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Around 1980, the U.S. Congress expressed interest in focusing on near-term energypolicy issues. The large PIES model proved to be unsuitable for the resulting year-by-yearanalyses and so a new energy model, the Intermediate Future Forecasting System (IFFS)was developed (Murphy et al. 1988).IFFS also sought to compute an equilibrium in fuel prices and quantities, but used adi�erent approach from PIES. IFFS was modular, where each module related to a speci�cenergy activity such as electricity generation or natural gas distribution. Each modulecomputed a trial equilibrium in fuel prices and quantities, holding values outside of themodule constant, and then passing these trial equilibrium values on to the next module.This modular structure proved to be more amenable to energy analysis than the PIESapproach; see Murphy (1983), Murphy (1993), and Murphy et al. (1988). The solutionalgorithm used in IFFS was the nonlinear Gauss-Seidel method for solving a system ofnonlinear equations related to an energy equilibrium.About 1990, it was determined that IFFS alone was not su�cient to handle manyof the emerging energy issues such as the Clean Air Act Amendments and natural gasderegulation. Consequently, the National Energy Modeling System (NEMS) was initiated.Like IFFS, NEMS is highly modular and uses a nonlinear Gauss-Seidel approach to computean equilibrium. However, NEMS went well beyond IFFS in several ways. For example,certain market components such as international oil markets, demand side management,and interregional electricity trade and transmission that had been calculated exogenouslyare now calculated within the NEMS system. Also, more structural detail was added tocertain energy sectors.At present, some convergence problems have been identi�ed with the Gauss-SeidelNEMS algorithm. One of the main problems is that this approach \freezes" the inputsfrom outside modules while calculating a trial equilibrium within a speci�c module. Thiscan cause problems for those modules that interact heavily with other ones; for example, theElectricity Market Module interacts heavily with the Natural Gas Transmission and Dis-tribution Module and the Coal Market Module. In addition, there have been convergenceproblems related to approximating supply and/or demand curves by step functions. Thesestep functions are meant to approximate a nonlinear relationship that cannot be explicitlyincorporated as such into the relevant LP modules.While some of these problems have been �xed, NEMS modelers and other researcherswish to develop a generalized version of NEMS to avoid such obstacles and perhaps improvethe speed of convergence of the current approach. One such strategy for achieving thesegoals is to model the NEMS equilibrium as a nonlinear complementarity problem (NCP).This more general format not only has the potential to reduce some of the convergenceproblems cited above, but it allows for much more general NEMS modules than at present.This last point is crucial because there is interest in using nonlinear programs or evennonoptimization-based equilibrium models in some of the NEMS modules. An example ofa nonoptimization model is the spatial price equilibrium problem; see Harker and Pang(1990) for details. Note that these new modeling directions would be less restrictive thanlinear programs, potentially allowing for a more realistic model of energy activity. Hence,we see that for various reasons, the NCP format has merit for NEMS.The organization of the rest of this paper is as follows. In section 2, we give a briefoverview of the current NEMS setup; in section 3 we describe the general nonlinear com-2



plementarity problem and the speci�c NCP that arises from NEMS; and in sections 4{6we describe how several recent iterative Newton type methods for the general NCP can bespecialized to e�ciently solving the NEMS NCP.Note that throughout this paper, for vectors v 2 Rn, we have indicated subvectors byvy . Here y is a vector of variables so that vy refers to all components of v relating to thesevariables. Alternatively, we have also used the index set 
 � f1; 2; : : : ; ng to describe asubvector v
 of v. Unless otherwise stated, for vectors, superscripts will denote iteratessuch as yk, whereas for matrices or scalars subscripts will denote a component, (i.e., yi).Lastly, unless stated otherwise k � k is meant to denote the usual Euclidean norm.2 A Brief Overview of NEMSLike its predecessor models, e.g. the Intermediate Future Forecasting System (IFFS), NEMSincorporates a market-based approach to energy analysis. NEMS balances the supply of anddemand for energy for each fuel and consuming sector, taking into account the economiccompetition between energy sources.NEMS is partitioned into a modular system, which is solved by applying the Gauss-Seidelconvergence method with successive over-relaxation. The modules of NEMS represent eachof the fuel supply markets, conversion sectors, and end-use consumption sectors, and alsoinclude interactive macroeconomic and international modules. The primary 
ows betweenthese modules are the delivered prices of energy and the quantities consumed by product,region, and sector, but include other information such as economic activity and technologycharacteristics. The delivered prices of fuel encompasses all the activities necessary toproduce, import, and transport fuels to the end user.At present, NEMS consists of an integrating module as well as the following other mod-ules:Energy Demand1. Residential Demand Module2. Commercial Demand Module3. Transporation Demand Module4. Industrial Demand ModuleEnergy Supply1. Oil and Gas Supply Module2. Renewable Fuels Module3. Natural Gas Transmission and Distribution Module4. Coal Market ModuleEnergy Conversion 3



1. Electricity Market Module2. Petroleum Market ModuleIn addition, there are two other modules for modeling economic activities: (1) TheMacroeconomic Activity Module and (2) the International Energy Module. At present, theconversion, transmission, and distribution of energy are modeled by using appropriate linearprograms (LPs). The presumption is that LPs adequately capture those selected aspectsof the energy sector. Also, various prices and quantities are calculated as a function of theoutput from these LPs; by output we mean optimal decision variables and multipliers. Inaddition, certain prices and quantities serve as inputs to these linear programs. Lastly, anyremaining quantities not calculated from the output of these LPs are generated via nonlineardemand equations. All together, NEMS is a collection of linear programs and nonlinearequations whose simultaneous solution determines equilibrium prices and quantities; wewill comment more on the speci�c nature of these modules in what follows.It is important to understand that this equilibration process is carried out annuallyup to the year 2010. The NCP formulation for NEMS to be presented below should beinterpreted for an individual year in this series. Hence, for each year, we have a di�erentbut related NCP to solve.In NEMS, we are concerned with calculating fuel prices and quantities in equilibriumbetween the supply and demand sides of the energy market. We suppose that there aren prices and n quantities of fuels denoted, respectively, by the vectors p and q, wherep = (p1; : : : ; pn)T and q = (q1; : : : ; qn)T .In many instances, we will need to distinguish when a certain variable is being used asan input or an output to a particular NEMS module. Given a vector y 2 Rn, we will denotea subvector as yS = fyj : j 2 Sg where S � f1; : : : ; ng. When the index set S refers to thevariables in the vector y that are used as inputs to the ith NEMS mathematical program(currently an LP), we will use the notation Iy(i); for outputs. The associated set of indiceswill be designated Oy(i).When it is appropriate, we will abbreviate this notation for convenience. Hence, pIp(i); qIq(i)are those prices and quantities, respectively, used as inputs to the ith mathematical pro-gram, and are thus constants in that module. 1 On the other hand, pOp(i); qOq(i) are,respectively, those prices and quantities calculated as a function of the output of the ithLP. Note that the e�ect of allowing both prices and quantities to feed back into each LP isone of the more advanced yet computationally complicating features of NEMS.Each module does not always work at the same level of regional aggregation for thevariables involved. For example, one module may work with census divisions, whereasanother module may use a completely di�erent regional level. The translation betweenaggregation schemes is important when we deal with q, the fuel quantities demanded.Each fuel quantity is calculated in exactly one of four places: in the demand modules,the electricity module, the natural gas module, or the petroleum module. We will partitionthe vector q into four pieces as follows:qD quantities calculated in the demand modules,qE quantities calculated in the electricity module,qG quantities calculated in the natural gas module,qP quantities calculated in the petroleum module.4



For example, the quantities computed from the demand modules are at the level of nine cen-sus divisions, whereas for the vectors qE ; qG and qP , the level of aggregation is respectively,thirteen North American Electric Reliability Council (NERC) regions, twenty-one supplyregions and �ve Petroleum Administration for Defense Districts (PADDs). Hence, we needto translate between these various aggregation schemes when going between modules.2.1 Demand ModulesNEMS has four demand modules covering residential, commercial, transportation, and in-dustrial demand for various fuels. These modules involve complex sets of equations relatingvarious economic factors as well as fuel prices to determining fuel quantities to be demanded.While it is not practical to enumerate each of the de�ning equations involved in com-puting demand, from empirical testing it has been determined that these demand functionspossess some interesting properties, which we will now explain.First, let Q : Rm+ ! Rm+ denote the demand function for all four of the demand modulestaken together; here m = jDj is the number of quantities calculated in the demand modulesand pD is the associated subvector of prices.In general, we will focus only on the equilibrium prices pD as arguments to this function,since other quantities can be ignored from the point of view of the equilibrium problem.From empirical testing, it was determined that the own price e�ect on demand dominatedthe cross price e�ect. In addition, the price e�ects were symmetric, and at most six prices(including own price) were involved in determing the demand for a particular fuel; in manycases it was just the own price. If we consider the Jacobian of �Q, we see the followingstructure: r(�Q(pD)) = 0BBB@D11 0 : : : 00 D22 : : : 00 0 .. . ...0 0 : : : Dnn 1CCCA ; (1)where Dii is a symmetric matrix of size at most 6�6. The dominance of the own price overcross prices means that this matrix is strictly diagonally dominant and hence nonsingular.However, we can say even more about r(�Q).The quantities @(�Qi(pD))@pi were observed to be strictly positive so that the diagonals ofr(�Q) are strictly positive. If the own price dominates the cross prices su�ciently, thenthe matrix Dii has positive diagonals with o�-diagonals su�ciently small. We �rst notethat the eigenvalues of r(�Q) are just the union of the eigenvalues of each Dii. If therewere no cross price e�ects, the matrix Dii would be a diagonal positive de�nite matrix withall the eigenvalues positive. Since the eigenvalues are continuous functions of the entries ofthe matrix, for reasonably small cross price e�ects, one can say that it is reasonable thatthe eigenvalues of each Dii would be strictly positive. This, of course, results in the matrixr(�Q) being symmetric positive de�nite so that �Q is a strictly monotone function.The upshot is that if one were to attempt to consolidate the demand modules, using astrictly monotone function for �Q would be a reasonable place to start. This conclusion isrelevant because in the NCP algorithms to be presented, we need to calculate r(�Q).5



