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Heterogeneous Domain Decomposition for Singularly
Perturbed Elliptic Boundary Value Problems

Abstract

A heterogeneous domain-decomposition method is presented for the numerical so-
lution of singularly perturbed elliptic boundary value problems. The method, which
is parallelizable at various levels, uses several ideas of asymptotic analysis. The sub-
domains match the domains of validity of the local (“inner” and “outer”) asymptotic
expansions, and cut-off functions are used to match solutions in neighboring subdo-
mains. The positions of the interfaces, as well as the mesh widths, depend on the small
parameter, £. On the subdomains, iterative solution techniques are used, which may
vary from one subdomain to another. The global convergence rate depends on ¢; it
generally increases like some power of (log(¢71))~! as € | 0. The method is illustrated
on several two-dimensional singular perturbation problems.

1 Introduction

We are interested in the numerical solution of singularly perturbed second-order elliptic
boundary value problems with Dirichlet boundary data, generically represented by the
equations

L(e)u= fonQ, u=gondQ. (1.1)

Here, Q is a bounded domain in R?, whose boundary 9Q is Lipschitz continuous; ¢ is a small
positive parameter, ¢ € (0,¢¢) say, where g¢ is arbitrarily small positive but fixed; L(¢) is
a differential expression, uniformly elliptic for every ¢ € (0,¢q), which reduces formally to
a lower-order differential expression L(0) as ¢ | 0. The functions f and ¢ are given; they
are defined on © and 012, respectively. We assume that (1.1) has a unique classical solution
ug(e) € C*Q)N C(Q) for every ¢ € (0,g0). The point values of ug(e) are ug(e)(z) =
ug(e, ), v € Q. The set of all solutions uq(c) defines a mapping ug : (0,0) — X (Q).

Notation. In general, we use the symbol X (-) to denote a finite- or infinite-dimensional
Banach space of functions defined on the argument set, endowed with the topology of
uniform convergence.

Solutions of singular perturbation problems typically display rapid variations across
narrow regions (boundary layers, transition layers, fronts). These variations pose obvious
obstacles to an efficient numerical solution scheme. Although singular perturbation prob-
lems have been studied extensively in asymptotic analysis [1-7] , the results of these studies
have, at least so far, not found their way into computational algorithms. To the best of
our knowledge, Chin et al. [8] were the first to suggest a domain-decomposition algorithm
based on asymptotic arguments. Subsequent references addressing domain decomposition



in the context of singular perturbation problems are [9-17]. Conference proceedings [18-23]
are an excellent source for articles on domain decomposition in general, but they do not
address the issues involved in the solution of singular perturbation problems.

In the present article, we construct, in a systematic way, a heterogeneous domain-
decomposition method for the numerical solution of (linear) singularly perturbed elliptic
boundary value problems. The method is inspired directly by the method of matched
asymptotic expansions and incorporates several concepts of asymptotic analysis; for exam-
ple, the subdomains correspond to the “regular domains” and the “singular layers,” and
solutions on neighboring subdomains are “matched” by means of cut-off functions. (We
prefer, and will use, the terms “regular domain” and “singular layer,” instead of the more
arcane expressions “outer” and “inner” domain customary in asymptotic analysis.) The
position of the interfaces depends on the small parameter, £, and is determined in such
a way that the truncation error is asymptotically of the same order on each subdomain.
The domain decomposition is combined with a Schwarz alternating procedure, which al-
ternates between the regular domains and the singular layers, and an iterative solution on
each subdomain. The Schwarz procedure is implemented in its most elementary form: the
subdomains overlap, and Dirichlet data are specified at the interfaces [24]. Thus, it is easy
to couple different approximations on the various subdomains. The procedure requires the
temporary specification of data in the interior of €2, and its convergence depends on the
way these data propagate into the interior of the domain. As was shown in [25], the propa-
gation factor can be made arbitrarily small for the most common finite-difference schemes,
provided the mesh size is properly chosen as a function of . On each subdomain, the
iterative method is designed to generate successive terms in the asymptotic expansion of
the solution. By judiciously choosing the mesh widths as functions of the small parameter,
we achieve convergence of the asymptotic expansions in the classical sense for fixed (but
sufficiently small) values of ¢. The iterative solver may vary from one subdomain to another,
so the method is truly heterogeneous. The global convergence rate of the method generally
improves like some power of (log(¢™!))™! as ¢ | 0.

