
WAVY TAYLOR VORTICES IN PLANE COUETTE FLOW�A. J. CONLEYy AND H. B. KELLERzAbstract. Path-following techniques applied to a spectral approximation of the solution of the Navier-StokesEquations have revealed the existence of a new class of solutions to the plane Couette ow problem.Key words. Path Following, Plane Couette Flow, Bifurcation, Navier-Stokes Equations, Taylor{Couette FlowAMS subject classi�cations. 35-04, 35B30, 35B32, 35B60, 35Q30, 65N35, 76-04, 76D05, 76D33, 76E05, 76E30.1. Introduction. A long-standing problem in uid mechanics is understanding the transitionsfrom laminar to turbulent ow. This problem has been studied in many speci�c cases. Plane Couetteow, the case of interest in this paper, is the ow of an incompressible viscous uid between in�niteparallel shearing plates.Experimentally, plane Couette ow sustains turbulence for large enough Reynolds number (Re >Ret = 1440� 40) (see [7]). For Reynolds numbers less than the transition number (Re < Ret) theow becomes a laminar ow with the velocity depending only on the distance from each plate.Theoretically and numerically, all studies seem to imply linear stability of this laminar ow for allReynolds numbers (see [6] [1]). The lack of bifurcations or other known solutions for plane Couetteow make the study of this transition di�cult.In contrast, Taylor{Couette ow, the ow between in�nitely long coaxial cylinders, bifurcates toother ows for large enough Reynolds numbers. If the gap between the cylinders is small comparedwith the average radius of the cylinders, Taylor{Couette ow is approximated by plane Couette owin a tumbling channel. This limit is discussed in Appendix A.New solutions of the plane Couette ow problem have recently been found (see [3],[4],[5]) bystudying plane Couette ow in a channel tumbling with speed 
 about the z axis (see Fig. (1.1)).By varying the tumbling rate, bifurcations from one- to two-dimensional solutions and subsequentbifurcations from two- to three-dimensional solutions are found. The two{dimensional solutions looklike Taylor vortices in Taylor{Couette ow. The axis of each vortex is aligned with the velocity ofthe bounding plates. The three{dimensional solutions bifurcating from the vortex solution look likewavy Taylor vortices in Taylor{Couette ow. The tumbling rate, 
; can be decreased to zero whileretaining the three{dimensional structure of the solutions.The use of Chebyshev polynomials and the path following techniques of H. B. Keller [2] providebetter-resolved solutions and make it possible to �nd the minimumReynolds number at which thesesolutions exist. This minimumReynolds number (Re = 470) is about one third the Reynolds numberat which the ow experimentally sustains turbulence. Linear stability analysis of this ow impliesthat the solutions are probably unstable.Formulation. De�ne ~U(x; y; z) = 0@ u(x; y; z)v(x; y; z)w(x; y; z) 1Ato be the velocity of the ow at location (x; y; z) (see Fig. (1.1)). De�ne p(x; y; z) to be the pressureof the ow. The Navier{Stokes equations for traveling wave solutions between parallel plates rotating� This research was supported in part by the National Science Foundation under CooperativeAgreement No. CCR-9120008, in part by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38,and in part by the U.S. Department of Energy under Grant No. DE-FG03-89ER25063.y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.z Applied Mathematics, California Institute of Technology 217-50, Pasadena, CA 91125.1
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 �@��� �@���� ���@ � ���@ -V; y6U; x����W; zFig. 1.1. We study ow between in�nite parallel shearing plates. The plates are tumbling with angular velocity,
. The linear velocity pro�le, V (x), is stable for all shear rates.about an axis parallel to the z-axis with speed 
 are0 = � Re (~U � ~r)~U +r2~U � ~rp+ 2
(ẑ � ~U)(1.1) +cy@y ~U + cz@z ~U;0 = ~r � ~U:(1.2)Here, ẑ; is the unit vector in the z direction, and cy and cz are the wave speeds of the ow in the y andz directions, respectively. The nondimensional Reynolds number, Re, is the velocity di�erence of theplates times the distance of the gap between the plates divided by the viscosity. (The wave speedsof all solutions in this paper are found to be zero.) The solutions of these equations are required tosatisfy no-slip boundary conditions at the plates, which move with speeds �1=2: Periodic boundaryconditions are imposed in the y and z directions, parallel to the plates. With unit vector ŷ in the ydirection and periods �y and �z in the y and z directions, respectively, these boundary conditionsare ~U(�12 ; y; z) = +12 ŷ;(1.3) ~U (12 ; y; z) = �12 ŷ;(1.4) ~U (x; y + �y; z) = ~U (x; y; z);(1.5) p(x; y + �y; z) = p(x; y; z);(1.6) ~U (x; y; z + �z) = ~U (x; y; z);(1.7) p(x; y; z + �z) = p(x; y; z):(1.8)The shear force at the lower plate,� (~U) = � 1�y�z Z �y0 dy Z �z0 dz @v@x (�1=2; y; z);(1.9)is used as a parameter of the solution in the continuation procedures.The well-known Couette ow, ~U (x; y; z) = 0@ 0�x0 1A ;(1.10) p = �
x2;2



