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handled the upper bounds explicitly by incorporating them into a direction-�nding subproblem; werefer to this approach as the upper-bounded NE/SQP method (UBNE/SQP).This approach has several immediate advantages over using the bounds as additional constraintsand solving the associated augmented NCP. First, the NCP function may not even be de�ned forvariables outside these bounds, so maintaining the iterates within them easily permits computationsinvolving such functions. Second, the problem size can be greatly reduced by considering thesebounds as part of the subproblem only; see below for a more detailed explanation.In this paper, we extend the convergence results for the upper-bounded NE/SQP method byshowing that under a local Lipschitzian assumption this algorithm is actually Q-quadratically con-vergent; previously, it was known to be Q-superlinearly convergent. We conclude by comparing theUBNE/SQP with the NE/SQP algorithm as applied to an associated augmented NCP that handlesthe upper bounds as explicit constraints.2 The Upper Bounded Nonlinear Complementarity ProblemLet a 2 Rn be a given positive vector and f : Rn+ ! R be a once continuously di�erentiablefunction. Then, the upper-bounded nonlinear complementarity problem is to �nd a vector pair(x; y) 2 Rn � Rn such that the following conditions hold:u = f(x) + y � 0; x � 0; uTx = 0;v = a� x � 0; y � 0; vTy = 0: (1)Notice that if we let zT = (xT ; yT) and let w(x; y)T = (u(x; y)T ; v(x; y)T) (where u := u(x; y); v :=v(x; y)), then we have the equivalent NCP of order 2n given byw(z) � 0; z � 0; w(z)Tz = 0: (2)In principle, any method that solves a general NCP could be applied to this augmented system.However, it is desirable, especially for large-scale applications, to take advantage of the speci�cstructure of the problem given in (1) and develop an algorithm that maintains the variables withintheir bounds and works on a problem of the original size.Another reason to avoid using the augumented system (2) concerns the Jacobian matrix rw(z).It is not hard to see that rw(z) = �rf(x) I�I 0� :A condition needed in various NCP algorithms such as NE/SQP is that certain principal submatricesof rw(z) be nonsingular at a limit point of iterates; see for example the b-regularity condition forNE/SQP. By using this augmented form, we introduce a zero block in the lower right corner ofrw(z) and potentially violate these nonsingularity conditions more often as a result.We �rst de�ne the minimum sum map H : Rn+ ! Rn asH(x) = min(x; f(x)+) + min(a� x; f(x)�): (3)This function H is locally Lipschitzian and is intimately related to the UBNCP, as is shown in thenext lemma. 2



Lemma 2.1 Consider any a 2 Rn with a > 0 and let the function H be de�ned as in (3). Thenx� solves the UBNCP if and only if H(x�) = 0 and x� 2 [0; a].Proof. It su�ces to observe that a vector x� 2 [0; a] is a solution to the UBNCP if and only if thefollowing system holds:1. x�i = 0) fi(x) � 0,2. 0 < x�i < ai ) fi(x) = 0, and3. x�i = ai ) fi(x) � 0. 2Remark: Note that if such an x� exists as given above, then the associated vector y� is uniquelydetermined as follows: y�i = 0 when x�i 2 [0; ai) and y�i = �fi(x�) � 0, when x�i = ai. For thisreason, it is su�cient to say that x�, by itself, solves the UBNCP.Motivated by the nonsmooth function H shown above, in the next section we present severalgeneral nonsmooth concepts relevant to the UBNE/SQP method to be described below.3 Nonsmooth AnalysisConsider a locally Lipschitzian function G : Rn ! Rn. By Rademacher's theorem [6], G is almosteverywhere F-di�erentiable. Denoting the set of points where G is F-di�erentiable by DG, we cande�ne for any x 2 Rn, the generalized subdi�erential of G at x in the sense of Clarke by@G(x) = convflimrG(xj) : xj ! x; xj 2 DGg:It is known that this is a nonempty set that is both convex and compact.Employing this concept, we can de�ne the notion of a semismooth function. In what follows,we use the notation y !h x to mean y ! x; y 6= x and y�xky�xk ! hkhk ; h 6= 0.De�nition 3.2 Let x; h 2 Rn, with h 6= 0. Then the function G : Rn ! Rn is said to besemismooth at x if G is locally Lipschitzian there and 8h 2 Rn; h 6= 0,limy!hxfV h : V 2 @G(y)g (4)exists.It is interestng to note that semismoothness at x implies directional di�erentiability there withG0(x; h) equal to the above limit for all h 6= 0; see Proposition 2.1 in [20]. Also, the class ofsemismooth functions is quite large in the sense that it includes the smooth functions, convexfunctions, and piecewise smooth functions. Additionally, the sums, di�erences, products, andcomposites of semismooth functions are semismooth. This fact allows us to conclude that thefunction H de�ned by (3) is semismooth.Another generalization of gradients for nonsmooth functions involves the notion of a subgradient[4]. For a concave function  : D � Rn ! R, a subgradient at a point x 2 D is de�ned by a vectorb(x) that satis�es  (z)�  (x)� b(x)T(z � x) � 0; 8z 2 D:3



Now, suppose that z := x+ th 2 D, for some t > 0 and 8h 2 Rn. Then we obtain (x+ th)�  (x)� tb(x)Tht � 0; 8h 2 Rn:The next concept, that of upper subgradients, extends the above idea for functions  that are notnecessarily concave.De�nition 3.3 A function  : Rn ! R is said to be upper subdi�erentiable on a set D � Rn ifthere exists a function b : D ! Rn such that for all x 2 D and h 2 Rnlim supy!x;y2D;t#0  (y + th) �  (y)� tb(y)Tht � 0: (5)We call b an upper subgradient function of  on D and b(x) an upper subgradient of  at thepoint x.Remark: Note that when D is an open set and  is continuously di�erentiable on D, then  is upper subdi�erentiable there with r (x) serving as an upper subgradient. This fact will beheavily used in the convergence analysis that follows. One immediate consequence of the de�nitionof upper subdi�erentiability is that upper subgradients are additive in a certain sense. This isborne out in the next lemma.Lemma 3.4 Let f; g : E � Rn ! R be given functions and let bf and bg be upper subgradientfunctions on a common domain D for f and g, respectively. Then bf + bg is an upper subgradientfunction on D for (f + g) := f + g.Proof. For all vectors h 2 Rn, we havelim supy!x;y2D;t#0f(f + g)(y+ th)� (f + g)(y)� t(bf(y) + bg(y))Thg=t� lim supy!x;y2D;t#0ff(y + th)� f(y)� tbf (y)Thg=t +lim supy!x;y2D;t#0fg(y+ th)� g(y)� tbg(y)Thg=t� 0;where the last inequality follows from the de�nition of upper subdi�erentiability for bf and bg. 2It is interesting to note that the upper subgradient is related to several known directionalderivatives. For example, if  is locally Lipshitzian, then putting y equal to x in (5) yields b(x)Th � D(x; h) for all h 2 Rn, where  D(x; h) is the upper Dini directional derivative de�ned by D(x; h) = lim supt#0  (x+ th)�  (x)t :The upper subgradient function is also related to the Clarke and Michel-Penot directionalderivatives [14] of a locally Lipschitzian function at a point x. The Clarke directional derivative atx in the direction h is given by o(x; h) = lim supy!x;t#0  (y + th) �  (y)t ;4



and the Michel-Penot directional derivative is de�ned by �(x; h) = supk2Rn lim supt#0  (x+ th + tk)�  (x+ tk)t :Each of these directional derivatives induces an associated subdi�erential given respectively by@ (x) = fu 2 Rn : uTh �  o(x; h); 8h 2 Rngand @� (x) = fu 2 Rn : uTh �  �(x; h); 8h 2 Rng:The following result (Proposition 4 in [18]) summarizes the relationship between an uppersubgradient and these various other notions.Proposition 3.5 Suppose that  : Rn ! R is locally Lipschitzian on the set D � Rn. If  isupper subdi�erentiable on D with upper subgradient function b(�), then for each x 2 D,b(x) 2 @� (x) � @ (x):Hence, for any h 2 Rn,  D(x; h) � b(x)Th �  �(x; h) �  o(x; h):The next lemma calculates upper subgradients for the special case of a function that is theminimum of two continuously di�erentiable functions. This is a crucial lemma for the convergenceanalysis that follows.Lemma 3.6 Let r; s : E � Rn ! R, be two continuously di�erentiable functions with  (x) :=min(r(x); s(x)). Also, let the following sets be