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ABSTRACTDistance geometry problems arise in the interpretation of NMR data and in the deter-mination of protein structure. We formulate the distance geometry problem as a globalminimization problem with special structure, and show that global smoothing techniquesand a continuation approach for global optimization can be used to determine solutions ofdistance geometry problems with a nearly 100% probability of success.



GLOBAL CONTINUATION FOR DISTANCE GEOMETRYPROBLEMSJorge J. Mor�e and Zhijun Wu1 IntroductionA molecule with m atoms can be described by specifying the positions x1; : : : ; xm in IR3of all the atoms in the molecule. If we are given bond lengths �i;j between a subset S ofthe atom pairs, it is important to determine whether there is a molecule that satis�es thesebond length constraints. We pose this problem in terms of �nding x1; : : : ; xm such thatkxi � xjk = �i;j ; (i; j) 2 S: (1:1)If there is no solution x1; : : : ; xm to these constraints, then the bond length speci�cationmust be in error. This can happen, for example, if the triangle inequality�i;j � �i;k + �k;jis violated for atoms fi; j; kg with bond length constraints.Distance geometry problems that arise in the interpretation of NMR data and in thedetermination of protein structure are usually associated with the more general problem of�nding positions x1; : : : ; xm in IR3 such thatli;j � kxi � xjk � ui;j ; (i; j) 2 S; (1:2)where li;j and ui;j are lower and upper bounds on the distance constraints, respectively.For surveys of work in this area, see Crippen and Havel [4], Havel [9], Kuntz, Thomason,and Oshiro [16], and Br�unger and Nilges [1]. We do not consider the general problem(1.2) because the aim of this paper is to show that algorithms based on the continuationapproach for global optimization can be used to determine solutions of (1.1) with a nearly100% probability of success. The techniques of this paper can be extended to (1.2), but thetheory is not as elegant.Distance geometry problems are NP-hard. Crippen and Havel [4] proved this resultwhen all the atoms are restricted to IR1 by reducing the distance geometry problem to theset partition problem: Given positive integers s1; : : : ; sm, determine a partition of theseintegers in sets S1 and S2 such that Xi2S1 si = Xi2S2 si:Work supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38 and by the Argonne Director's Individual Investigator Program.1



The proof is instructive. Given an instance of the set partition problem, consider a distancegeometry problem in IR1 with m+ 1 atoms, where�i;i+1 = si; 1 � i � m; �1;m+1 = 0:If the distance geometry problem has a solution, then �1;m+1 = 0 implies that xm+1 = x1,and thus mXi=1(xi+1 � xi) = xm+1 � x1 = 0:Since jxi+1�xij = si, the sets S1 = fi : xi+1 � xi � 0g and S2 = fi : xi+1 � xi < 0g solve theset partition problem. For a general discussion of the complexity of the distance geometryproblem in IRd, see Saxe [21].We formulate the distance geometry problem (1.1) in terms of �nding the global mini-mum of the function f(x) = Xi;j2S wi;j �kxi � xjk2 � �2i;j�2 ; (1:3)where wi;j are positive weights. Clearly, x 2 IRn solves the distance geometry problemif and only if f(x) = 0. We could use any global optimization algorithm (see [20], [12],and [5] for global optimization background) in the search for a global minimum of f , butthese general algorithms do not take advantage of the structure in the distance geometryproblem. Other algorithms used in the solution of distance geometry problems (for example,Hendrickson [10, 11], Havel [9], and Glunt, Hayden, and Raydan [7, 8]) must also rely ongeneral techniques, such as multistarts or simulated annealing, to claim convergence to aglobal minimizer.The continuation approach for global optimization hinges on the ability to graduallytransform the original function into a smoother function with fewer local minimizers. Anoptimization algorithm is then applied to the transformed function, tracing their minimizersback to the original function. The idea of transforming a function into a smoother function isappealing; the main approaches include the di�usion equation method of Piela, Kostrowicki,and Scheraga [19], the packet annealing method of Shalloway [24, 23], and the e�ectiveenergy simulated annealing method of Coleman, Shalloway, and Wu [2, 3]. In the di�usionequation method the transformation can be written (see [13, 14] for details) in the form1(4�)n=2�n ZIRn f(y) exp �ky � xk24� ! dy; (1:4)where � is a parameter (time). The smoothing properties of this transformation have beenstudied by the researchers in Scheraga's group, often in connection with the search forthe lowest energy conformation of a molecule (see, for example, [13, 14, 15, 22]). Thetransformation used in the packet annealing method and in the e�ective energy simulated2



