _ x = x: (18)Lemma 4 The set f(11), (12), (13), (17), (18)g is a basis for the variety ofall weakly associative lattices.Because (17) and (18) are simply commuted variants of (W3) and (W30),it is su�cient to derive idempotence and commutativity of the two opera-tions.Proof (found by Otter 3.0.3d on gyro at 2.51 seconds).4 (x ^ y) _ (x ^ (x _ y)) = x [(11)]6 (x ^ x) _ (y ^ (x _ x)) = x [(12)]8 (x ^ y) _ (y ^ (x _ y)) = y [(13)]10 ((x_ y) ^ (z _ x)) ^ x = x [(17)]12 ((x^ y) _ (z ^ x)) _ x = x [(18)]14 (x ^ (y _ (z ^ x)))^ (z ^ x) = z ^ x [8 ! 10]8



16 (x ^ (y _ (x ^ z))) ^ (x ^ z) = x ^ z [4 ! 10]21,20 x _ (x ^ (((x_ y) ^ (z _ x))_ x)) = x [10 ! 8]24 ((x^ y) _ x) _ x = x [10 ! 12]27,26 ((x_ y) ^ x) ^ x = x [12 ! 10]30 (((x^ y) _ x) ^ x) _ (x ^ x) = x [24 ! 8]34 (x ^ (y ^ x)) ^ (y ^ x) = y ^ x [8 ! 26]45,44 (x ^ x) ^ x = x [26 ! 34 :27,27]47,46 (x ^ (y _ x)) ^ x = x [26 ! 14 :27,27]48 (x ^ x) ^ (x ^ x) = x ^ x [30 ! 14]63,62 x ^ (x ^ (y _ x)) = x ^ (y _ x) [8 ! 46 :47]64 x _ (x ^ ((x^ (y _ x))_ x)) = x [46 ! 8]70 ((x^ x) _ (x ^ x)) _ (x ^ x) = x ^ x [48 ! 24]74 ((x^ x) ^ (y _ x)) ^ x = x [44 ! 16 :45,45]89,88 x ^ x = x [24 ! 74 :45]95,94 (x _ x) _ x = x [70 :89,89,89,89]106 x _ (y ^ (x_ x)) = x [6 :89]114,113 x _ x = x [88 ! 20 :95,89]116 x _ (y ^ x) = x [106 :114]119,118 (x ^ (((x_ y) ^ (z _ x)) _ x))_ x = x [20 ! 4 :63,89]123,122 x ^ (y ^ x) = y ^ x [116 ! 14 :89]128 (x ^ y) _ y = y [116 ! 4 :123,89]131,130 (x ^ y) ^ y = x ^ y [128 ! 4 :114]134 (x _ y) ^ x = x [26 :131]136 x ^ (((x _ y) ^ (z _ x)) _ x) = x [20 ! 64 :47,21,47,119, ip]141,140 x ^ ((x ^ y) _ x) = (x^ y) _ x [24 ! 134]142 x _ ((x ^ (y _ x)) _ x) = x [64 :141]144 (x _ (x _ y)) _ (x _ y) = x _ y [134 ! 24]152 ((x^ y) _ (z ^ y)) _ y = y [122 ! 12]172 (x ^ (y _ x)) _ x = x [142 ! 136 :141]179,178 x ^ (y _ x) = x [172 ! 4 :47,47,114, ip]180 (x ^ y) _ x = x [140 :179, ip]189,188 (x _ y) _ y = x _ y [178 ! 116]194 (x _ (y ^ (z _ x)))_ (z _ x) = z _ x [178 ! 152]198 x _ (x _ y) = x _ y [144 :189]200 (x ^ y) ^ x = x ^ y [180 ! 4 :114]212 x ^ (x _ y) = x [198 ! 4 :114]216 (x _ y) _ x = x _ y [212 ! 116]236 x _ (x ^ y) = x [200 ! 116]9



243,242 (x ^ y) ^ (y ^ x) = y ^ x [236 ! 14]286 x ^ y = y ^ x [242 ! 200 :243,243]288,287 (x _ y) _ (y _ x) = y _ x [212 ! 194]349 x _ y = y _ x [287 ! 216 :288,288]Lines 89, 114, 286, and 349 establish the result.Theorem 2 The variety all weakly associative lattices is one-based.Proof. Using the reduction schema (8), we can construct a single identity forWAL by substituting (17) and (18) for f(y) and g(y). The identity, writtenin terms of ^ and _, has length 75 and 6 variables:(((x^ y) _ (y ^ (x _ y)))^ z) _ (((x^ (((y ^ x1) _ (x2 ^ y))_y))_ (((y ^ (((y _ x1) ^ (x2 _ y)) ^ y))_ (u ^ (y _ (((y _ x1)^(x2 _ y))^ y))))^ (x_ (((y ^ x1) _ (x2 ^ y))_ y))))^ (((x^y) _ (y ^ (x _ y)))_ z)) = y: (19)3.2 Subvarieties of WALLet gWAL stand for the equational theory of all WALs satisfying a furtherabsorption law, say g(x1; x2; � � � ; xn) = x1. To �nd a single identity forgWAL, we must embed the additional absorption law into a single identityfor WAL. The idea of embedding a unary function inside an identity goesback to G. Higman and B. H. Neumann (see [4] where they prove that every�nitely based variety of group theory is one-based). Such a technique was�rst applied to lattices by Padmanabhan in [8].Theorem 3 The variety gWAL is one-based.Proof. We use the reduction schema (8), which has two unary functions,p(p(x; y; y); p(x; p(y; z; f(y)); g(y)); u) = y;and we write (17) and (18) as W1(y) = y and W2(y) = y. Using thelemma in [9], we bundle the identities (17) and (18) as p(W1(y);W2(y); x),and substitute this for f(y); we keep g(y) as a place holder for the further10