2.2 Supply Modules2.2.1 Oil and Gas Supply Module, Renewables Supply ModuleThe Oil and Gas Supply Module's purpose is to produce a supply function for oil andgas that is used in other modules. That is, having last year's fuel prices and productionquantities, this module produces appropriate supply curves. In general, log-linear functionsare used to approximate the supply relationship. Speci�cally, for a particular fuel i, thefollowing model is used: pi = p̂i(qîqi )�;where qi, pi are the quantity and price for fuel i in the current year, q̂i; p̂i are last year'sreference values, and � is the own price elasticity. If natural logs of both sides are taken,one ends up with the form log(pîpi ) = � log( qîqi);hence the name \log-linear." These relationships are then approximated in a step-functionmanner and incorporated in the various linear programs used in other modules. The supplymodule for the renewable fuels also operates in this manner, namely, using a log-linearfunction for supply, then approximating it by a step function for use in other modules.Consequently, the e�ect of both the Oil and Gas and the Renewables Modules is made inthe objective functions of the various linear programming formulations where the costs ofthe fuels in question are used.2.2.2 The Natural Gas Transmission and Distribution ModuleThe purpose of the Natural Gas Transmission and Distribution Module (NGTDM) is tomodel the network of pipelines and storage facilities that link suppliers (including importers)and consumers of natural gas. At present, a linear programming formulation is used. 2The following linear program will be used to model the activities of NGTDM as well asother relevant modules, the only di�erences being the dimension of the constraint matrices,the number of variables, and the speci�c form of the objective function. We haveminimize xf�(x; p) : Ax � ~q; Bx � 0; x � 0g (2)where the �rst set of constraints is associated with demand quantities q and the second setof constraints is nondemand related. In light of our earlier comment concerning q, we seethat ~q must be at the level of the NGTDM demand regions to be compatible with the otherNGTDM values. Hence, we see that ~q = Nq where the matrix N converts fuel quantitiesto the NGTDM level of regionality. The other LPs will have a similar translation whoseparticular form will, of course, depend on the level of aggregation. 3 Note that the variablesx represent the decision variables for this LP. We will let u and v be the multiplier vectorsfor these two sets of constraints, respectively. The objective function �(x; p) is the sumof supply costs, pipeline tari�s for local distribution companies (LDCs) using the network,storage charges and distribution charges initiated by the LDCs. In this way, the objective6



function takes on the following form:�(x; p) = Xj2Icp xjcj + Xj2Ip xjpj ; (3)that is, costs independent of the prices of other fuels plus costs using these prices. Notethat the index set Ip is understood to be for the NGTDM module; only when it is unclearfrom the context will the module index i be added as in Ip(i) for the ith submodule.We see that prices (or supply costs) enter into the objective function and demands enteras right-hand side constraint values; this is one of two possibilities for the other LP-basedmodules. The other is that just the quantities are used as right-hand sides without anysupply costs in the objective function.In the current version of NEMS, the natural gas prices computed in this module are av-erage prices from the �rm markets. 4 In particular, having the vector of demand multipliersu, we see that the fuel prices computed in this module pngtdm are calculated as follows:pngtdm = D(p)Cu;where D(p) is a diagonal matrix whose diagonals are positive and C is a matrix representingthe average pricing process (as applied to multipliers). The e�ect of the diagonal matrix isto scale up or down the average prices based on relative prices of certain fuels. Note thatno equilibrium quantities are calculated in this module.2.2.3 The Coal ModuleThe Coal Market Module (CMM) represents the mining, transportation, and pricing ofcoal subject to end-use demand for coal di�erentiated by physical characteristics such asheat, sulfur, and ash content. The CMM also determines U.S. coal exports as a part of theworldwide market for coal trade.A linear programming formulation is used to model the activities in the coal market. Theobjective function does not include prices of competing fuels, as was the case in NGTDM.Consequently, the form of the objective function is�(x; p) =Xj xjcj :Using the LP notation from NGTDM, we see that the coal prices are just the demandmultipliers, pcoal = Iu;where, of course, the vector u is now speci�c to the coal LP (and similarly for the other LPsto follow). Additionally, we note that the comment about aggregating demand quantities isalso valid here. Lastly, we note that no equilibrium quantities are output from this module.2.3 The Conversion Modules2.3.1 The Electricity Market ModuleThe Electricity Market Module (EMM) is concerned with the generation, transmission,and pricing of electricity subject to delivered prices for various other fuels. At present,7



a linear programming formulation as well as an optimization heuristic is used. 5 Theobjective function for the LP is of the form (3), since the prices of the various fuels usedin the generation of electricity (coal, natural gas, etc.) need to be taken into account whengenerating electricity. In the EMM, the dual values are used for market penetration and aseparate pricing module is used to allocate costs so that total costs are recovered as currentlydetermined in rate case proceedings. Consequently, the price of electricity is calculated aspelec = f(uelec);where f(�) is a function representing the cost recovery calculations. The output quantities(namely, how much of the various fuels is used to generate electricity) are calculated fromthe optimal solution as q = Rx;where the matrix R re
ects the appropriate aggregation levels discussed above.2.3.2 The Petroleum Market ModuleThe Petroleum Market Module (PMM) models the re�ning activities of the energy sectorfor which a linear programming formulation is used. Since the prices for natural gas, coal,oil, and electricity are needed in the re�ning process, the objective function for PMM takeson the form of (3). The delivered prices for petroleum products are determined from themultiplier vector u via the a�ne transformationppetro = Su+ b;where S is a matrix representing the e�ects of regional sharing and b is a vector of tari�s.The output quantities are a function of the vector x viaq = Tx;where T takes into account the aggregation from �ve PADDs to nine census regions.Note that for a particular year, the International Energy Module has �xed supply curvesand thus need not be considered in the computation of equilibrium p and q. Also, the e�ectsof the Macroeconomic Activity Module have been accounted for in the discussion of thedemand modules.As will be shown, the collection of math programs and nonlinear equations that compriseNEMS can be alternatively viewed as an instance of a nonlinear complementarity problem(NCP). Before commenting on the speci�c form of the NEMS NCP, in the next section, we�rst introduce the general form of the NCP.3 The Nonlinear Complementarity Problem and NEMS3.1 Statement of the Nonlinear Complementarity ProblemIn this section we describe the general form of the nonlinear complementarity problem ofwhich NEMS is a special case. Having a function F : Rn+ ! Rn, the nonlinear complemen-tarity problem NCP(F ) is to �nd an x 2 Rn such thatxi � 0 Fi(x) � 0 Fi(x)xi = 0 8i 2 T1xi free Fi(x) = 0 Fi(x)xi = 0 8i 2 T2; (4)8



where T1 [T2 is a partition of the indices f1; 2; � � � ; ng. When T1 is empty, this formulationreduces to solving a set of nonlinear equations. When both T1 and T2 are nonempty,we have what is called the mixed NCP; the term mixed refers to the fact that there is amixture of inequalities and equations as well as the complementarity conditions Fi(x)xi = 0,i = 1; � � � ; n. And when T2 is empty, we have the pure NCP, which is the conventional formof the problem. Throughout this paper, we will assume that NCP(F ) refers to the pureNCP formulation. However, for many results, the distinction between mixed and pure NCPis not necessary.The NCP is a very general format for modeling various equilibrium problems in a varietyof application areas. In particular, every nonlinear program is an instance of an NCP via theKarush-Kuhn-Tucker (KKT) optimality conditions. In addition, the NCP format includesas special cases, problems in game theory, network equilibrium modeling, tra�c systems,and mechanical engineering; see Harker and Pang (1990). The NCP format is particularlyattractive for NEMS because it o�ers such a wide range of useful generalizations to thecurrent setup.3.2 The NEMS Equilibrium Problem as a Nonlinear ComplementarityProblem3.2.1 Conversion, Transmission and Distribution of EnergyWe will model the conversion, transmission and distribution of energy by m = 4 separatenonlinear programs (NLPs). These NLPs correspond, for example to the conversion of fuelsinto electricity in the Electricity Market module of NEMS, and the distribution of coal tomeet demands.The use of nonlinear programs (as opposed to linear ones) is a worthwhile generalizationof what is currently employed in NEMS. There are several attractive reasons for analyzing amore general setting. First, as was noted in the introduction, there have been convergenceproblems with the current setup. In part, these di�culties are due to discontinuities of thesolution mapping from the linear programs being used. In some cases, linear programs wereused to approximate nonlinear programs. The hope is that by directly using NLPs, theseand other convergence problems will be mitigated. In addition, the linear programmingformulation represents a tractable simpli�cation of activity in the energy sector, based inpart on the relatively easy access to existing LP software. With the current favorable stateof software for NLPs, the previous justi�cation for use of LPs based on reasons of softwareavailability may no longer hold.We will ultimately be formulating the NEMS equilibrium problem as a nonlinear com-plementarity problem. This NCP will be formed by considering the Karush-Kuhn-Tuckeroptimality conditions of the nonlinear programs cited above, as well as various nonlinearequations related to NEMS. To this end, we will need to be sure that solving the KKTconditions will in fact lead us to a solution to the associated NLP. For this reason, we willmake the conventional assumption that the KKT conditions are su�cient for optimality;note that this does not depart from the current NEMS format of using linear programs.However, some comments concerning KKT conditions for NLPs are in order. For linearprograms, these conditions are both necessary and su�cient. Hence, the set of optimalsolutions is completely characterized by the set of KKT points. For nonlinear programs,9



