A Nonlinear Complementarity Approach for the National
Energy Modeling System

Steven A. Gabriel Andy S. Kydes

Mathematics and Computer Science Division Energy Information Administration
Argonne National Laboratory U.S. Department of Energy

9700 South Cass Avenue 1000 Independence Avenue, SW
Argonne, Illinois 60439 Washington, D.C. 20585
gabriel@mcs.anl.gov andy.kydes@hq.doe.gov

March 10, 1995

Preprint MCS-P504-0395
Mathematics and Computer Science Division
Argonne National Laboratory

Abstract

The National Energy Modeling System (NEMS) is a large-scale mathematical model
that computes equilibrium fuel prices and quantities in the U.S. energy sector. At
present, to generate these equilibrium values; NEMS sequentially solves a collection of
linear programs and nonlinear equations. The NEMS solution procedure then incor-
porates the solutions of these linear programs and nonlinear equations in a nonlinear
Gauss-Seidel approach.

We describe how the current version of NEMS can be formulated as a particular
nonlinear complementarity problem (NCP), thereby possibly avoiding current conver-
gence problems. In addition, we show that the NCP format is equally valid for a more
general form of NEMS. We also describe several promising approaches for solving the
NCP form of NEMS based on recent Newton type methods for general NCPs. These
approaches share the feature of needing to solve their direction-finding subproblems only
approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS
NCP.

1 Introduction

As aresult of the oil embargo of the early 1970s, the U.S. energy community began extensive
mathematical modeling to analyze various energy issues and develop a national energy
policy. In what follows, we provide a brief overview of three of these energy models that are
relevant to this paper. The interested reader can consult Energy Information Administration
(1994), and Gabriel (1993) for a more complete history.

One of the prominent energy models developed in the 1970s was the Project Indepen-
dence Evaluation System (PIES). The goal of this large-scale energy system was to calculate
an equilibrium in prices and quantities of fuels in the U.S. energy sector. Equilibrium prices
and quantities were values that satisfied the constraints of both the supply and the demand
sides of the market. In essence, PIES was a combination of linear programming and econo-
metric demand equations used to determine valid prices and quantities of fuels; see Hogan
(1975), and Ahn and Hogan (1982). In his Ph.D. dissertation, Ahn (1979) rigorously ana-
lyzed convergence properties of the specialized PIES algorithm and established a connection
with the well-known nonlinear Jacobi method for solving a system of nonlinear equations.



Around 1980, the U.S. Congress expressed interest in focusing on near-term energy
policy issues. The large PIES model proved to be unsuitable for the resulting year-by-year
analyses and so a new energy model, the Intermediate Future Forecasting System (IFF'S)
was developed (Murphy et al. 1988).

IFFS also sought to compute an equilibrium in fuel prices and quantities, but used a
different approach from PIES. IFFS was modular, where each module related to a specific
energy activity such as electricity generation or natural gas distribution. Each module
computed a trial equilibrium in fuel prices and quantities, holding values outside of the
module constant, and then passing these trial equilibrium values on to the next module.
This modular structure proved to be more amenable to energy analysis than the PIES
approach; see Murphy (1983), Murphy (1993), and Murphy et al. (1988). The solution
algorithm used in IFFS was the nonlinear Gauss-Seidel method for solving a system of
nonlinear equations related to an energy equilibrium.

About 1990, it was determined that IFF'S alone was not sufficient to handle many
of the emerging energy issues such as the Clean Air Act Amendments and natural gas
deregulation. Consequently, the National Energy Modeling System (NEMS) was initiated.
Like IFFS, NEMS is highly modular and uses a nonlinear Gauss-Seidel approach to compute
an equilibrium. However, NEMS went well beyond IFFS in several ways. For example,
certain market components such as international oil markets, demand side management,
and interregional electricity trade and transmission that had been calculated exogenously
are now calculated within the NEMS system. Also, more structural detail was added to
certain energy sectors.

At present, some convergence problems have been identified with the Gauss-Seidel
NEMS algorithm. One of the main problems is that this approach “freezes” the inputs
from outside modules while calculating a trial equilibrium within a specific module. This
can cause problems for those modules that interact heavily with other ones; for example, the
Electricity Market Module interacts heavily with the Natural Gas Transmission and Dis-
tribution Module and the Coal Market Module. In addition, there have been convergence
problems related to approximating supply and/or demand curves by step functions. These
step functions are meant to approximate a nonlinear relationship that cannot be explicitly
incorporated as such into the relevant LP modules.

While some of these problems have been fixed, NEMS modelers and other researchers
wish to develop a generalized version of NEMS to avoid such obstacles and perhaps improve
the speed of convergence of the current approach. One such strategy for achieving these
goals is to model the NEMS equilibrium as a nonlinear complementarity problem (NCP).
This more general format not only has the potential to reduce some of the convergence
problems cited above, but it allows for much more general NEMS modules than at present.
This last point is crucial because there is interest in using nonlinear programs or even
nonoptimization-based equilibrium models in some of the NEMS modules. An example of
a nonoptimization model is the spatial price equilibrium problem; see Harker and Pang
(1990) for details. Note that these new modeling directions would be less restrictive than
linear programs, potentially allowing for a more realistic model of energy activity. Hence,
we see that for various reasons, the NCP format has merit for NEMS.

The organization of the rest of this paper is as follows. In section 2, we give a brief
overview of the current NEMS setup; in section 3 we describe the general nonlinear com-



plementarity problem and the specific NCP that arises from NEMS; and in sections 4-6
we describe how several recent iterative Newton type methods for the general NCP can be
specialized to efficiently solving the NEMS NCP.

Note that throughout this paper, for vectors v € R"™, we have indicated subvectors by
vy. Here y is a vector of variables so that v, refers to all components of v relating to these
variables. Alternatively, we have also used the index set v C {1,2,...,n} to describe a
subvector v, of v. Unless otherwise stated, for vectors, superscripts will denote iterates
such as y*, whereas for matrices or scalars subscripts will denote a component, (i.e., 7).
Lastly, unless stated otherwise || - || is meant to denote the usual Euclidean norm.

2 A Brief Overview of NEMS

Like its predecessor models, e.g. the Intermediate Future Forecasting System (IFFS), NEMS
incorporates a market-based approach to energy analysis. NEMS balances the supply of and
demand for energy for each fuel and consuming sector, taking into account the economic
competition between energy sources.

NEMS is partitioned into a modular system, which is solved by applying the Gauss-Seidel
convergence method with successive over-relaxation. The modules of NEMS represent each
of the fuel supply markets, conversion sectors, and end-use consumption sectors, and also
include interactive macroeconomic and international modules. The primary flows between
these modules are the delivered prices of energy and the quantities consumed by product,
region, and sector, but include other information such as economic activity and technology
characteristics. The delivered prices of fuel encompasses all the activities necessary to
produce, import, and transport fuels to the end user.

At present, NEMS consists of an integrating module as well as the following other mod-
ules:

Energy Demand
1. Residential Demand Module
2. Commercial Demand Module
3. Transporation Demand Module
4. Industrial Demand Module
Energy Supply
1. Oil and Gas Supply Module
2. Renewable Fuels Module
3. Natural Gas Transmission and Distribution Module
4. Coal Market Module

Energy Conversion



1. Electricity Market Module
2. Petroleum Market Module

In addition, there are two other modules for modeling economic activities: (1) The
Macroeconomic Activity Module and (2) the International Energy Module. At present, the
conversion, transmission, and distribution of energy are modeled by using appropriate linear
programs (LPs). The presumption is that LPs adequately capture those selected aspects
of the energy sector. Also, various prices and quantities are calculated as a function of the
output from these LPs; by output we mean optimal decision variables and multipliers. In
addition, certain prices and quantities serve as inputs to these linear programs. Lastly, any
remaining quantities not calculated from the output of these LPs are generated via nonlinear
demand equations. All together, NEMS is a collection of linear programs and nonlinear
equations whose simultaneous solution determines equilibrium prices and quantities; we
will comment more on the specific nature of these modules in what follows.

