
Performance of Massively Parallel Computersfor Spectral Atmospheric ModelsIan T. Foster, Brian ToonenMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, U.S.A.Patrick H. WorleyMathematical Sciences SectionOak Ridge National LaboratoryOak Ridge, TN 37831-6367, U.S.A.AbstractMassively parallel processing (MPP) computer systems use high-speed interconnectionnetworks to link hundreds or thousands of RISC microprocessors. With each microproces-sor having a peak performance of 100 or more Mops/sec, there is at least the possibilityof achieving very high performance. However, the question of exactly how to achievethis performance remains unanswered. MPP systems and vector multiprocessors requirevery di�erent coding styles. Di�erent MPP systems have widely varying architectures andperformance characteristics. For most problems, a range of di�erent parallel algorithmsis possible, again with varying performance characteristics. In this paper, we provide adetailed, fair evaluation of MPP performance for a weather and climate modeling applica-tion. Using a specially designed spectral transform code, we study performance on threedi�erent MPP systems: Intel Paragon, IBM SP2, and Cray T3D. We take great care tocontrol for performance di�erences due to varying algorithmic characteristics. The resultsyield insights into MPP performance characteristics, parallel spectral transform algorithms,and coding style for MPP systems. We conclude that it is possible to construct parallelmodels that achieve multi-Gops/sec performance on a range of MPPs, if the models areconstructed to allow runtime selection of appropriate algorithms.1 IntroductionIn recent years, a number of computer vendors have produced supercomputers based on amassively parallel processing (MPP) architecture. These computers have been shown to becompetitive in performance with conventional vector supercomputers for many applications(Fox, Williams, and Messina 1994). Since spectral weather and climate models are heavy usersof vector supercomputers, it is interesting to determine how these models perform on MPPsand which MPPs are best suited to the execution of spectral models.The benchmarking of MPPs is complicated by the fact that di�erent algorithms may bemore e�cient on di�erent MPP systems. Hence, a comprehensive benchmarking e�ort mustanswer two related questions: which algorithm is most e�cient on each computer and how dothe most e�cient algorithms compare on di�erent computers. In general, these are di�cultquestions to answer because of the high cost associated with implementing and evaluating arange of di�erent parallel algorithms on each MPP platform.In a recent study, we developed a testbed code called PSTSWM (Worley and Foster 1994)that incorporated a wide range of parallel spectral transform algorithms. Studies with this1



testbed con�rm that the performance of di�erent algorithms can vary signi�cantly from com-puter to computer and that no single algorithm is optimal on all platforms (Foster and Worley1994). Availability of this testbed makes it feasible to perform a comprehensive and fair bench-marking exercise of MPP platforms for spectral transform codes. We report here the results ofthis exercise, presenting benchmark results for the Intel Paragon, the IBM SP2, and the CrayT3D.The paper is structured as follows. First, we provide some background information on par-allel computing, the spectral transform method, and parallel algorithms for the spectral trans-form. Then, we describe our experimental method, providing details of both the PSTSWMcode and the parallel computers on which experiments were performed. In Section 4 we presentour results, and in Section 5 we discuss their signi�cance. We conclude with a summary of our�ndings.2 BackgroundWe �rst provide some background information on parallel computer architecture and on thespectral transform method used in the testbed code.2.1 Parallel ComputersIn this paper, we focus on distributed-memory MIMD (multiple instruction, multiple data)computers, or multicomputers. In these computers, individual processors work independentlyof each other and exchange data via an interconnection network. Computers in this classinclude the Intel Paragon, IBM SP2, Cray T3D, Meiko CS2, and nCUBE/2. A disadvantageof the multicomputer architecture is that considerable programming e�ort can be required toobtain high performance. However, multicomputers have the attractive property that highperformance can often be maintained even as the number of processors is increased.The performance of a multicomputer depends on more than just the oating point speedof its component processors. Since processors must coordinate their activities and exchangedata, the cost of sending messages must also be considered. The cost of transmitting a messagebetween any two processors can be represented with two major parameters: the messagestartup time (ts), which represents the �xed overhead for any communication request, and thetransfer time per byte (tb), which includes any copying of the message between user and systembu�ers, as well as the physical bandwidth of the communication channel. In this model, thetime required to send a message of size s bytes to a processor is thents + tbs:This expression is approximate, since contention on the network or for local memory accesscan increase either parameter, and on some computers the full bandwidth is realized only forlarger s. The importance of this model is in parallel algorithm design and analysis: on somemulticomputers, ts is very large and the number of messages must be minimized; on others,ts is small and the volume of data (s) moved between processors during execution determinesthe communication costs.An e�cient parallel algorithm minimizes both communication costs and load imbalance,while supporting code structures that maximize single processor performance. A load imbal-2