annealing method can be written in the form1�n=2jdet�jn ZIRn exp��f(y)�Bt � exp ��k��1(y � x)k2� dy; (1:5)where �B is the Boltzmann constant, t is a parameter (temperature), and � is a nonsin-gular matrix (the sampling scale). Other transformations used in molecular conformationproblems are reviewed by Straub [25]. In this paper we follow the work of Wu [26] by devel-oping the general properties and use of (1.4) in continuation algorithms for the solution oflarge global optimization problems, since this transformation seems to have the strongestmathematical properties.We feel that (1.4) is likely to play an important role, not only in the molecular conforma-tion problem, but in the solution of a wide variety of global optimization problems. For thisreason Section 2 introduces the term Gaussian transform to denote this transformation.We also illustrate the smoothing properties of the general Gaussian transform on a sim-ple two-dimensional problem. This example also provides motivation for the continuationapproach.Section 3 presents some of the more interesting properties of the Gaussian transform.We study, in particular, the computation of the Gaussian transform for the decomposablefunctions. This is an important class of functions because many of the functions that arisein applications are decomposable. This class of functions was introduced by Wu [26] underthe term generalized multilinear functions; we are using the term decomposable to avoidconfusion with the use of multilinear for a function that is linear in each argument.Our approach for solving the distance geometry problem is outlined in Sections 4 and 5.We compute the Gaussian transform of function (1.3) as a special case of more generalresults in Section 4, while Section 5 presents the basic ideas behind global continuationalgorithms. We concentrate on an approach based on choosing a predetermined sequence ofsmoothing parameters, since this approach already brings out the power of the continuationalgorithm. In future work we plan to address more sophisticated approaches for choosingthe smoothing parameters.In Section 6 we consider a typical distance geometry problem and compare a basic globalcontinuation algorithm with a multistart method for global optimization. We are interestedin the solution of problems with a large number of atoms, and thus we performed ournumerical testing on the Argonne IBM SP system. This system has 128 nodes, each nodean IBM RS/6000-370 with 128 MB of memory. Our main conclusion from the numericalresults is that the continuation algorithm �nds the solution of the distance geometry problemin all cases but that the multistart method becomes increasingly unreliable and expensiveas the number of atoms increases. The reliability of the multistart method drops below 10%for problems with m � 64 atoms. 3



2 Continuation for Global OptimizationIn the continuation approach for global optimization, the original function is graduallytransformed into a smoother function with fewer local minimizers. An optimization al-gorithm is then applied to the transformed function, tracing the minimizers back to theoriginal function. In this section we de�ne the transformation and provide motivation forthe continuation approach.The transformed function depends on a parameter � that controls the degree of smooth-ing. The original function is obtained if � = 0, while smoother functions are obtained as �increases.De�nition 2.1 The Gaussian transform hfi� of a function f : IRn 7! IR ishfi�(x) = 1�n=2�n ZIRn f(y) exp �ky � xk2�2 ! dy: (2:1)We are using the term Gaussian transform because we can view hfi�(x) as the expectedvalue of f(x) with respect to the Gaussian density function��(y) = 1�n=2�n exp �kyk2�2 ! : (2:2)The value hfi�(x) of the Gaussian transformation is an average of f(x) in a neighborhood ofx, with the relative size of this neighborhood controlled by the parameter �. The size of theneighborhood decreases as � decreases so that when � = 0, the neighborhood is the centerx. We explore additional properties of the Gaussian transformation in the next section.We illustrate the transformation process with the problem of �nding the global maxi-mizer for a function that is a linear combination of four Gaussian functions. The functionin the top left corner of Figure 2.1 is of the general formf(x) = 4Xi=1 �i exp kx� xik2�2i ! ; (2:3)where �i = 0:5 for 1 � i � 4, �1 = 1:5, and �i = 1 for i = 2; 3; 4; the centers xi are thevertices of the square [�0:5; 0:5]� [�0:5; 0:5]. As can be seen in Figure 2.1, the function hasfour maximizers in [�2; 2]� [�2; 2]. The Gaussian transforms of (2.3) for three values of �also appear in Figure 2.1. The top right corner corresponds to � = 0:2, and in the bottomrow we have � = 0:3; 0:4.Figure 2.1 clearly shows that the original function is gradually transformed into asmoother function with fewer local maximizers, and that the smoothing increases as �increases. We can view the Gaussian transform of a function as a coarse approximation tothe original function, with small and narrow maximizers being removed while the overall4
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Figure 2.1: The Gaussian transform of a function. The original function (� = 0) is in thetop left corner, with � = 0:2 in the top right corner, � = 0:3 in the bottom left corner, and� = 0:4 in the bottom right corner.structure of the function is maintained. This property allows an optimization procedureto skip less interesting local maximizers and to concentrate on regions with average highfunction values, where a global maximizer is most likely to be located.Another point that is apparent from Figure 2.1 is that a continuation process based onthe Gaussian transform will �nd the global maximizer. In general, we cannot expect thatthe continuation process will succeed on an arbitrary function. In particular, the Gaussiantransform eliminates tall, narrow hills; hence, if the global maximizer lies in one of thesehills, the continuation approach is likely to fail.
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3 The Gaussian TransformWe have de�ned the Gaussian transform for a function f : IRn 7! IR by (2.1). In many casesit is preferable to make the change of variables y 7! x + �u in (2.1) to obtain thathfi�(x) = 1�n=2 ZIRn f(x+ �u) exp��kuk2� du: (3:1)In this section we explore some of the properties of this transformation.The Gaussian transform is de�ned for a large class of functions. In particular, thetransformation is de�ned if f is continuous almost everywhere and ifjf(x)j � �1 exp(�2kxk) (3:2)for positive constants �1 and �2. These assumptions guarantee that f is bounded on compactsets, but allow for unbounded f on IRn. In the development that follows, we assume that fsatis�es assumptions (3.2).An important property of this transformation is that hfi� is a linear operator in thesense that h�fi� = �hfi�; hf1 + f2i� = hf1i� + hf2i�for any scalar � and functions f1 and f2. Also note that the Gaussian transform of theidentity function is unity; this result depends on the resultZ +1�1 exp � �2�2! d� = �1=2�:More generally, if �1 � f(x) � �2 for all x 2 IRn, then �1 � hfi�(x) � �2 also holds forall x 2 IRn. In particular, this shows that if f is bounded below, then hfi� is also boundedbelow.Theorem 3.1 The Gaussian transform hfi� is a continuous function.Proof. The proof is a direct consequence of general results (see, for example, Lang [17,Chapter 13]) on the continuity of functions of the formx 7! ZIRn h(x; y) dy;where the mapping h is continuous in x and integrable in y.Theorem 3.1 helps to support our claim that hfi� is a smoother version of f . Indeed,Theorem 3.1 is a special case of a more general result that establishes hfi� as an in�nitelydi�erentiable function. This result can be established by showing that the mapping hde�ned by h(x; y) = f(y)��(x� y);6