satis�es these equations for all Re; �y; �z; cy; and cz. This paper is concerned with paths of solutionsthat bifurcate from this branch of solutions.Section 2 describe the solution approximation scheme. Section 3 describes the methods used tofollow paths of solutions and to switch branches of solutions. Additional phase constraints (whichare necessary because of the periodic boundary conditions) are also described. Sections 4 and 5describe the solutions and their linear stability.2. Approximation of Velocity and Pressure Fields. The solutions are expanded in termsof Cl;m;n(x; y; z) = Tl(2x) cos(m�yy + n�zz);Sl;m;n(x; y; z) = Tl(2x) sin(m�yy + n�zz);Al;m;n = (Cl;m;n + iSl;m;n) = Tl(2x)ei(m�yy+n�zz):Here, �y = 2��y ; and �z = 2��z are the y and z wave numbers, respectively. Each of u; v; w; and p areapproximated by �nite expansions of the formq(x; y; z) = LXl=0 MXm=�M NXn=�N ql;m;nAl;m;n(x; y; z):Here, q represents u; v; w; or p. As a result, the approximated ~U and p are determined by a total of4(L+ 1)(2M + 1)(2N +1) coe�cients. The same notation for the approximations and the solutionsis used in this paper.These approximations do not (in general) satisfy the Navier{Stokes equations. As a result, onlycertain projections of the Navier{Stokes equations are required to be zero. De�ne the inner products,< Almn; f > = Z 1=21=2 dxp1� 4x2 Z �y0 dy Z �z0 dz(Almn � f);(2.1) hei(m�yy+n�zz); fi = Z �y0 dy Z �z0 dz(ei(m�yy+n�zz)f):(2.2)De�ne ~M to be the right-hand side of Eq. (1.1). Then the 4(L+1)(2M +1)(2N +1) equations thatthe approximations are required to satisfy are the following:< Almn; ~M > = 08<: 0 � l � L � 2;jmj �M;jnj � N(2.3) < Almn; ~r � ~U > = 08<: 0 � l � L � 2;jmj �M;jnj � N(2.4) hei(m�yy+n�zz); ~U(�1=2; y; z)� 1=2ŷi = 0� jmj � M;jnj � N:(2.5)In addition, since the periodicity in y and z introduces a two-dimensional nonuniqueness, the fol-lowing two phase constraints are imposed on the solutions:< C001; u(x; y; z) >= 0;(2.6) < S010; w(x; y; z) >= 0:(2.7) 3