ance occurs when some processors are idle while others are computing. To avoid this situation,computation is partitioned so that each processor has approximately the same amount of workto do in each phase of the computation. This partitioning is often achieved by dividing the datathat is to be operated on, and making each processor responsible for computation on its pieceof the data. An additional constraint on the choice of partitioning scheme is that it shouldminimize the amount of nonlocal data required at each processor, and hence the amount ofcommunication required to transfer this data.Given the number of variables mentioned above, it should not be surprising that there areoften multiple viable parallel algorithms for a particular problem, with di�erent performancecharacteristics in di�erent situations.2.2 Spectral Transform MethodA variety of numerical methods|e.g., �nite di�erence, semi-Lagrangian, and spectral transform|have been used in computer simulations of the atmospheric circulation (Browning, Hack, andSwarztrauber 1989). Of these, �nite di�erence methods are the easiest to parallelize because oftheir high degree of locality in data reference. Semi-Lagrangian methods introduce additionalcomplexity because of their nonlocal and time-varying access patterns (Williamson and Rasch1989). Spectral transform methods have important computational advantages (Bourke 1972),but are in many respects the most di�cult to parallelize e�ciently, because of their highlynonlocal communication patterns.In this study, we used the spectral transform method to solve the nonlinear shallow waterequations on the sphere. The resulting numerical algorithm is very similar to that used inthe NCAR Community Climate Model to handle the horizontal component of the primitiveequations (Hack et al. 1992). For concreteness, we �rst describe the shallow water equationsin the form that we solve using the spectral transform method. We then describe the spec-tral transform method for these equations. We �nish with a brief description of the parallelalgorithms being examined.Shallow Water Equations. The shallow water equations on a sphere consist of equationsfor the conservation of momentum and the conservation of mass. Let i, j, and k denoteunit vectors in spherical geometry; V denote the horizontal velocity, V = iu + jv; � denotethe geopotential; and f denote the Coriolis term. Then the horizontal momentum and masscontinuity equations can be written as (Washington and Parkinson 1986)DVDt = �fk�V �r� (1)D�Dt = ��r �V;where the substantial derivative is given byDDt( ) � @@t( ) +V � r( ) : (2)The spectral transform method does not solve these equations directly; rather, it uses astreamfunction-vorticity formulation in order to work with scalar �elds. De�ne the vorticity �3



and the horizontal divergence � by � = f + k � (r�V)� = r �V :To avoid the singularity in velocity at the poles, let � represent latitude and rede�ne thehorizontal velocity components as (U ; V ) = V cos � :After some manipulation, the equations can be written in the form@�@t = � 1a(1� �2) @@�(U�)� 1a @@�(V �) (3)@�@t = + 1a(1� �2) @@�(V �)� 1a @@�(U�)� r2 �+ U2 + V 22(1� �2)! (4)@�@t = � 1a(1� �2) @@�(U�)� 1a @@�(V�)� ��� : (5)Here a is the radius of the sphere, the independent variables � and � denote longitude andsin �, respectively, and � is now a perturbation from a constant average geopotential ��.Finally, U and V can be represented in terms of � and � through two auxiliary equationsexpressed in terms of a scalar streamfunction  and a velocity potential �:U = 1a @�@� � 1� �2a @ @� (6)V = 1a @ @� + 1� �2a @�@� ; (7)where � = r2 + f (8)� = r2� : (9)In the spectral transform method, we solve Eqs. 3{5 for �, �, and �, and use Eqs. 6{9 tocalculate U and V .Spectral Transform Method. In the spectral transform method, �elds are transformed ateach timestep between the physical domain, where the physical forces are calculated, and thespectral domain, where the horizontal terms of the di�erential equation are evaluated. Thephysical domain is represented by a computationally uniform physical grid with coordinates(�i; �j), where 1 � i � I and 1 � j � J . Fields in the spectral domain are represented as setsof spectral coe�cients.The spectral representation of a scalar �eld � is de�ned by a truncated expansion in termsof the spherical harmonic functions fPmn (�)eim�g:�(�; �) = MXm=�M N(m)Xn=jmj �mn Pmn (�)eim�;4



where �mn = Z 1�1 � 12� Z 2�0 �(�; �)e�im�d��Pmn (�)d� (10)� Z 1�1 �m(�)Pmn (�)d� :Here i = p�1, � = sin �, � is latitude, � is longitude, m is the wavenumber or Fourier mode,and Pmn (�) is the associated Legendre function. M andN(m) specify the form of the truncationof coe�cients, as discussed below.Note that Eq. 3{5 contain both linear and quadratic terms. In order to prevent aliasing ofthe quadratic terms in the numerical approximation, the number of points in both directionsis chosen to be larger than the degree of the expansion. For example, the number of points inlongitude I � 3M + 1, where M is the highest Fourier wave number. Thus, we use a standarddiscrete Fourier transform but truncate its output to 2M + 1 values. The number of terms inthe Legendre expansions is similarly truncated. For this study, we restricted our experimentsto triangular truncations, that is, N(m) =M .As Eq. 11 suggests, the spectral transform can be implemented by a Fourier transformfollowed by a Legendre transform. The Legendre transform (LT) requires the computation ofan integral, which is approximated by using Gaussian quadrature. Thus, the latitude points �jare picked as Gaussian grid points. (The longitude points �i are ordinarily picked as uniformlyspaced to simplify the Fourier transforms.)The Fourier transform, which can be implemented with the fast Fourier transform (FFT),operates on each grid space latitude independently to produce a set of intermediate quantities.The Legendre transform then operates on each column of the intermediate array independentlyto produce the spectral coe�cients. (The inverse spectral transform operates in the reversesequence.)In our shallow water equation code (Hack and Jakob 1992), each timestep begins by cal-culating the nonlinear terms U�, V �, U�, V�, and �+ (U2+ V 2)=(2(1��2)) on the physicalgrid. Next, the nonlinear terms and the state variables �, �, and � are Fourier transformed.The forward Legendre transforms of these �elds are then combined with the calculation of thetendencies used in advancing �, �, and � in time (essentially evaluating the right-hand sidesof Eqs. 3{5) and the �rst step of the time update. This approach decreases the cost, whencompared with calculating transforms individually and then calculating the tendencies, andgenerates spectral coe�cients for only three �elds instead of eight. Next, the time updates of�, �, and � on the spectral grid are completed. Finally, the inverse Legendre transforms of �,�, and � are combined with the calculation of the �elds U and V (solving Eqs. 6{9), followedby inverse Fourier transforms of these �ve �elds.Parallel Spectral Transform Method. In this study, all parallel algorithms are basedon decomposing the di�erent computational spaces onto a logical two-dimensional grid ofprocessors, P = PX�PY . As will be described in the next section, a �ctitious vertical dimensionhas been added to the shallow water model. In each space, two of the domain dimensionsare decomposed across the two axes of the processor grid, leaving one domain dimensionundecomposed. All parallel algorithms begin with the vertical dimension undecomposed in the5