where �� is given by (2.2), is in�nitely di�erentiable with respect to x, and all the derivativesare integrable.We now show that if f is convex, the Gaussian transform is also a convex function.This property is reassuring because it shows that the transformation does not introducedi�culties if none exist.Theorem 3.2 If f : IRn 7! IR is convex, then hfi� is also convex.Proof. The result follows from (3.1) because the convexity of f implies thatf(�x1 + (1� �)x2 + �u) � �f(x1 + �u) + (1� �)f(x2 + �u); 0 � � � 1;for any x1 and x2 in IRn.A serious drawback to the general use of the Gaussian transform for minimization is thatcomputing hfi� for a general function de�ned on IRn is not possible because this requiresthe computation of n-dimensional integrals. However, there is a large class of functions forwhich the computation of the Gaussian transform is reasonable.De�nition 3.3 A function f : IRn 7! IR is decomposable if f can be written in the formf(x) = mXk=1 fk(x); fk(x) = nYj=1 fk;j(xj); (3:3)for some set of functions ffk;jg, where fk;j : IR 7! IR.This class of functions was introduced by Wu [26] under the term generalized multilinearfunctions; we are using decomposable to avoid confusion with the use of multilinear for afunction that is linear in each argument.The decomposable functions are of interest with respect to the Gaussian transformbecause computing the Gaussian transform of a decomposable function requires the com-putation of only one-dimensional integrals. Indeed, a computation shows that if f is de�nedby (3.3), then hfi�(x) = mXk=10@ nYj=1 hfk;ji�(xj)1A :Thus, computing hfi� for a decomposable function requires the computation of only theone-dimensional integrals for each hfk;ji�.Table 3.1 shows the Gaussian transformation of several elementary functions. We willjustify the correctness of the entries later; here we note that the Gaussian transform of anydecomposable function with component functions drawn from this table can be calculatedexplicitly. For example, using these results, we can show that if f is the general quadraticf(x) = 12xTQx+ cTx7



Table 3.1: The Gaussian transformation of elementary functionsf(x) hfi�(x)x xx2 x2 + 12�2sin(x) sin(x) exp(�14�2)cos(x) cos(x) exp(�14�2)exp(x) exp(x) exp(14�2)for some Q 2 IRn�n and c 2 IRn, thenhfi�(x) = 12xTQx+ cTx+ 14�2 nXi=1 qi;i! : (3:4)In particular, this shows that hfi�(x) = f(x) for linear functions.Table 3.1 includes only the most commonly occurring functions; there are many otherfunctions with an easily computable Gaussian transform. For example,hfi�(x) = 1(�2 + 1)1=2 exp � x2(�2 + 1)!is the Gaussian transform of f(x) = exp(�x2).In addition to quadratic functions, the decomposable functions include the polynomialfunctions, that is, functions that are linear combinations of terms of the formxp11 xp22 � � �xpnn ;for arbitrary integer powers pi � 0. The following result is needed to compute hfi� for apolynomial function.Theorem 3.4 If f : IR 7! IR is the monic polynomial f(x) = xk, thenhfi�(x) = bk=2cXl=0 � k!(k� 2l)! l!���2�2l xk�2l:Proof. Since f is a polynomial we can expand f(x+ �u) in (3.1) and obtain thathfi�(x) = 1�1=2 kXj=0 f (j)(x)�jj! ZIR uj exp ��kuk2� du;8



