
An Introduction toPerformance DebuggingforParallel Computers �William GroppMathematics and Computer Science DivisionArgonne National LaboratoryAbstractProgramming parallel computers for performance is a di�cult taskthat requires careful attention to both single-node performance and dataexchange between processors. This paper discusses some of the sourcesof poor performance, ways to identify them in an application, and a fewways to address these issues.1 IntroductionThe basic approach to achieving performance on parallel computers is similar tothe methods used with more conventional computers. This paper will emphasizethe similarities wherever possible. The �rst step is to identify that there is infact a problem. The next few sections describe how to analyze a distributed-memory parallel program for performance. Once a problem is identi�ed, it mustbe located. Various tools, including the use of visualization tools and computer-aided post processing, are discussed. Some sources of performance problems arepeculiar to parallel computing. A sampling of these in the context of messagepassing is discussed. Finally, some techniques for �xing performance problemsare discussed.The examples in this paper use the Message Passing Interface (MPI) stan-dard [1, 2]. The translation to other message-passing systems should be clear(see also the porting guide in [5]).�This work was supported by the Mathematical, Information, and Compoutational Sci-ences Division subprogram of the O�ce of Computational and Technology Research, U.S.Department of Energy, under Contract W-31-109-Eng-38.1

2 Identifying Performance ProblemsThe �rst step in programming for performance is to know what performanceone can expect. This is a particularly crucial step because parallel computersdo not �t the model of computational complexity one may expect.Most numerical programmers are taught to estimate the time that a programwill take by counting the number of
oating-point operations (sometimes onlymultiplies and divides). This practice dates from a time when
oating-point op-erations took far longer than any other operation and were thus a good estimateof work for a numerical program. In modern systems, however, a load or storefrom memory may take several times as long as a
oating-point multiply. Evenfor uniprocessors,
oating-point operation counts are no longer of much in inestimating performance. The dominant cost for most computations is now thenumber and kind of memory reference. On a uniprocessor, the memory refer-ences can be divided into three categories: register, cache, and (main) memory.(Some systems may have multiple levels of cache and/or main memory; for sim-plicity this distinction will be ignored.) Only registers provide memory that isas fast as the CPU; cache memory may require a cycle (instruction) or two, andmain memory may require tens of cycles to provide data for an operation.For parallel computers, the situation is much worse because there is an ad-ditional memory category: nonlocal memory. Accessing this memory can takehundreds to hundreds of thousands of cycles. Moreover, accessing this datausually requires the e�ort several processors, thereby taking cycles away fromthe computation.Thus, before beginning to tune a program for performance on a parallel(or even sequential) system, it is important to have at least a simple modelof the performance that is expected. This model will help identify the twomajor types of problem: (a) predicted performance is too low and (b) observedperformance is lower than predicted performance. In case (a), one must re-thinkthe algorithm and problem. In case (b), one must examine the implementation.Fortunately, the same techniques may be used to identify both problems.By performing a simple scalability anaysis, one can estimate the performanceof a parallel code. Then, by using a combination of tools to observe the per-node and parallel performance, one can identify the parts of the code that areunder-performing.2.1 Scalability AnalysisScalability analysis is an analytic estimate of expected performance as a functionof the number of processes. A simple scalability model may be used to estimatethe performance of distributed-memory parallel computers. In this model, weignore the memory cost for all but nonlocal operations, and model nonlocaloperations by s + rn;2

where s is the latency or startup time, r is the time to transfer a single byte, andn is the number of bytes being transferred. In addition, we use f to indicatethe time to perform a
oating-point operation (inverse
ops).Below are the approximate values for an (thin-node) SP2:s = 50 �secr = 1=8 MB/sec = 1:25� 10�7sec/Bf = 1=125 M
ops = 8� 10�9sec/
opBetter scalability models may include the e�ects of loads and stores, com-munication contention, and other factors. Some examples of scalability analysisfor both algorithms and applications may be found in [4, 6, 3].Using a scalablility model, one can estimate the amount of time a computa-tion will take. For improving performance, however, some metrics can be moreinformative than just the time:Speedup Tp=T1, problem size �xed.Scaled Speedup Tp=T1, problem size scaled with pE�ciency Speedup=pAll of these suggest how e�ciently the resources of a parallel computer arebeing utilized by a computation. Speedup (or Scaled Speedup) of p (for p proces-sors) represents perfect utilization. It is important to remember that, althoughthe speedup of any computation can be improved by having each processor doadditional work that does not depend on an interaction with other processors,doing so also increases the amount of time that the computation takes. Thatthis is bad may seem obvious, but many algorithms have been proposed for par-allel computing that do essentially this (e.g., point-Jacobi relaxation for solvingcertain sparse linear systems). One should be wary of pursuing perfect speedupat the cost of overall e�ciency.2.2 Shared MemoryComputations on shared-memory parallel computers may be modeled in muchthe same way as for distributed memory, though with a di�erent expressionfor the time it takes to access remote data. For example, on a shared-memorymultiprocessor where all of the memories share a single bus, the time to accessdata might be rnmax(k; p) :Here, r=k represents the time that it takes a single processor to access remotememory; k is the number of processors that can simultaneously access memorybefore some processor must wait. 3