de�ned:Tr := fx 2 Rn : r(x) < s(x)g; Ts := fx 2 Rn : r(x) > s(x)g; andTe := fx 2 Rn : r(x) = s(x)g:Then the following conditions hold:(a) rr(x) is an upper subgradient of  at each point x 2 Tr,(b) rs(x) is an upper subgradient of  at each point x 2 Ts, and(c) if Te is partitioned into arbitrary subsets T 0e and T 00e , then rr(x) and rs(x) are upper subgra-dients of  at each point x 2 T 0e and T 00e , respectively.Proof. Conditions (a) and (b) follow from the earlier fact about upper subgradients of continuouslydi�erentiable functions on open sets. Now let x 2 Te(x) and let the function b(y) be de�ned byb(y) = ( rr(y); if y 2 Tr [ T 0ers(y); if y 2 Ts [ T 00e :Then we have the following:lim supy!x;t#0  (y+th)� (y)�tb(y)T ht= lim supy!x;t#0 min(r(y+th);s(y+th))�min(r(y);s(y))�tb(y)T ht5



� 8><>: lim supy!x;t#0 r(y+th)�r(y)�trr(y)T ht ; if y 2 Tr [ T 0e andlim supy!x;t#0 s(y+th)�s(y)�trs(y)T ht ; if y 2 Ts [ T 00e :So we see that lim supy!x;t#0  (y+th)� (y)�tb(y)T ht� max(lim supy!x;t#0 r(y+th)�r(y)�trr(y)T ht ;lim supy!x;t#0 s(y+th)�s(y)�trs(y)T ht )� 0:The last inequality is valid because r and s are continuously di�erentiable functions on the openset fz 2 Rn : z = y + th; y ! x; t # 0; h �xedg. 2This lemma indicates, for the given function, how the notion of an upper subgradient generalizesthat of a gradient when di�erentiability at a point may not exist. In what follows, we will use thislast result for the mininum sum map H de�ned in (3). First we describe the NE/SQP method forthe UBNCP as presented in [18].4 The Upper Bounded NE/SQP MethodIn view of the result from Lemma 2.1, we can solve the UBNCP by �nding a constrained zeroof the function H . If we de�ne the norm function �(x) equal to 12H(x)TH(x), we see that for agiven a 2 Rn++, a solution x� of UBNCP corresponds to a minimizer of the following mathematicalprogram with �(x�) = 0: minimize x �(x)subject to x 2 X := [0; a]: (6)Like the standard NE/SQP method, the upper bounded version is also an iterative algorithm. Thelatter method attempts to �nd an �x 2 Rn satisfying the constraints of (6) where �(�x) = 0. At eachiteration, there is a speci�c quadratic program to solve whose solution will, in general, be a descentdirection for the merit function �.Similar to the case of the standard NE/SQP, the functions � : X�Rn ! R+ and z : X�Rn !R+ are respectively, the subproblem objective function and the forcing function and are de�ned asfollows: �(x; d) = 12 nXi=1(jHij(x) + bi(x)Td)2and z(x; d) = 12 nXi=1(bi(x)Td)2;where bi(x) is an upper subgradient of the function jHij(x) := jHi(x)j at x on fx : jHi(x)j 6= 0g\X(i.e., the nonzero set of jHij), and it is an arbitrary vector in the Michel-Penot subdi�erential ifHi(x) = 0. At the kth iteration of this method, given an iterate xk 2 X , the resulting quadratic6



program subproblem (QPk) is to solveminimize d �(xk; d)subject to xk + d 2 X: (7)Remark: For the function H de�ned above, we note that jHij(x) = Hi(x) for all i = 1; � � � ; nwhen x 2 X .In the convergence analysis of this method, it will be important to know speci�c values forthe vector bi(x) as described above. The next result indicates that on the zero set of Hi (i.e.,fx : Hi(x) = 0g), the zero vector can be used for bi(x). The proof of this result relies on the factthat the Michel-Penot directional derivative for the function jHij, that is, jHij�(x; d), majorizes theusual directional derivative jHij0(x; d); this follows from the inequalities presented in Proposition3.5.Lemma 4.7 Consider any a 2 Rn with a > 0 and let the function H be de�ned as in (3). IfHi(x) = 0, then 0 2 @�jHij(x).Proof. First note that the directional derivative jHij0(x; h) exists and is nonnegative for all h 2 Rn.Its existence is guaranteed because H was shown to be semismooth. Thus Hi and jHij are alsosemismooth, hence directionally di�erentiable. As for the nonnegativity, suppose for the sake ofcontradiction that this is not the case. Then for some h 2 Rn, jHij0(x; h) < 0. Hence, thereexists a �t > 0 such that for all t 2 [0; �t) jHij(x + th) < jHij(x) = 0, which is a contradiction,since the function jHij(�) is always nonnegative. Consequently, with h any vector in Rn, we havejHij�(x; h) � jHij0(x; h) � 0, which shows that 0 2 @�jHij(x). 