the KKT conditions are necessary only when certain constraint quali�cations hold. In somesense, this is a small price to pay for including more realistic nonlinearities.The su�ciency of these KKT conditions is guaranteed if the objective function andinequality constraint functions are convex (for less than or equal to constraints) and if theequality constraints are a�ne. 6 We will assume throughout this paper that the constraintand objective functions are indeed of this form.We begin by considering the ith nonlinear program in NEMS. It will take as inputscertain prices and quantities as well as other values that we can exclude from the equilibriumcalculations. For notational convenience, we will denote the input prices and quantitiesdemanded as pi and qi, respectively, where of course we mean that pi = pIp(i) and qi = qIq(i).The solution will be a vector denoted as xi; xi is the same as xOx(i). In addition, there willbe multiplier vectors ui and vi associated, respectively, with the demand and nondemandconstraints of this ith mathematical program, formally de�ned in an analogous way to p; q;and x. More speci�cally, we assume that the form of the ith NLP isminimize xi f�i(xi; pi) : �gi(xi) � N iqi; �hi(xi) � 0; xi � 0g;where xi 2 Rvari and gi : Rvari ! Rngi and hi : Rvari ! Rnhi ; vari, ngi and nhi represent,respectively, the number of variables, g constraints, and h constraints. We will let ni =vari + ngi + nhi denote the total number of variables as well as multipliers involved in thisith NLP. The objective function �i and the constraint functions gi; hi are assumed to betwice-continuously di�erentiable and convex, so that the KKT conditions are su�cient forsolving this ith NLP. The assumption that xi � 0 is made without loss of realism. Lastly,the matrix N i converts the fuel quantities to appropriate regional levels analogously to thematrix N used in the LP formulations presented above.If we were to generalize just the nonfuel costs portion of the objective function used atpresent, we would end up with�i(xi; pi) = �̂i(x̂i) + Xj2Ip(i)pj ~xij ;where �̂i is a convex function of x̂i, the nonfuel quantity variables, and ~xi are the fuelquantity variables with xi = � x̂i~xi �. While this formulation would generalize the currentsetup, the approximation to the fuel costs, namely,Pj2Ip(i) pj ~xij , would still assume constantsupply prices pj . This formulation can be improved upon by instead usingXj2Ip(i)pj(~xi)~xij ;where pj(~xi) is a better approximation to the supply price function, based on the fuelquantities ~xi used in the ith NLP. Note that j 2 Ip(i) in this sense refers to those fuels jthat are used in the ith NLP.We require that the overall objective function be convex in xi. One easy generalizationto Pj2Ip(i) pj ~xij which would satisfy these convexity conditions would be to takepj(~xi) = pj(~xij):10



With this choice, we have the Hessian of (Pj pj(~xi)~xij equal to a diagonal matrix with thekth diagonal being p00k(~xik)~xik + 2p0k(~xik):If pj(~xij) is convex and strictly increasing for all nonnegative arguments, then the desiredconvexity condition is satis�ed. Indeed, in this case, the Hessian of pj(~xij) would be positivede�nite. By de�ning �(xi) = �̂(x̂i)+Pj2Ip(i) pj(~xi)~xij , with the proper convexity conditionsholding, we can hope to avoid some of the present convergence problems by modeling thesupply price function more accurately and inserting its approximation into the objectivefunction of the relevant NLPS. This is the generalization to the objective function that wewill use in what follows.If we de�ne the Lagrangian function Li(xi; ui; vi) = �i(xi) + (ui)T (gi(xi) + N iqi) +(vi)T (hi(xi)), then we get the following NCP in ni variables; i.e., the vectors xi; ui; vi (notethat rxiL(xi; ui; vi) = rxi�i(xi) + (ui)Trgi(xi)T + (vi)Trhi(xi)T ).Find a solution vector xi, and multiplier vectors ui and vi to satisfy the conditionsrxiLi(xi; ui; vi) � 0 x � 0 (rxiL(xi; ui; vi)Txi = 0�gi(xi)�N iqi � 0 ui � 0 (ui)T (�gi(xi)�N iqi) = 0�hi(xi) � 0 vi � 0 (vi)Thi(xi) = 0so that the NCP function corresponding to this ith nonlinear program is justNLPi(xi; ui; vi; qi) = 0BBB@ rxiLi(xi; ui; vi)�gi(xi)�N iqi�hi(xi) 1CCCA ;where NLPi : Rni ! Rni . It is important to note that for each NLP, the vector qi is �xedand thus not considered a variable in the NCP shown above. However, it is a variable in alarger NCP to be presented below.3.2.2 Linking EquationsIn an earlier section, we described how the fuel prices and some of the fuel quantitieswere calculated from the optimal solution or multiplier values from the associated linearprograms. In this section, we will generalize the speci�c functions that \linked" the solutionsand multipliers with the computed fuel prices and quantities.We will assume that a certain subset of the prices and quantities will be calculated fromthe output from the nonlinear programming modules. In particular, for the fuel prices wewill assume that the ith NLP will give rise to those prices indexed by the set Op(i). In ad-dition, the ith NLP will generate those quantities indexed by the set Oq(i). The di�erencebetween the prices and quantities is that some of the quantities will be calculated via demand11



equations (to be explained below). Hence, since we are considering m nonlinear programs,we have [mi=1Oq(i) contained in but not equal to f1; : : : ; ng but [mi=1Op(i) = f1; : : : ; ng.Of course, every price or quantity will be calculated in just one of the ways mentioned above.Fuel PricesIn the current NEMS setup, in some cases the equilibrium prices are just the multipliers(of a�ne transformations thereof) associated with demand constraints from a particularLP. In the more general case that we are considering, however, the prices will be allowed tobe functions of the multipliers.In particular, we assume that for each price variable pj where j 2 Op(i), we have thelinking equation Lij(ui) = pjor Li(ui) = pOp(i)with Li : Rngi ! RjOp(i)j. 7 Also, let L : RPmi=1 ngi ! Rn withL = 0BBB@ L1(u1)L2(u2)...Lm(um)1CCCA :With the exception of the NGTDM prices, the prices from NLP i were a function justof the dual variables ui. However, as shown above, we have assumed that pj = Lij(ui)for all modules considered. This assumption was made simply for notational considera-tion. We could just as easily have de�ned pNGTDM = LNGTDM(u) instead of pNGTDM =LNGTDM(uNGTDM) and made the appropriate changes in rF to be shown below.Fuel QuantitiesIn an analogous manner, we can de�ne the linking constraints for the fuel quantities asL̂i(x) = qOq(i);where L̂i : RPmi=1 vari ! RjOq(i)j and L̂ = 0BBB@ L̂1(x1)L̂2(x2)...L̂m(xm)1CCCAfor L̂ : RPmi=1 vari ! RPmi=1 jOq(i)j. 8 12



3.3 Demand EquationsAs was stated above, some of the fuel quantities will be calculated via demand equations.We will write down general nonlinear demand functions that are meant to incorporate whatis currently being used in NEMS.We will assume that the jth quantity qj is calculated from prices (and other variablesnot relevant to our equilibrium analysis) via a demand equation of the following form:Qj(pD) = qj :We will collect all those relevant quantity indices j into the set D = (Smi=1Oq(i))c so thatwe get Q(pD) = qD ;where Q : RjDj ! RjDj. Without loss of realism, we will assume that L; L̂, and Q aresu�ciently smooth functions.3.4 The NEMS NCPPutting together the conversion, linking and demand sides of NEMS; we see that the NEMSequilibrium problem can be expressed as solving a pure NCP of size N =Pmi=1 ni+2n whosefunction F is given as follows:
F (x; u; v; p; q) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

NLP1(x1; u1; v1; q1)NLP2(x2; u2; v2; q2)...NLPm(xm; um; vm; qm)� �� �� �� ��� �� From nonlinear programs�L1(u1) + pOp(1)�L2(u2) + pOp(2)...�Lm(um) + pOp(m)� �� �� �� ��� ���L̂1(x1) + qOq(1)�L̂2(x2) + qOq(2)...�L̂m(xm) + qOq(m)� �� �� �� ��� �� Linking constraints�Q(pD) + qD Demand equations