It is important to understand that this equilibration process is carried out annually
up to the year 2010. The NCP formulation for NEMS to be presented below should be
interpreted for an individual year in this series. Hence, for each year, we have a different
but related NCP to solve.

In NEMS, we are concerned with calculating fuel prices and quantities in equilibrium
between the supply and demand sides of the energy market. We suppose that there are
n prices and n quantities of fuels denoted, respectively, by the vectors p and ¢, where
p=(p1,...,pn)" and g = (q1,...,q.)".

In many instances, we will need to distinguish when a certain variable is being used as
an input or an output to a particular NEMS module. Given a vector y € R"™, we will denote
a subvector as ys = {y; : 7 € S} where S C {1,...,n}. When the index set $ refers to the
variables in the vector y that are used as inputs to the ith NEMS mathematical program
(currently an LP), we will use the notation Iy(i); for outputs. The associated set of indices
will be designated Oy(z).

When it is appropriate, we will abbreviate this notation for convenience. Hence, pry(), 414(5)
are those prices and quantities, respectively, used as inputs to the ¢th mathematical pro-
gram, and are thus constants in that module. ! On the other hand, POp(:) 40q(i) are,
respectively, those prices and quantities calculated as a function of the output of the ¢th
LP. Note that the effect of allowing both prices and quantities to feed back into each LP is
one of the more advanced yet computationally complicating features of NEMS.

Each module does not always work at the same level of regional aggregation for the
variables involved. For example, one module may work with census divisions, whereas
another module may use a completely different regional level. The translation between
aggregation schemes is important when we deal with ¢, the fuel quantities demanded.

Each fuel quantity is calculated in exactly one of four places: in the demand modules,
the electricity module, the natural gas module, or the petroleum module. We will partition
the vector ¢ into four pieces as follows:

gp quantities calculated in the demand modules,
ge  quantities calculated in the electricity module,
ga quantities calculated in the natural gas module,
gp quantities calculated in the petroleum module.



For example, the quantities computed from the demand modules are at the level of nine cen-
sus divisions, whereas for the vectors qg, g and gp, the level of aggregation is respectively,
thirteen North American Electric Reliability Council (NERC) regions, twenty-one supply
regions and five Petroleum Administration for Defense Districts (PADDs). Hence, we need
to translate between these various aggregation schemes when going between modules.

2.1 Demand Modules

NEMS has four demand modules covering residential, commercial, transportation, and in-
dustrial demand for various fuels. These modules involve complex sets of equations relating
various economic factors as well as fuel prices to determining fuel quantities to be demanded.

While it is not practical to enumerate each of the defining equations involved in com-
puting demand, from empirical testing it has been determined that these demand functions
possess some interesting properties, which we will now explain.

First, let @ : R} — R7' denote the demand function for all four of the demand modules
taken together; here m = |D| is the number of quantities calculated in the demand modules
and pp is the associated subvector of prices.

In general, we will focus only on the equilibrium prices pp as arguments to this function,
since other quantities can be ignored from the point of view of the equilibrium problem.
From empirical testing, it was determined that the own price effect on demand dominated
the cross price effect. In addition, the price effects were symmetric, and at most six prices
(including own price) were involved in determing the demand for a particular fuel; in many
cases it was just the own price. If we consider the Jacobian of —¢), we see the following
structure:

D11 0 0
0 Dy ... 0
vQuon=| o 0| (1)
0 0 oo Dy

where D;; is a symmetric matrix of size at most 6 X 6. The dominance of the own price over
cross prices means that this matrix is strictly diagonally dominant and hence nonsingular.
However, we can say even more about V(—Q).

The quantities W were observed to be strictly positive so that the diagonals of
V(—Q) are strictly positlive. If the own price dominates the cross prices sufficiently, then
the matrix D;; has positive diagonals with off-diagonals sufficiently small. We first note
that the eigenvalues of V(—@) are just the union of the eigenvalues of each D;;. If there
were no cross price effects, the matrix D;; would be a diagonal positive definite matrix with
all the eigenvalues positive. Since the eigenvalues are continuous functions of the entries of
the matrix, for reasonably small cross price effects, one can say that it is reasonable that
the eigenvalues of each D;; would be strictly positive. This, of course, results in the matrix
V(—Q) being symmetric positive definite so that —Q is a strictly monotone function.

The upshot is that if one were to attempt to consolidate the demand modules, using a
strictly monotone function for —¢) would be a reasonable place to start. This conclusion is
relevant because in the NCP algorithms to be presented, we need to calculate V(—Q).



2.2 Supply Modules
2.2.1 Oil and Gas Supply Module, Renewables Supply Module

The Oil and Gas Supply Module’s purpose is to produce a supply function for oil and
gas that is used in other modules. That is, having last year’s fuel prices and production
quantities, this module produces appropriate supply curves. In general, log-linear functions
are used to approximate the supply relationship. Specifically, for a particular fuel 7, the
following model is used: ‘
~ T N\o
Pi pz(qi) ’
where ¢;, p; are the quantity and price for fuel ¢ in the current year, §;, p; are last year’s
reference values, and « is the own price elasticity. If natural logs of both sides are taken,
one ends up with the form
)

q;
I =« log(=—
og() = a log(=0),

k3
hence the name “log-linear.” These relationships are then approximated in a step-function
manner and incorporated in the various linear programs used in other modules. The supply
module for the renewable fuels also operates in this manner, namely, using a log-linear
function for supply, then approximating it by a step function for use in other modules.
Consequently, the effect of both the Qil and Gas and the Renewables Modules is made in
the objective functions of the various linear programming formulations where the costs of
the fuels in question are used.

2.2.2 The Natural Gas Transmission and Distribution Module

The purpose of the Natural Gas Transmission and Distribution Module (NGTDM) is to
model the network of pipelines and storage facilities that link suppliers (including importers)
and consumers of natural gas. At present, a linear programming formulation is used. 2

The following linear program will be used to model the activities of NGTDM as well as
other relevant modules, the only differences being the dimension of the constraint matrices,
the number of variables, and the specific form of the objective function. We have

minimize ,{0(z,p): Az > ¢,Bx > 0,2 > 0} (2)

where the first set of constraints is associated with demand quantities ¢ and the second set
of constraints is nondemand related. In light of our earlier comment concerning ¢, we see
that § must be at the level of the NGTDM demand regions to be compatible with the other
NGTDM values. Hence, we see that § = Ng where the matrix N converts fuel quantities
to the NGTDM level of regionality. The other L.Ps will have a similar translation whose
particular form will, of course, depend on the level of aggregation. * Note that the variables
x represent the decision variables for this LP. We will let u and v be the multiplier vectors
for these two sets of constraints, respectively. The objective function 6(x,p) is the sum
of supply costs, pipeline tariffs for local distribution companies (LDCs) using the network,
storage charges and distribution charges initiated by the LDCs. In this way, the objective



function takes on the following form:

(z,p) = wje;i+ Y xpj, (3)
JELS Jj€Elp
that is, costs independent of the prices of other fuels plus costs using these prices. Note
that the index set I, is understood to be for the NGTDM module; only when it is unclear
from the context will the module index ¢ be added as in Ip(¢) for the ith submodule.

We see that prices (or supply costs) enter into the objective function and demands enter
as right-hand side constraint values; this is one of two possibilities for the other LP-based
modules. The other is that just the quantities are used as right-hand sides without any
supply costs in the objective function.