Equations (2.3){(2.5) are referred to as F (u; �) = 0in the rest of this paper. The solution u is the set of coe�cients that determine ~U and p. Theparameter � is typically 
; Re; �y; or �z. Both of the phase constraints are trivially satis�ed onthe Couette ow branch of solutions. Phase constraint (2.6) is imposed on the vortex branch, andboth phase constraints are imposed on the wavy vortex branch. When the phase constraints areimposed, they are adjoined to F (u; �). As a result, additional quantities are necessary. Hence, thewave speeds cy and cz are introduced and solved for u (in addition to the coe�cients).3. Path Following. Continuation methods are used to approximate the solution path� = f(u; �) : F (u; �) = 0g:Three distinct methods are employed, depending on the presence of folds or bifurcations. In thecase of regular path segments the algorithm used is as follows:Step 1. Start with an initial solution, (u0; �0). Construct the JacobianF 0u = @F (u0;�0)@u :Step 2. Construct the initial iterate and initial parameter with one of the following:� constant value continuation: �i = �i�1 + ��; u0i = ui�1� secant continuation: �i = �i�1 + ��;u0i = ui�1 + �i��i�1�i�1��i�2 (ui�1 � ui�2):Step 3. Compute the special Newton iterates (indexed by � = 1; 2; :::),F 0u�� = �F (u�i ;�i);u�+1i = u�i + ��i ;until jj�Ni jjl1 < �:Step 4. Set ui = uN+1i : If the parameter �i is still in the desired range, and the number ofiterations is small (N < 30), return to Step 2.This algorithm may fail for several reasons. One is that the step �� is too large. In this case,decrease the step size. Another reason the algorithm may fail is that the iterates in step 3 convergetoo slowly. In this case, recompute the Jacobian. Lastly, the solution path may trespass a bifurcationpoint or may step beyond the solution path at a fold. In this case, use one of the following algorithmsfor folds or bifurcations.At a fold point the Jacobian is singular. Thus, as it is approached, the shear force (1.9) at thelower plate is introduced as a new parameter. (In Taylor{Couette ow, � corresponds to the torqueon the inner cylinder.) To continue the solution past the fold, adjoin the equation� (u) = �i;(3.1)and seek solutions of the expanded system:G(u(�i); �(�i); �i) = � F (u(�i); �(�i))� (u(�i))� �i � = 0:(3.2)By varying �i, a path of the form�̂ = f(u(�i); �(�i); �i) : G(u; �; � ) = 0; �a < �i < �bgis generated. This leads to the following algorithm for �nding a segment of the path near a fold:4



Step 1. Start with an initial solution, (u0; �0). Construct the JacobianG0x = [G0u : G0�] = � F 0u F 0��u 0 � :Step 2. Construct the initial iterate and new parameter with one of the following:� constant value continuation: �i = �i�1 + ��; u0i = ui�1; �0i = �i�1� secant continuation: �i = �i�1 + ��;u0i = ui�1 + �i � �i�1�i�1 � �i�2 (ui�1 � ui�2);�0i = �i�1 + �i � �i�1�i�1 � �i�2 (�i�1 � �i�2):Step 3. Compute the special Newton iterates (indexed by � = 1; 2; :::),G0x� ��il�i � = � �F (u�i ;��i )�� (u�i ) + �i � ;u�+1i = u�i + ��i ;��+1i = ��i + l�i ;until jj�Ni jjl1 + jlNi j < �:Step 4. Set ui = uN+1i ; �i = �N+1i : If �i is still in the desired range, and the number ofiterations N is small, return to Step 2.When the iterations in step 3 fail to converge, return to continuation in �.To switch from Couette ow (1.10) to the vortex solution, �rst locate the critical 
 at whichthe Jacobian is singular (Re = 600;
c = 1:43; �z = 3:1163). Since the Navier{Stokes equations areautonomous in z and the solution is to be periodic in z, it follows that the Jacobian has a two-dimensional null space. Thus two constraints can be imposed. One is the phase constraint (2.6),which can be rewritten as�z(u) = Z 12� 12 dxp1� 4x2 Z �y0 dy Z �z0 dz cos(2�z=�z)u(x; y; z) = 0:(3.3)The other constraint requires the solution to have a constant component in the direction of the nullvector of the Jacobian Fu. Because two new constraints have been imposed, the two parameters 
and cz are freed. To solve this augmented system, we use a new algorithm:Step 1. Accurately �nd the parameter value �� at whichF �u = @F (u(��); ��)@uis singular.Step 2. Find the right null vector, �, of the singular Jacobian with �z(�) = 0.Step 3. Construct an initial guess for a solution on the new branch, uoi = u(��) + ��:5