The algorithm was designed from the perspective of parallel computing. It offers par-
allelism at the large-granularity level (domain decomposition) and at the small-granularity
level (subdomain solution). Moreover, it solves irregular structures such as boundary lay-
ers and transition layers on Cartesian grids with large aspect ratios. Thus, a regular data
structure is maintained, and the potential for parallelism is preserved. Load balancing re-
mains a critical issue in the parallel implementation. Even if the number of iterations per
subdomain is chosen to match the estimated convergence rate, different numbers of proces-
sors may have to be assigned to different subdomains to balance the cost of the iterative
solvers. Some of the ideas described in this article have been implemented and used to solve
nonlinear boundary value problems on MIMD architectures [26-28].

The method is described in detail in Section 2 and illustated on a singularly perturbed
diffusion problem (Section 3), a singularly perturbed convection problem (Section 4), and



a turning-point problem (Section 5). Several relevant concepts of asymptotic analysis are
summarized in Appendix A.

2 Description of the Method

In singular peturbation problems of the type (1.1), the domain £ decomposes naturally into
regular subdomains and singular layers. A singular layer may be situated in the interior of
between two regular subdomains (transition layer) or adjacent to (a part of) the boundary

0 (boundary layer).

By definition, a regular subdomain is a subset of 1, where the solution admits a regular
asymptotic expansion. The expansion is an asymptotic approximation to the solution on
the regular subdomain. Characteristically, the expansion does not extend to an asymptotic
approximation on the entire domain, because of the presence of singular layers. However,
in a singular layer there usually exist special local variables (layer variables), which are
scaled versions of the original variables, in terms of which the solution does have a regu-
lar asymptotic expansion. The scaling factor defining the layer variables depends on the
small parameter. It then becomes a matter of matching this local expansion to the regular
asymptotic expansion in the neighboring regular domain. The idea of decomposing the do-
main into regular subdomains and singular layers, constructing asymptotic expansions on
each subdomain, and matching expansions across interfaces is at the heart of the method
presented in this article.

Before describing the method proper, we illustrate the ideas on a simple example,
L(e)u= —cAu+u= fon Q, u=gon dQ, (2.1)

where g is the trace of f on J€Q. In this case, there are no singular layers, and the solution
uq(e) admits an asymptotic approximation on the entire domain 2. The approximation has
the form of a regular asymptotic expansion in powers of . That is, there exist functions
v; that do not depend on ¢, such that the difference between ug(¢) and the partial sum

u(”)(g) = 3" ,e'v; vanishes as ¢ | 0 for each (fixed) n, n = 0,1,.... The functions v; are
obtained recursively; vp = f on 2, and vy, v9,... are found by solving the boundary value
problem v; = Av;_1 on Q, v; = 0 on 91, successively for i = 1,2,.... Thus, the regular

asymptotic expansion is generated by the iterative procedure
u™ = f+ AU Don Q, u™ =000 dQ; n=1,2,..., (2.2)

starting with u(®) = f. The expansion does not converge in the classical sense, as n — oo,

because the Laplacian defines an unbounded operator in the underlying vector space.