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
: (5)
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A few remarks about this NCP are in order.1. The pure NCP form of this problem implies that the linking and demand constraintsare actually inequalities rather than equations as is needed. However, with the rea-sonable assumption that at a solution, prices and quantities are strictly positive, asopposed to being just nonnegative, the complementarity conditions force these con-straints to be equations as desired. Also, note that if equality constraints appear inthe nonlinear programs, we will have a mixed NCP rather than a pure one.2. The division of the function F into components corresponding to nonlinear programs,linking constraints and demand equations is meant to parallel the current con�gura-tion in NEMS in which there is a separate module for each activity associated withone of these three components. It is of considerable interest to NEMS modelers andothers to view the NCP in this fashion, rather than just substituting the linking anddemand constraints for p and q into the NLP sections of F . The main reason is thatin this separated form, we will more easily be able to develop NEMS NCP methodsthat minimally alter the current solution algorithm.3. To allow for as general a setting as possible, we will take qIq(i) � qcOq(i).4. We will need to compute Jacobians for the linking and demand functions. This taskmay involve computing approximate derivates via �nite di�erences or analytic deriva-tives as applied to approximations to the current (or proposed) linking and demandfunctions.In what follows, we will group the variables together aswT = ((x1)T ; (u1)T ; (v1)T ; : : : ; (xm)T ; (um)T ; (vm)T ; pT ; qT�D; qTD):The Jacobian of the NCP function F shown in (5) takes on the form0BBB@Pi ni n j �Dj jDjPi ni J11 0 J13 J14n J21 I 0 0j �Dj J31 0 I 0jDj 0 J42 0 I 1CCCA; (6)where the matrices Jij are de�ned as follows:J11 = 0@D11 0 : : : 00 D22 : : : 00 : : : Dmm1A ; (7)Dii = 0B@ xi ui vixi rxixiL rgi(xi)T rhi(xi)Tui �rgi(xi) 0 0vi �rhi(xi) 0 0 1CA: (8)After possibly permuting the columns for the prices and quantities, the rows from theith NLP for J12; J13, and J14 are thus 14



J13 = 0BBB@ qIq(i)\ �D qotherx̂i 0 0~xi 0 0ui �Ri 0vi 0 0 1CCCA (9)and J14 = 0BBB@ qIq(i)\D qotherx̂i 0 0~xi 0 0ui �Si 0vi 0 0 1CCCA; (10)where �RiSi�are the (possibly) permuted columns of N i. Also, we haveJ21 = 0BBBB@ x1 u1 v1 x2 u2 v2 : : : xm um vmpOp(1) 0 �rL1(u1) 0 0 0 0 : : : 0 0 0pOp(2) 0 0 0 0 �rL2(u2) 0 : : : 0 0 0... ... ...pOp(m) 0 0 0 0 0 0 : : : 0 �rLm(um) 0 1CCCCA;(11)J31 = 0BBBB@ x1 u1 v1 x2 u2 v2 : : : xm um vmqOq(1) �rL̂1(x1) 0 0 0 0 0 : : : 0 0 0qOq(2) 0 0 0 �rL̂2(x2) 0 0 : : : 0 0 0... ... ...qOq(m) 0 0 0 0 0 0 : : : �rL̂m(xm) 0 0 1CCCCA;(12)and J42 = � pD p �DqD �rQ(pD) 0 �: (13)As was shown above, the NEMS problem can be viewed as a large NCP with a gooddeal of sparsity in rF . To e�ectively solve this NEMS NCP, any proposed methods shouldtake advantage of this sparsity by breaking the overall problem into smaller ones or byperforming sparse matrix-vector calculations. The hope is to build methods that use theexisting modules as much as possible but use the information in a way that is consistentwith the more general NCP approach.In what follows, we analyze several Newton-type NCP approaches which are particu-larly well-suited to the NEMS NCP. We have decided to focus just on Newton type methodsfor the NCP based on the robustness and fast convergence rates associated with these ap-proaches and the generally favorable performance; for example, see Gabriel and Pang (1992),Pang and Gabriel (1993), Chen and Harker (1993), Gabriel and Pang (1994), Ralph (1994),Dirkse and Ferris (1994), Chen and Mangasarian (1994), and Dirkse and Ferris (1995).Each of these methods relies on a certain reformulation of the NCP into an equivalent but15



computationally more useful problem. The key to implementing each of these methods forNEMS is to show how the direction-�nding subproblems can be tailored to take advantageof the speci�c NEMS structure. For this reason, we concentrate our analysis mostly on thesubproblems of these methods and omit other details of these approaches.We consider only those NCP approaches that require inexact solutions of computation-ally manageable subproblems. This is signi�cant because given the large-scale nature ofNEMS, exact solution of the associated subproblems could be computationally prohibitive.This approach rules out methods that, for example, require the exact solution of linear com-plementarity or quadratic programming subproblems. (An exception is made for methodsthat have been successfully tested in practice and that have subproblems that can exploitthe sparsity of NEMS). Also, we focus on methods that are applicable to general NCPs (forexample, not valid just on monotone NCPs). This is relevant given the NEMS NCP (to beshown below), which is not necessarily monotone. Additionally, we also rule out methodsthat involve pivoting of a large linear system because this may cause excessive �ll-in andmake the method inappropriate for such a large-scale model as NEMS.4 The NE/SQP MethodNE/SQP (for nonsmooth equations/sequential quadratic programming) is a recent methodfor solving general nonlinear complementarity problems. It is has been shown to be globallyconvergent and fast (Q-quadratic rate), as well as robust in the sense that the direction-�nding subproblems are always solvable.The basis for this method is to solve NCP(F ) by �rst transforming it into the equivalentproblem of �nding the zero of a certain set of nonsmooth equations. Speci�cally, let thefunction H : Rn+ ! Rn be de�ned byH(x)i = min(xi; Fi(x)) i = 1; � � � ; n: (14)It is not hard to see that a zero of this function H corresponds exactly to a solution toNCP(F ). Unfortunately, because of the presence of the min operator, this function is notdi�erentiable (in the sense of Fr�echet), so that standard algorithms such as Newton's methodcannot directly be applied. However, the function H is directionally di�erentiable with thedirectional derivative H 0(x; d) in the direction d given byH 0i(x; d) = 8><>: di if i 2 Ix(x) = fi : xi < Fi(x)grFi(x)Td if i 2 IF (x) = fi : xi > Fi(x)gmin (di;rFi(x)Td) if i 2 Ie(x) = fi : xi = Fi(x)g; (15)fori = 1; � � � ; n.Closely related to H is the norm function � : Rn+ ! Rn+ de�ned by�(x) = 12kH(x)k2; (16)where k � k is the Euclidean norm. As a result, we see that NCP(F ) can be recast as thenonsmooth, nonconvex optimization problemminimize x �(x)such that x � 0: (17)16



Note that the nonnegativity constraints are actually embodied in the de�nition of � butare used because their inclusion facilitates the relevant convergence analysis. In addition,for certain applications, the relevant functions are not necessarily de�ned even for negativevalues. Hence, these constraints are needed.A solution to (17) for which � equals zero corresponds exactly to a solution to NCP(F ).Starting at some initial estimate x0 � 0, a natural scheme would then be to iterativelydecrease the value of � at each step, with the objective of driving it down to zero to obtaina solution; this is the essential idea of how NE/SQP works. Note that in general � isonly piecewise di�erentiable (since we assume that F is continuously di�erentiable) and ingeneral � is not even convex; to see this, take F (x) = e�x for x 2 R. However, an importantcharacteristic of this function is that it is directionally di�erentiable with the directionalderivative �0(x; d) = H(x)TH 0(x; d).The basic scheme with NE/SQP is thus as follows: having an estimate xk of the solution,a new iterate xk+1 is generated according to the rulexk+1 = xk + �kdk;where dk is a suitable search direction and �k is the associated step length needed for globalconvergence of the method. The calculation of the search direction entails the solution of acertain convex quadratic program (QP) which we will now explain.Let � : Rn+ �Rn ! Rn+ be de�ned as�(x; d) = 12kH(x) +M(x)dk2; (18)where M(x) is the n � n matrix that (after possible reordering of rows and columns) isde�ned as M(x) =  I�� 0r�F� r�F� ! (19)for index sets � = fi : xi � Fi(x)g and � = fi : Fi(x) < xig and I�� the identity matrix oforder �.With the iterate xk, the associated direction-�nding convex quadratic subproblem canthus be stated as 9 minimize d �(xk; d)subject to xk + d � 0: (20)We note that the direction d = 0 is always feasible, since each iterate xk is maintainednonnegative; see (17). As a result, the feasible region is a nonempty polyhedron, whichtaken together with the fact that the objective function is a quadratic bounded below byzero means that this QP will always have a solution (see Frank and Wolfe 1956). This resultvalidates the robustness of NE/SQP. In fact, each subproblem need be only approximatelysolved to maintain the relevant convergent properties associated with exact subproblem so-lutions. The resulting inexact NE/SQP method has been developed and successfully testedby using a matrix splitting approach on the equivalent linear complementarity problem(LCP) form of the subproblem. 17