Step 4. Compute the Newton iterates for the augmented system,0@ F (u; cz; �)� � u�z(u) 1A = 0@ 0� � u0i0 1A :Here, an additional constraint,�y(u) = Z 12� 12 dxp1� 4x2 Z �y0 dy Z �z0 dz sin(2�y=�y)w(x; y; z) = 0;(3.4)has been adjoined, and the parameter cz has been freed as a variable. To compute solutions alongthe vortex branch, use the algorithm to �nd the segment of the path near a fold or use the algorithmfor a regular path but use the augmented system of equations,H(u; cz; �) = � F (u; cz; �)�z(u) � = 0;instead of F (u; �) = 0. Finally, to switch paths from vortex to wavy vortex solutions, use thefollowing algorithm:Step 1. Accurately �nd the parameter value �� at which the Jacobian(Hu(u(��); cz; ��)jHcz(u(��); cz; ��))is singular.Step 2. Find the right null vector, �, of the singular Jacobian with �y(�) = 0.Step 3. Construct an initial guess for a solution on the new branch, uoi = u(��) + ��:Step 4. Compute the Newton iterates on the fully augmented system,0BB@ F (u; cy; cz; �)� � u�z(u)�y(u) 1CCA = 0BB@ 0� � u0i00 1CCA :To compute solutions along the wavy vortex branch, use the algorithm for the path segments on aregular path or near a fold with the systemI(u; cy; cz; �) = 0@ F (u; cy; cz; �)�z(u)�y(u) 1A = 0;instead of F (u; �) = 0.4. Couette Flow to Vortices. At Re = 600;
c = 1:43; �z = 3:1163; the paths of Couette owand vortex ow intersect. The analysis in Appendix B shows that the locations of the bifurcationsfrom the Couette solutions are a function of the Taylor numberT = 2
(Re� 2
)and the wave number �z. The locations of these bifurcation points are not independent functionsof the Reynolds number and 
. The Taylor number at which the Jacobian is singular is called thecritical Taylor number, Tc.Note that the Taylor number is quadratic in 
: Thus, for large enough Reynolds numbers,Re > 2pTc;6
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0 1 2 3 4 5 6 7 8Fig. 4.1. Tc vs �z

150020002500300035004000
0 5 10 15 20 25 30 35Fig. 4.2. Tc vs �z when the x-direction is spanned by 33 Chebyshev polynomialsthere are at least two singular points. In the generic case, there are an even number of singularpoints.Tc varies with �z = 2�=�z; however, it does not vary with �y. See Figure 4.1 for a graph ofTc as a function of �z. Since the boundary conditions are periodic, if the Jacobian is singular at(Tc; �z) then the Jacobian is also singular for all periodicities that are integral multiples of �z;c,namely, (Tc; n�z). Figure 4.2 is a graph of the critical Taylor number against the periodicity �z:Only the �rst six multiples of the fundamental mode are shown.To compute these values of the critical Taylor number, �x the Reynolds number at Re = 600.At di�erent values of the wave number, �z, increase 
 from zero (in steps of .05). Determine the7
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Fig. 4.3. Shear stress as a function of 
. Re = 600; �y = 1:6; �z = 3:0. The lower intersection of vortexand wavy vortex branches is a bifurcation. The upper intersection of the vortex and wavy vortex branches is onlygraphical. (The ows are not the same at this point.) There are two wavy vortex solutions at 
 = 0. The solutionwith large shear stress is called the upper branch solution, and that with low shear stress is called the lower branchsolution. The resolution is (L;M;N) = (14;3; 3) in this picture.value of 
 at which the Jacobian has the smallest (magnitude) determinant. Then compute theTaylor number using T = 2
(Re � 2
). Compute the critical Taylor number for di�erent valuesof the wave number �z. This gives the function Tc(�z). Lastly, compute Newton iterations on theminimum problem, @Tc@�z = 0;to �nd the minimum critical Taylor number,Tc;min = 1707:7618when the wave number is �z = 3:1163=n:At the bifurcation point, switch to the new branch of solutions (the vortex branch by the methodsdiscussed in Section 2). While the Couette solution has a constant shear force of 1:0 for all valuesof 
, the new branch of solutions (labeled \Vortex" in Figure 4.3) increases in shear force withincreasing 
:These vortices have some symmetries. The solution branch varies only with x and z. There isno y variation. A graph of the mean ow in the y direction is shown in Figure 4.4, and the owperpendicular to y is shown in Figure 4.5.Follow the vortex solution from 
 = 1:43 where it bifurcates from Couette ow to 
 = 13: (SeeFig. 4.3.) During this continuation the Jacobian is singular at 
 = 2:1725, signaling a secondarybifurcation. The new branch (labeled \Wavy Vortex" in Fig. 4.3) of solutions bifurcating from thevortex branch is discussed in Section 5. 8



