
A Real-Time MPEG Software Decoder Using a PortableMessage-Passing LibraryMan Kam Kwong, P. T. Peter Tang, and Biquan Lin�Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844Email: kwong, tang, blin@mcs.anl.govAbstractWe present a real-timeMPEG (Motion Pictures Expert Group) software decoder that usesmessage-passing libraries such as MPL, p4, and MPI. The parallel MPEG decoder currentlyruns on the IBM SP system but can be easily ported to other parallel machines. Thispaper discusses our parallel MPEG decoding algorithm as well as the parallel programmingenvironment under which it uses. Several technical issues are discussed, including balancingof decoding speed, memory limitation, I/O capacities, and optimization of MPEG decodingcomponents. This project shows that a real-time portable software MPEG decoder is feasiblein a general-purpose parallel machine.Keywords: Image processing, high-performance computing, video compression, real-timesystem, message-passing library.1 IntroductionVideo compression is a crucial technique in coping with large amounts of digitized video data.MPEG is an industrial standard of video and associated audio compression for digital mediastorage and transmission. An MPEG video system consists of an encoder and a decoder: theencoder compresses a sequence of images (video) into a bitstream and the decoder decompressesthe bitstream and displays the decompressed video. Since a video sequence has to be displayed inreal-time, an MPEG decoder is required to perform over a billion operations per second. Usually,special hardware with signal processing chips is needed to implement an MPEG decoder. Thispaper explores the possibility of using portable parallel software environment to implement sucha video decoder.Although a hardware-based MPEG system can encode and decode video sequences in real-time and the cost for the hardware will decrease dramatically in the coming years, a software-based approach presents several advantages: First, it provides a simulation environment for�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38. 1



designing the hardware. In fact, a software simulation must be performed before designingany hardware-based MPEG system, since it involves complex compression algorithms. Second,a software-based approach provides exibility to accommodate growing varieties of algorithmsand speci�c applications. Third, a software-based approach enables the use of a single general-purpose multiprocessor computer which, for many visual communication and image processingtasks, is more economical than buying separate special hardware pieces. Our investigation of aparallel software-based implementation of MPEG system was motivated by these consideration.Recently, several real-time software decoders have been implemented. Rowe et al. [7] devel-oped a portable MPEG-1 video decoder that can play small-sized (160�120) video in real-time.They used a SPARC 1+ to read the bitstream and a SPARC 10 to decode and display thevideo. Some frames may be dropped to accommodate network load and decoding speed. Taylor[8] implemented an MPEG-1 encoder and decoder that works in real-time using some specialDSP processors embedded in parallel hardware. The drawback of this implementation is that itcannot be ported to a general-purpose parallel machine without such DSP processors. Ghafooret al. [1] studied speedup with di�erent numbers of processors on several parallel machines in-cluding the nCUBE2 and Intel's Paragon. But they did not incorporate such parallel decodingprocesses with real-time and continuous video display.Our parallel MPEG-1 parallel decoder has the following features. First it is implemented ina general-purpose parallel machine (IBM SP) and can be easily ported to other machines, sinceit uses a message passing library such as MPL, p4 and MPI. Second, it can decode and displayvideo smoothly in real-time by means of a HIPPI (HIgh Performance Parallel Interface) framebu�er. Third, the parallel MPEG decoder requires only 16 processors, which are now availableon many commercial parallel machines.The remainder of this paper is organized as follows. Section 2 discusses our parallel MPEG-1decoding algorithm. Section 3 describes our implementation environment, including the systemcon�guration and message-passing libraries used. Section 4 discusses several technical issuesfaced in implementing the decoder. Section 5 presents our testing results. Finally, Section 6summarizes the project and points out some future research and implementation topics.2 Parallelization of the MPEG DecoderMPEG is a video coding standard established by the Motion Pictures Expert Group of theInternational Standards Organization. Version 1 of MPEG (or MPEG-1) is primarily designedfor digital storage such as CD-ROM at transmission speeds up to 1.5 Mbits/second. MPEG-2is designed as a generic standard to support a variety of applications including high-de�nitionTV, digital cable TV, and video-on-demand. Both MPEG-1 and MPEG-2 use discrete cosinetransform coding, motion estimation, and Ho�man coding techniques to compress video data.This paper is mainly concerned with MPEG-1.The syntax of an MPEG bitstream is organized into several layers: video sequence layer,group of pictures (GOP) layer, picture layer, slice layer, macroblock layer, and block layer. Anupper layer encapsulates a lower layer, and each layer conveys information for some speci�cfunctions. For example, the video sequence layer contains information for an entire video se-quence such as video size, bit rate, and default quantization matrices; the picture layer contains2