physical domain, since, in full atmospheric models, the columnar physics are unlikely to bee�ciently parallelizable (Foster and Toonen 1994).Two basic types of parallel algorithm are examined: transpose and distributed. In atranspose algorithm, the decomposition is \rotated" before a transform begins, to ensure thatall data needed to compute a particular transform is local to a single processor. Thus, forexample, before computing the Fourier transform, the longitude dimension is \undecomposed"and the vertical dimension is decomposed, allowing each processor to independently computethe Fourier transforms corresponding to the latitudes and vertical layers assigned to it. In adistributed algorithm the original decomposition of the domain is retained, and communicationis performed to allow the processors to cooperate in the calculation of a transform. For example,in a distributed Fourier transform all processors in a row of the processor grid cooperate tocompute the Fourier transforms corresponding to the latitudes and vertical layers associatedwith that processor row.3 Experimental MethodWe �rst outline the structure of the PSTSWM testbed code, the experiments that were per-formed during the benchmarking exercise, and the computers on which benchmarks were per-formed.3.1 The PSTSWM TestbedA number of researchers have investigated parallel algorithms for the spectral transform algo-rithm used in atmospheric circulation models. A variety of di�erent parallel algorithms havebeen proposed (Dent 1990; G�artel, Joppich, and Sch�uller 1993; Loft and Sato 1993; Pelz andStern 1993; Walker, Worley, and Drake 1992; Worley and Drake 1992), and some qualitativecomparisons have been reported (Foster, Gropp, and Stevens 1992; Kauranne and Barros 1993;Foster and Worley 1993). However, until recently no detailed quantitative comparisons of thedi�erent approaches had been attempted. To permit a fair comparison of the suitability of thevarious algorithms, we have incorporated them into a single testbed code called PSTSWM, forparallel spectral transform shallow water model (Foster and Worley 1994; Worley and Foster1994). PSTSWM is a message-passing parallel implementation of the sequential Fortran codeSTSWM (Hack and Jakob 1992). STSWM uses the spectral transform method to solve thenonlinear shallow water equations on a rotating sphere; its data structures and implementationare based directly on equivalent structures and algorithms in CCM2 (Hack et al. 1992), theCommunity Climate Model developed at the National Center for Atmospheric Research.PSTSWM di�ers from STSWM in one major respect: vertical levels have been added topermit a fair evaluation of transpose-based parallel algorithms. This is necessary because ina one-layer model, a transpose algorithm reduces to a one-dimensional decomposition of eachgrid and hence can utilize only a small number of processors. The addition of vertical levels alsohas the advantage of modeling more accurately the granularity of the dynamics computation inatmospheric models. In all other respects we have changed the algorithmic aspects of STSWMas little as possible. In particular, we did not change loop and array index ordering, and theserial performance of the code is consistent with that demonstrated by CCM2.6



PSTSWM is structured so that a variety of di�erent algorithms can be selected by runtimeparameters. Both the fast Fourier transform (FFT) and the Legendre transform (LT) that makeup the spectral transform can be computed by using several di�erent distributed algorithms andtranspose algorithms. Runtime parameters also select from among a range of variants of eachof these major algorithms. All parallel algorithms were carefully implemented, eliminatingunnecessary bu�er copying and exploiting our knowledge of the context in which they arecalled. At the present time, this allows us to achieve better performance than can be achievedby calling available vendor-supplied routines. Hence, it provides a fairer test of the parallelalgorithms.While we have attempted to make PSTSWM as representative of full spectral weather andclimate models as possible, it di�ers from such models in two important respects. First, wedo not incorporate the vertical coupling in spectral space that is introduced by the use of asemi-implicit solver; this coupling is unnatural in a shallow water setting. We do not expect theinterprocessor communication required to support the vertical coupling to contribute signi�-cantly to total costs as it involves only a single spectral space �eld. This expectation has beenveri�ed empirically in the parallel version of the Integrated Forecast System developed at theEuropean Centre for Medium-Range Weather Forecasting (Barros 1994). Second, PSTSWMdoes not incorporate realistic physics or the semi-Lagrangian transport (SLT) mechanisms thatare used in many modern weather and climate models. To a signi�cant degree, the parallelalgorithm decisions and performance for the spectral transform method are orthogonal to thosefor physics and SLT, and the performance measurements and analysis reported here are valid,if not su�cient for predicting performance of full models.3.2 Experimental TechniqueWe performed experiments for a range of horizontal and vertical resolutions, as summarized inTable 1. (Horizontal resolution is speci�ed in terms of both spectral truncation and physicalgrid size, and the spectral truncation speci�cation is pre�xed by a \T," to denote a triangulartruncation.) This range of resolutions was considered necessary, �rst because there is littleagreement on standard resolutions and second because the performance of di�erent parallelalgorithms can vary signi�cantly depending on the number of vertical levels. The highestvertical resolutions in the T42 and T85 models are intended to be representative of resolutionsused in stratospheric models.All experiments involved a �ve-day simulation using the performance benchmark proposedby Williamson et al. (1992): global steady state nonlinear zonal geostrophic ow. The numberof timesteps (Table 1) assumes a Courant number of 0.5. In practice, a timestep almost twice aslarge could be used without losing stability, halving the execution time, but at the cost of somedegradation in the solution accuracy for the larger model resolutions. We report raw executiontimes, total Gops/sec, and Mops/sec achieved per processor. The computation rates arederived from oating point operation counts obtained by using the hardware performancemonitor on a Cray Y-MP.Experiments were performed in two stages. In the �rst stage, a set of tuning experimentswere performed to determine the most e�cient algorithms and algorithmic variants on eachcomputer and at each resolution. These experiments were very detailed, involving 3000{5000separate measurements on each computer. Based on the results of these experiments, we se-7