2On the nonzero set of Hi, there is some exibility in choosing the vector bi(x) in the subproblem(7). However, for the convergence analysis that follows, it is important to specify particular valuesfor bi(x) when x 2 X and Hi(x) 6= 0. In the next set of lemmas we describe explicit values forupper subgradients bi(x) of jHij(x) on this set. We �rst consider the possible relationships betweenthe pairs of arguments (xi; fi(x)+) and (ai � xi; fi(x)�) for i = 1; 2; � � � ; n.Lemma 4.8 Let f : Rn+ ! Rn be a given function that is continuously di�erentiable. Consider thevectors x; a 2 Rn with a > 0 and x 2 [0; a]. Then the set of indices f1; � � � ; ng can be partitionedinto the following seven sets:S1(x) := fi : (xi < fi(x)+g;S2(x) := fi : ai � xi < fi(x)�g;S3(x) := fi : (xi � fi(x)+; ai � xi = fi(x)�; fi(x) < 0)g;S4(x) := fi : (xi = fi(x)+; ai � xi � fi(x)�; fi(x) > 0)g;S5(x) := fi : (xi � fi(x)+; ai � xi > fi(x)�; fi(x) < 0)g;S6(x) := fi : (xi > fi(x)+; ai � xi � fi(x)�; fi(x) > 0)g;S7(x) := fi : fi(x) = 0g:Proof. The result follows from the fact that ai � xi � 0 must be maintained for all indicesi = 1; � � � ; n. 2 7



Remark: For use with the functions � and z de�ned above, the seven index sets can be partitionedinto four sets as follows:S1(x); S2(x); S7(x); and T (x) = (S1(x) [ S2(x) [ S7(x))c:However, part of the convergence analysis of the UBNE/SQP method requires that the indices inthe set T (x) be analyzed according to their membership in S3(x); S4(x); S5(x), or S6(x). For thisreason we maintain the seven index sets in what follows.Using these seveb index sets, we can analyze the possible values of the function jHij(�). Thenext lemma establishes, for each of these seven index sets, what values this function can take onat points that are arbitrarily close to each other. This is directly relevant in the analysis of theQ-quadratic convergence rate which appears below.Lemma 4.9 Consider the function H as de�ned in (3). Let z; x; a 2 Rn, with a > 0 and z; x 2[0; a]. Then, if z is su�ciently close to x, the following values of jHij(x) are valid:(a) jHij(z) = zi; jHij(x) = xi i 2 S1(z);(b) jHij(z) = ai � zi; jHij(x) = ai � xi i 2 S2(z);(c) jHij(z) = ai � zi = �fi(z); jHij(x) = min(ai � xi;�fi(x)) i 2 S3(z);(d) jHij(z) = zi = fi(z); jHij(x) = min(xi; fi(x)) i 2 S4(z);(e) jHij(z) = �fi(z); jHij(x) = �fi(x) i 2 S5(z);(f) jHij(z) = fi(z); jHij(x) = fi(x) i 2 S6(z);(g) jHij(z) = 0; jHij(x) = 0 i 2 S7(z):Proof. Since f(�) and jHij(�) are continuous functions and z is su�ciently close to x, the abovestatements follow by examining the relationships described in each of the index sets in question. 2We can also specify possible upper subgradient values for jHij on its nonzero set via the indexsets listed above.Lemma 4.10 Consider the function H de�ned as in (3). Let z; a 2 Rn, with a > 0 and z 2 [0; a].Then, if i 2 f1; � � � ; ng � S7(z), the following values of bi(z) are upper subgradients of the functionjHij at the point z; (ei is the ith standard basis vector):bi(z) = 8>>>>>>>>>>>><>>>>>>>>>>>>: ei i 2 S1(z)�ei i 2 S2(z)�ei;�rfi(z) i 2 S3(z)ei;rfi(z) i 2 S4(z)�rfi(z) i 2 S5(z)rfi(z) i 2 S6(z):Proof. The result follows from noting the assertions given in Lemmas 3.4 and 3.6 as applied tothe index sets in question. 2 8



Remark: In the UBNE/SQP method, we take bi(x) = 0 if i 2 S7(x) (for which Hi(x) = 0) andbi(x) as given above otherwise. This approach is consistent with the requirements on bi, imposed inthe de�nition of �. Note that even when Hi(x) = 0 but i 62 S7(x) the values of bi(x) listed above,which are used in the UBNE/SQP method, are valid, since by Proposition 3.5 upper subgradientsare necessarily elements of the Michel-Penot subdi�erential.Before presenting the UBNE/SQP method, we introduce a version of s-regularity for the UB-NCP. The reader will note the similarity with the de�nition in [17] applied to the