The concept of asymptotic convergence, on which the preceding argument is based, is not
very useful for computational purposes. Because ¢ is given, it cannot be made arbitrarily



small, and if ¢ is fixed, we do not have convergence as n — oo. But we claim that the
discrete analog of (2.2) is worth considering. Suppose €}, is the computational grid on ©
and Ay, is the discrete approximation to the Laplacian on Q. The discrete analog of (2.2)
is

w™ = f+eA " Y on Qp, w =000 Qs n=1,2,..., (2.3)

with u(®) = f,. It generates a sequence, {u(™(e,h) : n = 0,1,...}, of vectors ul™)(e, h)
on £2;. Whether this sequence converges as n — oo depends on the norm of the operator
defined by the expression ¢Ap on the underlying vector space. For most approximation
schemes, the discrete Laplacian Aj, defines an operator whose norm is bounded by some
(negative) power of the mesh width, h=P say. Suppose that h is allowed to vary with ¢,
and suppose, in particular, that e(h(¢))™ = o(1) as ¢ | 0. The mapping defined by ¢Ay, is
then a contraction for all sufficiently small ¢, and the sequence {u(™ (e, h(c)):n =0,1,...}
converges in the classical sense (that is, as n — oo) for each sufficiently small, but fixed, ¢.
The limiting function, u(e, h(¢)), is the solution of the discrete analog of (2.1) on the grid
Qh(s)v

L(é,h(é)) = —5Ah(5)u +u= fh(s) on Qh(s), U = Gp(e) ON 8Qh(5). (2.4)

The truncation error—the distance between the trace of ug(e) on Q) and u(e, h(e))—can
be estimated in terms of the mesh width h(e) by the usual methods of numerical analysis.
The discrete iterative procedure (2.3) thus leads to a computationally useful algorithm.

The example shows that the crucial ingredient of the method is the boundedness of
Ap. Whereas the Laplacian A leads to an unbounded operator, its discrete approximation
Ay, defines a bounded operator. The bound may (and does) depend on the mesh width
h, but if h depends on the small parameter, ¢, and we choose the functional dependence
asymptoptically speaking “just right” as ¢ | 0, we generate a sequence of approximations
that converges in the classical sense for each fixed (but sufficiently small) . In essence,
we propose to take limits along certain admissible curves S = {(e,h(¢)) : ¢ € (0,¢0)} in
the (g, h)-plane. All admissible curves terminate in the origin within an asymptotically
prescribed cone as ¢ | 0. Thus, while asymptotic convergence is concerned with limits
along lines of constant A and classical convergence with limits along lines of constant e,
we propose a new paradigm by combining aspects of both. Given this idea, the remaining
difficulties are primarily technical: How to design efficient iterative solution techniques on
the subdomains, and how to combine the expansions generated by the iterative solvers on
the subdomains into a global solution on the entire domain.

2.1 Domain Decomposition

Consider the singular perturbation problem (1.1). To miminize the complexity of the pre-
sentation, we assume that the problem has a single boundary layer, which is adjacent to a
smooth part I' (the singular part) of 2. More complicated situations can be handled by a
divide-and-conquer technique, as will be evident from the example in Section 5. Generally,



I' is a manifold of codimension d’, where d’ may be any integer less than or equal to d. If
d = 2, the two possible configurations correspond to a (true) boundary layer (d' = 1) and
a corner layer (d' = 2).

As a first step, we decompose € into two overlapping subdomains,
Q=QoU Ry, QN #0. (2.5)

The index ¢ identifies the subdomain; our convention is that ¢ = 0 refers to the regular
subdomain, ¢ = 1,2, ... to the singular layers. (In this case, there is only one singular layer,
so ¢ = 1.) The boundaries 09 and 09 coincide partially with d€; the complementary
parts are the interfaces I'yg and I'y,

00 = (0N 0Q) U Ty, T, = 00\ N 0Q), i=0,1. (2.6)

Thus, I'y C 4 and I'y C Q. The position of the interfaces may vary with €. Note that the
singular part of the boundary, I', is a subset of 9Q¢\I';y.