2.3 Per-node PerformanceThe �rst step to take is to tune a code for per-node performance. That is,each individual process must be made to run as fast as possible. There aretwo reasons for doing this �rst. First, as discussed above, any estimate ormodeling of parallel scalability can be misleading if each individual process isdoing \extra" work. An untuned code is essentially doing such extra work.Second, as will be discussed in the sections on message-passing performance,the performance of the message-passing (or other parallel communication) partof the code depends critically on the exact timing of operations on the local andremote (partner/destination/source) processor. Thus, if the message-passingpart is tuned �rst, the tuning of the code itself may \de-tune" the message-passing components.There are numerous sources of information on tuning; many vendors o�ertuning guides for their systems, and these should be consulted. One questionthat most tuning guides do not answer, however, is how to determine whethertuning will help. For many numerical codes, an indicator of the need for tuningis the ratio of the Flops rate (
oating-point operations per second) comparedwith the values published for the LINPACK benchmarks. If the ratio is lessthan 0:75, the code should be examined. The LINPACK benchmarks provide areasonable value for the achievable peak performance for many systems.A slightly better indicator uses the number of memory references and com-pares the observed time to the time that the memory bandwidth of the pro-cessor/memory con�guration would predict. If the ratio is too low, then theapplication may be making ine�ective use of the memory heirarchies (for exam-ple, memory cache).In any case, just as for speedup, one must not lose sight of the goal: a fastercode. For example, replacing a sparse matrix algorithm with a dense matrixalgorithm may improve Flops and memory usage, but at the cost of a codethat, overall, is slower.2.4 Comparision with OthersWhen evaluating the performance (both sequential and parallel) of a code, itis vital that, whenever possible, the performance be compared with the per-formance of similar codes developed by others. Particularly important is tocompare the performance of the best algorithm for sequential machines. A liter-ature search may also reveal useful information about the performance of similarapplications (it is very much to be hoped that as computer science matures asa discipline, the value in reporting on the performance of carefully crafted im-plementations will be better recognized and served than it is today).Another approach that can be useful, particularly when trying to understandthe performance of a large and complex (hard to model) parallel code when usinglarge data sets (too large for a single processor), is to run the code with all of4

the message-passing (or shared-memory) operations disabled. The di�erencein time between running with and without the message-passing is roughly theamount of time spent coordinating and sharing data rather than computing,and is a rough measure of overhead.3 Locating ProblemsOnce a code has been determined to need performance tuning, the problem be-comes one of �nding the performance problem. For locating problems in the theper-node performance, all of the conventional techniques (e.g., gprof, prof) maybe used (as long as the vendor supports such familar tools). For locating prob-lems in the parallel parts of the code (i.e., message-passing or shared-memoryoperations), no standard tools exist. Predictive techniques (such as warningsfrom vectorizing compilers about nonvector code) are usually unavailable forparallel programs. Further, because operations between processors may takefar longer than operations within a processor, just because an operation (suchas sending data from one processor to another) takes a long time does not meanthat there is a way to make it take less time. To help identify those partsthat take too much time, we introduce the concept of de�ciency analysis (seeSection 4).Poor parallel performance has �ve possible causes: (1) the numerical algo-rithm, (2) the implementation, (3) a mismatch between user model and reality,(4) the communication algorithm, and (5) small variations in timing use of theindividual processors.The rest of this paper will concentrate on cases (4) and (5), but one shouldremember that the �rst three sources of poor performance must be tackled �rst.In particular, the choice of numerical algorithm is the �rst aspect of a programto consider. The parallel numerical algorithm may perform too much commu-nication for the size of system. An example is a numerical algorithm that relieson fast broadcasts of data from one processor to all others; this communicationstrategy can be implemented e�ciently on some parallel machiness but not oth-ers. Other problems (trading scalability for overall performance) have alreadybeen mentioned.In looking at the per-node performance, in addition to considering the speedof
oating-point operations and memory references, it is important to considerthe cost of subroutine call overhead, various system services (e.g., malloc, whichoften is both expensive and performs poorly as more elements are allocated [9]),and inappropriate optimization (e.g., long vectors on RISC processors.)3.1 Communication PerformanceOnce the single-node performance is tuned, it is time to look at the performanceof the comunication algorithm. Poor performance has three major causes. The5