Table 1: Problem Sizes Considered in Empirical Studies, Floating-Point Operations per Ver-tical Level, and Number of Timesteps for a Five-Day SimulationHorizontal Resolution Vertical Levels (L) Flops/level/step StepsTruncation (TM) Physical GridT42 128� 64 16, 18, 44 4129859 222T85 256� 128 16, 18, 24, 36, 60 24235477 446T170 512� 256 18, 24, 32, 36, 48 153014243 891lected an optimal algorithm for each problem size, number of processors, and parallel platform.The optimal algorithms identi�ed in these experiments are presented in Tables 2 and 3. InTable 2, the two letter codes represent FFT/LT algorithm combinations. For the transform,code D represents a distributed algorithm and code T a transpose algorithm. A \�" indicatesthat in that particular con�guration, it was most e�cient not to apply any processors in thatdimension. Table 3 shows the number of processors used in each dimension.In addition to the primary algorithm variants summarized in Tables 2 and 3, there arenumerous minor tuning parameters that control various aspects of the protocol used to transferdata between processors. For example, in some situations on the Intel Paragon it is useful to usea preliminary message exchange to set up communication bu�ers before actually transferringdata; this strategy is never useful on the IBM SP2. Our experiments allowed us to choosenear-optimal values for these parameters for a wide range of machine size and problem sizevalues.In the second stage, we measured execution times on each computer and for each resolutionlisted in Table 1, using the optimal algorithms identi�ed in the �rst stage. The results of theseexperiments are presented in Section 4.3.3 Target ComputersWe performed experiments on the three parallel computer systems listed in Table 4. Thesesystems have similar architectures and programming models, but vary considerably in theircommunication and computational capabilities. Our values for message startup time (ts) andper-byte transfer time (tb) are based on the minimum observed times for swapping data betweentwo processors using PSTSWM communication routines, and represent achievable, althoughnot necessarily typical, values. Note that the startup times include the additional subroutinecall overhead and logic needed to implement PSTSWM communication semantics. The linear(ts; tb) parameterization of communication costs is surprisingly good for the Paragon and T3Dwhen using the optimal communication protocols, but is only a crude approximation for theSP2. The MBytes/second measure is bidirectional bandwidth, and so is approximately twice1=tb. The computational rate (Mops/sec) is the maximum observed by running PSTSWMon a single node for a variety of problem resolutions, and so is an achieved peak rate ratherthan a theoretical peak rate.The Paragon used in these studies has two processors per node. For all measurements,the second processor was used as a message coprocessor, and P in Table 4 and the X axis8



Table 2: Optimal Algorithms (double precision)Machine Problem ProcessorsType T L 32 64 128 256 512 1024Cray T3D 42 16 T/D T/D T/TCray T3D 42 18 T/T D/D D/DCray T3D 42 44 T/D T/D T/DCray T3D 85 16 T/D T/D T/DCray T3D 85 18 D/D D/D D/DCray T3D 85 24 T/D T/D T/DCray T3D 85 36 T/D T/D T/DCray T3D 85 60 T/D T/D T/DCray T3D 170 18 D/D D/D D/DCray T3D 170 24 T/D T/D T/DCray T3D 170 32 T/D T/D T/DCray T3D 170 36 T/D T/D D/DCray T3D 170 48 D/D T/D D/DIBM SP2 42 16 T/D T/D T/TIBM SP2 42 18 {/T T/T T/TIBM SP2 42 44 T/D T/D T/DIBM SP2 85 16 T/D T/D T/DIBM SP2 85 18 D/D {/T T/TIBM SP2 85 24 T/D T/D T/TIBM SP2 85 36 T/D T/D T/TIBM SP2 85 60 {/T {/T T/DIBM SP2 170 18 D/D D/D {/TIBM SP2 170 24 T/D T/D T/DIBM SP2 170 32 {/T T/D T/DIBM SP2 170 36 D/D T/D T/DIBM SP2 170 48 D/T {/T T/DIntel Paragon 42 16 T/D T/D T/T D/DIntel Paragon 42 18 T/T D/D T/D D/DIntel Paragon 42 44 T/D T/D T/T T/DIntel Paragon 85 16 T/D T/T T/T T/DIntel Paragon 85 18 D/D T/T T/T D/DIntel Paragon 85 24 T/D T/T T/T T/TIntel Paragon 85 36 T/T T/T T/T T/TIntel Paragon 85 60 D/T T/D T/D T/TIntel Paragon 170 18 D/D D/D T/T D/DIntel Paragon 170 24 T/D T/T T/T T/TIntel Paragon 170 32 T/D T/T T/TIntel Paragon 170 36 T/T T/TIntel Paragon 170 48 T/T T/T9