The decomposition (2.5) must satisfy the following asymptotic relations as ¢ | 0:

diam;(Qo) = O%(1), j = 1,...,d; (2.7)
diam; () = o(1), j=1,...,d; diam;(Q;) = 0%1), j=d +1,...,d; (2.8)
diam (1) =~ dist;(T',To), j = 1,...,d". (2.9)

Here, diam; denotes the diameter in the direction of the jth coordinate. The conditions
(2.7) and (2.8) reflect the fact that the boundary layer becomes infinitesimally thin in the
first d’ coordinate directions as ¢ | 0. The condition (2.9) implies that, in each direction
transverse to I', the diameter of 2 remains comparable to the distance from I' to I'y as

e ] 0.

The decomposition (2.5) induces a decomposition of the boundary value problem (1.1),

L(e)u= fion Q;, u=g;,0n 00, (=01, (2.10)
where
o g on IQ\T,
fi=Tla. gi= { Yiug(e) on T (2.11)

Here, v; is the trace operator on I';. The solution of (2.10), which we denote by wu;(¢),
coincides with the restriction of ug(e) to €,

uz(g) = UQ(€)|Ql (2.12)



2.2 Discretization Procedure

For the numerical solution of (1.1), we impose a uniform grid on Q. To avoid the need for
interpolation on the interfaces, we assume that this grid conforms with the overlap region
Qo N Qy. We refine this grid uniformly in the boundary layer. Let {29 denote the set of all
points of the coarse grid that belong to Qg and its boundary 9, and Qp; the set of all
points of the fine grid that belong to €y and its boundary 9€y. If necessary, we distinguish
between points of Q; (¢ = 0,1) that lie inside ©; (also denoted by Q4;) and points that lie
on the boundary 0%; of Q; (denoted by 99y;). The composite grid is 2, = Qpo U Qp1.

On each grid Qy;, the mesh widths generally vary from one coordinate direction to
another; hence, Q; is characterized by a vector of mesh widths h; = (h;1,...,h;q). The
mesh widths may depend on ¢, but we impose the restriction that, in any direction (index
J), the number of grid points on each subdomain (index ¢) is asymptotically of the same
order as ¢ | 0,

diam;(€;)
b

Z7j

~N;, j=1,...,d. (2.13)
The quantities IV; may depend on ¢, but not on .
We approximate each boundary value problem (2.10) by a discrete problem,
Li(e,h)u= fion Qpi, w=g; on 9Q,;, t=0,1. (2.14)

The order of the approximation may vary by subdomain, and even by direction within a
subdomain, so the procedure is truly heterogeneous. We denote the solution of (2.14) by

ui(gv hz)

The accuracy of the discretization procedure is measured by the truncation error. We
assume that there exist (positive) integers (k;,(;) such that, on each subdomain €;,

Jwi(e)lay — wiles hi)llx ) = (Zh (diam,;(€2;))"]]9* uiHX(Q,'))v (2.15)

as ¢ | 0. The exact values of k; and [; are unimportant; eventually, these integers are
absorbed in the constants in the asymptotic equivalence relation of Lemma 1 below. Hence,
if they vary from one subdomain to the next, it suffices to identify k; and /; with the largest
among the integers k; ; and /; ;, respectively. We also subsume all mixed partial derivatives
under the highest-order partial derivative in each direction.

2.8 Truncation Error

The domain-decomposition and discretization procedure leads to an asymptotically balanced
approximation scheme if the condition (2.13) is satisfied and if, in addition, the truncation



errors on the subdomains are asymptotically of the same order as ¢ | 0. The latter condition
imposes a constraint on the choice of the interfaces.

Lemma 1 Suppose the transformation that regularizes (1.1) in the boundary layer stretches
the jth coordinate by a factor e=%i. Then the domain decomposition (2.5), combined with the
discretization procedure (2.14), results in an asymptotically balanced approzimation scheme

if diam j(Qy) = €% log(e™1).