�rst is idle time: the time that a processor spends waiting on the arrival of amessage. For example, in the following program fragment, processor one spendstime waiting for processor zero (assume that k < 1000:call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)if (myrank .eq. 1) thendo 10 i=1, k... do some computation ...10 continuecall MPI_Recv(... buf ...)else do 20 i=1,1000... do some computation ...20 continuecall MPI_Send(...)In this example, the idle time incurred by one processor is caused by imperfectload balancing.In many parallel systems, it is possible to overlap computation with commu-nication. Because the speed at which data is sent between processors is usuallymuch less than the speed at which data moves locally, overlapping communica-tion with computation can be important. In the example above, the code canbe reordered as follows:call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)if (myrank .eq. 1) thencall MPI_Irecv(... buf ..., request, ierr)do 10 i=1, k... do some computation ...10 continuecall MPI_Wait(request, ierr)else call MPI_Isend(... request, ierr)do 20 i=1,1000... do some computation ...20 continuecall MPI_Wait(request, ierr)In this example, the code initiates a receive (MPI Irecv) or a send (MPI Isend),does some computation, and then waits for the operations to complete (MPI Wait).Using this forumlation requires that the data be available when the send is ini-tiated (MPI Isend) and that it not be modi�ed before the send is completed(MPI Wait). These operations are called nonblocking. This strategy allows thedata to be transferred while the computation is taking place. Note, however,that not all environments support an e�cient implementation of nonblocking6

11.53 11.55 11.57 11.60 11.62 11.64 11.66

Allreduce Barrier Bcast Iprobe Irecv

Isend Issend Probe Recv Reduce Send

Sendrecv Ssend Test Wait Waitall

Waitany

0

1

2

3

4

5

6

7Figure 1: Time lines for a program with sends waiting for matching receives formessages too large to be sent without matching receivesoperations. Hence, it may be necessary to look closely at whether the use ofnonblocking operations provides improved performance.Another source of poor performance is caused by reaching past the limits ofthe underlying system. Consider the following program:if (myrank .eq. 1) thencall MPI_Send(buffer, size, ...)... do work ...else... do work ...call MPI_Recv(buffer,)endifAt �rst glance, this code appears �ne. And the code is correct. It even seems toprovide for the overlapping of communication with computation (the MPI Sendstarts the send and then overlaps with the computation). But there is a subtleperformance problem. If size is large enough, there will not be enough spaceon the destination processor to hold the message, thereby forcing the sendingprocessor to wait until the matching receive is issued. Thus, when the programis tested with small data sets, it will work as expected; with larger data sets,however, the performace will suddenly decrease. An example of this e�ect isshown in Figure 1. (There is a correctness problem here as well; if two processorssend at each other and then receive, the program may work until the messagesbecome too large, at which point it will hang.)7

3.2 Timing VariationsWhen examining timings for performance problems, it is immediately obviousthat the timings are not precisely reproducible. There are many sources ofthese variations, including other users on the system, other system activity,network activity, paging and I/O systems, nondeterminism in user program, andtradeo�s between detail and accuracy. Most of these are fairly obvious and a�ectsequential programs. However, nondeterminism in user programs is (nearly)unique to parallel computing. Consider the following program fragment:if (rank == 0) {MPI_Send(rank=1 ...); MPI_Recv(...);}else {MPI_Recv(...); MPI_Send(rank = 0 ...);}Does data from the send in process zero arrive before or after the receive isissued by process one?The answer is that either can happen, and which happens �rst can signi�-cantly change the amount of time that this code takes to execute. Consider the�rst case: the data from the send arrives before the receive is issued. A possiblesequence is1. send data arrives, causing user process to be interrupted;2. no destination bu�er is available, so space is allocated and data is copied;3. later, the receive is issued, data is copied from the bu�er, and the bu�eris deallocated.Now consider the other case: the receive is issued before the send arrives. Thenthe sequence of operations may be1. receive is posted and the application waits for data to arrive;2. data arrives and is copied directly into bu�er designated by the receive.This second sequence of operations may take much less time the the �rst se-quence, particularly if the receive does not wait long (a similar sequence appliesif nonblocking operations are used).One of the major reasons that the early arrival of data can cause a signi�cantincrease in the time taken is the interrupt of the user process for the systemto service the incoming message. One could decrease this cost (in some cases)by not taking the interrupt. Instead, the system could wait until the receive isissued, or occasionally poll the interconnection network. Both the IBM MPLand the TMC CMMD provide options to select between these approaches. Note8