For this QP, the KKT optimality conditions are both necessary and su�cient so onecan alternatively solve the equivalent linear complementarity problem. Having the vectorx, this LCP is to �nd an s = x+ d such that(c� Ax) +As � 0 s � 0 ((c�Ax) +As)T s = 0;where A = M(x)TM(x), and cT = H(x)TM(x). We will refer to this LCP as LCP(q; A)where q = c� Ax.Note that the matrixM =M(x) has a certain sparsity that is lost on A. It is reasonableto ask whether we can solve this LCP using the matrixM rather than A. Such and approachhas obvious advantages for the NEMS NCP, where there is considerable additional sparsityin M derived from the special structure of the NEMS NCP. The following examples showthat, in general, the answer is no.Example 4.1 Let M = � 1 0a b� and q = ��11 �, where the scalars a; b > 0. Thenthe unique solution to LCP(q;M) is s = � 10�. However, if we take this solution inLCP(q;MTM), we get q+MTMs = � a21 + ab�, which violates the complementarity condi-tion.This example clearly shows that using LCP(q;M) to solve the NE/SQP subproblem LCP(q; A)will generally not work. In a similar vein, one can ask whether, if M is invertible, solv-ing LCP(~q;M) will provide a solution to the NE/SQP subproblem LCP(q;MTM) whereq = (MT )~q. The answer here is also in the negative.Example 4.2 Let the matrix M be given as in Example (4.1) with ~q = ��11 �. Supposewe used the unique solution s = � 10� in LCP(q;MTM). This would give q +MTMs =� a+ a2b+ ab �, which violates the complementarity condition. So again, we see that solving anLCP with just the matrix M is not helpful for the NE/SQP subproblem.Having generated a search direction dk from either the QP or LCP form of the sub-problem, we next determine a suitable step length. Such a parameter is used to guaranteesu�cient decrease in the norm function � and thus global convergence of NE/SQP. Thewell-known Armijo backtracking strategy is used to compute the step length �k. Specif-ically, having xk and dk, and a scalar � 2 (0; 1), we let mk be the smallest nonnegativeinteger m such that �(xk + �mdk)� �(xk) � ���mz(xk; dk); (21)where z(x; d) = 12kM(x)dk2, and then let �k = �mk be the chosen step length.From Lemma 2 (b), and Proposition 2 (b), (c) of Pang and Gabriel (1993), we see thatas long as �(xk; dk) < �(xk; 0) dk is a descent direction for � at xk and z(xk ; dk) is strictlypositive thus forcing descent in � in a �nite number of trials. In fact, any dk that satis�es18



the following will su�ce:8>><>>: (a) descent in the norm function � �(xk; dk) < �(xk; 0) = �(xk)(b) subproblem feasibility xk + dk � 0(c) inexact rule met kmin(sk ; yk)k � "k 9>>=>>; ; (22)where the LCP variables are sk = xk+dk and yk = q+Msk , and f"kg # 0. The importanceof (c) is that dk must be an approximate solution to the LCP subproblem. This is an easyrequirement to see because (s�; y�) solves the LCP if and only if kmin(s�; y�)k = 0. Forother values of s and y, this residue function kmin(�; �)k is nonnegative. Also, the scalars"k control the level of inexactness that must go to zero in the limit.Clearly, in general, solving each subproblem exactly will satisfy the above conditionson dk. However, potentially great computational gains can be made by only approximatelysolving the subproblem at each outer iteration. In short, the strategy with the inexactNE/SQP approach is to apply a sequence of \inner" iterations corresponding to solving thesubproblem inexactly. Then, the direction that is obtained is used in an \outer" NE/SQPiteration in conjunction with the Armijo test described above. Thus, one can avoid costlycalculations associated with solving each subproblem exactly. In the rest of this section, wewill analyze several LCP/QP algorithms for which there is a reasonable chance or a de�nitecertainty that the inexact NE/SQP conditions (22) (a){(c) can be satis�ed for the proposedalgorithms.To use NE/SQP e�ectively for NEMS, we need methods that can relatively easily gen-erate directions satisfying (22) (a){(c) while exploiting the structure and sparsity in theNEMS NCP. In general, any method for convex QPs with simple bound constraints or anymonotone LCP approach is potentially useful.Our aim is to present a representative but not totally exhaustive list of methods, eachable to reasonably guarantee (a){(c) as the algorithm proceeds. In addition, the proposedmethods should at worst, solve only sparse linear systems. In fact, many of the intermediatecalculations in the methods we analyze involve just the sparse matrix M times a vectorrather than the matrix A =MTM ; this strategy is crucial for solving the NEMS problem.We will analyze several candidate approaches that work on either the QP or the LCPform of the subproblem. The common feature to all these methods is that they maintain atleast one of the inexact conditions (a){(c) and work toward satisfying the remaining ones.We highlight several projected matrix-splitting methods (Jacobi, SOR) that work onthe LCP form of the subproblem, maintaining nonnegativity of the iterates and producingdescent in the QP objective. Hence, having the kth NE/SQP iterate xk, if we start theQP algorithm at s0 = xk, then conditions (a) and (b) will be satis�ed. The remainingcondition (c) is generally satis�ed in the limit as a result of some feature of the method.An advantages of these methods is that they decompose the problem into pieces that canroughly match the current set of NEMS modules with closed form solutions for generatingiterates. The resulting calculations involve solving much smaller LCPs corresponding tothis decomposition, with relatively small sparse linear systems to be solved as the mostcomplicated step. These reduced LCPs can be solved either in parallel (projected Jacobi)or sequentially (projected SOR). Since the current NEMS solution strategy is based on anonlinear SOR approach, we feel that relative to other proposed methods, these splitting19



approaches would most easily be incorporated into the existing framework. This is quiteimportant given the large amount of development time already invested. A drawback ofthese approaches is the sometimes slow convergence rates in practice.We also analyze a class of infeasible interior-point methods for the LCP subproblem. Thedistinguishing feature of these methods is that they maintain nonnegativity of the iterates,condition (b), and simultaneously work toward satisfying (a) and (c). This is accomplishedby reducing the complementarity gap sT y=n 10 at each stage and reducing the infeasibility,namely, ky � q � Ask. Once a feasible y is found, these methods maintain feasibility andthus concentrate on reducing the complementarity gap. The condition (a) is likely to besatis�ed at some intermediate iteration if the iterates are converging to a solution becausewe initiate the method at s0 = xk. The advantage of interior-point methods is their speedand relatively low number of iterations for large problems. We end up needing to solve alarge sparse linear system which can be e�ectively handled with the NEMS structure.The last set of methods we consider are based on the QP form of the subproblem.These active set approaches solve a sequence of smaller equality-constrained QPs relatingto a selection of speci�c variables not at their lower or upper bound. The important featureof these strategies is that they maintain nonnegativity and decrease the objective function ateach stage, thereby validating (b) and (a) assuming that we start at dk = 0. The condition(c) is satis�ed as the algorithm proceeds, since these methods work toward optimality of theQP. An advantage of these approaches is that they are likely to produce inexact directionswith only minimal computational requirements such as matrix-vector products.4.1 The Projected Block Jacobi Approach for the LCP SubproblemWe consider a modi�cation of the projected block Jacobi approach which can avoid explicitlyforming the matrix A =MTM and is ideal for parallel computing.The parallelization aspect comes into play if we break up the matrix LCP A into b2blocks with block Aij of size bi � bj ; the trick is how to form these blocks.As is typically done with splitting methods, we will �rst split A into the sum of twomatrices B and C. Strictly speaking, the projected block Jacobi method would just take Bto be a block diagonal matrix with the ith block Bii = Aii. In our version of the projectedblock Jacobi, Bii = Aii + I where the latter identity matrix is of order bi. 11 Also, we willlet q� = q+Cs� where � is the inner iteration counter. Then, LCP(q� ; A) can be solved bysimultaneously solving for LCP(q�i ; Bii), i = 1; : : : ; b.It is worthwhile to analyze how the blocks of the matrix A should be organized. Ouroverriding concern is to use the existing NEMS routines as much as possible, with theexception that NLPs will replace LPs.Let us examine the various matrix and vector computations. We see that an equivalentform of the subproblem has A of the following form:A = � I +r�F�(w)Tr�F�(w) r�F�(w)Tr�F�(w)r�F�(w)Tr�F�(w) r�F�(w)Tr�F�(w)� : (23)As opposed to a general NCP, the index sets � and � for the NEMS problem are some-what predetermined. Since the linking and demand relationships are equations, withoutloss of generality we can place the indices for these components of the NEMS NCP function20



into the set IF (w). The remaining component indices for the KKT conditions for the mnonlinear programs will be broken down into two parts. Let us denote by �N all thoseindices for the KKT conditions that are also in IF (w) and by � the remaining KKT indices.The set � will thus be partitioned into �N (\N" for NLP) and �O (\O" for other) where�O = �n�N . Then, we haver�F�(w) = 0BB@ (J11)�N�0(J31)��0 1CCA ;r�F�(w) = 0BB@ (J11)�N�N 0 (J13)�N� (J14)�N�(J21)��N I 0 0(J31)��N 0 I 00 J42 0 I 1CCA (24)where M�S denotes the columns from a matrix M indexed by the the set S; AS� is de�nedanalogously for rows.Now, let us examine the special structure of A. In light of (24), we see that the diagonalblocks of A have the following form (we assume that the indices have been ordered accord-ingly)(a) rows and columns 1; : : : ; j�j:Â11 = I + (J11)T�N�(J11)�N� + (J21)T��(J21)�� + (J31)T��(J31)��;(b) rows and columns j�j+ 1; : : : ; j�j+ j�N j:Â22 = (J11)T�N�N (J11)�N�N + (J21)T��N (J21)��N + (J31)T��N (J31)��N ;(c) rows and columns j�j+ j�N j+ 1; : : : ; j�j+ j�N j+ n:Â33 = JT42J42 + I ;(d) rows and columns j�j+ j�N j+ n+ 1; : : : ; j�j+ j�N j+ n + j �Dj:Â44 = (J13)T�N�(J13)�N� + I ;(e) rows and columns j�j+ j�N j+ n+ j �Dj+ 1; : : : ; N :Â55 = (J14)T�N�(J14)�N� + I:The natural scheme for splitting the subproblem matrix A will be to take either Bii = Âii+Ifor i = 1; : : : ; b = 5 or Bii equal to a principal submatrix of Âii + I with b > 5.It is important to never actually compute the matrix A = MTM , since this computa-tion would destroy the sparsity of M , which is critical to solving this large-scale probleme�ciently. The following is our proposed way to use a projected Jacobi-type splitting al-gorithm with line search for NEMS; see Cottle, Pang, and Stone (1992) for details on thisapproach.In the projected block Jacobi method with line search, many of the steps will involvejust matrix-vector products using the sparse M . In addition, there is a line search step for21