and since the integrals with odd powers vanish by symmetry,hfi�(x) = 1�1=2 bk=2cXl=0 f (2l)(x) �2l(2l)! ZIR u2l exp ��kuk2� du:We can complete the proof if we show that1�1=2 ZIR u2l exp ��kuk2� du = (2l)!4ll! : (3:5)This identity can be established by de�ning I2l to be the integral in (3.5) and noting thatintegration by parts yields I2l = 2l � 12 I2l�2 = (2l)(2l� 1)4l I2l�2:An induction argument, based on this relationship and using the result I0 = 1, shows that(3.5) holds, and thus completes the proof.Theorem 3.4 was obtained by Kostrowski and Piela [13], but with a completely di�erentapproach. We will elaborate on this point below.We can extend Theorem 3.4 by noting that if f is analytic, the Taylor series of f(x+�u)as a function of u converges for all �u. Thus we can proceed as in the proof of Theorem 3.4to obtain hfi�(x) = 1�1=2 +1Xl=0 f (2l)(x) �2l(2l)! ZIR u2l exp ��kuk2� du:Hence, (3.5) shows that hfi�(x) = +1Xl=0 1l!f (2l)(x)��2�(2l) : (3:6)This relationship holds, in particular, for the functions in Table 3.1. A short computationshows that this expression justi�es the entries in this table.Expression (3.6) was used by Piela, Kostrowski, and Scheraga [19] to de�ne the trans-formation for the di�usion equation method. A disadvantage of this de�nition is that itrequires an analytic f , while (3.1) requires only the integrability of f . On the other hand,as we have noted, this expression is quite useful for determining the Gaussian transform ofseveral important functions. In particular, Kostrowski and Piela [13] obtained Theorem 3.4with this approach.The Gaussian transform for functions that are related by a scaling or a translation ofthe variables can be computed by noting that iff0(x) = f(�x� x0)for some scalar � and vector x0, thenhf0i�(x) = hfi��(�x� x0):9



For example, if f(x) = sin(�x), thenhfi�(x) = sin(�x) exp��14(��)2� :This result suggests that hfi� tends to dampen the high-frequency components in a function,since if � is large, then the exponential term produces a larger damping e�ect. See Wu [26,Section 4] for a discussion of the e�ect of the Gaussian transform on the high-frequencycomponents of a general function.We have de�ned the Gaussian transform of a real-valued function f : IRn 7! IR by(3.1), but this de�nition extends immediately to vector-valued functions. This remark isof interest because in addition to transforming the function, we could also transform thegradient and the Hessian of f . We now show that the Gaussian transform of the gradient(Hessian) is the gradient (Hessian) of hfi�. This result can be deduced by di�erentiatingunder the integral sign in (3.1) to obtain thatrhfi�(x) = 1�n=2 ZIRn rf(x+ �u) exp��kuk2� du = hrfi�(x); (3:7)which is the desired result for the gradient. If we repeat the process, we obtain thatr2hfi�(x) = 1�n=2 ZIRnr2f(x+ �u) exp��kuk2� du = hr2fi�(x); (3:8)so that the Gaussian transform of the Hessian matrix is the Hessian of hfi�.We guarantee the validity of di�erentiating under the integral sign in (3.8) by assumingthat r2f is continuous almost everywhere and thatkr2f(x)k � 1 exp(2kxk) (3:9)holds for some positive constants 1 and 2. This result requires a technical lemma.Lemma 3.5 If f : Rn 7! IR is twice di�erentiable on IRn and (3.9) holds for some positiveconstants 1 and 2, thenkrf(x)k � 2�1 exp (�2kxk) ; jf(x)j � 3�1 exp (�2kxk) ;where �1 � maxf1; krf(0)k; jf(0)jg and �2 � 2 + 2.Proof. The standard estimatekrf(x)� rf(0)k � sup0���1 kr2f(�x)k kxk;together with the estimate kxk � exp(kxk), implies thatkrf(x)k � krf(0)k+ 1 exp�2kxk�kxk � �1 + �1 exp�(1 + 2)kxk�;10



and thus krf(x)k � 2�1 exp�(1 + 2)kxk�;which is clearly of the desired form. We complete the proof by using this estimate andrepeating the above argument, but with rf is replaced by f . In this case we obtainjf(x)j � jf(0)j+ 2�1 exp�(1 + 2)kxk�kxk � �1 + 2�1 exp�(2 + 2)kxk�;as desired.We now show that the assumption (3.9) guarantees that (3.7) and (3.8) hold.Theorem 3.6 If f : Rn 7! IR is twice continuously di�erentiable almost everywhere on IRnand (3.9) holds for some positive constants 1 and 2, thenrhfi�(x) = hrfi�(x); r2hfi�(x) = hr2fi�(x):Proof. Assumption (3.9) guarantees that the functionu 7! r2f(x+ �u) exp��kuk2�is bounded by an integrable function, for any �xed x and �. The validity of (3.8) nowfollows from standard results that guarantee di�erentiation under the integral sign (see, forexample, Lang [17, Chapter 13]). Lemma 3.5 shows that the same argument can be usedto validate (3.7).Theorem 3.6 was stated informally by Wu [26]; the above argument supplies the piecesneeded to give a formal proof of this result. Theorem 3.6 is of interest from a computationalviewpoint because optimization algorithms require the gradient and Hessian of hfi�. Thisresult shows that the gradient and Hessian of hfi� are also smooth functions in the sensethat they are obtained by transforming the gradient and Hessian, respectively.In this section we have concentrated on obtaining explicit expressions for the Gaussiantransform of various functions. We have also experimented with other approaches. In oneof the approaches, the Gaussian transform is approximated by a Gaussian quadrature. Thisapproach hinges on the ability to evaluate Gaussian integrals e�ciently with ORTHOPOL(Gautschi [6]). Another approach is based on approximating the function by a decom-posable function and using the Gaussian transform of the decomposable function as anapproximation to the Gaussian transform of the original function. We plan to pursue theseapproaches in future work.4 The Gaussian Transform for the Distance Geometry ProblemOur continuation algorithms for the distance geometry problem are based on the functionf(x) = Xi;j2S wi;j �kxi � xjk2 � �2i;j�2 ; (4:1)11