that if polling is used, instead of time being lost to interrupts, it may be lostwhile a send on one processor stalls waiting for a receive to occur on anotherprocessor.4 De�ciency AnalysisMost performance tuning tools identify those components of the code that takethe most time. What they do not identify is whether those components can bemade to run faster. For example, a pro�ling tool might indicate that routine atakes 230 seconds and b takes 180 seconds. But if a is achieving 140 MFlopsout of 150 and b is achieving 15 MFlops, then clearly any tuning should becarried out in routine b, not routine a (in this case, tuning may not be worth-while because less than a factor of two improvement could be realized). Theapproach of identifying parts of the code that both take signi�cant time and areunderperforming is called de�ciency analysis.No tools currently analyze both the time and the performance of parallelcomputers. However, it is possible to instrument critical parts of a programto help identify underperforming sections of code. For example, to look forunderperforming message-passing code, one can combine the complexity modelin Section 2.1 with runtime calls to measure the elapsed time used by the calls.The following code generates a message whenever a message takes more thanTHRESHOLD times as long as predicted:int MPI_Send(...){t1 = MPI_Wtime();err= PMPI_Send(..., count, datatype, ...);t2 = MPI_Wtime() - t1;MPI_Type_size(datatype, &size);if (t2 > THRESHOLD*(s + r * size * count)) {... log problem at __FILE__, __LINE__}return err;}(This example uses the MPI pro�ling interface described below.)5 Event Log ToolsMany tools help visualize the behavior of a parallel program. These includeportable tools created by research groups such as ParaGraph [7], Pablo [10],Upshot [8], and AIMS [11], vendor-provided tools, such as the IBM vt. Allthese tools create and display logs of events that are generated by instrumented9

versions of the user's application; each emphasizes a di�erent view of the data.These can be useful in identifying unexpected patterns of behavior that are notapparent when looking only at a single processor. An example of Upshot outputis shown in Figure 2.5.1 MPI's Pro�ling InterfaceAll MPI routines also available as PMPI xxx. This interface allows each (or onlysome) MPI routine to be replaced with a routine that performs some additionalaction (such as logging the use of the MPI routine or measuring the time it takes)and then performs the MPI operation. By ensuring that the replacement routineoccurs �rst in the linker list, the user's application gets the replacement routinewithout needing to be recompiled. Figure 3 shows how link-time replacementof routines happens in MPI. An example using the MPI pro�ling interface wasshown in Section 4.6 ConclusionThe following steps have been described for performance debugging for parallelcomputers:1. Develop an analytical time-complexity model. Measure the achieved per-formance (perhaps on smaller problem).2. Determine whether tuning is needed.3. Tune for single-node performance.4. Tune for message-passing or remote memory performance.Techniques for identifying and locating problems include using de�ciencyanalysis to identify deviations between model and actual performance and us-ing pro�ling and program visualization tools. In the end, however, tuning acode requires understanding the memory reference model (for local and shared-memory operations) and the operations performed by message-passing routines.
10

Figure 2: Sample Upshot output11

MPI_Send
PMPI_Send

MPI_Bcast

MPI_Send
PMPI_Send

MPI_Send

MPI_Bcast

User Program MPI LibraryProfile LibraryFigure 3: Diagram showing how MPI pro�ling routines are selected at link timeReferences[1] Message Passing Interface Forum. MPI: A message-passing interface stan-dard. International Journal of Supercomputing Applications, 8(3/4), 1994.[2] Message Passing Interface Forum. MPI: A message-passing interfacestandard. http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html,May1994.[3] Ian Foster, WilliamGropp, and Rick Stevens. The parallel scalability of thespectral transform method. Monthly Weather Review, 120:835{850, 1992.[4] W. Gropp and E. Smith. Computational
uid dynamics on parallel pro-cessors. Computers and Fluids, 18:289{304, 1990.[5] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. MITPress, 1994.[6] William D. Gropp and David E. Keyes. Complexity of parallel implemen-tation of domain decomposition techniques for elliptic partial di�erentialequations. SIAM J. Sci. Statist. Comput., 9(2):312{326, 1988.[7] Michael T. Heath and Jennifer Etheridge Finger. Visualizing performanceof parallel programs. IEEE Software, 8(5):29{39, September 1991.[8] Virginia Herrarte and Ewing Lusk. Studying parallel program behaviorwith Upshot. Technical Report ANL-91/15, Argonne National Laboratory,Mathematics and Computer Science Division, August 1991.[9] David M. Nichol. In
ated speedups in parallel simulations via malloc().Technical Report ICASE-90-63, ICASE, September 1990.12

[10] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A.Shields, Bradley Schwartz, and Luis F. Tavera. Scalable performance analy-sis: The pablo performance analysis environment. In Anthony Skjellum, ed-itor, Proceedings of the Scalable Parallel Libraries Conference. IEEE Com-puter Society, 1993.[11] Jerry Yan, Philip Hontalas, and Sherry Listgarten. The Automated Instru-mentation and Monitoring System (AIMS) Reference Manual, November1993. NASA-TM-108795.

13