In the current version of NEMS, the natural gas prices computed in this module are av-
erage prices from the firm markets. * In particular, having the vector of demand multipliers
u, we see that the fuel prices computed in this module p9*% are calculated as follows:

pngtdm — D(p)Cu,

where D(p) is a diagonal matrix whose diagonals are positive and C'is a matrix representing
the average pricing process (as applied to multipliers). The effect of the diagonal matrix is
to scale up or down the average prices based on relative prices of certain fuels. Note that
no equilibrium quantities are calculated in this module.

2.2.3 The Coal Module

The Coal Market Module (CMM) represents the mining, transportation, and pricing of
coal subject to end-use demand for coal differentiated by physical characteristics such as
heat, sulfur, and ash content. The CMM also determines U.S. coal exports as a part of the
worldwide market for coal trade.

A linear programming formulation is used to model the activities in the coal market. The
objective function does not include prices of competing fuels, as was the case in NGTDM.
Consequently, the form of the objective function is

0(z,p)= Z z;c;.
J

Using the LP notation from NGTDM, we see that the coal prices are just the demand
multipliers,
pcoal — Ju
- ?

where, of course, the vector u is now specific to the coal LP (and similarly for the other LPs
to follow). Additionally, we note that the comment about aggregating demand quantities is
also valid here. Lastly, we note that no equilibrium quantities are output from this module.
2.3 The Conversion Modules

2.3.1 The Electricity Market Module

The Electricity Market Module (EMM) is concerned with the generation, transmission,
and pricing of electricity subject to delivered prices for various other fuels. At present,



a linear programming formulation as well as an optimization heuristic is used. ° The
objective function for the LP is of the form (3), since the prices of the various fuels used
in the generation of electricity (coal, natural gas, etc.) need to be taken into account when
generating electricity. In the EMM, the dual values are used for market penetration and a
separate pricing module is used to allocate costs so that total costs are recovered as currently
determined in rate case proceedings. Consequently, the price of electricity is calculated as

pelec — f(uelec)7

where f(-) is a function representing the cost recovery calculations. The output quantities
(namely, how much of the various fuels is used to generate electricity) are calculated from
the optimal solution as

q = Rua,

where the matrix R reflects the appropriate aggregation levels discussed above.

2.3.2 The Petroleum Market Module

The Petroleum Market Module (PMM) models the refining activities of the energy sector
for which a linear programming formulation is used. Since the prices for natural gas, coal,
oil, and electricity are needed in the refining process, the objective function for PMM takes
on the form of (3). The delivered prices for petroleum products are determined from the
multiplier vector u via the affine transformation

ppetro — SU-|— b,

where S is a matrix representing the effects of regional sharing and b is a vector of tariffs.
The output quantities are a function of the vector = via

q="Tuz,

where T takes into account the aggregation from five PADDs to nine census regions.

Note that for a particular year, the International Energy Module has fixed supply curves
and thus need not be considered in the computation of equilibrium p and ¢. Also, the effects
of the Macroeconomic Activity Module have been accounted for in the discussion of the
demand modules.

As will be shown, the collection of math programs and nonlinear equations that comprise
NEMS can be alternatively viewed as an instance of a nonlinear complementarity problem
(NCP). Before commenting on the specific form of the NEMS NCP, in the next section, we
first introduce the general form of the NCP.

3 The Nonlinear Complementarity Problem and NEMS

3.1 Statement of the Nonlinear Complementarity Problem

In this section we describe the general form of the nonlinear complementarity problem of
which NEMS is a special case. Having a function F': R} — R", the nonlinear complemen-
tarity problem NCP(F) is to find an # € R"™ such that

;>0 F(z)>0 F(z)z,=0 YieTl (4)
z; free Fi(z)=0 Fi(z)z; =0 VieTly,



where Ty U T, is a partition of the indices {1,2,---,n}. When T} is empty, this formulation
reduces to solving a set of nonlinear equations. When both 77 and T3 are nonempty,
we have what is called the mized NCP; the term mized refers to the fact that there is a
mixture of inequalities and equations as well as the complementarity conditions Fi(x)z; = 0,
t=1,---,n. And when T3 is empty, we have the pure NCP, which is the conventional form
of the problem. Throughout this paper, we will assume that NCP(}') refers to the pure
NCP formulation. However, for many results, the distinction between mixed and pure NCP
is not necessary.

The NCP is a very general format for modeling various equilibrium problems in a variety
of application areas. In particular, every nonlinear program is an instance of an NCP via the
Karush-Kuhn-Tucker (KKT) optimality conditions. In addition, the NCP format includes
as special cases, problems in game theory, network equilibrium modeling, traffic systems,
and mechanical engineering; see Harker and Pang (1990). The NCP format is particularly
attractive for NEMS because it offers such a wide range of useful generalizations to the
current setup.

3.2 The NEMS Equilibrium Problem as a Nonlinear Complementarity
Problem

3.2.1 Conversion, Transmission and Distribution of Energy

We will model the conversion, transmission and distribution of energy by m = 4 separate
nonlinear programs (NLPs). These NLPs correspond, for example to the conversion of fuels
into electricity in the Electricity Market module of NEMS, and the distribution of coal to
meet demands.

The use of nonlinear programs (as opposed to linear ones) is a worthwhile generalization
of what is currently employed in NEMS. There are several attractive reasons for analyzing a
more general setting. First, as was noted in the introduction, there have been convergence
problems with the current setup. In part, these difficulties are due to discontinuities of the
solution mapping from the linear programs being used. In some cases, linear programs were
used to approximate nonlinear programs. The hope is that by directly using NLPs, these
and other convergence problems will be mitigated. In addition, the linear programming
formulation represents a tractable simplification of activity in the energy sector, based in
part on the relatively easy access to existing LP software. With the current favorable state
of software for NLPs, the previous justification for use of LPs based on reasons of software
availability may no longer hold.

We will ultimately be formulating the NEMS equilibrium problem as a nonlinear com-
plementarity problem. This NCP will be formed by considering the Karush-Kuhn-Tucker
optimality conditions of the nonlinear programs cited above, as well as various nonlinear
equations related to NEMS. To this end, we will need to be sure that solving the KKT
conditions will in fact lead us to a solution to the associated NLP. For this reason, we will
make the conventional assumption that the KKT conditions are sufficient for optimality;
note that this does not depart from the current NEMS format of using linear programs.

However, some comments concerning KKT conditions for NLPs are in order. For linear
programs, these conditions are both necessary and sufficient. Hence, the set of optimal
solutions is completely characterized by the set of KKT points. For nonlinear programs,



the KKT conditions are necessary only when certain constraint qualifications hold. In some
sense, this is a small price to pay for including more realistic nonlinearities.

The sufficiency of these KKT conditions is guaranteed if the objective function and
inequality constraint functions are convex (for less than or equal to constraints) and if the
equality constraints are affine. © We will assume throughout this paper that the constraint
and objective functions are indeed of this form.

We begin by considering the ith nonlinear program in NEMS. It will take as inputs
certain prices and quantities as well as other values that we can exclude from the equilibrium
calculations. For notational convenience, we will denote the input prices and quantities
demanded as p' and ¢*, respectively, where pf course we mean that p' = P1p(i) and ¢ = q1q()-
The solution will be a vector denoted as z'; @' is the same as xp,(;). In addition, there will
be multiplier vectors u* and v* associated, respectively, with the demand and nondemand
constraints of this ¢th mathematical program, formally defined in an analogous way to p, g,
and x. More specifically, we assume that the form of the ¢th NLP is

minimize i {0(a,p) s —g(a) > Nig, —hi(2)) >0, o' >0},

where 2! € R and ¢' : R¥" — R™i and h' : R* — R™: var;, ng; and nh; represent,
respectively, the number of variables, ¢ constraints, and h constraints. We will let n; =
var; + ng; + nh; denote the total number of variables as well as multipliers involved in this
ith NLP. The objective function € and the constraint functions ¢°, h* are assumed to be
twice-continuously differentiable and convex, so that the KKT conditions are sufficient for
solving this ith NLP. The assumption that 2* > 0 is made without loss of realism. Lastly,
the matrix N° converts the fuel quantities to appropriate regional levels analogously to the
matrix N used in the LP formulations presented above.