-0.6-0.4-0.200.20.40.6-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5�v Distance From Center of ChannelFig. 4.4. The mean (over a period in y and z) of the ow in the y direction for the vortex solution at Re=600,
 = 13, �z = 3:0.
Fig. 4.5. The velocity �eld in the xz plane for the vortex solution at Re=600, 
 = 13, �z = 3:0. The lowerplate is shearing out of the paper on the lower edge of the image.At lower Reynolds numbers (i.e., Re < 250), the full path of vortex solutions can be computed.At wave number �z = 3:0, the critical Taylor number is Tc = 1711:28. Thus, at Reynolds number85.0, the two values of 
 that satisfy the equationTc = 2
(Re � 2
)are 
 = 16:377 and 
 = 26:123. As can be seen in Fig. 4.6, one vortex solution branch intersectsthe Couette ow branch at these two points. 9
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Fig. 4.6. Shear stress vs. 
 at Re = 85:0;�z = 3:0;�y = 1:6. This branch of vortices shows that the two valuesof 
 satisfying 2
(Re� 2
) = Tc correspond to bifurcation points on the same branch of vortex solutions.
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Second Bifurcation Branch from Couette Flow to Vortex Flow
Fig. 4.7. Couette ow bifurcates to a di�erent path of solutions at higher Taylor number. This second branchof critical Taylor numbers has a minimum near 17700 when �z is near 5.4.At the same wave number, �z = 3:0, there is a sequence of critical Taylor numbers, say, Tc;� ; � =1; 2; :::, that satisfy Eq. (B.4). The next two values of the critical Taylor number are Tc;2 := 26; 100and Tc;3 := 182; 300. These critical Taylor numbers also vary with �z. Figure 4.7 shows the relationbetween Tc;2 and the wave number, �z: Note that the minimum value of Tc;2 is nearly ten times theminimum value of Tc;1 (graphed in Fig. 4.1 and labeled Tc.)5. Vortices to Wavy Vortices. On the vortex solution branch bifurcating from Couetteow, the Jacobian is singular at parameter values Re = 600;
 = 2:17; �y = 1:6; �z = 3:0. The10



-0.6-0.4-0.200.20.40.6 -0.4 -0.2 0 0.2 0.4�v Distance from Center of ChannelFig. 5.1. The mean ow in the y direction of the lower branch solution as a function of distance from centerof channel. Re = 600;�y = 1:6; �z = 3:0;
 = 0; � = 1:7.Table 5.1The lower branch wavy vortex solution (at 
 = 0) is resolved well enough that the shear stress of the solutionat the lower plate has a relative error of less than 4%.Resolution Shear StressL,M,N at Lower Plate13,3,3 1.7217741314,3,3 1.6940554815,3,3 1.7008415116,3,3 1.6998720817,3,3 1.6993610918,3,3 1.6995981814,3,4 1.6828339914,3,5 1.6602990014,4,4 1.6677724114,4,5 1.67317174new path of solutions is labeled \Wavy Vortex" in Fig. 4.3. Note that the path has a fold point(� = 1:86;
 = �2:07) and two solutions at 
 = 0. Call the solution (at 
 = 0) with larger shearstress the upper branch solution and the solution with smaller shear stress the lower branch solution.Table 5.1 indicates that there is a relative error of less than 4% in the shear stress for resolutionsabove (L;M;N ) = (13; 3; 3).Figure 5.1 shows the mean velocity in the y direction for comparison with the vortex solution(Figure 4.4). Figure 5.2 shows the x-z cross sections of the velocity �eld for di�erent values of y.Compare the vortex solution in Figure 4.5.5.1. Minimum Reynolds Numbers. The two solutions at 
 = 0 are functions of �; �y; �z;and Re. To �nd the values of these parameters at which the Reynolds number is a minimum, let11