Table 3: Optimal Aspect Ratios (double precision)Machine Problem ProcessorsType T L 32 64 128 256 512 1024Cray T3D 42 16 16� 4 16� 8 16� 16Cray T3D 42 18 2� 32 8� 16 16� 16Cray T3D 42 44 4� 16 16� 8 16� 16Cray T3D 85 16 8� 8 16� 8 16� 16Cray T3D 85 18 4� 16 8� 16 16� 16Cray T3D 85 24 8� 8 8� 16 8� 32Cray T3D 85 36 4� 16 4� 32 8� 32Cray T3D 85 60 4� 16 32� 4 64� 4Cray T3D 170 18 4� 16 8� 16 16� 16Cray T3D 170 24 8� 8 8� 16 8� 32Cray T3D 170 32 16� 4 32� 4 16� 16Cray T3D 170 36 4� 16 4� 32 16� 16Cray T3D 170 48 4� 16 16� 8 16� 16IBM SP2 42 16 8� 4 16� 4 8� 16IBM SP2 42 18 1� 32 2� 32 8� 16IBM SP2 42 44 4� 8 16� 4 16� 8IBM SP2 85 16 16� 2 16� 4 16� 8IBM SP2 85 18 4� 8 1� 64 4� 32IBM SP2 85 24 8� 4 8� 8 4� 32IBM SP2 85 36 4� 8 4� 16 2� 64IBM SP2 85 60 1� 32 1� 64 32� 4IBM SP2 170 18 4� 8 8� 8 1� 128IBM SP2 170 24 8� 4 8� 8 8� 16IBM SP2 170 32 1� 32 16� 4 16� 8IBM SP2 170 36 2� 16 4� 16 8� 16IBM SP2 170 48 2� 16 1� 64 16� 8Intel Paragon 42 16 16� 8 16� 16 16� 32 32� 32Intel Paragon 42 18 4� 32 8� 32 32� 16 32� 32Intel Paragon 42 44 16� 8 16� 16 16� 32 64� 16Intel Paragon 85 16 16� 8 16� 16 16� 32 16� 64Intel Paragon 85 18 8� 16 4� 64 8� 64 32� 32Intel Paragon 85 24 8� 16 8� 32 8� 64 32� 32Intel Paragon 85 36 4� 32 8� 32 16� 32 16� 64Intel Paragon 85 60 2� 64 32� 8 64� 8 32� 32Intel Paragon 170 18 8� 16 16� 16 8� 64 32� 32Intel Paragon 170 24 8� 16 8� 32 8� 64 32� 32Intel Paragon 170 32 32� 8 8� 64 16� 64Intel Paragon 170 36 4� 128 16� 64Intel Paragon 170 48 16� 32 16� 6410