information such as picture coding type and temporal reference for non-intra coded pictures; themacroblock layer deals with motion estimation and compensation; and the block layer containsinformation on DCT coe�cients.There are three types of MPEG picture frames: intra-coded (I) frame, predictive-coded (P)frame, and bidirectionally predictive-coded (B) frame. An I-frame is coded by using informationonly from itself. A P-frame is coded by using motion compensation from a past I-frame or P-frame. A B-frame is coded by using motion compensation from a past and/or future I-frame orP-frame. The group of pictures (GOP) layer is intended to assist random access to the sequence.A GOP contains at least one I-frame, and it may contains some P-frames and B-frames. In thebitstream, the �rst frame in a GOP must be an I-frame, and the reference frames (an I-frameor a P-frame) by a P-frame or a B-frame are coded ahead so the the bitstream can be decodedand displayed on-the-y. But in display order, the �rst displayed frame in a GOP needs not bean I-frame; it may use an I-frame or a P-frame in the preceding GOP. In general, a GOP is arelatively independent unit and can be decoded in parallel if we add the sequence header andthe previous GOP information. Our parallel algorithm is based on this observation.Figure 1 is the diagram of the parallel MPEG decoder. The parallel MPEG decoder consistsof a distributor, a number of decoders, and a collector. The distributor cuts a sequential MPEGbitstream into segments. Each segment contains sequence header, the preceding GOP (whichmay be referred to by the current GOP), the current GOP, and the sequence end code. Thedistributor also dispatches the cut segments to decoders in turn. Each decoder receives anddecodes segments, dithers the decoded frames into the ARGB format (the display format forHIPPI), and sends frames to the collector. The number of decoders is scalable to accommodatedi�erent CPU speeds. In our system, 14 to 18 SP nodes (each roughly equivalent to a RS/6000model 370 workstation) are su�cient to achieve real-time decoding (30 frames/second). Thecollector collects decoded frames in order and sends them to a HIPPI frame bu�er for real-timedisplay.
D