standard NCP.De�nition 4.11 Let a be a given vector in Rn++ and X := [0; a]. Then the cone of feasible direc-tions of X at a point x 2 X, denoted FX(x), is de�ned by fd : x+"d 2 X; 8 su�ciently small " >0g. A point x 2 X is said to be s-regular if for every b(x) = (bi(x)) 2 �ni=1@jHij(x), there exists adirection d 2 FX(x) such that for each i where Hi(x) 6= 0, we havejHij(x) + bi(x)Td � 0:We now present the UBNE/SQP method.Algorithm 4.12 Upper-Bounded NE/SQPStep 0. (Initialization) Having a vector a 2 Rn++, select �; � 2 (0; 1), and an arbitrary vectorx0 2 X := [0; a]. Set k = 0.Step 1. (Direction generation) Given xk 2 X , solve the (convex) quadratic program (QPk) usingthe choices for bi(xk) as explained above; let dk be an arbitrary optimal solution obtained. If�(xk; dk) = �(xk), terminate the algorithm; otherwise, continue.Step 2. (Step length determination) Let mk be the smallest nonnegative integer m such that�(xk + �mdk)� �(xk) � ���mz(xk; dk); (8)set xk+1 = xk + �mkdk.Step 3. (Termination check) If xk+1 satis�es a prescribed termination rule, stop. Otherwise, returnto Step 1 with k replaced by k + 1.Remark: In Step 1, when the condition �(xk; dk) = �(xk) is met and xk is s-regular, then xksolves the UBNCP; see Proposition 10, part (c), of [18].We next describe the major convergence result for the UBNE/SQP method presented in [18].First, however, we need to introduce a new regularity concept.De�nition 4.13 Given a 2 RN++, we call the vector z 2 [0; a] gb-regular (for generalized b-reguar)if for all index sets � such thatS5(z) [ S6(z) � � � S3(z) [ S4(z) [ S5(z) [ S6(z);the principal submatrix r�f� is nonsingular.The reader will notice the similarity between the notion of gb-regularity and that of b-regularitydescribed in [17]. We have the following convergence result.9



Theorem 4.14 [18] Consider any a 2 Rn with a > 0 and let H : Rn+ ! Rn be de�ned as in(3). Suppose that x� is a limit point of a sequence fxkg produced by the UBNE/SQP method withassociated directions fdkg. If x� is both s-regular and gb-regular, then H(x�) = 0 and x� 2 [0; a],that is, x� solves the UBNCP. Moreover,(i) there exists an integer K > 0 such that 8k � K, the step length �k = 1; hence xk+1 = xk + dk;and(ii) the sequence fxkg converges to x� Q-superlinearly; in other words,limk!1 kxk+1 � x�kkxk � x�k = 0:It remains to show that under a suitable assumption on the function f , the UBNE/SQP methodis actually Q-quadratically convergent.Theorem 4.15 Consider any a 2 Rn with a > 0 and let H : Rn+ ! Rn be de�ned as in (3).Let x� be a limit point of the sequence of iterates fxkg generated by the UBNE/SQP method withassociated directions fdkg. If x� is both s-regular and gb-regular, then x� is a solution to theUBNCP. Furthermore, if f : Rn+ ! Rn is Lipschitzian in a neighborhood around x�, then the rateof convergence is Q-quadratic; in other words, 9 a constant c0 > 0 such thatlim supk!1 kxk+1 � x�kkxk � x�k2 < c0:Proof. The fact that x� is a solution was shown in Theorem 4.14, so we proceed to the rate ofconvergence result. From the proof of Theorem 4 in [18], we know that there exists a c > 0 suchthat the following useful inequality is valid for all k large enough:ckxk + dk � x�k � k jH j(x�)� jH j(xk)� b(xk)(x� � xk)k: (9)Here b(xk) is an n � n matrix with the ith row being the transpose of bi(xk), which is an uppersubgradient of jHij(xk) at xk if Hi(xk) 6= 0 and a vector in @�jHij(xk) otherwise. We now showthat the right-hand side of (9) is bounded above by kf(x�)� f(xk) +rf(xk)(x� � xk)k.In what follows, k is taken large enough so that xk is su�ciently close to x�. We consider thefollowing expression: j jHij(x�)� jHij(xk)� bi(xk)T (x� � xk)j: (10)If i 2 S7(xk), then by Lemma 4.9, Hi(xk) = Hi(x�) = 0. Since Lemma 4.7 indicates that bi(xk) = 0is valid here, we see that (10) is equal to zero. If i 2 S1(xk)[S2(xk), then using the suggested valuesin Lemmas 4.9 and 4.10 we see that the same expression is also zero. Also, for i 2 S5(xk)[S6(xk),(10) has the value jfi(x�)� fi(xk)�rfi(xk)T (x� � xk)j: (11)For the remaining index sets S3(xk) and S4(xk), based on the result from Lemma 4.9, thereare two cases to consider for each index set, depending on which argument is the minimum. In all10