Table 4: Parallel Computers Used in Empirical Studies, Characterized by Operating Sys-tem Version, Microprocessor, Interconnection Network, Maximum Machine Size Used in Ex-periments (P ), Message Startup Cost (ts), Per-Byte Transfer Cost (tb), and Per-ProcessorMops/Sec at Single and Double PrecisionName OS Processor Network PParagon SUNMOS 1.6.1 i860XP 16� 64 mesh 1024SP2 AIX + MPI-F Power 2 multistage crossbar 128T3D MAX 1.1.0.5 Alpha 16� 4� 4 torus 256Name ts (�sec) tb (�sec) MB/sec MFlops/secSingle DoubleParagon 72 0.007 282 11.60 8.5SP2 70 0.044 45 44.86 53.8T3D 18 0.012 168 { 18.2for all �gures refer to the number of compute processors (or nodes). The Paragon used theSUNMOS operating system developed at Sandia National Laboratories and the University ofNew Mexico, which currently provides better communication performance than the standardIntel operating system. Interprocessor communication on the SP2 was performed by usingMPI-F version 1.3.8, an experimental implementation of the MPI message-passing standard(Foster, Gropp, and Skjellum 1995) developed and made available to us by Hubertus Frankeof IBM Yorktown (Franke et al. 1994). Interprocessor communication routines for the T3Dwere implemented by using the Shared Memory Access Library, which supports reading andwriting remote (nonlocal) memory locations. Experiments were performed using both single-precision (32-bit oating-point values) and double-precision (64-bit) arithmetic except on theT3D, where only double precision (64-bit) is supported in Fortran.4 ResultsThe results of the experiments are summarized in Figures 1{9. These �gures show results onthe di�erent machines at T42, T85, and T170 resolution, expressed in terms of execution timefor a �ve-day forecast, execution rate in Gops/sec, and Mops/sec achieved per processor, allas a function of processor count. Results in these �gures are for double precision. In addition,Figures 10 and 11 compare single- and double-precision performance on the SP2 and Paragon,respectively. Notice the use of a log scale in the X axis in all �gures. In the �gure keys,P represents Paragon, S represents SP2, and T represents T3D. On the Paragon, data wereobtained on 128, 256, 512, and 1024 processors. On the SP2, data were obtained on 32, 64,and 128 processors. On the T3D, data were obtained on 64, 128, and 256 processors. Someproblem sizes did not �t on a small number of processors on the Paragon and hence are missing.11
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Figure 1: Execution times for 5-day forecast at T42 resolution (double precision).
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Figure 2: Execution times for 5-day forecast at T85 resolution (double precision).
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Figure 3: Execution times for 5-day forecast at T170 resolution (double precision).
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Figure 4: Execution rate for 5-day forecast at T42 resolution (double precision).
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Figure 5: Execution rate for 5-day forecast at T85 resolution (double precision).
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Figure 6: Execution rate for 5-day forecast at T170 resolution (double precision).
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Figure 7: Processor performance for 5-day forecast at T42 resolution (double precision).
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Figure 8: Processor performance for 5-day forecast at T85 resolution (double precision).
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Figure 9: Processor performance for 5-day forecast at T170 resolution (double precision).
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Figure 10: Ratio of double- to single-precision execution times for 5-day forecast on Paragon.
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Figure 11: Ratio of double- to single-precision execution times for 5-day forecast on SP2.
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5 DiscussionWe discuss a variety of issues relating to the performance results presented in the preced-ing section, including single node performance, parallel performance, the e�ect of arithmeticprecision, and choice of algorithms. These issues are tightly interrelated.5.1 Single-Node PerformanceTable 4 indicates a considerable variation in single-node performance across the three machines.While all have high \peak" uniprocessor performance ratings (75, 266, and 150 Mops/sec forthe Paragon, SP2, and T3D, respectively, at double precision), none achieves a large fraction ofthis peak performance on PSTSWM. This is due to a variety of factors, including instructionset, cache size, and memory architecture, which we shall not address here. (However, we notethat in the T3D, the second-level cache normally used with the DEC Alpha chip is missing,thereby signi�cantly reducing performance. The second-level cache should be restored in thenext-generation machine.) A signi�cant factor a�ecting single-node performance is codingstyle, which we discuss below.5.2 Parallel PerformanceFigures 1{9 present a large amount of data from which one can derive many interesting con-clusions about the performance of the spectral transform method on the Paragon, and SP2,and T3D. Unfortunately, the unequal machine sizes hinder direct comparisons of scalability.Larger SP2 and T3D systems were not available to us, and local memory size and executiontime constraints on the systems we used for these experiments did not allow us to make �ve-dayruns using smaller numbers of processors on the Paragon and the T3D.Looking �rst at raw performance, as measured in Gops/sec, we see that the Paragonachieves the highest total performance: over 7 Gops/sec for problem T170/L32 on 1024processors. Machine performance (in Gops/sec) varies signi�cantly with both horizontal andvertical resolution on all machines; this e�ect is particularly noticeable for larger numbers ofprocessors. With respect to vertical resolution, performance is inuenced by three factors.First, a power-of-two number of levels avoids ine�ciencies due to load imbalances on a power-of-two number of processors. While this is to some extent an artifact of the fact that the numberof processors and the horizontal grid dimensions are both powers of two in our experiments,it is a common situation, and similar issues will arise for other problem and machine sizeassumptions. Second, for small numbers of vertical levels and large numbers of processors,decomposing across the vertical dimension tends to introduce load imbalance, as there arefewer levels than processors. The optimization process generally avoids this, at the cost ofchoosing extreme processor grid aspect ratios or choosing a parallel algorithm that does notdecompose the vertical dimension, both of which may increase communication costs. Third,a larger number of levels increases the granularity of the computation, generally improvingper processor performance. However, for large numbers of vertical levels on moderate orsmall numbers of processors, the local computation may not �t well into cache, resulting in aperformance degradation. This latter e�ect explains the superlinear scaling evident on a fewof the graphs. 23



The SP2 achieves the highest performance on 128 processors, where it is between 30% and100% faster than the T3D, and between 150% and 300% faster than the Paragon. The SP2performs relatively worse at low resolutions, and the T3D relatively better. This e�ect is aresult of the poorer communication performance of the SP2: computation costs scale fasterthan communication costs with resolution.Very approximately, it appears that the SP2 with half as many processors is slightly slowerthan the T3D, except at T42 resolution where it is signi�cantly slower. The SP2 with onequarter as many processors is roughly comparable to the Paragon at all resolutions, and theT3D with half as many processors is roughly comparable to the Paragon at all resolutions.The average Mops/sec achieved per processor provides a measure of scalability. (Perfectparallel scalability would be represented by a straight horizontal line.) We see that all threemachines scale reasonably well, particularly at higher resolution. The occasional anomalousincrease in per-processor performance with increasing number of processors is due to improvedcache utilization as a result of the smaller granularity, as mentioned above.5.3 PrecisionThe relative performance on the three machines is a�ected by the choice of arithmetic precision.At the current time, the T3D supports only double precision (64-bit) arithmetic in Fortran,while the Paragon and SP2 support both single and double precision. Arithmetic precisionhas a signi�cant and complex inuence on machine performance, since it a�ects raw proces-sor performance, cache performance, memory performance, and interprocessor communicationperformance. Table 4 gives single processor PSTSWM performance data for Paragon and SP2at single and double precision. On the Paragon, double precision is signi�cantly slower. Onthe SP2 processor, double precision is faster, although not by the same factor as some otherapplications. (For example, the LINPACK benchmark achieves 134 and 72 Mops/sec at dou-ble and single precision, respectively.) This situation probably reects reduced cache hit ratesdue to increased memory tra�c. As we shall see, the SP2 generally performs better at singleprecision when PSTSWM is executed on multiple processors, no doubt because of reducedcommunication costs.In comparing PSTSWM multiprocessor performance, we report in Figures 1{9 only double-precision results. This yields a fair comparison for large problem resolutions, where the in-creased accuracy of double precision may be needed. For smaller problem sizes, single precisionis generally considered to be su�cient, and hence the comparison is unfair to the Paragon andSP2 in these cases.Figures 10 and 11 show the impact of precision on Paragon and SP2 performance. TheParagon is between 20% and 40% slower at double precision. Di�erences are larger at higherresolution, where compute time is a larger fraction of total execution time, and more data mustbe communicated.SP2 is slightly faster in a few instances, and in most other cases around 10% slower (onecase is almost 25% slower) at double precision. There seems to be little pattern in the SP2results, suggesting that overall performance is a complex function of processor performance,cache performance, and communication costs. For example, we would normally expect high-resolution problems to perform better than low-resolution problems at double precision, sincecomputation costs are proportionally higher. However, this is not always the case, suggesting24