is
tr

ib
ut

or

bitstream

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

C
ol

le
ct

or

DisplayHIPPIFigure 1. The Basic Model of Parallel MPEG Decoder3



3 System Environment and Parallel Programming LibrariesThe parallel MPEG decoder was developed on IBM SP system using message passing parallellibraries. In this section, We describe system environment and parallel software tools.SP. The SP is an IBM POWERparallel system that can provide high-performance CPUand I/O power with scalability and exibility on a UNIX operating system. The current SP2system can be scaled from 2 to 512 nodes, each node is essentially an RS/6000 model 370. Thenodes are connected by internal high-performance switch. In the Mathematics and ComputerScience Division of Argonne National Laboratory, 128 nodes are currently installed; each nodeis equipped with 128 MBytes of memory and 125 MFlops. The peak performance for switchingbetween nodes is 35 MBytes/sec bandwidth and 63 �sec latency. In our parallel MPEG decodingsystem, only 16 to 20 nodes are required to achieve real-time performance.MPL. MPL is IBM's message-passing library for the high-performance switch. It is easy toparallelize a standard C program by calling a few message-passing functions in the MPL library.In our implementation of the MPEG decoder, fewer than 10 MPL functions are used. A list ofMPL message-passing functions can be found in [3].p4. p4 is one of the most popular message-passing systems that can run on a wide varietyof parallel systems and workstations. One of the impediments to widespread use of parallelcomputers is lack of standard software tools; users have to use speci�c software tools providedby vendors. p4 is an early e�ort to build a \common language" for these machines. Currently,it has been installed in most major parallel machines and workstations We implemented theparallel MPEG decoder using p4 library; and the performance is almost the same as that usingMPL library.MPI.MPI (Message Passing Interface) is a standard for message-passing system establishedby a broadly based parallel computing group including vendors, library developers, and users.MPI was completed in the spring of 1994 and is now awaiting public comments. An excellentbook on MPI for newcomers as well as for experienced parallel researchers and programmers is[2]. One version of our parallel MPEG decoder was implemented with the MPI message-passingsystem.HIPPI.HIPPI (HIgh Performance Parallel Interface) is, as its name says, a high-performanceI/O interface. At Argonne, a HIPPI frame bu�er developed by Input Output Systems Corpora-tion is connected by a HIPPI channel to the IBM SP2 system. The image can be displayed fromthe HIPPI frame bu�er at high resolution (1280�1024) or low resolution (640�512). TCP/IPand IPI-3 protocols are currently used for the connection. The peak transmission performanceis 40 MBytes/sec. Our parallel MPEG system delivers 30 frames/sec. at low resolution.4 Implementation Issues for the Parallel MPEG DecoderIn this section, we discuss several technical issues in our implementation of parallel MPEGdecoder. These issues must be taken into account when porting the parallel MPEG decoder intoother machines. 4



Parallel Models. Figure 1 is a simple parallel MPEG decoding model. We also stud-ied several more complicated parallel models to accommodate di�erent CPU speeds, memorycapacities, and transport protocols. Here we give some examples:Token Model. Asynchronic message passing between nodes makes tasks more independentof each other. For example, in p4, the p4 send() function will return without waiting until anacknowledgment is received, so that the calling process can continue work on other calculationssuch as decoding. If this function is used, some decoders may keep sending decoded frames tothe collector where they must be wait in the bu�er. This procedure will cause overow if thebu�er size is small. A scheduling algorithm is needed to overcome this drawback. A simplescheduling policy is to pass a token among each decoding node and to allow only the nodeholding the token to send the frames. Once it �nishes sending, it releases the token to the nextdecoding process. This model is called a token model.Scalable Model. Another way to overcome the memory limitation of the collector is to build ahierarchical bu�ering for the collector. For example, we can add a �rst-layer bu�ering processorfor every three decoders and a second-layer bu�ering processor for every �rst-layer bu�eringprocessors and so on. This model enables decoding processes to be scaled to any number. Thedisadvantage of this model is that it introduces many overhead.Parallel I/O Model. Display speed and stability can be dramatically improved if we can letthe collector's output (sending to the HIPPI frame bu�er) in parallel with its input (receivingfrom decoding nodes). At the current stage, the time for displaying one frame is bounded bythe sum of the time for receiving it from a decoding nodes and the time for sending it to theframe bu�er. Moreover, an instable transmission rate between a decoding node to the collectingnode will a�ect the display rate. This e�ect will be removed if a parallel I/O mechanism is im-plemented. A synchronization scheme is currently used to reduce the instability of transmittingframes from decoding nodes to the collecting nodes.Load Balance. Load balance is an important issue in parallel computing. Several strategiesare used in the parallel MPEG decoder. Since the decoding speeds for I-frames, P-frames andB-frames are di�erent and a future reference frame will be delayed to display in MPEG codings,the decoding rate will vary signi�cantly if we sent a frame as soon as it is decoded. Instead, wesend frames when all frames in this GOP are decoded. Therefore, the decoding loads amongdecoders are almost balanced assuming each GOP requires the same decoding time. We alsomust balance the CPU speed and transmission capacities to achieve real-time performance. Forexample, if a routine that transforms a YUV format to ARGB format is put in the decoder,the transmitted data from decoding nodes to the collecting nodes will be reduced by 2.67 times.But by doing so, the collector must transform the format. This process is feasible only if thecollector has a very high CPU speed.Reducing Overhead. In our prototype implementation, one GOP with its preceding GOPis sent to each decoder. This process causes one GOP overhead for each transmission fromdistributor to decoder. The overhead can be reduced by transmitting several consecutive GOPswith one preceding GOP. But this modi�cation will increase latency. The overhead can also bereduced by restricting bitstream in encoding process. If every GOP is started with an I-framein the display order, one no longer needs to add a preceding GOP when distributing segmentsto decoders. 5