which the same comment is valid. The possible exception to this occurs when the followingintermediate direction is computed for the ith block of variables. We haves�+1=2i = max [0; s�i � vi] ; (25)where the vector vi is calculated according to(Aii + I)vi = (q +MTMs�)i; (26)and Aii = ETiiEii for Eii = 0BBB@M1iM2i...Mbi 1CCCA : (27)We wish to avoid actually forming (Aii + I), which would ruin the sparsity of the problem.The next lemma shows how we can solve this system without losing sparsity.Lemma 4.3 Let W;T; U; V 2 Rn�n, b 2 Rn with T; U; V positive diagonal matrices suchthat T = UV . Then, the following statements hold:(i) the matrix WTW + T is symmetric positive de�nite,(ii) with R = WTW + T , the unique solution x� toRx = b (28)can be obtained by taking x = V �1z2 where zT = [(z1)T (z2)T ] solves the 2n � 2nsystem Nz = � b0� (29)where N = �WT UI �WV �1 � :ProofCondition (i) follows because R is the sum of a symmetric positive semide�nite matrix anda symmetric positive de�nite matrix. If we let P 2 R2n�2n be de�ned byP = � 0 II 0� ;then by the Schur formula for determinants,det(N) 6= 0 , det(NP ) 6= 0, det(I +WV �1U�1WT ) 6= 0, det(I +WT�1WT ) 6= 0, det(I +WT�1=2(WT�1=2)T ) 6= 0:22



Since I +WT�1=2(WT�1=2)T is symmetric positive de�nite, we see that the system (29)will have a unique solution for all b. Now, letting V x̂ = z2 and substituting into thebottom row of (29) we have z1 = Wx̂. Plugging this into the �rst row of this system givesWTWx̂ + UV x̂ = Rx̂ = b. By (i), we see that x̂ = x� as desired.2The advantage of solving the larger system (29) versus (28) is that the product WTWneed not be explicitly formed. This result has direct importance for our calculations. Specif-ically, we can solve (26) by letting W = Eii; U = V = Iand applying the method of the above lemma; this can be done for each block in parallelas well. Note that the matrix N in the system (29) is sparse and does not change for thecalculations of a given subproblem. Hence, one can use a sparse factorization routine; seeDu�, Erisman, and Reid (1986) for a discussion of sparse methods.Now we state a result concerning the application of this method to the NEMS subprob-lem.Theorem 4.4 Suppose that fs�g are iterates generated by the modi�ed projected Jacobiapproach with s0 = wk and either(i) r�F�(w) is nonsingular or(ii) 9z 2 Rj�j such that if r�F�(w)z = 0; 0 � z 6= 0; then qT� z > 0 where q� = fqi : i 2 �g.Then, the following statements hold:1. the method will solve the subproblem in a �nite number of steps, or2. the inexact NE/SQP conditions (22) (a){(c) can be met for each subproblem.ProofFirst note that the matrix A is symmetric and B is positive de�nite. Hence, by Lemma5.5.1 in Cottle, Pang, and Stone (1992), we see that either s� solves the subproblem or, forg(s) = qTs + 12sTAs, we have that g(s�) < g(s��1) < : : : < g(s0) which is equivalent to�(xk ; d�) < : : : < �(xk; 0). Since s0 = wk and s� + wk = dk, we see that the condition (a)is met; (b) is also met because the iterates are maintained nonnegative. Lastly, by (i) or(ii), and Lemma 5.3.4 and Theorem 5.5.3 in Cottle, Pang, and Stone (1992), fs�g 2 Rn+is bounded and every accummulation point solves the subproblem so that the remaininginexact NE/SQP conditions are also met subsequentially. 2Remarks:1. When neither (i) nor (ii) hold, but the iterates fs�g are still bounded, by Theorem5.5.3 in the cited reference, every accumulation point of this sequence is a solution tothe NE/SQP subproblem so that (22) (a){(c) are satis�ed subsequentially.2. Even when the iterates contain no convergent subsequence, we still have g(s�) <g(s��1) thus, since s0 = wk, d� = s� � xk will be a descent direction for the meritfunction � at wk . 23



3. In the splitting approach described above, each block could refer to a current NEMSmodule (or pieces thereof). The overall e�ect would be to make use of the currentinformation being passed between NEMS modules in a di�erent and (one hopes) moree�ective manner.4.2 The Projected Block Gauss-Seidel and SOR Approaches for the LCPSubproblemOne theoretical weakness of the Jacobi approach described above is that the boundedness ofthe iterates fs�g cannot be guaranteed for the NE/SQP subproblem. The projected blockGauss-Seidel approach overcomes this de�ciency but is not as parallelizable as the formermethod. In particular, one must solve the associated inner subproblems sequentially ratherthan at the same time. Convergence of the iterates is then assured if the splitting of A isregular a term we now de�ne.De�nition 4.5 Let A be an n � n matrix with A = B + C. Then the splitting (B;C) iscalled weakly regular if B�C is positive semide�nite and regular if B�C is positive de�nite.The projected block Gauss-Seidel approach begins by partitioning the set of variablesf1; : : : ; ng into b distinct sets I1; : : : ; Ib and for each j = 1; : : : ; b, choosing a regular splitting(BIjIj ; CIjIj ). Then, having an iterate s� , we take s�+1Ij as a solution to the LCP(qj ; BIjIj),where qj = qIj + CIjIjs�Ij + AIj ~Ijs�~Ij (30)for ~Ij = (Ij)c. Note that qj can be computed by making use of the sparse structure of Aand C. The key for using this approach with the NEMS NCP is to select a regular splitting(BIjIj ; CIjIj ) and solve the associated LCP e�ciently.Lemma 4.6 Let A 2 Rn�n be symmetric positive semide�nite with A = B + C. LetL; U;D be respectively, the strictly lower, strictly upper, and diagonal parts of A. Then forB = L+D + I, (B;C) is a regular splitting.ProofWe see that B � C = L � U + D + 2I . We note that B � C is positive de�nite if andonly if (B � C) + (B � C)T is symmetric positive de�nite. But since A is symmetric,(L� U)T = U � L, so that (B � C) + (B � C)T = 2D+ 4I;which is positive de�nite given that A, hence D is symmetric positive semide�nite. 2Since every principal submatrix of a positive de�nite matrix is also positive de�nite, thisresult shows that (BIjIj ; CIjIj) will also be regular for all j = 1; : : : ; b given the choice forB described above. It remains to show how we can e�ciently implement this approach forNEMS taking into account the sparsity of the NCP formulation.With the projected block Gauss-Seidel approach, we will be solving LCPs with thematrix BIjIj = (L + D + I)IjIj . For notational simplicity, let BIjIj = ~B with ~B of size b,24



and let the constant vector be denoted simply as q. With the iterate s� , for LCP(q; ~B), theprojected Gauss-Seidel recursively computes s�+1i 12 by solvings�+1i = max240; s�i � 1~bii 0@qi +Xj<i ~bijs�+1j +Xj�i ~bijs�j1A35 ; i = 1; : : : ; m: (31)The only potentially challenging step is to compute0@Xj<i ~bijs�+1j +Xj�i ~bijs�j1Awithout explicitly forming the matrix ~B which would ruin the sparsity in the problem. Thiscan be easily handled as follows. Let vi be the following intermediate vector 13(vi)T = (s�+11 ; : : : ; s�+1i�1 ; s�i ; : : : ; s�b );and notice that vi+1j � vij = ( 0 i 6= js�+1i � s�i i = j:Since ~B is a principal submatrix of L+D + I , we have 14~bij = 8><>: MT�iM�j i > jMT�iM�j + 1 i = j0 i < j:Hence, we have the following for row i:Pj<i ~bijs�+1j +Pj�i ~bijs�j =Pij=1 ~bijvij=MT�i(Pij=1M�jvij) + vii :If we denote the quantity (Pij=1M�jvij) by �i, for row i + 1 we have just a simpleadjustment as follows:Pj<i+1 ~bi+1;j s�+1j +Pj�i+1 ~bi+1;j s�j =Pi+1j=1 ~bi+1;j vi+1j=MT�i+1(Pi+1j=1M�jvi+1j ) + vi+1i+1=MT�i+1(�i +M�i+1(sv+1i � svi )) + vi+1i+1:In this way, we never need to form the matrix ~B explicitly and can exploit the nonzerostructure of M . We have the following result concerning the application of the projectedblock Gauss-Seidel method.Theorem 4.7 Suppose that fs�g are iterates generated by the projected block Gauss-Seidelmethod with s0 = wk. Then, the inexact NE/SQP conditions (22) (a){(c) can be met foreach subproblem. 25