that PSTSWM is not achieving good cache performance. This problem could potentially becorrected by restructuring the code.5.4 AlgorithmsIn the �rst part of this section, we discussed machine performance without reference to thealgorithms being used on di�erent problem size/machine type/machine size con�gurations. Yetthere is considerable variability in the performance of di�erent algorithms (Foster and Worley1994; Worley and Foster 1994), and average performance would have been considerably worseif we had restricted ourselves to a single algorithm. Factors that can a�ect performance includethe choice of FFT algorithm, LT algorithm, aspect ratio, the protocols used for data transfer,and memory requirements. For brevity, we just make a few comments regarding algorithmshere; more details about relative performance are provided in (Foster and Worley 1994; Worleyand Foster 1994).Examining Table 2, our �rst observations are that no single algorithm is optimal across arange of problem sizes and machine sizes and that di�erent algorithms are optimal on di�erentmachines. The algorithm combination that is asymptotically optimal for large problems andlarge numbers of processors is T/T, which uses transposes for both the FFT and LT. Yet thiscombination is optimal in only 53% of the con�gurations on the Paragon, 33% on the SP2,and 5% on the T3D. Another promising algorithm is T/D, which uses a distributed algorithmfor the LT. This is optimal in 26%, 58%, and 67% of con�gurations on the Paragon, SP2, andT3D, respectively.Another algorithm that is optimal in a surprisingly large number of cases is FFT algorithm\D," the distributed FFT. This algorithm is known to be less e�cient than the transposefrom a communication point of view in almost all situations. Nevertheless, it can be fasterthan the transpose algorithm in the context of PSTSWM, particularly when the number ofvertical levels is not a power of two. This is because the transpose FFT must decompose inthe vertical dimension when performing FFTs, which can result in a considerable amount ofload imbalance when the number of vertical levels is small. Hence, we see this algorithm usedin combination with various LT algorithms in 60% of the L18 cases.Memory requirements also help determine the choice of optimal algorithm for large problemand/or small numbers of processors. Here, distributed algorithms have an advantage in thatthey require less work space than the transpose algorithms using the same logical aspect ratio,and the choice of optimal algorithm becomes one between distributed algorithms using optimalaspect ratios, and transpose or mixed transpose/distributed algorithms using suboptimal, butspace saving, aspect ratios.To provide more quantitative information on the impact of algorithm selection on perfor-mance, we present in Table 5 some relevant statistics. For brevity, we present results for justthree problem sizes: T42 L18, T85 L36, and T170 L32, representing three common problemsizes used in atmospheric modeling. Table 5 is concerned with both algorithm and aspectratio selection: each statistic is the ratio of the execution time for some nonoptimal algorithmor aspect ratio to the optimal algorithm/aspect ratio combination identi�ed by our tuningprocess.1) Row CLASS measures sensitivity to algorithm choice. We determined the optimal parallelimplementation and aspect ratio for each of the four algorithm classes T/T, T/D, D/T,25



Table 5: The Impact of Algorithm Selection on Performance (see text for details)P S T128 256 512 32 64 128 64 128 256T42L18 - CLASS 1.14 1.11 1.08 1.07 1.28 1.49 1.18 1.15 1.16T42L18 - ASPECT 1.33 1.17 1.00 1.05 1.51 1.73 1.16 1.05 1.00T42L18 - REF 1.39 1.25 1.10 1.73 1.75 2.08 1.20 1.43 1.36T85L36 - CLASS 1.17 1.19 1.26 1.18 1.17 1.02 1.33 1.15 1.09T85L36 - ASPECT 1.26 1.14 1.27 1.10 1.04 1.32 1.08 1.14 1.04T85L36 - REF 1.30 1.18 1.30 1.78 1.46 1.49 1.15 1.21 1.14T170L32 - CLASS - 1.10 1.20 1.63 1.40 1.40 1.07 1.12 1.11T170L32 - ASPECT - * 1.35 1.73 1.04 1.00 1.01 1.01 1.00T170L32 - REF - * 1.37 2.29 1.73 1.56 1.19 1.16 1.13and D/D, and present statistics for the slowest of the four classes. Hence, these resultsindicate how much can be gained by using the optimal algorithm. Note that, sinceall algorithm classes are optimal for some combination of problem size and number ofprocessors, none can be discarded a priori.2) Row ASPECT measures sensitivity to aspect ratio. We determined the optimal algorithmclass for each problem size and number of processors, and present statistics for a squareor nearly sqare processor grid (aspect ratio 1:1 or 2:1). Hence, these results indicatethe utility of tuning with respect to aspect ratio. An asterisk indicates that the givenalgorithm cannot be run on such a processor grid, because of memory or algorithmicconstraints.3) Row REF measures the cost of standardizing on both algorithm and aspect ratio. Thestatistics are for a \reference" algorithm that uses transpose algorithms for both FFTand LT, a 1:1 or 2:1 aspect ratio, and a simple communication protocol that is supportedon all message-passing systems that we have experience with. It is meant to representwhat a reasonable choice would have been if we had forgone all tuning.The CLASS and ASPECT data show that even when considered in isolation, the choice ofalgorithm class and aspect ratio can have a signi�cant impact on performance: degradationsof 20{30% frequently result from nonoptimal choices. The REF data shows even greaterdivergences from optimal, which we should expect as algorithm algorithm class, aspect ratio,and communication parameters are all standardized and hence nonoptimal in most situations.The reference algorithm works well when the optimal algorithm is a transpose algorithm on anearly square grid. However, in other cases it can be as much as 129% worse than the optimalalgorithm.In general, the results emphasize the importance of performance tuning, particularly whenperforming performance comparisons of di�erent machines. (The degree of degradation variessigni�cantly between the di�erent MPPs.) Notice that the optimal algorithm for a particular26