Local Optimization. Numerous coding optimizations were used in implementing our par-allel MPEG decoder. These optimizations included use of local copies of variables to avoidmemory references; as many register variables as possible; bit operations instead of arithmeticoperations, and in-line expansions instead of function calls. Also, a fast dithering algorithmfrom YUV format to HIPPI's ARGB format is used.5 Experiment ResultsWe tested our parallel MPEG decoder for two standard video sequences: \ower garden" (Figure2) and \tennis" (Figure 3). The testing result are summarized in Table 1. Note that the timeis an approximation based on a segment containing GOPs with six frames. The testing wasconducted in the system environment described in Section 3.
Figure 2. Flower Garden Image Figure 3. Tennis ImageTable 1. Key Statistics of Parallel MPEG DecoderTotal Number of Processors 16Overall Speed 30 frames /sec.Latency about 10 sec.Image Size 352x240Number of GOPs 26Number of Frames 150Bit-rate from Disk to Distributor 3.16 MB/sec.Bit-rate from Distributor to Decoder 17 MB/sec.Time from Decoder to Collector 0.0112 sec./frameTime from Collector to HIPPI 0.0167 sec./frameTime for Dithering a Frame 0.135 sec.Time for Decoding a Segment (Fig. 1) 2.48 sec.Time for Decoding a Segment (Fig. 2) 1.95 sec.6



6 ConclusionsIn this paper, we developed a real-time software MPEG decoder using portable parallel process-ing tools. Compared with a hardware-based approach, the software-based approach providesa better environment for exploring video compression algorithms. In addition, the softwareapproach enables exibility and portability in applications. A future research topic is to investi-gate parallel video data distribution and management algorithms and parallel MPEG encodingschemes by using portable message passing libraries.7 AcknowledgmentsWe thank our colleagues E. Lusk and W. Gropp for many discussions on using the p4 and MPImessage-passing systems at their early stages, T. Pierce for his help for e�ciently using the SP2I/O subsystem, and S. Bradshaw for allowing us to use and modify his HIPPI display program.References[1] Arif Ghafoor, J. Yang, and S. Baqai, \Coarse-grained Parallel Algorithm and Implemen-tation for MPEG-1 Decoder," Proceedings of the Workshop on Wavelets and Large-ScaleImage Processing, Argonne National Laboratory, 1994.[2] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with theMessage-Passing Interface, MIT Press, 1994.[3] IBM, High-Performance Parallel Interface User's Guide and Programmer's Reference Man-ual, AIX version 3.2, May 1993.[4] IBM, IBM AIX Parallel Environment Parallel Programming Subroutine Reference Release2.0, June 1994.[5] ISO/IEC Committee Draft 11172-2, Coding of Moving Pictures and Associated Audio forDigital Storage Media at upto 1.5 Mbits/s, ISO/IEC JTC1/SC29 WG11, Nov. 1991.[6] R. Butler and E. Lusk, User's Guide to the p4 Parallel Programming System, TechnicalReport ANL-92/17, Argonne National Laboratory, Oct. 1992.[7] L. A. Rowe, K. D. Patel, B. C. Smith and K. Liu, \MPEG Video in Software: Representa-tion, Transmission, and Playback," SPIE Proc. of High-Speed Networking and MultimediaComputing, pp. 134{144, Feb. 1994.[8] H. H. Taylor, D. Chin, and A. W. Jessup, \An MPEG Encoder Implementation on thePrinceton Engine Video Supercomputer," IEEE Proc. of Data Compression Conference,pp. 420{429, 1993. 7