Proof. The proof requires an evaluation of the estimates (2.15). We introduce the notation
a; = diamj(Ql), b; = distj(F,Fo), (2.16)

for j =1,...,d" . Because ¢ Ny has a nonempty interior, we have b; < a;. The numbers
a; and b; depend on ¢; the conditions (2.7) and (2.8) imply that a; = o(1), b; = o(1), and
a;j = b;for j =1,...,d" as ¢ | 0. If convenient, we extend the definition of a; by taking
a;j=1forj=d+1,...,d.

With h; = 1/N;, it follows from (2.13) that ho; = h; and hy ; = a;h;.

On g, the regular domain, the solution wug(¢) is the sum of an n-term asymptotic
expansion and a boundary layer correction. The n-term asymptotic expansion defines a
smooth function of position, which is O%(1) and whose derivatives are O(1) ase | 0. On the
scale of the boundary layer variables (£), the boundary layer correction and its derivatives
decay exponentially with the distance from I'. Since I' is at least a distance b; away from
any point of g, we have &; > b;e™7. Any derivative with respect to z; corresponds to e~
times the derivative with respect to ;. Hence, 97" ug(c) = O (1 + 7" exp (=7, b;(¢)))
for some positive constant v;, and

vy

10, uoll () = O (14 e B exp (—yje™b,(e)) ) - (2.17)
Next, consider the solution uq(¢) on €. The transformation from the original variables
(2) to the boundary layer variables (¢) sends u;(¢) into a function Uj(¢), which is O¥(1)
and whose partial derivatives (with respect to the variables £;) are O(1) as ¢ | 0. Every
derivative with respect to z; corresponds to ¢7*7 times a derivative with respect to ¢;.
Hence, 07'uy = O(e™""™), and

10 ur x(gy) = O (7 H0)) (2.18)

Using the results (2.17) and (2.18) in (2.15), we find

d
()l — e, ho)lLxarey = O (Z W (14 e ) xp (< b](e)))) C(219)
7=1



d
ki oy kej+;
s (&)l = wile.h)llx (@, = O | Do h5 (€77 a;(e) ™ | . (2.20)
=1

These estimates show that the order of the truncation error decreases exponentially with
the order of b; on €y and increases algebraically with the order of a; on Q4. If a; ~ b;, as
required, then the truncation errors balance if

(™ a;()"™ x 14 e 0t exp (—y,ea;(e)) . (2.21)

This asymptotic equivalence relation holds if ™ a;(¢) & log(¢™1). §
We summarize the results of this and the preceding section in the following theorem.

Theorem 1 (Accuracy) Suppose that the domain decomposition (2.5) satisfies the con-
ditions (2.7), (2.8), and (2.9) and that the grids imposed on the subdomains satisfy the
constraint (2.13). If the approximation scheme is asymptotically balanced, then

d
lug(e)la, — ule, W)lx oy = O [ SN log(e™) | - (2.22)
7=1

Note that we have lumped all powers of the logarithm into one. The estimate (2.22) is
meant to convey the fact that the truncation error is determined primarily by a characteristic
mesh width, h; = Nj_l, which generally vanishes like a power of ¢, but the accuracy is
mitigated somewhat by a logarithmic correction factor.

2.4 Schwarz Alternating Procedure

The decomposition (2.10) leads in a natural way to a simple Schwarz alternating procedure,
where one solves a Dirichlet boundary value problem alternatingly on Qg and €. The
procedure, though simple, is particularly suited to heterogeneous methods, where different
solution techniques, or even different representations of the boundary value problems, may
be used on different subdomains. Moreover, the simple Schwarz alternating procedure, when
implemented with overlapping subdomains, constitutes a direct analog of the matching
procedure of asymptotic analysis.

The discussion in this section applies equally well to the solution of the continuous
boundary value problem (2.10) and to the solution of its discrete analog, (2.14). We adopt
the continuous point of view, even though we will apply the results later to the discrete
case. Since the parameter ¢ does not play a role in the present section, we suppress it
temporarily.