where wi;j are positive weights, and �i;j are distances. Computing the Gaussian transformof (4.1) is not di�cult because f is decomposable. In fact, f is a polynomial function inthe components of x. The development below shows that f has considerable structure andthat this structure can be used to simplify the computation for the Gaussian transform.In the standard formulation of the distance geometry problem, the components xi 2 IR3.We assume that xi 2 IRp because this assumption does not lead to extra complications. Wethus consider the general problem where f is of the formf(x) = Xi;j2S wi;jhi;j(xi � xj) (4:2)and hi;j : IRp 7! IR is de�ned by hi;j(x) = �kxk2 � �2i;j�2 : (4:3)The following result shows that computing the Gaussian transform of (4.2) requires onlythe Gaussian transform on hi;j .Theorem 4.1 If f : IRn 7! IR and h : IRp 7! IR are related byf(x) = h(PTx);for some matrix P 2 IRn�p such that PTP = �2I, thenhfi�(x) = hhi��(PTx):Proof. De�ne Q 2 IR(n�p)�n such thatR = 1� � P Q �is an orthogonal matrix. By de�nition,hfi�(x) = 1�n=2 ZIRn h(PTx+ �PTu) exp��kuk2� du;so that if we make the change of variables u 7! Rv in (3.1), we obtainhfi�(x) = 1�n=2 ZIRn h(PTx+ �PTRv) exp��kvk2� dv;since R is an orthogonal matrix. Now note that PTR = � (I 0), and thus the aboveintegral reduces to an integral over IRp, that is,hfi�(x) = 1�p=2 ZIRp h(PTx+ ��v) exp��kvk2� dv = hhi��(PTx):12



The application of Theorem 4.1 to the distance geometry problem requires that wespecify how the vectors xi are related to x. Let the i-th component of the vector xj bethe c(i; j) components of x. In other words, c(i; j) speci�es how the components of xj arestored in x 2 IRn. Another way of de�ning c(i; j) is by the relationship[x]c(i;j) = [xj ]i:With this choice we can setP = �ec(1;i) � ec(1;j); : : : ; ec(p;i) � ec(p;j)�and obtain PTx = xi � xj . In particular, PTP = �2I , where �2 = 2.As an application of these results, note that Theorem 4.1 implies thathfi�(x) = hhip2�(xi � xj):is the Gaussian transform of f(x) = h(xi � xj). We can apply this result to the distancegeometry problem, where h is given by (4.3), by computing the Gaussian transform of thefunctions f1 : IRp 7! IR and f2 : IRp 7! IR de�ned byf1(x) = kxk2; f2(x) = kxk4:Since f1 is a quadratic, hf1i�(x) = kxk2 + 12p�2 (4:4)is just a special case of (3.4). We now claim that Theorem 3.4 shows thathf2i�(x) = kxk4 + [3 + (p� 1)]�2kxk2 + 14p(p+ 2)�4: (4:5)We prove (4.5) by noting that pXi=1 x2i!2 = pXi=1 x4i + pXi 6=j �x2i x2j� ;and thus Theorem 3.4 implies thathf2i�(x) = pXi=1 �x4i + 3�2x2i + 34�4�+ pXi 6=j �(x2i + 12�2)(x2j + 12�2)� :Identity (4.5) is now a direct consequence of this expression.Theorem 4.2 If h : IRp 7! IR is de�ned byh(x) = �kxk2 � �2�2 ;then hhi�(x) = h(x) + [3 + (p� 1)]�2kxk2 + 14p(p+ 2)�4 � p�2�2:13



Proof. Since h(x) = f2(x)� 2�2f1(x) + �4;the result follows from (4.4) and (4.5).The computation of the Gaussian transform for the distance geometry problem nowfollows from the results that we have obtained.Theorem 4.3 If f : IRn 7! IR is de�ned by (4.2) and (4.3), thenhfi�(x) = f(x) + Xi;j2S �2wi;j[3 + (p� 1)]�2kxi � xjk2�+ ;where  is the constant  = Xi;j2S �p(p+ 2)�4� 2p�2i;j�2�wi:j :Proof. Recall that we can write f in the formf(x) = Xi;j2S wi;jhi;j(Pi;jx);where PTi;jPi;j = �2I , with �2 = 2.Theorem 4.3 shows that the Gaussian transform of the distance geometry function de-�ned by (4.2) and (4.3) can be computed quite easily. Moreover, this result also shows thatthe gradient and the Hessian matrix of the Gaussian transform are also readily computableat a fractional increase in cost.We conclude this section by discussing the relationship between Theorem 4.1 and theanisotropic Gaussian transform de�ned by Wu [26]. Given a nonsingular matrix � 2 IRn�n,the anisotropic Gaussian transform of f is de�ned byhfi�(x) = 1�n=2j det�j ZIRn f(y) exp��k��1(y � x)k2� dy: (4:6)Clearly, this transformation generalizes De�nition 2.2, where � = �I .From a computational viewpoint, the anisotropic transformation is important when �is a diagonal matrix, and is closely related to the isotropic transformation when f is adecomposable function. In particular, if f is de�ned by (3.3) and � = diag(�j), thenhfi�(x) = mXk=10@ nYj=1hfk;ji�j(xj)1A :The following result, a generalization of Theorem 4.1, provides further motivation for theanisotropic transformation. 14