If we were to generalize just the nonfuel costs portion of the objective function used at
present, we would end up with

02($Z,p2)2é2(f2)-|— Z pﬂNC;‘,
J€Ip(3)

where 6" is a convex function of &', the nonfuel quantity variables, and #* are the fuel
oy 3

;Z) While this formulation would generalize the current

quantity variables with 2* = (

setup, the approximation to the fuel costs, namely, Zjefp(i) pjié, would still assume constant
supply prices p;. This formulation can be improved upon by instead using

> opi(Ehi,
J€Ip(3)

where pj(ii) is a better approximation to the supply price function, based on the fuel
quantities ' used in the ith NLP. Note that j € Ip(?) in this sense refers to those fuels j
that are used in the :th NLP.

We require that the overall objective function be convex in z*. One easy generalization
to Zjefp(i) p;&% which would satisfy these convexity conditions would be to take

pi(E) = p;(F5).

10



With this choice, we have the Hessian of (3", p;(#')&} equal to a diagonal matrix with the
kth diagonal being o '
PR(E)E), + 2p)(E)).

If p](i;) is convex and strictly increasing for all nonnegative arguments, then the desired
convexity condition is satisfied. Indeed, in this case, the Hessian of p](i;) would be positive
definite. By defining 6(z") = 6(&) + 2 jelp(i) pj(ii)ié, with the proper convexity conditions
holding, we can hope to avoid some of the present convergence problems by modeling the
supply price function more accurately and inserting its approximation into the objective
function of the relevant NLPS. This is the generalization to the objective function that we
will use in what follows.

If we define the Lagrangian function L£'(z%,u,v') = 6'(2%) + (uv*)T(gi(2") + Nig') +
(v)T(R'(2%)), then we get the following NCP in n; variables; i.e., the vectors ', u’, v* (note
that Vi L(2%, ul, v') = Vi0i(2%) + (u')TVgi(a)T + ()T VR (29)T).

Find a solution vector z', and multiplier vectors u* and v' to satisfy the conditions

VLi(zut, o) >0 >0 (Vul(zt,u', o) 2t =0
—gi(xi) _ Niqi Z 0 ui Z 0 (uz)T(_gz($z) _ Niqi) =0

—hi(z") >0 v' >0 (v)Thi(z') =0

so that the NCP function corresponding to this ith nonlinear program is just
Vi Lz, ut, vt)
NLPi($i,ui,Ui,qi)I _gz(xz)_quz ,
—hi(2")

where NLP; : R — R™. It is important to note that for each NLP, the vector ¢* is fixed
and thus not considered a variable in the NCP shown above. However, it is a variable in a
larger NCP to be presented below.

3.2.2 Linking Equations

In an earlier section, we described how the fuel prices and some of the fuel quantities
were calculated from the optimal solution or multiplier values from the associated linear
programs. In this section, we will generalize the specific functions that “linked” the solutions
and multipliers with the computed fuel prices and quantities.

We will assume that a certain subset of the prices and quantities will be calculated from
the output from the nonlinear programming modules. In particular, for the fuel prices we
will assume that the ith NLP will give rise to those prices indexed by the set Op(¢). In ad-
dition, the ¢th NLP will generate those quantities indexed by the set Og(¢). The difference
between the prices and quantities is that some of the quantities will be calculated via demand

11



equations (to be explained below). Hence, since we are considering m nonlinear programs,
we have UL, 0¢(7) contained in but not equal to {1,...,n} but UZZ,0p(z) = {1,...,n}.
Of course, every price or quantity will be calculated in just one of the ways mentioned above.

Fuel Prices

In the current NEMS setup, in some cases the equilibrium prices are just the multipliers
(of affine transformations thereof) associated with demand constraints from a particular
LP. In the more general case that we are considering, however, the prices will be allowed to
be functions of the multipliers.

In particular, we assume that for each price variable p; where j € Op(7), we have the
linking equation

Li(u') = p;
or
L' (u') = poy

with Li: R™ — RIOPO) 7 Also, let [ : R2ic1 ™ — R™ with

Lm(um)

With the exception of the NGTDM prices, the prices from NLP ¢ were a function just
of the dual variables u'. However, as shown above, we have assumed that p; = L}(ul)

for all modules considered. This assumption was made simply for notational considera-
tion. We could just as easily have defined pNGTPM — LNGTDM(U) instead of pNGTPM —

LNGTDM (yNGTDMY and made the appropriate changes in VF to be shown below.
Fuel Quantities

In an analogous manner, we can define the linking constraints for the fuel quantities as

L'(%) = qo4(:)

where 17 : R2oiz1 Vi — RO and

B~
(

for L : RZ:L”“” N RZZL 10q(9)] 8

12



3.3 Demand Equations

As was stated above, some of the fuel quantities will be calculated via demand equations.
We will write down general nonlinear demand functions that are meant to incorporate what
is currently being used in NEMS.

We will assume that the jth quantity ¢; is calculated from prices (and other variables
not relevant to our equilibrium analysis) via a demand equation of the following form:

Q;(pp) = q;-

We will collect all those relevant quantity indices j into the set D = (|JZ; Og(?))° so that
we get

Q(rp) = 4p;
where Q : RIPl — RIPI. Without loss of realism, we will assume that L,i, and () are

sufficiently smooth functions.
3.4 The NEMS NCP

Putting together the conversion, linking and demand sides of NEMS; we see that the NEMS
equilibrium problem can be expressed as solving a pure NCP of size N = "7, n;42n whose
function F is given as follows:

NLPl(acl,ul,vl,ql)
NLPy (2%, u?, 02, ¢%)

From nonlinear programs

F(z,u,v,p,q) =

) Linking constraints

—Q(pp) + 4p Demand equations
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A few remarks about this NCP are in order.

1. The pure NCP form of this problem implies that the linking and demand constraints
are actually inequalities rather than equations as is needed. However, with the rea-
sonable assumption that at a solution, prices and quantities are strictly positive, as
opposed to being just nonnegative, the complementarity conditions force these con-
straints to be equations as desired. Also, note that if equality constraints appear in
the nonlinear programs, we will have a mixed NCP rather than a pure one.

2. The division of the function F'into components corresponding to nonlinear programs,
linking constraints and demand equations is meant to parallel the current configura-
tion in NEMS in which there is a separate module for each activity associated with
one of these three components. It is of considerable interest to NEMS modelers and
others to view the NCP in this fashion, rather than just substituting the linking and
demand constraints for p and ¢ into the NLP sections of F. The main reason is that
in this separated form, we will more easily be able to develop NEMS NCP methods
that minimally alter the current solution algorithm.

3. To allow for as general a setting as possible, we will take gr,(;) C ng(i).

4. We will need to compute Jacobians for the linking and demand functions. This task
may involve computing approximate derivates via finite differences or analytic deriva-
tives as applied to approximations to the current (or proposed) linking and demand
functions.