�W; z 6U; x ������yFig. 5.2. Cross sections (at y = 0; 2�5 ; 4�5 ; 6�5 ; 8�5 ; 2�) of the velocity �eld of the lower branch wavy vortexsolution in the xz plane. The left-bottom cross section is at y = 0 and the upper-right cross section is at y = 2�.Re = 600; �y = 1:6; �z = 3:0. The lower plate is shearing out of the paper at the bottom of each cross section.Re = Re(�; �y; �z), and consider the problem0@ F (u(�0; �y; �z); Re(�0; �y; �z))
� (u) � �0 1A = 0:(5.1)Figure 5.3 shows the variation of Reynolds number with shear stress (for �y = 1:6; �z = 3:0).The path segment in Figure 5.3 includes the two solutions in Figure 4.3 at 
 = 0. For these valuesof the wave numbers, the minimumReynolds number is 520; however, lower Reynolds number owsoccur at di�erent wave numbers. 12
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Shear Stress vs. Reynolds at �y = 1:6; �z = 3:0
Fig. 5.3. As the Reynolds number decreases from 600.0, the upper and lower branches of the 
 = 0 wavyvortices coalesce and disappear.To �nd the (local) minimumReynolds number for all wavenumbers and shear stresses, solve theminimum problem 0@ @Re@�@Re@�y@Re@�z 1A = 0(5.2)by Newton's method. Start the Newton iterations with the solution at � = 1:85; �y = 1:6; �z = 3:0in Figure 5.3. Each step of Newton's method requires 42 solutions of the Navier{Stokes equationsin order to evaluate the �nite-di�erence approximations of the derivatives appearing in the New-ton iterations for this minimum problem. The minimum is found at the following values of theparameters: Re = 470;� = 1:70;�y = 0:96;�z = 2:00:These values are calculated with a resolution of (L;M;N ) = (14; 3; 3). The solution path (� vs 
)for these values of the Reynolds number and wave numbers is shown in Figure 5.4.5.2. Linear Stability. The stability of the computed steady solution is determined by theusual linear stability analysis applied to the unsteady equations@V@t = � Re (~V � ~r)~V +r2~V � ~rp+ 2
(ẑ � ~V );(5.3) 0 = ~r � ~V :(5.4)Here the time has been scaled by the square of the channel width and viscosity. This scaling leadsto the eigenproblem �~� = � Re [(~Va � ~r)~� + (~� � ~r)~Va] +r2~�� ~r�+ 2
(ẑ �~�)(5.5) 13
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Shear Stress vs Rotation at Re = 467, �y = 0:9603, �z = 2:0032

Fig. 5.4. Solution path with resolution (L,M,N)=(14,3,3) at minimum Reynolds number Re=467. �y = :96,�z = 2:0. 0 = ~r �~�;(5.6)where ~� and � are the perturbations to ~U and p. They are approximated in the same way as ~U andp. Dirichlet boundary conditions at the x boundaries and periodic boundary conditions in y and zare applied. This process leads to a generalized eigenvalue problem of order 1454 (for (L;M;N ) =(14; 3; 3)). There are some eigenvalues at in�nity for generalized eigenvalue problems; however,numerical analysis (in �nite precision) perturbs the eigenvalues at in�nity to large eigenvalues. Inparticular, D projections of Eq. (5.5) and E projections of Eq. (5.6) lead to D �E eigenvalues not\at in�nity." At resolution (L;M;N ) = (14; 3; 3), there are 968 projections of Eq. (5.5) and 360projections of Eq. (5.6). Thus, there are 588 meaningful eigenvalues and many meaningless largeeigenvalues. Note that unstable modes correspond to eigenvalues with Real(�) > 0 and stable modescorrespond to eigenvalues with Real(�) < 0. These eigenvalues are computed with EISPACK.On the lower branch the parameters are Re = 600; �y = 1:6; �z = 3:0;
 = 0; and � = 1:694.Figure 5.5 shows the scattered eigenvalues of large magnitude. Figure 5.6 shows Figure 5.5 scaledby 100. There is a cluster of 588 eigenvalues near the origin. This cluster of eigenvalues is shown atmuch larger scale in Figure 5.7. Note that there is one eigenvalue in the right half plane, and hencethe solution is unstable.Figure 5.8 shows the eigenvalues of the upper branch solution. The pair of unstable eigenvaluessuggests that there may have been a Hopf bifurcation on the path between the lower branch solutionand the upper branch solution.Lastly, at the minimum Reynolds number solution, the eigenvalues (Figure 5.9) are all in theleft half plane except for the two eigenvalues that are nearly zero. It is probable that there is oneunstable mode on the lower branch of solutions, as well as two unstable modes on the upper branchand two neutrally stable modes at the minimum Reynolds number solution.6. Discussion. Nagata [5] �nds new solutions to the equations for plane Couette ow. By usinga di�erent approximation scheme in a primitive variable formulation and path-following techniques,these solutions are con�rmed. Two criticisms of these solutions have been raised by experimenters [7].The �rst criticism is of the resolution of Nagata's solutions; however, these solutions exist at relativelyhigh resolutions (see Table 5.1). The second criticism is a question about the stability of the solutions.14