Theorem 4.4 If f : IRn 7! IR and h : IRp 7! IR are related byf(x) = h(PTx)for some matrix P 2 IRn�p such that PTP = DTD, where D is a diagonal matrix, thenhfi�(x) = hhi�D(PTx):Proof. The proof follows that of Theorem 4.1. In this case we de�ne Q 2 IR(n�p)�n suchthat R = � PD�1 Q �is an orthogonal matrix, and obtain thathfi�(x) = 1�p=2 ZIRp h(PTx+ �Dv) exp��kvk2� dv:The result now follows from the de�nition of the anisotropic transformation because thechange of variables y 7! x+Du in (4.6) shows thathhiD(x) = 1�n=2 ZIRn h(x+Du) exp��kuk2� duis the anisotropic transformation of h.5 Continuation AlgorithmsThe basic idea behind the continuation approach is to trace a curve fx(�) : � � 0g, whereeach x(�) is a minimizer of hfi�. In the simplest approach we choose a sequence f�kg ofsmoothing parameters that converges to zero, and compute a minimizer xk of each hfi�k .A more sophisticated approach is to rely on a di�erential equation to trace the curve. Forthis approach, we de�ne h : IRn � IR 7! IR byh(x; �) = hfi�(x) (5:1)and note that, since x(�) is a stationary point of hfi�,@xh[x(�); �] = 0:We now di�erentiate with respect to � to obtain@xxh[x(�); �]x0(�) + @�xh[x(�); �] = 0:This di�erential equation, together with an initial value x0, de�nes a curve if the coe�cientmatrix @xxh[x(�); �] is nonsingular. In this paper we concentrate on the approach based on15



choosing a predetermined sequence of smoothing parameters, since this approach alreadybrings out the power of continuation algorithms.We wish to analyse the ideal situation where we are able to determine a global minimizerxk of hfi�k for some sequence f�kg converging to zero. This requires that we show thatthe function h : IRn � IR 7! IR de�ned by (5.1) is continuous on IRn � IR. Without loss ofgenerality we show continuity at (x�; 0). We had previously noted the continuity of h withrespect to x and �; we now establish the joint continuity with respect to (x; �).Lemma 5.1 Assume that f : IRn 7! IR is continuous on IRn and satis�es (3.2). If fxkgconverges to x� and f�kg converges to zero, thenlimk!+1hfi�k(xk) = f(x�):Proof. Let Br be the ball of radius r centered at the origin, and let Cr be the complementof Br , that is, Cr = fx 2 IRn : kxk > rg :We �rst show that for any � > 0 we can choose r > 0 and k0 so thatZCr jf(xk + �ku)� f(x�)j exp ��kuk2� du � �; k � k0: (5:2)Assumption (3.2) implies that there is a constant � > 0 such thatjf(xk + �ku)� f(x�)j � � exp (�kkuk) ;and since �kuk � 12kuk2 for � � 12 and kuk � 1,ZCr jf(xk + �ku)� f(x�)j exp ��kuk2� du � � ZCr exp ��12kuk2� duif �k � 12 and r � 1. This estimate proves (5.2) because, if r is su�ciently large, the integralof exp ��12kuk2� over Cr is arbitrarily small. Now note that the continuity of f at x� showsthat for given r and k0 we can choose k1 � k0 so thatZCr jf(xk + �ku)� f(x�)j exp ��kuk2� du � �; k � k1:This estimate and (5.2) imply thatjhfi�k(xk)� f(x�)j � 2�; k � k1;which is the desired result.A variation on Lemma 5.1 would be to show that the gradient and Hessian matrix of hare continuous. The proof of this variation would be entirely similar to that for Lemma 5.1.16



Theorem 5.2 Assume that f : IRn 7! IR is continuous on IRn and satis�es (3.2). Let f�kgbe any sequence converging to zero. If xk is a global minimizer of hfi�k and fxkg convergesto x�, then x� is a global minimizer of f .Proof. Since xk is a global minimizer of hfi�k ,hfi�k(xk) � hfi�k(x); x 2 IRn:Lemma 5.1 now implies that f(x�) � f(x) for any x 2 IRn. Hence, x� is a global minimizerof f .Given �k, we need an algorithm to determine a minimizer xk of hfi�k . A trust regionversion of Newton's method based on the work of Mor�e and Sorensen [18] is an attractivechoice because it has strong global and local convergence properties.At each iteration of a trust region Newton method for the minimization of f : IRn 7! IR,we have an iterate xk , a bound �k, a scaling matrixDk, and a quadratic model qk : IRn 7! IRof the possible reduction f(xk+w)�f(xk) for kDkwk � �k. The developments in Section 4show that the gradient and Hessian matrix can be easily obtained for the distance geometryproblem. Thus qk(w) = rf(xk)Tw + 12wTr2f(xk)wis our choice for the quadratic model.An important ingredient in a trust region method is the choice of step sk . In general skis an approximate solution to the trust region subproblemmin fqk(w) : kDkwk � �kgwith qk(sk) < 0. We use the algorithm described by Mor�e and Sorensen [18] because itprovides an approximate global solution to the subproblem. In particular, if xk is a saddlepoint so that rf(xk) = 0 and r2f(xk) is inde�nite, we still have qk(sk) < 0.Given the step sk , the test for acceptance of the trial point xk + sk depends on aparameter �0 > 0. The following algorithm summarizes the main computational steps:For k = 0; 1; : : : ;maxiterCompute the quadratic model qk.Compute a scaling matrix Dk.Compute an approximate solution sk to the trust region subproblem.Compute the ratio �k of actual to predicted reduction.Set xk+1 = xk + sk if �k � �0; otherwise set xk+1 = xk. Update �k .Given a step sk such that kDkskk � �k and qk(sk) < 0, the rules for updating the iteratexk and the bound �k depend on the ratio�k = f(xk + sk)� f(xk)qk(sk)17



