An Introduction to
Performance Debugging
for
Parallel Computers *

William Gropp
Mathematics and Computer Science Division
Argonne National Laboratory

Abstract

Programming parallel computers for performance is a difficult task
that requires careful attention to both single-node performance and data
exchange between processors. This paper discusses some of the sources
of poor performance, ways to identify them in an application, and a few
ways to address these issues.

1 Introduction

The basic approach to achieving performance on parallel computers is similar to
the methods used with more conventional computers. This paper will emphasize
the similarities wherever possible. The first step is to identify that there is in
fact a problem. The next few sections describe how to analyze a distributed-
memory parallel program for performance. Once a problem is identified, it must
be located. Various tools, including the use of visualization tools and computer-
aided post processing, are discussed. Some sources of performance problems are
peculiar to parallel computing. A sampling of these in the context of message
passing is discussed. Finally, some techniques for fixing performance problems
are discussed.

The examples in this paper use the Message Passing Interface (MPI) stan-
dard [1, 2]. The translation to other message-passing systems should be clear
(see also the porting guide in [5]).

*This work was supported by the Mathematical, Information, and Compoutational Sci-
ences Division subprogram of the Office of Computational and Technology Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

2 Identifying Performance Problems

The first step in programming for performance is to know what performance
one can expect. This is a particularly crucial step because parallel computers
do not fit the model of computational complexity one may expect.

Most numerical programmers are taught to estimate the time that a program
will take by counting the number of floating-point operations (sometimes only
multiplies and divides). This practice dates from a time when floating-point op-
erations took far longer than any other operation and were thus a good estimate
of work for a numerical program. In modern systems, however, a load or store
from memory may take several times as long as a floating-point multiply. Even
for uniprocessors, floating-point operation counts are no longer of much in in
estimating performance. The dominant cost for most computations is now the
number and kind of memory reference. On a uniprocessor, the memory refer-
ences can be divided into three categories: register, cache, and (main) memory.
(Some systems may have multiple levels of cache and/or main memory; for sim-
plicity this distinction will be ignored.) Only registers provide memory that is
as fast as the CPU; cache memory may require a cycle (instruction) or two, and
main memory may require tens of cycles to provide data for an operation.

For parallel computers, the situation 1s much worse because there is an ad-
ditional memory category: nonlocal memory. Accessing this memory can take
hundreds to hundreds of thousands of cycles. Moreover, accessing this data
usually requires the effort several processors, thereby taking cycles away from
the computation.

Thus, before beginning to tune a program for performance on a parallel
(or even sequential) system, it is important to have at least a simple model
of the performance that is expected. This model will help identify the two
major types of problem: (a) predicted performance is too low and (b) observed
performance is lower than predicted performance. In case (a), one must re-think
the algorithm and problem. In case (b), one must examine the implementation.

Fortunately, the same techniques may be used to identify both problems.
By performing a simple scalability anaysis, one can estimate the performance
of a parallel code. Then, by using a combination of tools to observe the per-
node and parallel performance, one can identify the parts of the code that are
under-performing.

2.1 Scalability Analysis

Scalability analysis is an analytic estimate of expected performance as a function
of the number of processes. A simple scalability model may be used to estimate
the performance of distributed-memory parallel computers. In this model, we
ignore the memory cost for all but nonlocal operations, and model nonlocal
operations by

s+ rn,

where s is the latency or startup time, 7 is the time to transfer a single byte, and
n is the number of bytes being transferred. In addition, we use f to indicate
the time to perform a floating-point operation (inverse flops).

Below are the approximate values for an (thin-node) SP2:

s = 50 psec
r = 1/8 MB/sec = 1.25 x 10~ "sec/B
f = 1/125 Mflops = 8 x 10~ sec/flop

Better scalability models may include the effects of loads and stores, com-
munication contention, and other factors. Some examples of scalability analysis
for both algorithms and applications may be found in [4, 6, 3].