In what follows, we will group the variables together as
wh = (@, (T )T, @™ (@™ (0™ 0T g ab)-

The Jacobian of the NCP function F’ shown in (5) takes on the form

Sini n D] |D
Youni f Ju 0 Jiz Jia
n J21 I 0 0
D | Ju o I 0 | (6)
D) 0 Ju 0 I

where the matrices J;; are defined as follows:

Dy 0... 0
Ju=| 0 Dy... 0 |, (7)

0 e Dy
! u' v
962 Viigi £ Vg9t Vhi(zH)T
Dy = u'| =Vg'(a') 0 0 . (8)
vi \ =Vhi(2)) 0 0

After possibly permuting the columns for the prices and quantities, the rows from the
ith NLP for Jyio, J13, and Jy4 are thus
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q1,()nD  Yother

zt 0 0
=l Cr (9)
vt 0 0
and
qr,(;)nD  Yother
! 0 0
! 0 0
Ju= " : , 10
14 ut _Sz 0 ( )
v’ 0 0

zl ul vl 22 u? w20 ™ um "
po,y {0 —=VLY(u') 0 0 0 0... 0 0 0
Poy2) | 0 0 0 0 -VIL*u*) 0... 0 0 0
J21 - . : : 9
PO, (m) 0 0 0 O 0 0... 0 —-VL™w™) 0
(11)
x! ut ol x? u? 2. ™ u™ ™
go,01y (—VL'(z') 0 0 0 0
90,(2) 0 0 O —VL2($2) 0
J31 = . )
904 (m) 0 0 O 0 0 O0.. =VIL™@™) 0 0
(12)
and
PD PpH
Ja2 = qp (—VQ(PD) 0 ) (13)

As was shown above, the NEMS problem can be viewed as a large NCP with a good
deal of sparsity in VF. To effectively solve this NEMS NCP, any proposed methods should
take advantage of this sparsity by breaking the overall problem into smaller ones or by
performing sparse matrix-vector calculations. The hope is to build methods that use the
existing modules as much as possible but use the information in a way that is consistent
with the more general NCP approach.

In what follows, we analyze several Newton-type NCP approaches which are particu-
larly well-suited to the NEMS NCP. We have decided to focus just on Newton type methods
for the NCP based on the robustness and fast convergence rates associated with these ap-
proaches and the generally favorable performance; for example, see Gabriel and Pang (1992),
Pang and Gabriel (1993), Chen and Harker (1993), Gabriel and Pang (1994), Ralph (1994),
Dirkse and Ferris (1994), Chen and Mangasarian (1994), and Dirkse and Ferris (1995).
Each of these methods relies on a certain reformulation of the NCP into an equivalent but
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computationally more useful problem. The key to implementing each of these methods for
NEMS is to show how the direction-finding subproblems can be tailored to take advantage
of the specific NEMS structure. For this reason, we concentrate our analysis mostly on the
subproblems of these methods and omit other details of these approaches.

We consider only those NCP approaches that require inexact solutions of computation-
ally manageable subproblems. This is significant because given the large-scale nature of
NEMS, exact solution of the associated subproblems could be computationally prohibitive.
This approach rules out methods that, for example, require the exact solution of linear com-
plementarity or quadratic programming subproblems. (An exception is made for methods
that have been successfully tested in practice and that have subproblems that can exploit
the sparsity of NEMS). Also, we focus on methods that are applicable to general NCPs (for
example, not valid just on monotone NCPs). This is relevant given the NEMS NCP (to be
shown below), which is not necessarily monotone. Additionally, we also rule out methods
that involve pivoting of a large linear system because this may cause excessive fill-in and
make the method inappropriate for such a large-scale model as NEMS.

4 The NE/SQP Method

NE/SQP (for nonsmooth equations/sequential quadratic programming) is a recent method
for solving general nonlinear complementarity problems. It is has been shown to be globally
convergent and fast (Q-quadratic rate), as well as robust in the sense that the direction-
finding subproblems are always solvable.

The basis for this method is to solve NCP(F) by first transforming it into the equivalent
problem of finding the zero of a certain set of nonsmooth equations. Specifically, let the
function H : R} — R™ be defined by

H(z); = min(a;, Fi(z)) i=1,---,n. (14)

It is not hard to see that a zero of this function H corresponds exactly to a solution to
NCP(F). Unfortunately, because of the presence of the min operator, this function is not
differentiable (in the sense of Fréchet), so that standard algorithms such as Newton’s method
cannot directly be applied. However, the function H is directionally differentiable with the
directional derivative H'(xz,d) in the direction d given by

d; if 1€ ly(x)=A{t:2; < Fy(2)}
Hl(z,d)=1{ VFi(2)"d if te€lp(z)={t:2;> Fi(2)} (15)
min (d;, VF,(2)Td) if i€ L(z)={i:2;, = F;(2)},

fore=1,---,n.
Closely related to H is the norm function 6 : R, — R’} defined by
1 2
0(x) = SIH ()7 (16)
where || - || is the Euclidean norm. As a result, we see that NCP(F') can be recast as the
nonsmooth, nonconvex optimization problem
minimize , 6(x)

such that x> 0. (17)
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Note that the nonnegativity constraints are actually embodied in the definition of € but
are used because their inclusion facilitates the relevant convergence analysis. In addition,
for certain applications, the relevant functions are not necessarily defined even for negative
values. Hence, these constraints are needed.

A solution to (17) for which 6 equals zero corresponds exactly to a solution to NCP(F').
Starting at some initial estimate z° > 0, a natural scheme would then be to iteratively
decrease the value of 8 at each step, with the objective of driving it down to zero to obtain
a solution; this is the essential idea of how NE/SQP works. Note that in general 6 is
only piecewise differentiable (since we assume that F'is continuously differentiable) and in
general @ is not even convex; to see this, take F'(z) = e~ for # € R. However, an important
characteristic of this function is that it is directionally differentiable with the directional
derivative 0'(z,d) = H(x)"H'(z,d).

The basic scheme with NE/SQP is thus as follows: having an estimate 2% of the solution,
a new iterate %1 is generated according to the rule

F = gk + dek,

where d* is a suitable search direction and 7y, is the associated step length needed for global
convergence of the method. The calculation of the search direction entails the solution of a
certain convex quadratic program (QP) which we will now explain.

Let ¢ : R} x R™ — R’} be defined as

Sesd) = S (@) + M) (15)

where M(z) is the n X n matrix that (after possible reordering of rows and columns) is

defined as
1. 0
M=) = ( VoFs Vsks ) (19)

for index sets a = {7 : z; < Fi(z)} and f = {i: F;(z) < 2;} and [, the identity matrix of
order a.

With the iterate 2%, the associated direction-finding convex quadratic subproblem can
thus be stated as ?

minimize y @(2",d)
subject to 2 +d > 0. (20)

We note that the direction d = 0 is always feasible, since each iterate z* is maintained
nonnegative; see (17). As a result, the feasible region is a nonempty polyhedron, which
taken together with the fact that the objective function is a quadratic bounded below by
zero means that this QP will always have a solution (see Frank and Wolfe 1956). This result
validates the robustness of NE/SQP. In fact, each subproblem need be only approximately
solved to maintain the relevant convergent properties associated with exact subproblem so-
lutions. The resulting inexact NE/SQP method has been developed and successfully tested
by using a matrix splitting approach on the equivalent linear complementarity problem
(LCP) form of the subproblem.
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For this QP, the KKT optimality conditions are both necessary and sufficient so one
can alternatively solve the equivalent linear complementarity problem. Having the vector
x, this LCP is to find an s = 2 + d such that

(c—Az)+ As>0 5s>0 ((c— Az)+ As)Ts =0,

where A = M(2)TM (), and ¢¥ = H(z)"M(z). We will refer to this LCP as LCP(g, A)
where ¢ = ¢ — Ax.

Note that the matrix M = M(x) has a certain sparsity that is lost on A. It is reasonable
to ask whether we can solve this LCP using the matrix M rather than A. Such and approach
has obvious advantages for the NEMS NCP, where there is considerable additional sparsity
in M derived from the special structure of the NEMS NCP. The following examples show
that, in general, the answer is no.