of the actual reduction in the function to the predicted reduction in the model. See, forexample, Mor�e and Sorensen [18] for details on these rules.The trust region method outlined above is attractive for the distance geometry problemprovided the number of molecules m is moderate, say m � 50. For larger problems we canstill use the trust region method provided the set S in (4.1) is sparse and the computationof the step sk makes use of sparsity. We plan to address this case in future work.6 Numerical ResultsConsider a molecule with m = s3 atoms located in the three-dimensional latticef(i1; i2; i3) : 0 � i1 < s; 0 � i2 < s; 0 � i3 < sgfor some integer s � 1. Figure 6.1 shows a molecule with 64 atoms (s = 4). We specify anordering for the atoms in this molecule by letting atom i be the atom at position (i1; i2; i3),where i = 1 + i1 + si2 + s2i3:Given a subset S of the pairwise distances �i;j between atoms i and j, we consider thedistance geometry problem kxi � xjk = �i;j ; (i; j) 2 S; (6:1)where the set S is de�ned in terms of an integer r byS = f(i; j) : ji� jj � rg : (6:2)With this de�nition the set S is sparse in the sense that it contains only rm pairs, out of apossible m2 pairs. Figure 6.2 shows an 8-atom problem de�ned by a sparse S with r = 3.The construction of our model problem is realistic in the sense that distance constraintsare imposed only on nearby atoms. A computation shows that for the model problem�i;j � �2(s� 1)2 + 1�12 � p2 s:Our construction shows that the distance geometry problem de�ned by (6.1) and (6.2)always has at least one solution.We attack the distance geometry problem by using the global continuation approach toobtain a global minimum of the functionf(x) = X(i;j)2S(kxi � xjk2 � �2i;j)2; (6:3)18



Figure 6.1: An example lattice structure of 64 atomswhere �i;j is the distance between atoms i and j in the lattice. We need the Gaussiantransform of f and, for the trust region Newton method, the gradient and Hessian matrixof the transform. Theorem 4.3 shows thathfi�(x) = X(i;j)2S �(kxi � xjk2 � �2i;j)2 + 10�2kxi � xjk2�+  (6:4)is the Gaussian transform of f , where  is a constant. The gradient and Hessian matrixcan be obtained from this expression.For this problem, to determine � so that hfi� is convex, we study the dependence ofhfi� on � in terms of the functionh(r) = �r2 � �2�2 + 10�2r2:Note that if h is convex, then x 7! h(kxi � xjk) is convex, and thus hfi� is also convex. Ifwe choose � so that h is convex, thenh00(r) = 12r2 � 8�2 + 20�2shows that we must have � � (25)1=2� � 0:63�. In particular, for a �xed value of �, termswith a smaller � have smaller regions of nonconvexity than those with larger values of �.Also note that if � � �25�1=2max f�i;j : (i; j) 2 Sg ;then hfi� is convex. 19



Figure 6.2: An example lattice structure with sparse distance constraintsIn this paper we have shown that the continuation method has strong theoretical prop-erties. We now use numerical results to show that the continuation method is superior tothe multistart approach, a standard procedure for �nding the global minimizer of f .We are interested in the solution of problems with a large number of atoms, and thuswe performed our numerical testing on the Argonne IBM SP system. This system has 128nodes, each node an IBM RS/6000-370 with 128 MB of memory.In the multistart method we choose a random starting point xs and use the trust regionmethod from this starting point to determine a local minimizer x�s . If x�s satis�es���kxi � xjk � �i;j��� � �; (i; j) 2 S; (6:5)for some tolerance �, then x�s is declared to be a solution to the distance geometry problem(6.1), and we terminate the multistart method. If x�s does not satisfy (6.5), we repeat theprocedure with another starting point. The multistart method fails if (6.5) is not satis�edafter trying ten starting points.The global continuation method that we use is similar to the multistart method, exceptthat the continuation algorithm of Section 5 is used to determine a local minimizer x�s off . We start the continuation algorithm with the random starting point xs and �0 > 0. Wecompute p major iterations, where p is the number of continuation steps. The k-th majoriterate xk is computed by applying a trust region algorithm, with xk�1 as a starting point,to the transformed function hfi�k , where�k = �1� kp��0:20