algorithm class varies across machines and that a reference algorithm for the T/D, D/T, andD/D classes would perform as badly, or worse, than the performance of the T/T referencealgorithm. See (Worley and Foster 1994) for more details on the performance improvementpossible from tuning within algorithm classes.These results lead us to conclude that parallel spectral transform codes should includeruntime or compile-time tuning parameters, so that performance can be retained when movingbetween platforms or when hardware or software is upgraded. Our success with PSTSWMsuggests that with careful design, a large number of algorithmic options can be incorporatedin a single code without greatly complicating its implementation. We suspect that similartechniques can usefully be applied in other models.5.5 Price PerformanceWe have not attempted to compare the price-performance (performance per unit of capitalinvestment) of the di�erent machines, because of the di�culty of obtaining accurate price dataand its dependence on nontechnical factors. However, this information must clearly be takeninto account when interpreting the results of this study.5.6 Coding StyleWe have attempted in this study to eliminate the e�ect of algorithm choices and communicationprotocols on performance. However, we have not addressed the related issue of coding style.PSTSWM was designed deliberately to emulate the coding style of PCCM2 (Drake et al. 1994),the message-passing parallel implementation of CCM2, and we believe that this design goalhas been achieved. An advantage of this structure is that our results are directly applicableto PCCM2 and parallel implementations of similar models. A disadvantage is that achievedperformance is not optimal. Many CCM2 data structures and algorithms have been selectedto optimize performance on Cray-class vector multiprocessors. These same structures andalgorithms are not necessarily e�cient on the cache-based RISC microprocessors used in MPPsystems.Certain computational kernels within PSTSWM (and PCCM2) have been restructured torun more e�ciently on RISC microprocessors. Nevertheless, it appears that cache data reuseremains low. For example, the T3D's hardware monitor indicates that the ratio of oatingpoint operations to memory accesses is only 1.3. Very di�erent coding structures would berequired to improve this ratio. We are currently exploring such structures.The performance of PSTSWM can be improved by exploiting optimized FFT library rou-tines and more aggressive code restructuring to allow, for example, the use of level 3 BLAS.We are hesitant to make code modi�cations to PSTSWM that would be di�cult to emulatein PCCM2, but one advantage of a code like PSTSWM is that it provides us with a testbed inwhich we can experiment with various optimization techniques before making changes in theproduction code. 27



6 ConclusionsThe experiments reported in this paper provide a number of valuable insights into the relativeperformance of di�erent MPP computers and di�erent spectral transform algorithms, and thetechniques that should be used when constructing parallel climate models.Our results indicate that massively parallel computers such as the Paragon, SP2, andT3D are indeed capable of multi-Gops/sec performance, even on communication-intensiveapplications such as the spectral transform method. Ignoring issues of price performance, we�nd that none of the parallel computers is consistently better than the others. The SP2 has thebest uniprocessor performance, without which of course good parallel performance is di�cultto achieve, and is also the fastest machine on 128 processors. On the other hand, the SP2has poorer communication performance than the Paragon and T3D. The Paragon achieves thegreatest peak performance (on 1024 processors).We also �nd that many di�erent aspects of algorithm and program design can have asigni�cant impact on performance. In addition, optimal choices for parallel algorithm, com-munication protocols, and coding style vary signi�cantly from machine to machine. Hence,performance tuning is important both when developing a spectral model for a single com-puter, and when developing a model intended to operate on several di�erent computers. Webelieve that the solution to this problem is to design codes that allow tuning parameters tobe set at runtime. This approach supports both (performance) portability and the empiricaldetermination of optimal parameters.AcknowledgmentsThis research was supported by the Atmospheric and Climate Research Division of the O�ceof Energy Research, U.S. Department of Energy, under Contracts W-31-109-Eng-38 and DE-AC05-84OR21400.We are grateful to members of the CHAMMP Interagency Organization for NumericalSimulation, a collaboration involving Argonne National Laboratory, the National Center forAtmospheric Research, and Oak Ridge National Laboratory, for sharing codes and results;to Hubertus Franke of IBM for providing his MPI-F library on the SP2; to the SUNMOSdevelopment team for help in getting PSTSWM running under SUNMOS on the Intel Paragon;and to James Tuccillo of Cray Research for facilitating the Cray T3D experiments.This research was performed using the Intel Paragon system at Oak Ridge National Labora-tory, the Intel Paragon system at Sandia National Laboratories, a Cray T3D at Cray Research,the IBM SP2 system at Argonne National Laboratory, and the IBM SP2 system at NASA-Ames Laboratory.
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