ProofFrom Theorem 3 of Luo and Tseng (1991), we know that the nonnegative iterates of this al-gorithm will converge to a solution of the NE/SQP problem. This means that since s0 = wk,all three conditions (a){(c) can be satis�ed. 2Remarks: We can modify this algorithm to include overrelaxation and underrelaxationparameters as well. Depending on the particular choice of relaxation, Theorem 4.7 eitherremains valid or at worst we know thatminfks� � s�k : s� is a subproblem solutiong ! 0:In this case, we cannot assert that the iterates converge to a solution, but we can see that ev-ery accumulation point (if any exist) will be a subproblem solution. Hence, subsequentially,the inexact conditions can be met.4.3 An Infeasible-Interior-Point Approach for the LCP SubproblemFinding a solution s and complementary vector y to LCP(q; A) can be recast as �nding thezero of the following system of constrained nonlinear equations: �nd s; y 2 Rn+ to satisfyG(s; y) = �As+ q � ySY e � = � 00� ; (32)where S = diag(s); Y = diag(y), and eT = [1 : : :1]. Recent infeasible- interior-point ap-proaches for monotone LCPs (like the NE/SQP subproblem) use this formulation and applya variation of Newton's method with centering; for example, see the recent work of Wright(1995), and Zhang (1994).Speci�cally, having the iterates s� ; y� 2 Rn++, with �� = (s�)T y�=n, we generate theNewton search direction forG(s; y) = �As + q � ySY e � = � 0~�; ��e� (33)where ~� 2 [0; 1) is a parameter whose value can vary by iteration. This system is solved (atleast once but perhaps several times with di�erent right-hand sides) to obtain an appropriatesearch direction; in addition, a line search step is added.In terms of applicability to NEMS, we are primarily concerned with how this linearsystem can be solved e�ciently, ensuring that the inexact NE/SQP conditions can be met.These methods typically maintain nonnegativity (positivity) of s� ; y� and strive to decreasethe complementarity gap �� and the infeasiblility, in other words, ky� � (As� + q)k.The resulting search directions �s� ;�y� for s� and y� , respectively, are computed assolutions to the following system of linear equations� A �IY � S� ���s�y� = � r��S�Y �e+ ~���e� ; (34)where S� = diag(s�); Y � = diag(y�); and r� = y��As��q is the residual vector at iteration�. 26



It is not hard to see that (34) can be reduced to solving for �s� in(A+ (S�)�1Y �)�s = r� � y� + ~���(s�)�1; (35)where (s�)�1i = 1=s�i i = 1; : : : ; n and for �y� by�y� = A�s� � r� : (36)The only challenging computation is thus to solve for �s.Of course, since for NEMS the matrix A is of the formMTM , we wish to avoid explicitlyforming this product of matrices. We appeal to the result from Lemma 4.3. Speci�cally, wesee that the system (35) is of the required form if we letW =M;U = (S�)�1; V = Y � : (37)Hence, we need to solve a linear system whose matrix is of the form�MT (S�)�1I �M(Y �)�1� : (38)This matrix is clearly nonsingular, and it is easy to see that the sparsity pattern for thismatrix is unchanging throughout the LCP subproblem calculations. Moreover, many ofthe actual values do not even change. This feature has obvious advantages if we employa sparse factorization of this matrix. However, the disadvantage with solving this entiresystem together is the size.We can solve this system by an iterative method such as QMR; see Barrett et al. (1994),Freund and Nachtigal (1991), and Freund and Nachtigal (1994). This approach is ideal forlarge systems of the form Bx = b, where B is sparse and nonsingular. The most challengingstep in this approach is forming the product Bv where v is a particular intermediate vector.This can be facilitated given the structure of the matrix in (38) and the fact that the currentNEMS modules (or generalized versions of them) can generate the necessary parts of thismatrix.Since s� is maintained nonnegative, the inexact condition (b) is satis�ed. Also, asdescribed in Wright (1995), and Zhang (1994), once a feasible vector y� is found, y� isfeasible for all � > �. Since infeasibility and complementarity are being driven to zero, thismeans that since �v # 0, the condition (c) will be met for each subproblem iteration. Aslong as the iterates converge (this was shown in Wright 1995), then for s0 = wk, it is likelythat the condition (a) will also be met for each LCP iteration as well. Hence, we see thatinterior-point methods of the kind described are likely to solve the inexact conditions.4.4 An Active Set Approach for the QP SubproblemSuppose that we are trying to solve the convex quadratic programmindfq(d)jd 2 
g (39)where q : Rn ! R is a convex quadratic function, and 
 = fd 2 Rnjl � d � ug for l � u,l; u 2 Rn, (this, of course, includes the NE/SQP QP where l = �xk and u = +1). We willlet n be the size of the subproblem. 27



If we knew the active set of indices at a solution d�, that is, A(d�) = fi : di = li or di =uig, then (39) could be solved by the following unconstrained QP in just the free variablesdi; i 2 A(d�)c, minwfq�(w) : w 2 Rmkg (40)where mk is the number of free variables and q�(w) = 12wTA�w+rT� w for A� ; r� the reducedHessian and gradient of q(�), respectively.Active set approaches solve a sequence of reduced QPs of the form (40) and either �nda solution to the overall problem or modify the active set of indices. For our purposes, wewill analyze the recent active set approach described in Mor�e and Toraldo (1991). Thismethod is particularly suitable for NEMS because the conjugate gradient approach is usedto generate directions and the most computationally challenging aspect of this method isto compute matrix vector products; these sorts of calculation can e�ectively make use ofthe sparse structure for NEMS. In addition, as will be shown, under reasonable hypotheses,the inexact NE/SQP conditions can be met. 15In the cited reference, the conjugate gradient method is used to compute directionsw0; w1; : : : until a wj is generated that satis�es su�cient decrease for q�(�), namely,q�(wj�1)� q�(wj) � �1maxfq�(wl�1)� q�(wl) : 1 � l < jg (41)for �1 > 0. The approximate solution to the reduced QP is then given as d̂� = Z�wj� ,where j� is the �rst index j satisfying (41) and Z� 2 Rn�m� has as its jth column the ijthcolumn of the n� n identity matrix, where ij refers to the jth free variable.In order to be able to pick up more than one constraint at a time, 16 a projected searchis used to de�ne the step length �� which is used to compute the next iterate as follows:d�+1 = P (d� + �� d̂�);where P is the projection onto 
. 17 The key point is that the projected search selects an�� > 0 so that q(d�+1) < q(d�), which is useful for the inexact condition (a). In the QPalgorithm under consideration, the conjugate gradient method is used to explore a face ofthe feasible region that has been chosen by the projected gradient algorithm. Based on thisactive set strategy, we have the following result for the inexact NE/SQP method.Theorem 4.8 Suppose that the active set method described above is used on the QP form ofthe NE/SQP subproblem with d0 = wk. Then, for � = IF (wk), if r�F�(w) is nonsingular,the inexact conditions (22) (a){(c) can be met.ProofUnder the nonsingularity assumption, we see that the NE/SQP subproblem has a strictlyconvex objective function. By construction, the iterates fd�g satisfy the nonnegativity con-ditions (b), (a) is guaranteed by choice of d0 = wk and the calculation of the step lengthsince q(d�+1) < q(d�). The condition (c) then follows from Theorem 5.1 in Mor�e and Toraldo(1991), since the sequence fd�g terminates �nitely or converges to an exact solution. 2Remark: When the nonsingularity condition cited above is not met, the active set approachis still useful because the condition (a) is satis�ed. Hence we have a descent direction for �at wk. In practice, we can use an upper bound on the number of inner QP iterations, whichmay actually preclude the condition (c) from always being satis�ed. However, this has notcaused problems in previous work; see Gabriel and Pang (1992).28



5 A Bound-Constrained Nonlinear Least Squares MethodAnother recent Newton type approach for the general NCP is the method of Mor�e (1994).In this approach, the NCP is formulated as the following equivalent constrained system ofnonlinear equations. Find x; y 2 Rn such thath(x; y) = 0; x � 0; y � 0 (42)where h : R2n ! R2n is de�ned byh(x; y) = �F (x)� yY x � (43)and Y is the diagonal matrix diag(y1; : : : ; y2n).Based on this formulation, one can solve NCP(F ) by the following bound-constrainednonlinear least squares problem:minx;yf12kh(x; y)k22 : x � 0; y � 0g: (44)Under reasonable conditions global and superlinear or quadratic convergence to a solutioncan be obtained.As advocated in this work, the trust region method of Burke, Mor�e, and Toraldo (1990)is particularly suitable. With this formulation, this method can be applied to the generalminimization problem minff0(z) : z 2 
gfor 
 a closed convex set. In the NCP case, we have f0(z) = 12kh(z)k2, and 
 = R2n+ . Theproposed trust region method is appropriate because its convergence rate covers the case ofdegenerate minimization. Nondegeneracy here means that at a solution z�, [rf0(z�)]i 6= 0for i = 1; : : : ; 2n. The NCP problem is degenerate because at a solution we have h(z�) = 0but rf0(z�) = rh(z�)Th(z�) = 0:In addition, the proposed trust region method is valid when projected searches (as advocatedin Mor�e 1994) are used, this is not always the case for other methods that cover degenerateminimization.The idea of the trust region approach is to create a local model of the decrease in theobjective function f0 and then, depending on how well this local model performs, updateaccordingly the trust region radius and the local model itself. More speci�cally, at iterationk, having the iterate zk = (xk; yk), we try to predict the decrease f0(zk + d)� f0(zk) for astep d that satis�es the trust region bound kdk � �k. We use the local model (d) = 12(kh(zk) +rh(zk)dk2 � kh(zk)k2):Given a step sk with zk + sk 2 R2n+ and  (sk) < 0, we update zk+1 and �k+1, dependingon how well the local model predicted the desired reduction in f0.The Cauchy step ~sk generated by the gradient projection method is used as a benchmarkfor accepting a candidate step sk. It is desired to have the candidate step perform at least29