Table 6.1: Performance of the multistart and continuation methods (xs 2 rand(B))Multistart Continuationm r nfev ngev nfev ngev27 9 573 472 255 21664 16 F1211 1009 886 710125 25 1810 1461 390 304216 36 F3397 2782 550 421Table 6.2: Performance of the multistart and continuation methods (xs 2 2 rand(B))Multistart Continuationm r nfev ngev nfev ngev27 9 273 229 221 18864 16 1102 917 863 698125 25 1600 1324 410 322216 36 F3416 2802 446 337Since �p = 0, the �nal major iterate xp is a local minimizer of f , so we set x�s = xp.In Tables 6.1 and 6.2 we present the results obtained by the global continuation methodand the multistart method on two sets of starting points. The number of molecules in thesetables are of the form m = s3 for 3 � s � 6. The parameter r in (6.2) was set to r = s2.Since the solution of the distance geometry problems de�ned by (6.1) and (6.2) lie inB = fx 2 IRn : 0 � xi � s� 1g ;it is reasonable to choose the starting points randomly in B by setting each component ofthe starting point to a random number in (0; s � 1). These results appear in Table 6.1.Similarly, for the results shown in Table 6.2 we choose the starting point randomly in 2B.For these results we used �0 = 0:5 and p = 10 continuation steps. (Later we considerhow the performance of the continuation method depends on �0 and p.)Performance is measured in terms of the number of function and gradient evaluations,nfev and ngev, used to �nd a global minimizer. The results marked by F are the caseswhere no global minimizer was found after trying 10 starting points.We have not included execution times in Tables 6.1 and 6.2 because the distance ge-ometry problems under consideration give rise to sparse minimization problems, but the21



Table 6.3: Probability of success of the multistart and continuation methodsm r Multistart Continuation Multistart Continuation27 9 10% 100% 60% 100%64 16 0% 70% 10% 50%125 25 10% 100% 10% 100%216 36 0% 100% 0% 100%xs 2 rand(B) xs 2 2 rand(B)algorithm that we have used does not take advantage of sparsity. Our concern in this pa-per is mainly with the ability of the continuation method to solve these problems with areasonable number of function and gradient evaluations. In future work we will considerproblems with more atoms and the use of algorithms that take advantage of sparsity.These results show that the continuation method �nds a global minimizer in all cases,and with fewer function and gradient evaluations than the multistart method. Moreover,the performance of the continuation method seems to be relatively insensitive to the choiceof starting point. The multistart method, on the other hand, requires a large number offunction and gradient evaluations to determine a global minimizer, and is unable to �nd aglobal minimizer for problems with m = 216 atoms. Also note that the performance of themultistart method seems to be sensitive to the choice of starting point.The reliability of the continuation and multistart methods can be measured by theprobability of success of these methods, that is, the percentage of successful runs (theglobal minimizer is found) in all ten starting points. The results in Table 6.3 clearly showthat the multistart method had little success in �nding a global minimizer, especially forproblems with m � 64 atoms. However, the continuation method succeeded 100% in mostof the cases. Even for m = 64, the probability of success is much higher for the continuationmethod.One might wonder why the continuation method was not able to �nd the global mini-mizer form = 64 in all ten runs. A simple answer to this question is that the initial �0 = 0:5value was too small for smoothing the function in this problem. Therefore, we repeated theruns for the problem with m = 64 atoms, but with �0 = 1 and p = 20. The continuationmethod then found the global minimizer for all ten starting points.The results in Table 6.4 compare the average performance of the multistart and thecontinuation method when �0 = 1 and p = 20. When m = 64 and xs 2 rand(B), themultistart method fails in all cases, so the results in Table 6.4 measure the e�ort requiredto �nd a local minimizer. In contrast, the continuation method succeeds in all cases, so the22



Table 6.4: Average performance for the multistart and continuation method (�0 = 1, p = 20)Multistart Continuation Multistart Continuationm r nfev ngev nfev ngev nfev ngev nfev ngev27 9 61.2 50.5 251.1 211.1 57.4 98.7 240.9 200.964 16 121.1 100.9 267.9 212.4 118.3 98.7 272.2 217.0125 25 241.2 197.3 328.4 249.2 212.1 176.5 344.9 265.5216 36 339.7 278.2 446.9 340.8 341.6 280.2 472.6 361.7xs 2 rand(B) xs 2 2 rand(B)results measure the e�ort required to �nd a global minimizer. This is interesting because,in general, we expect the e�ort required to �nd a global minimizer to be much larger thanthe e�ort needed to �nd a local minimizer. A similar conclusion is reached when m = 64and xs 2 2 rand(B), since in this case the multistart method only succeeds in one case.When m = 216, the e�ort (measured by the number of function and gradient evaluations)required to �nd a global minimizer is less than 30% more than the e�ort required to �nd alocal minimizer.Acknowledgment. Special thanks go to Paul Bash, Danny Ripoll, and Tamar Schlick forthe time that they spent talking to us about problems in biology and the relevant literature.Thanks also go to Tom Coleman and Bruce Hendrickson for sharing their experiences withthe distance geometry problem.References[1] A. T. Br�unger and M. Nilges, Computational challenges for macromolecular struc-ture determination by X-ray crystallography and solution NMR-spectroscopy, Q. Rev.Biophys., 26 (1993), pp. 49{125.[2] T. F. Coleman, D. Shalloway, and Z. Wu, Isotropic e�ective energy simulatedannealing searches for low energy molecular cluster states, Comp. Optim. Applications,2 (1993), pp. 145{170.[3] ,A parallel build-up algorithm for global energy minimizations of molecular clustersusing e�ective energy simulated annealing, J. Global Optim., 4 (1994), pp. 171{185.[4] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation,John Wiley & Sons, 1988. 23
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