Using a scalablility model, one can estimate the amount of time a computa-
tion will take. For improving performance, however, some metrics can be more
informative than just the time:

Speedup T,/T4, problem size fixed.
Scaled Speedup 7,/T}, problem size scaled with p
Efficiency Speedup/p

All of these suggest how efficiently the resources of a parallel computer are
being utilized by a computation. Speedup (or Scaled Speedup) of p (for p proces-
sors) represents perfect utilization. Tt is important to remember that, although
the speedup of any computation can be improved by having each processor do
additional work that does not depend on an interaction with other processors,
doing so also increases the amount of time that the computation takes. That
this is bad may seem obvious, but many algorithms have been proposed for par-
allel computing that do essentially this (e.g., point-Jacobi relaxation for solving
certain sparse linear systems). One should be wary of pursuing perfect speedup
at the cost of overall efficiency.

2.2 Shared Memory

Computations on shared-memory parallel computers may be modeled in much
the same way as for distributed memory, though with a different expression
for the time it takes to access remote data. For example, on a shared-memory
multiprocessor where all of the memories share a single bus, the time to access

data might be
™n

max(k,p)’
Here, r/k represents the time that it takes a single processor to access remote

memory; k is the number of processors that can simultaneously access memory
before some processor must wait.

2.3 Per-node Performance

The first step to take is to tune a code for per-node performance. That is,
each individual process must be made to run as fast as possible. There are
two reasons for doing this first. First, as discussed above, any estimate or
modeling of parallel scalability can be misleading if each individual process is
doing “extra” work. An untuned code is essentially doing such extra work.
Second, as will be discussed in the sections on message-passing performance,
the performance of the message-passing (or other parallel communication) part
of the code depends critically on the exact timing of operations on the local and
remote (partner/destination/source) processor. Thus, if the message-passing
part is tuned first, the tuning of the code itself may “de-tune” the message-
passing components.

There are numerous sources of information on tuning; many vendors offer
tuning guides for their systems, and these should be consulted. One question
that most tuning guides do not answer, however, is how to determine whether
tuning will help. For many numerical codes, an indicator of the need for tuning
is the ratio of the Flops rate (floating-point operations per second) compared
with the values published for the LINPACK benchmarks. If the ratio is less
than 0.75, the code should be examined. The LINPACK benchmarks provide a
reasonable value for the achievable peak performance for many systems.

A slightly better indicator uses the number of memory references and com-
pares the observed time to the time that the memory bandwidth of the pro-
cessor/memory configuration would predict. If the ratio is too low, then the
application may be making ineffective use of the memory heirarchies (for exam-
ple, memory cache).

In any case, just as for speedup, one must not lose sight of the goal: a faster
code. For example, replacing a sparse matrix algorithm with a dense matrix
algorithm may improve Flops and memory usage, but at the cost of a code
that, overall, is slower.

2.4 Comparision with Others

When evaluating the performance (both sequential and parallel) of a code, it
is vital that, whenever possible, the performance be compared with the per-
formance of similar codes developed by others. Particularly important i1s to
compare the performance of the best algorithm for sequential machines. A liter-
ature search may also reveal useful information about the performance of similar
applications (it is very much to be hoped that as computer science matures as
a discipline, the value in reporting on the performance of carefully crafted im-
plementations will be better recognized and served than it is today).

Another approach that can be useful, particularly when trying to understand
the performance of a large and complex (hard to model) parallel code when using
large data sets (too large for a single processor), is to run the code with all of

the message-passing (or shared-memory) operations disabled. The difference
in time between running with and without the message-passing is roughly the
amount of time spent coordinating and sharing data rather than computing,
and 1s a rough measure of overhead.