cases however, we get a term equal to 0 or of the form given in (11). So we see that there existconstants c1; c2 > 0 such that the following is valid:kxk + dk � x�k � c�1k jH j(x�)� jH j(xk)� b(xk)(x� � xk)k� c1k jH j(x�)� jH j(xk)� b(xk)(x� � xk)k1� c1kf(x�)� f(xk)� rf(xk)(x� � xk)k1� c2kf(x�)� f(xk)� rf(xk)(x� � xk)k:In view of the fact that f is assumed Lipschiztian in a neighborhood around x�, and by part (i) inTheorem 4.14, we see that the desired result follows. 25 Numerical Experiments5.1 Test ProblemsA Nash-Cournot Production Problem [NC]This numerical problem �rst appeared in [16], it concerned a simpli�ed production model underthe Nash-Cournot equilibrium framework. The de�ning function f : Rn+ ! Rn is of the formfi(q) = c0i(qi)� p( nXj=1 qj)� qip0( nXj=1 qj); i = 1; : : : ; n;where ci(qi) = �iqi + �i1 + �iL�1=�ii q1+1=�ii ; p(Q) = 50001=Q�1=with Q =Pnj=1 qj . The data �i; Li; �i, and  are positive scalars. Notice that the function ci is nottwice di�erentiable at qi = 0 if �i > 1. By means of a straightforward calculation, it can be shownthat rf(q) is a P-matrix for any positive vector q, as long as  > 1. From the relevant literature,the solutions that have been obtained had all variables positive.Two Optimization Problems [HS-100,HS-113]We have selected two minimization problems (#100 and #113) from [12]. Both problems are ofthe form min (x) : g(x) � 0;where  : Rn ! R and g : Rn ! Rm. For problems #100 and #113, respectively, (n;m) =(7; 4) and (10; 8). The Karush{Kuhn{Tucker (KKT) optimality conditions for these mathematicalprograms give rise to the function f : Rn � Rm+ ! Rn+m given byf(x; �) =  r (x) +Pmi=1 �irgi(x)�g(x) ! ;which is a mixed NCP in the variables x and �. For problem #113, we have also imposed theconstraints that x � 0 since the reported optimal solution has all positive values; the resultingKKT conditions produce a pure NCP. 11



A Spatial Price Equilibrium Problem [SPE]Ever since Samuelson's suggestion that this equilibrium problem is amenable for analysis by math-ematical programming [23], numerous formulations and solution procedures based on this approachhave been proposed and studied. To summarize the discussion, we give the NCP formulation ofa multicommodity version of the model that appears in [8]. The de�ning function of the NCP isgiven by f(x; �) =  �ki + cka(x)� �kj : a = arc joining nodes i to jSkl (�)�Dkl (�)� Qkl (x) : l 2 N ! ;where N denotes the nodes of the network, k = 1; : : : ; K denotes the commodities, and Qkl (x) isthe net supply of commodity k at node l:Qkl (x) = Xa2T (l)xka � Xa2H(l)xka;where T (l) (H(l)) is the set of all arcs whose tail (head, resp.) is the node l. The transportationcost functions cka(x) and the supply and demand functions Skl (�) and Dkl (�) can take on di�erentforms. In particular, the following polynomial functions have been used:cka(x) = �ka + 
ka(xka)4 +Pj 6=k �kja xjaSkl (�) = Hkl + Jkl (�kl )2 +Pj 6=l uklj�kjDkl (�) = Ekl �Gkl (�kl )2 +Pj 6=l wklj�kj :Note that these are asymmetric functions in general.A Tra�c Equilibrium Problem [TE]The general tra�c equilibrium problem was formulated as a variational inequality problem in [24].Its NCP formulation involves the function f de�ned by (see [2, 1])f(h; u) =  �Tc(�h)� �u�Th�D(u) !where h; u are respectively, the path ows and origin-destination shortest times vectors, � is the(arc, path) incidence matrix of a network, and � is the (path, OD-pair) incidence matrix, that is,�ap = ( 1 if arc a is incident to path p0 otherwiseand �pk = ( 1 if path p joins OD-pair k0 otherwise.There are various forms for the arc cost function c(x) where x = �h is the vector of arc ows, andfor the travel demand function D(u). The special case of a constant demand function is important12