Example 4.1 Let M = ((11 2) and g = (11), where the scalars a,b > 0. Then

the unique solution to LCP(q, M) is s = (é) However, if we take this solution in

2
LCP(q, MTM ), we get g+ MTMs = (1_7_

tion.

ab)’ which violates the complementarity condi-

This example clearly shows that using LCP(q, M) to solve the NE/SQP subproblem LCP(q, A)
will generally not work. In a similar vein, one can ask whether, if M is invertible, solv-
ing LCP(§, M) will provide a solution to the NE/SQP subproblem LCP(q, MT M) where
q = (M7)G. The answer here is also in the negative.

Example 4.2 Let the matriz M be given as in Example (4.1) with § = <_11) Suppose
we used the unique solution s = (é) mn LCP(q,MTM). This would give ¢+ MTMs =

2
(a ta ), which violates the complementarity condition. So again, we see that solving an

b+ ab
LCP with just the matriz M is not helpful for the NE/SQP subproblem.

Having generated a search direction d* from either the QP or LCP form of the sub-
problem, we next determine a suitable step length. Such a parameter is used to guarantee
sufficient decrease in the norm function § and thus global convergence of NE/SQP. The
well-known Armijo backtracking strategy is used to compute the step length 7. Specif-
ically, having ¥ and d*, and a scalar p € (0,1), we let my, be the smallest nonnegative

integer m such that
(a* + pd") - 0(a*) < —ap" 2(a, "), (21)

where z(2,d) = }||M(z)d||*, and then let 7, = p™* be the chosen step length.

From Lemma 2 (b), and Proposition 2 (b), (¢) of Pang and Gabriel (1993), we see that
as long as ¢(a*,d*) < #(2*,0) d* is a descent direction for 6 at 2% and z(a*, d*) is strictly
positive thus forcing descent in 6 in a finite number of trials. In fact, any d* that satisfies
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the following will suffice:

(a) descent in the norm function 6 ¢(2,d*) < ¢(2,0) = 6(a*)
(b) subproblem feasibility b +d* >0 , (22)

(c) inexact rule met || min(s*, y)|| < ex

where the LCP variables are s* = 2% +d* and y* = ¢+ Ms*, and {e;} | 0. The importance
of (¢) is that d* must be an approximate solution to the LCP subproblem. This is an easy
requirement to see because (s*,y*) solves the LCP if and only if || min(s*,y*)|| = 0. For
other values of s and y, this residue function || min(-,-)|| is nonnegative. Also, the scalars
e control the level of inexactness that must go to zero in the limit.

Clearly, in general, solving each subproblem exactly will satisfy the above conditions
on d*. However, potentially great computational gains can be made by only approximately
solving the subproblem at each outer iteration. In short, the strategy with the inexact
NE/SQP approach is to apply a sequence of “inner” iterations corresponding to solving the
subproblem inexactly. Then, the direction that is obtained is used in an “outer” NE/SQP
iteration in conjunction with the Armijo test described above. Thus, one can avoid costly
calculations associated with solving each subproblem exactly. In the rest of this section, we
will analyze several LCP/QP algorithms for which there is a reasonable chance or a definite
certainty that the inexact NE/SQP conditions (22) (a)—(c) can be satisfied for the proposed
algorithms.

To use NE/SQP effectively for NEMS, we need methods that can relatively easily gen-
erate directions satisfying (22) (a)-(c) while exploiting the structure and sparsity in the
NEMS NCP. In general, any method for convex QPs with simple bound constraints or any
monotone LCP approach is potentially useful.

Our aim is to present a representative but not totally exhaustive list of methods, each
able to reasonably guarantee (a)—(c) as the algorithm proceeds. In addition, the proposed
methods should at worst, solve only sparse linear systems. In fact, many of the intermediate
calculations in the methods we analyze involve just the sparse matrix M times a vector
rather than the matrix A = M7 M: this strategy is crucial for solving the NEMS problem.

We will analyze several candidate approaches that work on either the QP or the L.CP
form of the subproblem. The common feature to all these methods is that they maintain at
least one of the inexact conditions (a)—(c) and work toward satisfying the remaining ones.

We highlight several projected matrix-splitting methods (Jacobi, SOR) that work on
the LCP form of the subproblem, maintaining nonnegativity of the iterates and producing
descent in the QP objective. Hence, having the kth NE/SQP iterate 2%, if we start the
QP algorithm at s = z*, then conditions (a) and (b) will be satisfied. The remaining
condition (c) is generally satisfied in the limit as a result of some feature of the method.
An advantages of these methods is that they decompose the problem into pieces that can
roughly match the current set of NEMS modules with closed form solutions for generating
iterates. The resulting calculations involve solving much smaller LCPs corresponding to
this decomposition, with relatively small sparse linear systems to be solved as the most
complicated step. These reduced LCPs can be solved either in parallel (projected Jacobi)
or sequentially (projected SOR). Since the current NEMS solution strategy is based on a
nonlinear SOR approach, we feel that relative to other proposed methods, these splitting
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approaches would most easily be incorporated into the existing framework. This is quite
important given the large amount of development time already invested. A drawback of
these approaches is the sometimes slow convergence rates in practice.

We also analyze a class of infeasible interior-point methods for the LCP subproblem. The
distinguishing feature of these methods is that they maintain nonnegativity of the iterates,
condition (b), and simultaneously work toward satisfying (a) and (c). This is accomplished
by reducing the complementarity gap s’ y/n 'V at each stage and reducing the infeasibility,
namely, ||y — ¢ — As||. Once a feasible y is found, these methods maintain feasibility and
thus concentrate on reducing the complementarity gap. The condition (a) is likely to be
satisfied at some intermediate iteration if the iterates are converging to a solution because
we initiate the method at s° = 2*. The advantage of interior-point methods is their speed
and relatively low number of iterations for large problems. We end up needing to solve a
large sparse linear system which can be effectively handled with the NEMS structure.

The last set of methods we consider are based on the QP form of the subproblem.
These active set approaches solve a sequence of smaller equality-constrained QPs relating
to a selection of specific variables not at their lower or upper bound. The important feature
of these strategies is that they maintain nonnegativity and decrease the objective function at
each stage, thereby validating (b) and (a) assuming that we start at d* = 0. The condition
(c) is satisfied as the algorithm proceeds, since these methods work toward optimality of the
QP. An advantage of these approaches is that they are likely to produce inexact directions
with only minimal computational requirements such as matrix-vector products.

4.1 The Projected Block Jacobi Approach for the LCP Subproblem

We consider a modification of the projected block Jacobi approach which can avoid explicitly
forming the matrix A = M7 M and is ideal for parallel computing.

The parallelization aspect comes into play if we break up the matrix LCP A into b2
blocks with block A;; of size b; x b;; the trick is how to form these blocks.

As is typically done with splitting methods, we will first split A into the sum of two
matrices B and (. Strictly speaking, the projected block Jacobi method would just take B
to be a block diagonal matrix with the ¢th block B;; = A;;. In our version of the projected
block Jacobi, B;; = Aj; + I where the latter identity matrix is of order b;. ! Also, we will
let ¢ = ¢+ C's” where v is the inner iteration counter. Then, LCP(¢”, A) can be solved by
simultaneously solving for LCP(¢”, By;), t = 1,...,b.

It is worthwhile to analyze how the blocks of the matrix A should be organized. Our
overriding concern is to use the existing NEMS routines as much as possible, with the
exception that NLPs will replace LPs.

