
ON THE AUTOMATICDIFFERENTIATION OF COMPUTERPROGRAMSANDANAPPLICATIONTOMULTIBODY SYSTEMSCHRISTIAN H. BISCHOFMathematics and Computer Science DivisionArgonne National Laboratory9700 S. Cass Avenue, Argonne, IL 60439bischof@mcs.anl.govAbstract. Automatic di�erentiation (AD) is a methodology for developingsensitivity-enhanced versions of arbitrary computer programs. In this pa-per, we provide some background information on AD and address somefrequently asked questions. We introduce the ADIFOR and ADIC toolsfor the automatic di�erentiation of Fortran 77 and ANSI-C programs, re-spectively, and give an example of applying ADIFOR in the context of theoptimization of multibody systems.1. IntroductionAssume that we have a code for the computation of a function f and f : x 2Rn 7! y 2 Rm, and we wish to compute the derivatives of y with respectto x. We call x the independent variable and y the dependent variable.In computing derivatives, we should keep the following issues in mind:Reliability: The computed derivatives should ideally be accurate to ma-chine precision.Computational Cost: In many applications, the computation of deriva-tives is the dominant computational burden. Hence, the amount ofmemory and runtime required for the derivative code should be mini-mized.Scalability: Whatever method we choose should be applicable to a 1-lineformula as well as a 50,000-line code.

2 CHRISTIAN H. BISCHOFHuman E�ort: Derivatives are a means to an end. Hence a user shouldnot spend much time in computing derivatives, in particular in situa-tions where computer models are bound to change frequently.Handcoding, divided-di�erence approximations, and symbolic methodstraditionally have been used for the computation of derivatives. However,these methods fall short with respect to the previously mentioned criteria.The main drawbacks of divided-di�erence approximations are their numer-ical unpredictability and their computational cost. In contrast, both thehandcoding and symbolic approaches su�er from a lack of scalability andrequire considerable human e�ort.In this paper, we discuss another approach for computing derivatives,based on automatic di�erentiation (AD). AD techniques rely on the factthat every function, no matter how complicated, is executed on a com-puter as a (potentially very long) sequence of elementary operations suchas additions, multiplications, and elementary functions such as sin and cos(see, for example, [10, 16]. By applying the chain rule of derivative calculusover and over again to the composition of those elementary operations, onecan compute, in a completely mechanical fashion, derivatives of f that arecorrect up to machine precision [12].In the next section, we give a brief overview of automatic di�erentia-tion. Section 3 introduces the ADIFOR and ADIC AD tools for Fortran 77and ANSI-C, respectively, and Section 4 answers some commonly askedquestions. In Section 5, we report on the application of ADIFOR in thecontext of the optimization of a multibody system. Lastly, we summarizeour results.2. Automatic Di�erentiationTraditionally, two approaches to automatic di�erentiation have been de-veloped: the so-called forward and reverse modes. These modes are distin-guished by how the chain rule is used to propagate derivatives through thecomputation. We briey summarize the main points about these two ap-proaches; a more detailed description can be found in [4] and the referencestherein.The forward mode propagates derivatives of intermediate variables withrespect to the independent variables and follows the control ow of theoriginal program. By exploiting the linearity of di�erentiation, the forwardmode allows us to compute arbitrary linear combinations J � S of columns