in its own right. That of a separable arc cost function is also noteworthy; this is the case whereca(x) depends only on xa; for example, ca(x) = �a + �ax4a:This cost function is commonly used in practical tra�c analysis; see [1]. An example of an asym-metric demand function is that derived from a logit model:Dij(u) = d0ij rije�uijPk 6=i rike�uik ; i 6= jwith rij = eij being positive constants; see [1].It should be pointed out that when the NCP(f) with f as given above is solved by a Newton-type method (such as NE/SQP), a complete knowledge of all the paths of the tra�c network isrequired in advance. In order to avoid such an (often prohibitive) enumeration of the paths, somemethods for solving this problem have employed the idea of path-generation embedded within aNewton scheme; see [19] [5]. In the latter reference, the authors develop an NE/SQP-based methodthat solves the tra�c equilibrium problem by generating paths as the algorithm proceeds, therebymaking it attractive for large networks.5.2 ResultsIn what follows, we report the results of various numerical tests on several NCP problems. All therelevant programs were written in FORTRAN using double-precision accuracy. We have used thesoftware QPOPT [21] to solve each quadratic program subproblem and performed our computationson a SPARCstation 5.For each test problem, we have tried two starting points (xa and xb) and two sets of upperbound vectors a. The upper bounds are somewhat natural for the problems being considered. Forexample, these upper bounds could represent limits on primal or dual variables (HS-100, HS-113),or bounds on network ows as a result of capacity limitations, etc. The �rst method of choosingthe upper bound vector a was to take ai = 1000 for all i. 4 This corresponded to the case wherethe upper bounds in a typical application would be far from tight.In the second method for selecting a, we �rst took the solution vector x� and then applied thefollowing logic: ai = jx�i j; if i > :2 � n; or ai < 1:d� 5 then set ai = 20:The point of this approach was to set a certain fraction of the upper bounds (the �rst 20%) so thatat a solution, the corresponding upper bounds would be tight. The remaining variables would havebounds that were not too far o� (i.e., 20 higher than x�i ). The exception to this approach was if x�iwas very small (i.e. jx�i j < 1:d� 5), the associated search direction might not be useful since theupper and lower bounds would be essentially zero; hence we forced those indices to have an upperbound of 20.Here are the starting points for each of the problems.NC We set xai = 10 for all i and xbi = 1 for all i.4The exception being for HS-100, where �100 � xi � 100 for i = 1; : : : ; 7; since these variables were unconstrainedand optimal values were much smaller than 100. 13



HS-100 We set xai , i = 1; : : : ; 7 was chosen as in [12]; xa8; : : : ; xa11 = 1. The second starting pointwas chosen so that xbi = 1 for all i.HS-113 We took xa1; : : : ; xa10 as given in [12] and xa11; : : : ; xa18 were set to a value of 1. For thesecond initial vector we took xbi = 1 for all i.SPE The vector xa was set to all ones and xb was taken to be all zeroes.TE The vector xa matched starting point a in [7]. The second vector xb was calcuated as follows:for x1; : : : ; x38 (the path ow vector) we used the starting arc ows as suggested in [1] andsolved for the starting path ows using the arc-path incidence matrix �. It is interesting tonote that this approach yielded some negative components; the algorithms did not have aproblem with such a point, however. 5Note that for all tests, we initiated the variable y (as described above) at zero. In the ta-bles below, the designation \UBNE/SQP" refers to using the UBNE/SQP method whereas \Aug.NE/SQP" refers to using the standard NE/SQP on the augmented system (of size 2n) as describedabove. The stopping criteria were as follows for each i:for UBNE/SQP j ~Hi(x)j = jmin(xi; fi(x))j � 1:d� 6for Aug. NE/SQP jHi(x)j � 1:d� 6:Also, the quantity �(x)i refers, respectively to 12Hi(x)2 or 12 ~Hi(x)2 if UBNE/SQP or the augmentedsystem approach was used. Lastly, the column \improv." measures the CPU improvement in usingUBNE/SQP