3 Locating Problems

Once a code has been determined to need performance tuning, the problem be-
comes one of finding the performance problem. For locating problems in the the
per-node performance, all of the conventional techniques (e.g., gprof, prof) may
be used (as long as the vendor supports such familar tools). For locating prob-
lems in the parallel parts of the code (i.e., message-passing or shared-memory
operations), no standard tools exist. Predictive techniques (such as warnings
from vectorizing compilers about nonvector code) are usually unavailable for
parallel programs. Further, because operations between processors may take
far longer than operations within a processor, just because an operation (such
as sending data from one processor to another) takes a long time does not mean
that there is a way to make it take less time. To help identify those parts
that take too much time, we introduce the concept of deficiency analysis (see
Section 4).

Poor parallel performance has five possible causes: (1) the numerical algo-
rithm, (2) the implementation, (3) a mismatch between user model and reality,
(4) the communication algorithm, and (5) small variations in timing use of the
individual processors.

The rest of this paper will concentrate on cases (4) and (5), but one should
remember that the first three sources of poor performance must be tackled first.
In particular, the choice of numerical algorithm is the first aspect of a program
to consider. The parallel numerical algorithm may perform too much commu-
nication for the size of system. An example is a numerical algorithm that relies
on fast broadcasts of data from one processor to all others; this communication
strategy can be implemented efficiently on some parallel machiness but not oth-
ers. Other problems (trading scalability for overall performance) have already
been mentioned.

In looking at the per-node performance, in addition to considering the speed
of floating-point operations and memory references, it is important to consider
the cost of subroutine call overhead, various system services (e.g., malloc, which
often is both expensive and performs poorly as more elements are allocated [9]),
and inappropriate optimization (e.g., long vectors on RISC processors.)

3.1 Communication Performance

Once the single-node performance is tuned, it is time to look at the performance
of the comunication algorithm. Poor performance has three major causes. The

first is idle time: the time that a processor spends waiting on the arrival of a
message. For example, in the following program fragment, processor one spends
time waiting for processor zero (assume that k& < 1000:

call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
if (myrank .eq. 1) then
do 10 i=1, k
. do some computation ...
10 continue
call MPI_Recv(... buf ...)
else
do 20 i=1,1000
. do some computation ...
20 continue
call MPI_Send(...)

In this example, the 1dle time incurred by one processor is caused by imperfect
load balancing.

In many parallel systems, it is possible to overlap computation with commu-
nication. Because the speed at which data is sent between processors is usually
much less than the speed at which data moves locally, overlapping communica-
tion with computation can be important. In the example above, the code can
be reordered as follows:

call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
if (myrank .eq. 1) then

call MPI_Irecv(... buf ..., request, ierr)

do 10 i=1, k

. do some computation ...

10 continue

call MPI_Wait(request, ierr)
else

call MPI_Isend(... request, ierr)

do 20 i=1,1000

. do some computation ...

20 continue

call MPI_Wait(request, ierr)

In this example, the code initiates a receive (MPI_Irecv) or a send (MPI_Isend),
does some computation, and then waits for the operations to complete (MPI Wait).
Using this forumlation requires that the data be available when the send is ini-
tiated (MPI_Isend) and that it not be modified before the send is completed
(MPI Wait). These operations are called nonblocking. This strategy allows the
data to be transferred while the computation is taking place. Note, however,
that not all environments support an efficient implementation of nonblocking

I I I I I I I
11.53 11.55 11.57 11.60 11.62 11.64 11.66

Figure 1: Time lines for a program with sends waiting for matching receives for
messages too large to be sent without matching receives

operations. Hence, 1t may be necessary to look closely at whether the use of
nonblocking operations provides improved performance.

Another source of poor performance is caused by reaching past the limits of
the underlying system. Consider the following program:

if (myrank .eq. 1) then
call MPI_Send(buffer, size, ...)
. do work ...
else
. do work ...
call MPI_Recv(buffer,)
endif

At first glance, this code appears fine. And the code is correct. It even seems to
provide for the overlapping of communication with computation (the MPI_Send
starts the send and then overlaps with the computation). But there is a subtle
performance problem. If size is large enough, there will not be enough space
on the destination processor to hold the message, thereby forcing the sending
processor to wait until the matching receive is issued. Thus, when the program
is tested with small data sets, it will work as expected; with larger data sets,
however, the performace will suddenly decrease. An example of this effect 1s
shown in Figure 1. (There is a correctness problem here as well; if two processors
send at each other and then receive, the program may work until the messages
become too large, at which point it will hang.)