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 3of the Jacobian J = 0BBB@ @ y(1)@ x(1) � � � @ y(1)@ x(n)... ...@ y(m)@ x(1) � � � @ y(m)@ x(n) 1CCCA : (1)For an n�p matrix S, the e�ort required is roughly O(p) times the runtimeand memory of the original program. In particular, when S is a vector s,we compute the directional derivative J � s = limh!0 f(x+h�s)�f(x)h .In contrast, the reverse mode of automatic di�erentiation propagatesderivatives of the �nal result with respect to an intermediate quantity, so-called adjoint quantities. To propagate adjoints, one must be able to reversethe ow of the program, and remember or recompute any intermediate valuethat nonlinearly a�ects the �nal result. In particular, one must rememberthe intermediate values taken by variables that are overwritten, and keepa log of the branch directions taken. Also, changing a \+" to a *" in thecomputer code can have profound rami�cations for the complexity of thegenerated reverse mode code, while it does not have much e�ect for theforward mode.For a q �m matrix W , the reverse mode allows us to compute the rowlinear combination W �J with O(q) times as many oating-point operationsas required for the evaluation of f . In a straightforward implementation,however, the storage requirements may be proportional to the number ofoating-point operations required for the evaluation of f , as a result ofthe tracing required to make the program \reversible." When W is a rowvector w, we compute the derivative @ (wT �J)@ x . The reverse mode is particu-larly attractive for the computation of long gradients, as its oating-pointcomplexity does not depend on the number of independent variables.In either case, automatic di�erentiation produces code that computesderivatives accurate to machine precision [12]. The techniques of automaticdi�erentiation are directly applicable to computer programs of arbitrarylength containing branches, loops, and subroutines.3. Automatic Di�erentiation ToolsWe are involved in the development of the ADIFOR (jointly with RiceUniversity) and ADIC tools, which provide automatic di�erentiation func-tionality for Fortran 77 and ANSI-C, respectively, The ADIFOR 2.0 systemis mature, and reference [4] lists 25 references reporting on the use of ADI-FOR in various application domains, on codes of up to 60,000 lines. ADIC,in contrast, is in the prototype phase, but has been successfully applied tocodes of up to 10,000 lines. ADIFOR and ADIC employ a source transfor-mation approach directly rewriting the source code. This approach requires

4 CHRISTIAN H. BISCHOFr$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>=>>>>>>>>; Reverse Mode for computing @ y@ x(i) :r$jbar = @ y@ x(i) ; i = 1; : : : ; 4r$3 = @ y@ x(5)do g$i$ = 1, gpg$y(g$i$) = r$1bar * g$x(g$i$,1)+ r$2bar * g$x(g$i$,2)+ r$3bar * g$x(g$i$,3)+ r$4bar * g$x(g$i$,4)+ r$3 * g$x(g$i$, 5)enddo 9>>>>>=>>>>>; Forward Mode:Assembling ryfrom @y@x(i) and rx(i),i = 1; : : : ; 5.y = r$3 * x(5) 	 Computing function valueFigure 1. Sample Segment of an ADIFOR-generated Codeconsiderable compiler infrastructure, and ADIFOR and ADIC employ theParaScope [8] and Sage++ [7] compiler environments developed at Riceand Indiana University, respectively. For references to other automatic dif-ferentiation tools, see [4].ADIFOR and ADIC employ a hybrid forward/reverse-mode approachto generating derivatives. For each assignment statement, they use the re-verse mode to generate code that computes the partial derivatives of theresult with respect to the variables on the right-hand side and then employthe forward mode to propagate overall derivatives. For example, ADIFORtransforms the Fortran statementy = x(1) � x(2) � x(3) � x(4) � x(5)into the code segment shown in Figure 1.1 Note that none of the commonsubexpressions x(i) � x(j) are recomputed in the reverse-mode section for@y@x(i) . The variable gp denotes the number of (directional) derivativesbeing computed. For example, if gp = 5, and g$x(1:5,1:5) is the 5 �5 identity matrix (i.e., g$x(i,j) = @ x(i)@ x(j)), then upon execution of thesestatements, g$y(1:5) equals dydx . On the other hand, assume that we wishedonly to compute derivatives with respect to a scalar parameter s, so gp= 1, and, on entry to this code segment, g$x(1,i) = @ x(i)@ s ; i = 1; : : : ; 5.Then the do-loop in Figure 1 implicitly computes dyds = dydx dxds without everforming @ y@ x explicitly.1The dollar sign indicates ADIFOR-generated variables. ADIFOR 2.0 could use anyother character instead, taking care not to generate duplicate names.