Let us examine the various matrix and vector computations. We see that an equivalent
form of the subproblem has A of the following form:

Ao (I—I— VaFs(w)'VoFg(w) vaFﬁ(w)TvﬁFﬁ(w)) ‘

VﬁFﬁ(w)TvaFﬁ(w) VﬁFﬁ(w)TVgFg(w) (23)

As opposed to a general NCP, the index sets a and 3 for the NEMS problem are some-
what predetermined. Since the linking and demand relationships are equations, without
loss of generality we can place the indices for these components of the NEMS NCP function
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into the set Ip(w). The remaining component indices for the KKT conditions for the m
nonlinear programs will be broken down into two parts. Let us denote by Gx all those
indices for the KK'T conditions that are also in Iz (w) and by a the remaining KKT indices.
The set § will thus be partitioned into Sn (“N” for NLP) and o (“O” for other) where
Bo = B\Bn. Then, we have

(J11)gya (Ji)swoy 0 (Ji3)Bne  (J1a)Bne
_ 0 | depy T 0 0
VaFﬁ(w) = (J31)ea 7V5Fﬁ(w) = (Jzi)oﬁN 0 7 0 (24)
0 0 J49 0 I

where M,g denotes the columns from a matrix M indexed by the the set 5; Ag, is defined
analogously for rows.

Now, let us examine the special structure of A. In light of (24), we see that the diagonal
blocks of A have the following form (we assume that the indices have been ordered accord-

ingly)

(a) rows and columns 1,...,|al:
/111 =1+ (Jn)gNa(Jn)ﬁNa + (J21).Ta(=]21).a + (J31).Ta(=]31)oa;
(b) rows and columns |o| + 1,...,|a| + |Bn]:
Azz = (J1) by (1) g + (J21)epy (T2 )esy + (J31)epy (J31 ey

(¢) rows and columns |o| + |Bn]+ 1, ..., |a] + |Bn| + n:

2133 = J£J42 + I;

(d) rows and columns |a| + [Bn]| +n 4+ 1,..., |a| + |Bn] +n + |D|:

Agq = (J13)gN.(J13)ﬁN. +I;
(e) rows and columns |a| + |Bn| +n+ |D|+1,...,N:

Ass = (J14)}§N.(J14)5N. +1.

The natural scheme for splitting the subproblem matrix A will be to take either B;; = flii—l—f
fori=1,...,b=>5 or Bj; equal to a principal submatrix of A;; + I with b > 5.

It is important to never actually compute the matrix A = M7 M, since this computa-
tion would destroy the sparsity of M, which is critical to solving this large-scale problem
efficiently. The following is our proposed way to use a projected Jacobi-type splitting al-
gorithm with line search for NEMS; see Cottle, Pang, and Stone (1992) for details on this
approach.

In the projected block Jacobi method with line search, many of the steps will involve
just matrix-vector products using the sparse M. In addition, there is a line search step for
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which the same comment is valid. The possible exception to this occurs when the following
intermediate direction is computed for the ith block of variables. We have

1/2
st

= maz [0, s — v;], (25)

where the vector v; is calculated according to

(A + v = (¢ + MTMs”)Z', (26)
and A;;, = EgE“ for
My,
My,
Eq=| ."|. (27)
M,

7

We wish to avoid actually forming (A;; + I), which would ruin the sparsity of the problem.
The next lemma shows how we can solve this system without losing sparsity.

Lemma 4.3 Let W,T,U,V € R"™", b € R" with T,U,V positive diagonal matrices such
that T = UV. Then, the following statements hold:

(i) the matric WIW + T is symmetric positive definite,

(ii) with R = WTW + T, the unique solution x* to

Rx=1b (28)
can be obtained by taking v = V~'2% where 2T = [(z1)T(2?)T] solves the 2n x 2n
system

b
va=(¢) (29)
where
N wt U
N7 -wvTt)e
Proof

Condition (i) follows because R is the sum of a symmetric positive semidefinite matrix and
a symmetric positive definite matrix. If we let P € R*"*?" he defined by

0o I
P“(I 0)’

then by the Schur formula for determinants,

det(N)#0 & det(NP)#0

& det(I + WVIUTWT) £ 0

& det(I + WTtWwTy #£0

& det(I + WT=\2(WT-Y%)T) £ 0.
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Since I + WT—/2(WT-1/?)T is symmetric positive definite, we see that the system (29)
will have a unique solution for all b. Now, letting Vi = 2? and substituting into the
bottom row of (29) we have z! = Wi. Plugging this into the first row of this system gives
WITW3 +UVi = Ri = b. By (i), we see that # = 2* as desired.O

The advantage of solving the larger system (29) versus (28) is that the product WTW
need not be explicitly formed. This result has direct importance for our calculations. Specif-
ically, we can solve (26) by letting

W=FE;pU=V=I

and applying the method of the above lemma; this can be done for each block in parallel
as well. Note that the matrix N in the system (29) is sparse and does not change for the
calculations of a given subproblem. Hence, one can use a sparse factorization routine; see
Duff, Erisman, and Reid (1986) for a discussion of sparse methods.

Now we state a result concerning the application of this method to the NEMS subprob-
lem.

Theorem 4.4 Suppose that {s'} are iterates generated by the modified projected Jacobi
approach with © = w* and either

(1) Vats(w) is nonsingular or
(i1) 3z € R such that if Vts(w)z=0,0< 2z #0, then qu > 0 where gz = {q; : 1 € B}.
Then, the following statements hold:

1. the method will solve the subproblem in a finite number of steps, or

2. the inexact NE/SQP conditions (22) (a)—(c) can be met for each subproblem.

Proof

First note that the matrix A is symmetric and B is positive definite. Hence, by Lemma
5.5.1 in Cottle, Pang, and Stone (1992), we see that either s” solves the subproblem or, for
g(s) = ¢¥'s + 1sT As, we have that g(s”) < g(s"7') < ... < g(s°) which is equivalent to
(¥, d") < ... < ¢(a*,0). Since s = w* and s¥ + w* = d*, we see that the condition (a)
is met; (b) is also met because the iterates are maintained nonnegative. Lastly, by (i) or
(ii), and Lemma 5.3.4 and Theorem 5.5.3 in Cottle, Pang, and Stone (1992), {s"} € R}
is bounded and every accummulation point solves the subproblem so that the remaining
inexact NE/SQP conditions are also met subsequentially. O

Remarks:

1. When neither (i) nor (ii) hold, but the iterates {s”} are still bounded, by Theorem
5.5.3 in the cited reference, every accumulation point of this sequence is a solution to
the NE/SQP subproblem so that (22) (a)-(c) are satisfied subsequentially.

2. Even when the iterates contain no convergent subsequence, we still have g(s") <
g(s¥™1) thus, since s* = wk, d” = s — 2* will be a descent direction for the merit
function 6 at w”.
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3. In the splitting approach described above, each block could refer to a current NEMS
module (or pieces thereof). The overall effect would be to make use of the current
information being passed between NEMS modules in a different and (one hopes) more
effective manner.

4.2 The Projected Block Gauss-Seidel and SOR Approaches for the LCP
Subproblem

One theoretical weakness of the Jacobi approach described above is that the boundedness of
the iterates {s”} cannot be guaranteed for the NE/SQP subproblem. The projected block
Gauss-Seidel approach overcomes this deficiency but is not as parallelizable as the former
method. In particular, one must solve the associated inner subproblems sequentially rather
than at the same time. Convergence of the iterates is then assured if the splitting of 4 is
regular a term we now define.

Definition 4.5 Let A be an n x n matriz with A = B 4+ C. Then the splitting (B,C) is
called weakly reqular if B—C' s positive semidefinite and reqular if B—C' is positive definite.

The projected block Gauss-Seidel approach begins by partitioning the set of variables
g g
1,...,n} into b distinct sets Iy,..., I, and foreach j = 1,...,b, choosing a regular splittin
g g g
Br.1.,Cr.1.). Then, having an iterate s, we take s5*1 as a solution to the LCP(¢’, Br.1.),
IRy gis g I; IRy
where 4
qJ = qj, —|—C[][]8?] —I—AI]I*](S%] (30)

for I~j = (I;)°. Note that ¢’ can be computed by making use of the sparse structure of A
and C'. The key for using this approach with the NEMS NCP is to select a regular splitting
(B1,1;,C1,1;) and solve the associated LCP efficiently.