�1� 108�8� 107�6� 107�4� 107�2� 10702� 1074� 1076� 1078� 1071� 108
�3� 108 �2� 108 �1� 108 0 1� 108��

������� �
��� ������ �� ����� � �� �� ���� ������ �� �������� �������������� ���� ����� �������� ��������� ������ �� ������ �������� �� ��� ������� �� ������ ������ �������� ������ ��� ����� ������ �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 5.5. All the eigenvalues that we compute (including those perturbed from in�nity) of the lower branch wavyvortex solution. We magnify the center of this graph by a factor of 100 to get the next �gure.
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Fig. 5.6. The eigenvalues near the origin of the previous �gure. There are 588 eigenvalues clustered near theorigin. This cluster of eigenvalues is shown (magni�ed) in the next �gure.These solutions are not stable; however, there may be values of the parameters, Re; �y; and �z forwhich the solutions are stable (see Figures 5.7, 5.8, and 5.9). There are probably no wavy vortexsolutions for Reynolds numbers less than 470.The vortex branch of solutions bifurcates from and reconnects to the Couette ow branch (seeFigure 4.6). This behavior indicates that in an experiment, as the Coriolis force is increased, Couetteow would bifurcate to vortices and the vortices would subsequently bifurcate back to Couette ow.15
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Fig. 5.7. Eigenvalues of lower branch solution near the origin. Note the one unstable eigenvalue to the right ofthe imaginary axis. The parameter values are Re = 600;�y = 1:6;�z = 3:0; � = 1:7.
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-150-100-50050100150
-50 -40 -30 -20 -10 0 10 20��� ����

�
�
� �� ������ �

Fig. 5.9. The eigenvalues nearest the origin for the solution at Re = 470; �y = 0:96; �z = 2:00.
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A. Relation of Taylor{Couette Flow and Couette Flow.A.1. Taylor{Couette Flow. Taylor{Couette ow is the ow between concentric cylinders. Ifthe gap width, a, between the cylinders is negligible compared with the average of the radii of thecylinders, b, then the equations governing Taylor{Couette ow are approximately the same as theequations for ow between parallel plates in a rotating frame.The incompressible Navier{Stokes equations in cylindrical coordinates are@V�@� + (~V � ~r)V� � V�2� = �@P@� + �(r2V� � 2�2 @V�@� � V��2 );(A.1) @V�@� + (~V � ~r)V� + V�V�� = �1� @P@� + �(r2V� + 2�2 @V�@� � V��2 );(A.2) @V�@� + (~V � ~r)V� = �@P@� + �(r2V� );(A.3) 0 = ~r � ~V = 1� ( @@� (�V�)) + 1� (@V�@� ) + @V�@� ;(A.4)where ~V � ~r = V� @@� + V�� @@� + V� @@� ;r2 = 1� @@� (� @@� ) + 1�2 @2@�2 + @2@�2 :The domain is � 2 [R0; R1]; � 2 [�1;1]; � 2 [�1;1];and boundary conditions are~V (R0; �; �; � ) = V0�̂; ~V (R1; �; �; � ) = V1�̂;(A.5)where �̂ is the unit vector in the � direction.A.2. Change of Variables. Use the width of the gap, a; between the cylinders to scale thelengths in the problem. Scale the time by a2=�: The velocity scale ( �V ) is chosen later. Use areference frame that rotates with the average rotation rate, !; of the cylinders. Explicitly, thechange of variables is as follows: ! = V1 + V02b ;b = R1 + R02 ; a = R1 � R0;x = �� ba ; y = b(� � !� )a ; z = �a ;t = ��a2 ;�V ~u(x; y; z; t) = ~V (�; �; �; � )� �!�̂;18