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 5ADIFOR and ADIC provide the directional derivative computation pos-sibilities associated with the forward mode of automatic di�erentiation. Wealso mention that both ADIFOR and ADIC can transparently exploit spar-sity in derivative computations by replacing the dense vector loop in Fig-ure 1 with a call to a SparsLinC routine [4, 5], which, as a byproduct ofthe computation, will automatically compute the sparsity pattern of largesparse Jacobians.None of these AD tools require any knowledge of the application domain.Hence, unlike handcoding or symbolically assisted approaches, automaticdi�erentiation enables derivatives to be updated easily when the originalcode changes. Information on these tools as well as application highlightsand reports can be found on the world-wide web athttp://www.mcs.anl.gov/autodiff/index.html.4. Frequently Asked QuestionsGiven the mathematical underpinnngs of the concept of derivatives, the\ignorance" with which one can apply an AD tool usually provokes someof the questions that we try briey to address here.Question: How do you know that the code represents a globally di�eren-tiable function?Answer: We don't. AD computes the derivative de�ned by the sequenceof assignment statements executed in the course of a function evalua-tion. Hence, for a branch (if-statement), which potentially introducesa nondi�erentiability, AD will compute a one-sided directional deriva-tive. This problem is further discussed in [9].Question: How do you deal with intrinsics?Answer: Some intrinsics functions, such as abs() and sqrt(), are notdi�erentiable in all points of their domain. At these points, ADIFORinvokes the ADIntrinsics system [4] to provide a (user customizable)default value, and prints a warning message. The ADIC prototype usesa similar, although less re�ned, mechanism.Question: What happens when you di�erentiate through iterative pro-cesses?Answer: It depends. AD generates a new iteration, and it is not cleara priori whether the new iteration will converge and what it will con-verge to, although empirically, AD leads to the desired result. However,derivative convergence may lag, or derivatives may diverge. For somecommonly used approaches for solving nonlinear systems of equations,this issue is discussed in [11]. This problem clearly requires more re-

6 CHRISTIAN H. BISCHOFsearch, but the emergence of robust AD tools has made it possible totackle this problem for sophisticated numerical methods.5. An Example: The Iltis All-Terrain VehicleThe dynamic and kinetic behavior of vehicles can be modeled throughmultibody systems. Optimization techniques can then be employed to im-prove the design of such a vehicle with respect to comfort, ride, and han-dling. For an overview of this �eld as well as the methods employed, see [1].In general, the motion of a multibody system can be described as follows:�y = v(t; y; z; p)M(t; y; p) �z +k(t; y; z; p) = q(t; y; z; p)) ; (2)where �y= @ y@ t is the derivative with respect to the time t, M is the massmatrix, k are the coriolis forces, q the external forces, y generalized positioncoordinates, z generalized velocity coordinates, and p the design parame-ters.An e�cient method for optimizing a multibody system is the adjointvariable method developed by Bestle and Eberhard [2], which requiresthe derivatives @Mmn@ t , @Mmn@ yi , @ Mmn@ pk , @ (km�qm)@ yi , @ (km�qm)@ zj , and @ (km�qm)@ pk .In [13], H�au�ermann applied the �rst version of ADIFOR [3] to severalmultibody systems and compared it with symbolic approaches and withapproximations of derivatives via divided di�erences.However, application of ADIFOR 1.0 to the so-called Iltis problem, abenchmark problem modeling an all-terrain vehicle [15], proved to be some-what laborious. ADIFOR 1.0 was unable to process the subroutine of severalthousand lines describing the equations of motion that had been generatedwith the NEWEUL [14] package. The problem had to be split by hand, asomewhat laborious and error-prone process.With the new ADIFOR 2.0 system, however, one can now process thecode as is. Di�erentiating with respect to 20 parameters, one obtains theresults shown in Table 1. Computations were performed on a Silicon Graph-ics Indigo with 32 MB RAM and a 100 Mhz MIPS R4000 microproces-sor. Here \Iltis" refers to the original code, and \Iltis.AD" refers to thecode generated by ADIFOR 2.0. We see that the memory required by theADIFOR-generated code increases by a factor of 6.7, whereas runtime in-creases by a factor 20, the same cost increase one would also experiencewith divided-di�erence approximations. In most cases, however, ADIFOR-generated code outperforms one-sided divided-di�erence approximations,typically by a factor 1.5 to 3, and by a factor of 7.4 in the best case sofar [6]. Code expansion is considerable because of the somewhat unusual

AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS 7TABLE 1. Results of Applying ADIFOR 2.0to the Iltis ProblemIltis.AD Iltis RatioMemory (MB) 3.52 0.52 6.7Runtime (sec) 42.6 2.13 20.0Lines of code 71,887 11,172 6.4structure of the NEWEUL-generated code. The number of lines of codeincreases by a factor of 6.4, and the resulting length of the .AD versionsof the NEWEUL-generated �les prevented compilation on an HP worksta-tion. In our experience, code expansion by a factor 2 to 3 is typical. Thegenerated code accurately computes the desired derivatives, whereas thestudy by H�au�erman shows that this is not necessarily the case for divideddi�erence approximations.6. ConclusionsThis paper gave a brief introduction into automatic di�erentiation. Wereviewed the forward and reverse mode of automatic di�erentiation, an-swered some commonly asked questions, and introduced the ADIFOR andADIC automatic di�erentiation tools. We also presented results on apply-ing ADIFOR 2.0 to the Iltis multibody benchmark problem, which showedthat reliable and e�cient derivatives can be computed by using AD withminimal recourse to laborious and error-prone hand coding.AcknowledgmentsWe thank Peter Eberhard for providing us with the Iltis code and for per-forming the benchmark runs. We also thank Peter Eberhard and DieterBestle for introducing us to multibody system optimization. Lastly, wethank Ralf Kn�osel for processing the Iltis code with ADIFOR 2.0.This work was supported by the O�ce of Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38; by the NationalAerospace Agency under Purchase Order L25935D; and by the NationalScience Foundation, through the Center for Research on Parallel Compu-tation, under Cooperative Agreement No. CCR-9120008.References1. Dieter Bestle. Analyse und Optimierung von Mehrk�orpersystemen. Springer, Berlin,

8 CHRISTIAN H. BISCHOF1994.2. Dieter Bestle and Peter Eberhard. Analyzing and optimizing multibody systems.Mechanical Structures and Machinery, 20(1):67{92, 1992.3. Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-land. ADIFOR: Generating derivative codes from Fortran programs. Scienti�cProgramming, 1(1):11{29, 1992.4. Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The AD-IFOR 2.0 system for the automatic di�erentiation of Fortran 77 programs, 1994.Preprint MCS-P481-1194, Mathematics and Computer Science Division, ArgonneNational Laboratory, and CRPC-TR94491, Center for Research on Parallel Com-putation, Rice University.5. Christian Bischof and Andrew Mauer. ADIC { A tool for the automatic di�erentia-tion of C programs. Preprint MCS-P499-0295, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1995.6. Christian Bischof, Greg Whi�en, Christine Shoemaker, Alan Carle, and AaronRoss. Application of automatic di�erentiation to groundwater transport models.In Alexander Peters et al., editors, Computational Methods in Water Resources X,pages 173{182. Kluwer Academic Publishers, Dordrehct, 1994.7. Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Goutwals, SrinivasNarayana, Suresh Srinivas, and Beata Winnicka. SAGE++: An object-orientedtoolkit and class library for building Fortran and C++ restructuring tools. In Pro-ceedings of the Second Annual Object-Oriented Numerics Conference. IEEE, 1994.8. D. Callahan, K. Cooper, R. T. Hood, K. Kennedy, and L. M. Torczon. ParaScope:A parallel programming environment. International Journal of Supercomputer Ap-plications, 2(4):84{99, December 1988.9. Herbert Fischer. Special problems in automatic di�erentiation. In AndreasGriewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, pages 43 { 50. SIAM, Philadelphia, Penn.,1991.10. Andreas Griewank. On automatic di�erentiation. In Mathematical Programming:Recent Developments and Applications, pages 83{108. Kluwer Academic Publishers,Amsterdam, 1989.11. Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and KarenWilliamson. Derivative convergence of iterative equation solvers. OptimizationMethods and Software, 2:321{355, 1993.12. Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices bythe Markowitz rule. In Andreas Griewank and George F. Corliss, editors, AutomaticDi�erentiation of Algorithms: Theory, Implementation, and Application, pages 126{135. SIAM, Philadelphia, 1991.13. Uli H�au�ermann. Automatische Di�erentiation zur Rekursiven Bestimmung vonPartiellen Ableitungen. STUD-102, Institut B f�ur Mechanik, Universit�at Stuttgart,1993.14. E. Kreuzer and G. Leister. Programmsystem NEWEUL'90. Technical Report An-leitung AN-24, Institut B f�ur Mechanik, Universit�at Stuttgart, 1991.15. G. Leister and W. Schiehlen. Benchmark-beispiele des DFG-schwerpunktprogrammsdynamic von mehrk�orpersystemen. Technical Report Zwischenbericht ZB-64, Band2, Institut B f�ur Mechanik, Universit�at Stuttgart, 1991.16. Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