Lemma 4.6 Let A € R™ "™ be symmelric positive semidefinite with A = B + C. Let
L, U, D be respectively, the strictly lower, strictly upper, and diagonal parts of A. Then for
B=L+D+1, (B,C) is a regular splitting.

Proof

We see that B — C' = L — U + D + 2. We note that B — (' is positive definite if and
only if (B — C) + (B — C)T is symmetric positive definite. But since A is symmetric,
(L—-U)T' =U — L, so that

(B-C)+(B-C) =2D 441,

which is positive definite given that A, hence D is symmetric positive semidefinite. O
Since every principal submatrix of a positive definite matrix is also positive definite, this
result shows that (Bp,7,,Cp,z,) will also be regular for all j = 1,...,b given the choice for
B described above. It remains to show how we can efficiently implement this approach for
NEMS taking into account the sparsity of the NCP formulation.
With the projected block Gauss-Seidel approach, we will be solving LLCPs with the
matrix By, = (L + D+ I)f1,. For notational simplicity, let By, = B with B of size b,
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and let the constant vector be denoted simply as ¢q. With the iterate s¥, for LCP(¢, B ) the
projected Gauss-Seidel recursively computes 5;»""1 12 by solving

swzmmhﬁl,@+z%fwzm”ﬂ, Lom )

J<t J>i

The only potentially challenging step is to compute

(zwwa%J

1< iz

without explicitly forming the matrix B which would ruin the sparsity in the problem. This
can be easily handled as follows. Let v* be the following intermediate vector 13

(vi)T = (511""1,...,5?1'11,5;’,...,sg),

and notice that

14

a1 i )0 i #£ ]
TN st o =
K3 K3 °

Since B is a principal submatrix of L + D + I, we have 4

i MEIM,; i>j
bij=<{ MIMy+1 i=j
0 1 < 7.

Hence, we have the following for row i:

Zj<2 IN)Z] ;/—H + Z]>z ijS ] - Z] 1 bl] 7 )
—MT(Z] 1 '] ])—I_UZZ"

If we denote the quantity (Z;‘:l oj ]) by o;, for row ¢ + 1 we have just a simple
adjustment as follows:

_ i+ 1 i+1
Zj<i—|—1 bH‘L] 8 + Z]>2—|—1 b2+1 "J 8] Z 2+17] ?J]
T Z-|—1 i+1 i+1
- Moz—l—l(z M.]?J] ) + vz—l—l

- MOZ—I—I(UZ + M’H'l( v - 8 )) + UZZ—I-I:%

In this way, we never need to form the matrix B explicitly and can exploit the nonzero
structure of M. We have the following result concerning the application of the projected

block Gauss-Seidel method.
Theorem 4.7 Suppose that {s”} are iterates generated by the projected block Gauss-Seidel

method with s° = w*. Then, the inevact NE/SQP conditions (22) (a)—(c) can be met for
each subproblem.
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Proof
From Theorem 3 of Luo and Tseng (1991), we know that the nonnegative iterates of this al-
gorithm will converge to a solution of the NE/SQP problem. This means that since s = w*,

all three conditions (a)—(c) can be satisfied. O

Remarks: We can modify this algorithm to include overrelaxation and underrelaxation
parameters as well. Depending on the particular choice of relaxation, Theorem 4.7 either
remains valid or at worst we know that

min{||s” — s¥|| : s* is a subproblem solution} — 0.

In this case, we cannot assert that the iterates converge to a solution, but we can see that ev-
ery accumulation point (if any exist) will be a subproblem solution. Hence, subsequentially,
the inexact conditions can be met.

4.3 An Infeasible-Interior-Point Approach for the LCP Subproblem

Finding a solution s and complementary vector y to LCP(q, A) can be recast as finding the
zero of the following system of constrained nonlinear equations: find s,y € R’ to satisfy

Gy = (I = (5) (32)

where S = diag(s),Y = diag(y), and e/ = [1...1]. Recent infeasible- interior-point ap-
proaches for monotone LCPs (like the NE/SQP subproblem) use this formulation and apply
a variation of Newton’s method with centering; for example, see the recent work of Wright
(1995), and Zhang (1994).

Specifically, having the iterates s”,y” € R}, with p, = (s")'y" /n, we generate the
Newton search direction for

o= ()= (05

where & € [0,1) is a parameter whose value can vary by iteration. This system is solved (at
least once but perhaps several times with different right-hand sides) to obtain an appropriate
search direction; in addition, a line search step is added.

In terms of applicability to NEMS, we are primarily concerned with how this linear
system can be solved efficiently, ensuring that the inexact NE/SQP conditions can be met.
These methods typically maintain nonnegativity (positivity) of s, y” and strive to decrease
the complementarity gap p, and the infeasiblility, in other words, ||y” — (As” + q)||.

The resulting search directions As”, Ay” for s¥ and y”, respectively, are computed as
solutions to the following system of linear equations

A =T As rY
(Y” W)(Ay)‘(—svwewuye)’ (34)

where S¥ = diag(s”),Y" = diag(y”),and r¥ = y” — As” —q is the residual vector at iteration
v.
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It is not hard to see that (34) can be reduced to solving for As” in
(A4 (S")'Y)As = ¥ — y¥ + Gu,(s) 71, (35)

where (sV);7! = 1/s¥ i = 1,...,n and for Ay” by

Ay’ = AAs” — 1", (36)

The only challenging computation is thus to solve for As.

Of course, since for NEMS the matrix A is of the form M7 M, we wish to avoid explicitly
forming this product of matrices. We appeal to the result from Lemma 4.3. Specifically, we
see that the system (35) is of the required form if we let

W=MU-=(S")'Vv=y" (37)

Hence, we need to solve a linear system whose matrix is of the form

(M ) (39)

This matrix is clearly nonsingular, and it is easy to see that the sparsity pattern for this
matrix is unchanging throughout the LCP subproblem calculations. Moreover, many of
the actual values do not even change. This feature has obvious advantages if we employ
a sparse factorization of this matrix. However, the disadvantage with solving this entire
system together is the size.

We can solve this system by an iterative method such as QMR; see Barrett et al. (1994),
Freund and Nachtigal (1991), and Freund and Nachtigal (1994). This approach is ideal for
large systems of the form Bz = b, where B is sparse and nonsingular. The most challenging
step in this approach is forming the product Bv where v is a particular intermediate vector.
This can be facilitated given the structure of the matrix in (38) and the fact that the current
NEMS modules (or generalized versions of them) can generate the necessary parts of this
matrix.

Since s” is maintained nonnegative, the inexact condition (b) is satisfied. Also, as
described in Wright (1995), and Zhang (1994), once a feasible vector y” is found, y" is
feasible for all A > v. Since infeasibility and complementarity are being driven to zero, this
means that since u, | 0, the condition (c) will be met for each subproblem iteration. As
long as the iterates converge (this was shown in Wright 1995), then for s® = w”, it is likely
that the condition (a) will also be met for each LCP iteration as well. Hence, we see that
interior-point methods of the kind described are likely to solve the inexact conditions.

4.4 An Active Set Approach for the QP Subproblem

Suppose that we are trying to solve the convex quadratic program
mina{g(d)ld € Q) (39)

where ¢ : R — R is a convex quadratic function, and Q = {d € R"|l < d < u} for [ < u,
l,u € R™, (this, of course, includes the NE/SQP QP where [ = —2* and u = +00). We will
let n be the size of 