3.2 Timing Variations

When examining timings for performance problems, it 1s immediately obvious
that the timings are not precisely reproducible. There are many sources of
these variations, including other users on the system, other system activity,
network activity, paging and I/O systems, nondeterminism in user program, and
tradeoffs between detail and accuracy. Most of these are fairly obvious and affect
sequential programs. However, nondeterminism in user programs is (nearly)
unique to parallel computing. Consider the following program fragment:

if (rank == 0) {

MPI_Send(rank=1 ...); MPI_Recv(...);
¥
else {
MPI_Recv(...); MPI_Send(rank = 0 ...);
¥

Does data from the send in process zero arrive before or after the receive is
issued by process one?

The answer is that either can happen, and which happens first can signifi-
cantly change the amount of time that this code takes to execute. Consider the
first case: the data from the send arrives before the receive is issued. A possible
sequence 1s

1. send data arrives, causing user process to be interrupted;
2. no destination buffer 1s available, so space is allocated and data is copied;

3. later, the receive is issued, data is copied from the buffer, and the buffer
is deallocated.

Now consider the other case: the receive is issued before the send arrives. Then
the sequence of operations may be

1. receive 1s posted and the application waits for data to arrive;
2. data arrives and is copied directly into buffer designated by the receive.

This second sequence of operations may take much less time the the first se-
quence, particularly if the receive does not wait long (a similar sequence applies
if nonblocking operations are used).

One of the major reasons that the early arrival of data can cause a significant
increase in the time taken is the interrupt of the user process for the system
to service the incoming message. One could decrease this cost (in some cases)
by not taking the interrupt. Instead, the system could wait until the receive is
issued, or occasionally poll the interconnection network. Both the IBM MPL
and the TMC CMMD provide options to select between these approaches. Note

that if polling is used, instead of time being lost to interrupts, it may be lost
while a send on one processor stalls waiting for a receive to occur on another
processor.

4 Deficiency Analysis

Most performance tuning tools identify those components of the code that take
the most time. What they do not identify is whether those components can be
made to run faster. For example, a profiling tool might indicate that routine a
takes 230 seconds and b takes 180 seconds. But if a is achieving 140 MFlops
out of 150 and b is achieving 15 MFlops, then clearly any tuning should be
carried out in routine b, not routine a (in this case, tuning may not be worth-
while because less than a factor of two improvement could be realized). The
approach of identifying parts of the code that both take significant time and are
underperforming is called deficiency analysis.

No tools currently analyze both the time and the performance of parallel
computers. However, it is possible to instrument critical parts of a program
to help identify underperforming sections of code. For example, to look for
underperforming message-passing code, one can combine the complexity model
in Section 2.1 with runtime calls to measure the elapsed time used by the calls.
The following code generates a message whenever a message takes more than
THRESHOLD times as long as predicted:

int MPI_Send(...)

{

t1 = MPI_Wtime();

err= PMPI_Send(..., count, datatype, ...);

t2 = MPI_Wtime() - t1;

MPI_Type_size(datatype, &size);

if (t2 > THRESHOLD*(s + r * size * count)) {
. log problem at __FILE LINE_

— —_— —— —

return err,;

}

(This example uses the MPI profiling interface described below.)

5 Event Log Tools

Many tools help visualize the behavior of a parallel program. These include
portable tools created by research groups such as ParaGraph [7], Pablo [10],
Upshot [8], and AIMS [11], vendor-provided tools, such as the IBM vt. All
these tools create and display logs of events that are generated by instrumented

versions of the user’s application; each emphasizes a different view of the data.
These can be useful in identifying unexpected patterns of behavior that are not
apparent when looking only at a single processor. An example of Upshot output
is shown 1n Figure 2.