as well as ~sk and, one hopes, better in predicting the decrease in the objective function.The Cauchy step is de�ned as a solution to the problemmindf k(d) : zk + d 2 
; kdk � �kg:The Cauchy step is of the form sk(�k) wheresk(�) = [zk � �rf0(zk)]+ � zk ;where [y]+ = max(0; y) componentwise and � is a suitably chosen step length.For a candidate direction sk we require that the following be satis�ed k(sk) � �0 k(~sk); with kskk � �1�k; and zk + sk 2 R2n+ :This is the required improvement over the Cauchy step for a candidate direction. Clearly,taking the Cauchy step will work, but for faster convergence we need to employ a di�erentdirection from ~sk .One useful strategy is to base the computation of the search direction sk on the followingproblem minzfqk(z) : zi = 0; i 2 A(zk;1)g; (45)where zk;1 = zk + ~sk , A(zk;1) is the active set of indices and qk : R2n ! R+ is the followingconvex function of z qk(z) = 12kh(zk) +rh(zk)(z � zk)k2:It is not hard to see that for a �xed set of active indices; this is just a linear least squaresproblem.With the iterate zk , we can generate a suitable search direction sk , �0 2 (0; 12); �1 > 0,as follows. Let zk;0 = zk and compute l minor iterates zk;1; zk;2; : : : ; zk;l to satisfy theconditions zk;1 = zk + ~skzk;j 2 R2n+ ; kzk;j � zkk � �1�kqk(zk;j+1) � qk(zk;j) + �0rqk(zk;j)T (zk;j+1 � zk;j): (46)The last condition ensures that the quadratic function is su�ciently decreased. We formthe step as sk = zk;l � zk. Notice that there is some 
exibility as to how we obtain theminor iterates: various strategies suitable for the NEMS NCP can be employed.To gain superlinear convergence, we need to impose stronger conditions on the directionsk . In particular, this can be accomplished if we demand that the minor iterate zk;l be anapproximate minimizer of qk on the active set of indices. More speci�cally, let Pk be theprojection operator into the subspace fz 2 R2n : zi = 0; i 2 A(zk;l)g. Then we also requirethe following condition to be met for �k 2 [0; 1):krd=0qk(zk;l + Pkd)k � �kkh(zk)k:Clearly for �k = 0 we are demanding that zk;l be an exact minimizer with respect to theactive set of indices.These inexact conditions give rise to a host of possible methods to compute the subprob-lem. The important idea is to use the sparse structure of the NEMS NCP in performing30



the various calculations. One such method is the active set approach by Mor�e and Toraldo(1991) discussed in the preceding section. This method is particularly e�ective for NEMSbecause the most complicated computational step involves just a sparse matrix times avector.6 A Smoothing Function ApproachA recent method by Chen and Mangasarian (1994) has potential application for the NEMSNCP. The starting point is that the (pure) NCP(F ) can be recast as solving the followingunconstrained system of nonlinear equations. Find x 2 Rn such thatx � [x� F (x)]+ = 0 (47)where (y) = max(0; y) componentwise. Since this system is nonsmooth, Newton's methodcannot be used directly. However, if we approximate the function [�]+ by a smooth functionp̂(�; �), where the parameter � > 0 controls the approximation (i.e., � = 0 means an exactmatch), we could just apply Newton's method toR(x) = x� p̂(x� F (x); �) = 0 (48)and solve for small enough values of �; this is the chosen strategy discussed in this work. Anexample of the function p̂ is the neural networks function given as follows: p̂i : R�R+ ! R+de�ned by p̂i(xi; �) = xi + �log(1+ e�xi=�)and p̂(x; �) = (p̂i(xi; �); i = 1; : : : ; n).We additionally de�ne the scalar function f(x) = 12kR(x)k2 and note that solving (48)is equivalent to minimizing f(x) and achieving an optimal value of zero. For a �xed valueof � > 0, rR(x) has the following formrR(x) = I �D(x; �)(I � rF (x)) (49)where D(x; �) is a diagonal matrix with the ith diagonal equal to @pi(xi�Fi(x);�)@xi 2 (0; 1).Thus, if rF (x) is sparse, then so is rR(x). This fact is particularly useful for the NEMSNCP in light of the sparsity of rF (x), as demonstrated above. We note that when Fis monotone so that rF (x) is positive semide�nite, rR(x) is nonsingular so that (49) isnonsingular.With an iterate xk , the method consists of solving the linear system rR(x)d = �R(x)for a search direction dk. Then, an Armijo-type search is performed for the step length �kto ensure that su�cient descent is made for the merit function f , in other words,f(xk+1)� f(xk) � ���kjdTkrf(xk)j:The smoothing parameter is then updated. This approach was successfuly tested on a widerange of problems and thus appears promising for use with the NEMS NCP.The specialization to NEMS comes down to solving the system rR(x)d = �R(x) e�-ciently. We note that when the smoothing parameter � changes, only the matrix D(x; �) is31



a�ected. When x is updated, rF (x) and D(x; �) are a�ected. But the important point isthat the position of the nonzeros is unchanging for each iteration. Hence, one can potentiallymake use of the sparse factorization of rR(x) from one iteration to the next.One disadvantage with this approach is that a linear system of the size of the entireNEMS system needs to be solved for each iteration of this method. A more promisingapproach would be to use a method such as QMR as described in an earlier section. QMRsimply uses sparse matrix-vector-type products to solve linear systems where the matrix isasymmetric and nonsingular as in (49).7 ConclusionsIn this work, we have described how the National Energy Modeling System (NEMS) canbe viewed as an instance of a nonlinear complementarity problem (NCP). This perspectiveleads to a more general and perhaps more realistic and successful modeling format than iscurrently being used. We have described the details of several iterative NCP approachesspecialized to the NEMS NCP, that can e�ectively exploit the structure of this large-scaleproblem.Notes1 While pI(i); qI(i) would be notationally simpler than pIp(i); qIq(i), the former would ignorethe fact that in general, Ip(i) 6= Iq(i).2 In actuality, there are several linear programs in this module. However, for our purposes,we can consider consolidating them into one or just focus on the one that is relevant forcalculating equilibrium prices and quantities. This strategy will be adopted for other mod-ules as well, that is, just one (possibly consolidated) linear program for each relevant module.3 The quantities from the petroleum module are aggregated at the level of �ve PADDS.However, before being used in NGTDM, they are run through the demand modules, whichconvert them to the level of nine census regions.4 There are �rm and interruptible customers in the natural gas market. The former typereserve a certain amount of gas and consequently pay a premium for this. The latter typeare not guaranteed the gas and thus pay less.5 The heuristic concerns �nding a suitable pollution penalty parameter and estimating inter-regional electricity trade and could be incorporated into a consolidated linear programmingformulation.6 For notational simpli�cation only, we will assume that no equality constraints are present.The inclusion of such constraints does not change the arguments to be presented, but with-out them things are somewhat simplifed in that only pure rather than mixed NCPs need32



be considered.7 Lij(�) denotes the jth component of the ith linking function Li; a similar de�nition holdsfor L̂i.8 For completeness, we have assumed that every NLP is involved with producing prices orquantities from its solution and multiplier vectors. In actuality, not every NLP may do sobut this is not restrictive.9 The actual QP subproblem does not require those components i where xi = fi(x) = 0.Hence, after eliminating these components, we end up with a QP of the form as shown.10 Note: for u; v 2 Rn+, there exists a b > 0 such that b(uTv) � kmin(u; v)k2 � 0 sothat reducing the complementarity gap forces condition (c) to be satis�ed. To see this, letS = fi : vi < uig. Then we have0 � kmin(u; v)k22 =Xi2S v2i + Xi2Sc u2i � uTv:Hence, by the equivalence of vectors norms, we have the desired result.11 This is done to ensure the nonsingularity of Bii given that Aii is symmetric positivesemide�nite for all i.12 The subscript i refers to the ith block of variables as was shown in (25).13 We de�ne v0j = s�j for j = 1; : : : ; b.14 In actuality, the i; j element may not use the ith and jth columns of M since ~B is aprincipal submatrix of B +D + I , but there is no loss of generality in using this form.15 Of course, other active set approaches involving mostly just matrix vector products arealso of potential interest. However, for concreteness, we have decided to focus on the par-ticular active set approach in Mor�e and Toraldo (1991).16 Some active set methods allow only one index to be picked up per iteration. This con-straint could slow down the subproblem calculations for a large-scale problem such as NEMS.17 P (d) = mid(l; d; u), where mid is the componentwise median operator.The research for Dr. Gabriel was conducted while a member of the Mathematical Sci-ences and Geography and Environmental Engineering Departments at The Johns HopkinsUniversity in Baltimore, Maryland, and the Mathematics and Computer Science Division at33
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