over NE/SQP as applied to the augmented system. The results are summarized inTables 1-4. Table 1upper bound =method #1starting point= group aProblem size �(x0) �(x�) # of iters. CPU (secs.) improv.NC{UBNE/SQP 10 3,492.2 6.1D-18 6 0.10NC{Aug. NE/SQP 20 3,492.2 6.1D-18 6 0.20 50 %HS-100{UBNE/SQP 11 730.0 1.2D-16 12 0.17HS-100{Aug. NE/SQP 22 730.0 8.2D-26 9 0.39 56 %HS-113{UBNE/SQP 18 6,934.5 2.3D-16 28 2.16HS-113{Aug. NE/SQP 36 6,934.5 8.7D-16 23 4.20 49 %SPE{UBNE/SQP 42 7,538.3 4.2D-16 12 7.66SPE-Aug. NE/SQP 84 7,538.3 6.3D-16 9 20.32 62 %TE{UBNE/SQP 50 1,300.9 2.4D-15 7 8.21TE{Aug. NE/SQP 100 1,300.9 1.0D-24 8 30.47 73 %5For HS-113, method #2 and starting point xa, UBNE/SQP was not able to eventually satisfy the bounds. Thisis because the starting point was not within these bounds. The resulting solution was just slightly o�, and so weadjusted a by setting a2 = 3 (instead of approximately 2:36368).14



Table 2upper bound =method #1starting point= group bProblem size �(x0) �(x�) # of iters. CPU (secs.) improv.NC{UBNE/SQP 10 321,987.9 1.7D-15 9 0.12NC{Aug. NE/SQP 20 321,987.9 1.7D-15 9 0.30 60 %HS-100{UBNE/SQP 11 8,918.5 1.5D-14 11 0.17HS-100{Aug. NE/SQP 22 8,918.5 9.5D-17 10 0.43 60 %HS-113{UBNE/SQP 18 200,859.6 2.5D-14 16 1.24HS-113{Aug. NE/SQP 36 200,859.6 1.1D-23 18 3.58 65 %SPE{UBNE/SQP 42 7,625.0 6.3D-14 9 4.51SPE-Aug. NE/SQP 84 7,625.0 9.7D-26 9 20.22 78 %TE{UBNE/SQP 50 1,359.2 1.2D-33 9 9.96TE{Aug. NE/SQP 100 1,359.2 3.1D-20 10 37.23 73 %Table 3upper bound =method #2starting point= group aProblem size �(x0) �(x�) # of iters. CPU (secs.) improv.NC{UBNE/SQP 10 3,427.1 2.8D-19 6 0.08NC{Aug. NE/SQP 20 3,492.2 2.7D-15 6 0.19 58 %HS-100{UBNE/SQP 11 730.0 2.5D-15 11 0.18HS-100{Aug. NE/SQP 22 730.0 8.2D-26 9 0.41 56 %HS-113{UBNE/SQP 18 701.6 3.8D-13 34 1.74HS-113{Aug. NE/SQP 36 6,934.7 4.0D-18 21 4.16 58 %SPE{UBNE/SQP 42 4,163.9 2.1D-16 8 4.15SPE-Aug. NE/SQP 84 7,538.3 4.7D-16 9 21.08 80 %TE{UBNE/SQP 50 1083.7 6.3D-17 16 14.71TE{Aug. NE/SQP 100 1300.9 1.9D-14 7 29.96 51 %
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Table 4upper bound =method #2starting point= group bProblem size �(x0) �(x�) # of iters. CPU (secs.) improv.NC{UBNE/SQP 10 22,918.4 1.9D-18 5 0.05NC{Aug. NE/SQP 20 321,987.9 1.7D-15 9 0.31 84 %HS-100{UBNE/SQP 11 8,918.5 1.9D-16 14 0.24HS-100{Aug. NE/SQP 22 8,918.5 9.5D-17 10 0.44 45 %HS-113{UBNE/SQP 18 1,733.9 8.8D-20 20 1.12HS-113{Aug. NE/SQP 36 200,859.6 3.3D-22 17 3.49 68 %SPE{UBNE/SQP 42 4,331.5 2.6D-16 8 3.96SPE-Aug. NE/SQP 84 7,625.0 1.1D-17 9 20.82 81 %TE{UBNE/SQP 50 1,293.3 3.4D-16 10 10.0TE{Aug. NE/SQP 100 1,359.2 1.9D-19 10 37.54 73 %6 ConclusionsIn this paper, we have considered algorithms for solving the upper-bounded nonlinear comple-mentarity problem. We have extended the results concerning the recent NE/SQP-type algorithmproposed by Pang and Qi by showing that it is actually Q-quadratically convergent under a suit-able Lipschitzian assumption. Based on our test examples, we have additionally shown that theproposed algorithm, which handles the upper bounds in the subproblem and consequently solvessmall problems, can be much more e�cient than the method that treats these upper bounds viaan augmented NCP.References[1] Aashtiani, H. Z., The Multi-Modal Tra�c Assignment Problem, Ph.D. thesis, Sloan Schoolof Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1979.[2] Aashtiani, H. Z. and Magnanti, T. L., Equilibria on a Congested Transportation Network,SIAM Journal on Algebraic and Discrete Methods, 2, pp. 213{226, 1981.[3] Ahn, B. H. Computation of Market Equilibria for Policy Analysis: The Project IndependenceEvaluation System (PIES) Approach, Garland Publishing, Inc., New York, 1979.[4] Bazaraa, M. S. and Shetty, C. M., Nonlinear Programming Theory and Algorithms, JohnWiley & Sons, New York, 1979.[5] Bernstein, D. H., and Gabriel, S. A., unpublished information, Mathematics and ComputerScience Division, Argonne National Laboratory, May 1995.[6] Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.16
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