absorption law g(x1; x2; � � � ; xn) = x1. The resulting single identity, writtenin terms of ^ and _ (using the same majority polynomial as above) is(((x^ y) _ (y ^ (x _ y)))^ z) _ (((x^ g(y))_ (((y ^ (((((y _ x1)^(x2 _ y)) ^ y) ^ u) _ ((((y ^ x1) _ (x2 ^ y)) _ y) ^ ((((y_x1) ^ (x2 _ y)) ^ y) _ u))))_ (v ^ (y _ (((((y _ x1) ^ (x2_y))^ y) ^ u) _ ((((y ^ x1) _ (x2 ^ y))_ y) ^ ((((y _ x1)^(x2 _ y)) ^ y) _ u)))))) ^ (x _ g(y))))^ (((x^ y) _ (y ^ (x_y)))_ z)) = y: (20)The preceding single identity for gWAL has length 109 and 7 variables. Notethe two occurrences of g(y), which represent the further absorption law. Ifa further set of absorption laws, instead of a single law, is added, the set canbe bundled, as above, with applications of the lemma in [9].The theory of all lattices may be viewed as a weakly associative latticesatisfying the additional absorption lawx ^ (y _ (x_ z)) = x: (21)Lemma 5 fWAL, (21)g ) fthe two associative laws for ^ and _g.Proof. De�ne x � y to mean x^ y = x. By the commutative law, x � y andy � x imply that x = y. Also, if x � y, then x _ y = (x ^ y) _ y = y. Letx � y and y � z. Thenx ^ z = x ^ (z _ y) = x ^ (z _ (x _ y)) = xand hence x � z. Therefore, the binary relation \�" is reexive, anti-symmetric, and transitive. Now, by the commutative and absorption laws,x ^ y is a lower bound of x and y. Let u be any lower bound of x and y,that is, let u � x, u � y. In other words, x = u_ x and y = u_ y. We haveu ^ (x ^ y) = u ^ ((u_ x) ^ (u _ y)) = uby (W3), and hence u � x ^ y. In other words, x ^ y is the greatest lowerbound of the set fx; yg. Thus the meet operation \^" is associative. Thisis where the mathematician becomes informal and jumps to the conclusion(x^ y) ^ z = the g.l.b. of ffx; yg; zg= g.l.b. of fx; y; zg= x ^ (y ^ z):The dual argument (after transitivity of \�") holds for associativity of \_".11



(Lemma 5 was also proved by Otter, but that proof is too complex topresent here.)Therefore, as a corollary to Theorem 3, we have that lattice theory isone-based (cf. [7], [9], and Sec. 2).4 Open Questions1. Are there single identities for lattice theory, WAL, or gWAL simplerthan the ones presented here (16, 19, 20)?2. Is the variety of near lattices (NL) one-based? A basis for NL is thefollowing set: x ^ x = x; x _ x = x;x ^ y = y ^ x; x _ y = y _ x;x ^ (x _ y) = x; x _ (x ^ y) = x:3. Is the variety of transitive near lattices (TNL) one-based? We have abasis for TNL by adjoining the following pair to NL:x ^ (y _ (x _ z)) = x; x _ (y ^ (x ^ z)) = x:References[1] E. Fried and G. Gr�atzer. Some examples of weakly associative lattices.Colloq. Math., 27:215{221, 1973.[2] G. Gr�atzer. Lattice theory: First concepts and distributive lattices.San Francisco, 1971.[3] G. Gr�atzer. Universal Algebra. Springer Verlag, 2nd edition, 1979.[4] G. Higman and B. H. Neumann. Groups as groupoids with one law.Publicationes Mathematicae Debrecen, 2:215{227, 1952.[5] W. McCune. A Davis-Putnam program and its application to �nite�rst-order model search: Quasigroup existence problems. Tech. ReportANL/MCS-TM-194, Argonne National Laboratory, Argonne, Ill., May1994. 12



[6] W. McCune. Otter 3.0 reference manual and guide. Tech. ReportANL-94/6, Argonne National Laboratory, Argonne, Ill., 1994.[7] R. N. McKenzie. Equational bases for lattice theories. Math. Scand.,27:24{38, 1970.[8] R. Padmanabhan. Two identities for lattices. Proc. Amer. Math. Soc.,20:409{412, 1969.[9] R. Padmanabhan. Equational theory of algebras with a majority poly-nomial. Algebra Universalis, 7(2):273{275, 1977.[10] A. Tarski. Equational logic and equational theories of algebras. InK. Sch�utte, editor, Contributions to Mathematical Logic, pages 275{288. North-Holland, Amsterdam, 1968.[11] W. Taylor. Equational logic. Appendix 4 in G. Gr�atzer, UniversalAlgebra. Springer-Verlag, 1979.
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Appendix AThe programsOtter and MACE are in the public domain and are availablethrough Internet by FTP. See the �leftp://info.mcs.anl.gov/pub/Otter/READMEfor more information.Several Otter input �les and the corresponding proofs are availableby FTP. These include input �les for the Otter proofs that appear here,input �les for the Otter proof of Lemma 5, and input �les that were usedto double check, directly, that (16), (19), and (20) are single identities forlattice theory, WAL, and gWAL, respectively. Seeftp://info.mcs.anl.gov/pub/Otter/LT-WAL/READMEfor speci�c information on the input �les.
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Appendix BFigures 1, 2, and 3 are the single identities 16, 19, and 20, respectively,displayed in two dimensions, with meet operations vertical, join operationshorizontal, and boxes instead of parentheses. The purpose of these �guresis simply to show the structure of the identities.
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Figure 1: LT Single Identity (16)
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Figure 2: WAL Single Identity (19)
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