� �Va p = P � !22 �2;where ~V = 0@ V�V�V� 1A ; ~u = 0@ uvw 1A :The Navier{Stokes equations becomeut = �Re �(~u � ~r)u� �v21 + �x�+ 2
v � @p@x+(r2u� 2�(1 + �x)2 @v@y � �2(1 + �x)2u);(A.6) vt = �Re �(~u � ~r)v + �uv1 + �x� � 2
u� 11 + �x @p@y+(r2v + 2�(1 + �x)2 @u@y � �2(1 + �x)2v);(A.7) wt = �Re h(~u � ~r)wi� @p@z+(r2w);(A.8) 0 = ~r � ~u = @u@x + �1 + �xu+ 11 + �x @v@y + @w@z ;(A.9)where ~u � ~r = u @@x + � 11 + �x� v @@y +w @@z ;r2 = @2@x2 + 1(1 + �x)2 @2@y2 + @2@z2 + �1 + �x @@x;� = ab ; 
 = a2� !; Re = �V a� ;x 2 [�1=2; 1=2];y 2 [�1;1];z 2 [�1;1]:The boundary conditions are the following:u(�1=2; y; z; t) = 0;(A.10) v(�1=2; y; z; t) = �12 �V1 � V0�V �� 
2Re ;(A.11) w(�1=2; y; z; t) = 0:(A.12)A.3. Thin{Gap Limit. In the limit �! 0; these equations reduce to the Cartesian equationssatis�ed by a uid between parallel plates in a rotating frame:~ut = �Re(~u � ~r)~u� 2
(ẑ � ~u)� ~rp+r2~u;(A.13) 0 = ~r � ~u:(A.14) 19



The rotation, 
; is about the z axis which is the axis of rotation of the cylinders. The boundaryconditions are the following: u(�1=2; y; z; t) = 0;(A.15) v(�1=2; y; z; t) = �12 �V1 � V0�V �� 
2Re ;(A.16) w(�1=2; y; z; t) = 0:(A.17)When 
 = 0; �V = V1 � V0;the equations are satis�ed by plane Couette ow.B. Derivation of the Taylor number. Start with the Navier{Stokes equations linearizedabout a shear ow (~V ; p); that is, seek ows of the form (~V + ~�; p+ �), where ~V varies only with xand ~� is \small." Dropping quadratic terms in ~� leads to the following:0 = �Re((~V � ~r)~�+ (~� � ~r)~V )� 2
(ẑ �~�) � ~r� +r2~�;(B.1) 0 = ~r �~�;(B.2)where ~�(�1=2; y; z) = 0:(B.3)Seeking solutions in the form ~� = 0@ �x(x) cos(�z);�y(x) cos(�z)�z(x) sin(�z) 1A ;� = �(x) cos(�z);~V = xŷ:with Eqs. (B.1){(B.3) implies �z = � 1� @�x@x ;�y = � 12
�2 ( @2@x2 � �2)�x;� = 1�2 ( @2@x2 � �2)@�x@x :Then �x must satisfy the linear eigenvalue problem0 = T�2�x + ( @2@x2 � �2)3�x;(B.4) �x(�1=2) = @@x (�x)(�1=2) = ( @2@x2 � �2)2(�x)(�1=2) = 0;(B.5)where T = 2
(Re� 2
):(B.6) 20
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