5.1 MPTI’s Profiling Interface

All MPT routines also available as PMPI xxx. This interface allows each (or only
some) MPI routine to be replaced with a routine that performs some additional
action (such as logging the use of the MPT routine or measuring the time it takes)
and then performs the MPI operation. By ensuring that the replacement routine
occurs first in the linker list, the user’s application gets the replacement routine
without needing to be recompiled. Figure 3 shows how link-time replacement
of routines happens in MPI. An example using the MPI profiling interface was
shown in Section 4.

6 Conclusion

The following steps have been described for performance debugging for parallel
computers:

1. Develop an analytical time-complexity model. Measure the achieved per-
formance (perhaps on smaller problem).

2. Determine whether tuning is needed.
3. Tune for single-node performance.
4. Tune for message-passing or remote memory performance.

Techniques for identifying and locating problems include using deficiency
analysis to identify deviations between model and actual performance and us-
ing profiling and program visualization tools. In the end, however, tuning a
code requires understanding the memory reference model (for local and shared-
memory operations) and the operations performed by message-passing routines.

10

[@] Teeshot I
Select Logfile|[sam hyp.16.log B %atﬂpl--@pt—io:ﬁi--guit

Horizontal Zoom: Vertical Zoom: Printl Reset.l Close
task_b [task_bp task_c HHEEE task_d

task_a

W~k W 2O

-
o

sam_hyp.16.log -E
Horizontal Zoom: Vertical Zoom: Print| Reset| iClose|
task_b [task_bp task_c ~— BEEEE task_d

task_a

|
1.550 1.555 1.560 [@] task_c lengths
Humber of task_c states: 130

Total time: 0.17067 sec.

Start state length

(I

End state length

0.0010_

I [-
0. 0049
Humber of bins
| |
25 -

cursor: 0.00196

Figure 2: Sample Upshot output

11

' MPI_Send T MPI_Send MPI_Send
1 1 PMPI_Send + PMPI_Send
. MPI_Bcast ~ + MPI_Bcast
User Program Profile Library MPI Library

Figure 3: Diagram showing how MPI profiling routines are selected at link time

References

[1] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. International Journal of Supercomputing Applications, 8(3/4), 1994.

[2] Message Passing Interface Forum. MPI: A message-passing interface
standard. http://www.mcs.anl.gov/mpi/mpi-report /mpi-report.html, May
1994.

[3] Tan Foster, William Gropp, and Rick Stevens. The parallel scalability of the
spectral transform method. Monthly Weather Review, 120:835-850, 1992.

[4] W. Gropp and E. Smith. Computational fluid dynamics on parallel pro-
cessors. Computers and Fluids, 18:289-304, 1990.

[6] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. MIT
Press, 1994.

[6] William D. Gropp and David E. Keyes. Complexity of parallel implemen-
tation of domain decomposition techniques for elliptic partial differential

equations. STAM J. Sci. Statist. Comput., 9(2):312-326, 1988.

[7] Michael T. Heath and Jennifer Etheridge Finger. Visualizing performance
of parallel programs. TEEE Software, 8(5):29-39, September 1991.

[8] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior
with Upshot. Technical Report ANL-91/15, Argonne National Laboratory,
Mathematics and Computer Science Division, August 1991.

[9] David M. Nichol. Inflated speedups in parallel simulations via malloc().
Technical Report ICASE-90-63, ICASE, September 1990.

12

[10] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A.
Shields, Bradley Schwartz, and Luis F. Tavera. Scalable performance analy-
sis: The pablo performance analysis environment. In Anthony Skjellum, ed-
itor, Proceedings of the Scalable Parallel Libraries Conference. IEEE Com-
puter Society, 1993.

[11] Jerry Yan, Philip Hontalas, and Sherry Listgarten. The Automated Instru-
mentation and Monitoring System (AIMS) Reference Manual, November
1993. NASA-TM-108795.

13