The Schwarz alternating procedure for (2.10) is
Lou = fo on Qg, u= g(()m) on 0Qo; Liu= fion Qy, u= g§m) on 0Qy; m=0,1,....
(2.23)
The inhomogeneous terms fy and f; do not vary throughout the iterative process,

fi=Ffla,, i=0,1. (2.24)
(m) (m)

The boundary data g; ' and ¢g; ’, on the other hand, vary from one step to the next, as
they depend on the trace of the solution of the preceding boundary value problem on the
interface. Let 7; denote the trace on I'; (¢ = 0,1).

At the initial step (m = 0), we take géo) = g on 0Qp\I'p and assign arbitrary values to

(0) (0)

g~ on I'g. Having found the solution, uy’, of the boundary value problem (2.23) on Q,
we take g§0) = g on 0 \I'y and g§0) = ’yluéo) on I'y and determine the solution, u§0)7 of the
boundary value problem (2.23) on 4. After this initial step, we proceed successively for

m=1,2,..., taking

(m) { g on 890\F0, (m) { g on an\Flv
90 = (m—-1) 91 = (m)

(2.25)
Yoy on I'g, V1 on I'y.

The convergence of the Schwarz method depends essentially on the way errors introduced
on the interfaces propagate into the subdomains.

Consider the boundary value problem

0 on 890\F0,

Yoe1 on I'g, (2.26)

LoezoonQO,e:{
where €1 € X (1) is given. The solution of this boundary value problem is an element eg €
X (o), whose trace on I'y is y1eg. Thus, (2.26) defines a mapping Zo € L(X(L'o), X(I'1)),

ZO I Yo€1 > Y1€p, €1 € X(Ql) (227)
The operator norm of this mapping defines a propagation number,

[71¢0llx (ry)

e € X(Q . 2.28
Foerlxi € 1)} 229

0 = 1Zollc(x ro),x (1)) = Sup{

In the same way, we obtain a mapping 71 € L(X(I'g), X(I'1)) by considering the boundary
value problem

Tieo  on Iy,
where eg € X () is given. If ey € X(€4) is the solution of (2.29), then
Zy 1 y1€0 F o1, €0 € X(Qo). (2.30)



The corresponding propagation number is
1701 | x (1)
G = 1%l cexanyx @ ISUP{70360€X(90) . (2.31)
(X(I'1),X(Io)) [reollx )

The product of the two propagation numbers (2.28) and (2.31) defines the propagation
factor of the Schwarz alternating procedure,

¢ = GoGr- (2.32)
The following lemma establishes the condition for convergence of the Schwarz alternating

procedure.

Lemma 2 If Ly and Ly satisfy a maximum principle, and the propagation factor of the
Schwarz alternating procedure satisfies the inequality { < 1, then

lim [Jui — u{™ |l x (@ = 0, i =0,1. (2.33)
Proof. Let egm) = u; — ugm) denote the error on €; at the mth step of the Schwarz
alternating procedure. Because of the linearity, eém) satisfies (2.26) with e = egm_l),

(m) (m

and ey’ satisfies (2.29) with ey = eém). Hence, v;e; ) < Cofl’yleém_l)

and el <

Cofl’yoegm_l), so the errors on 'y and I'y are reduced by a factor ¢. If ( < 1, convergence

on I'y and I’y follows. If, in addition, I satisfies the maximum principle, the convergence
extends to Qg and Q4. 1

Recall that we have suppressed the parameter ¢ throughout the preceding discussion.
The propagation numbers and the propagation factor do indeed depend on ¢. In the discrete
case, the propagation factor depends on the mesh widths h; as well.

2.5 TIterative Solution on Subdomains

We now turn to the solution of the boundary value problems (2.10) and their discrete analogs
(2.14). We propose to use domain-dependent iterative solvers that generate successive terms
of the asymptotic expansions on the respective subdomains. The iterative procedures are
implemented within each step of the Schwarz alternating procedure; the index m (m =
1,2,...) refers to the current Schwarz step.

The following discussion applies again equally well to the continuous and the discrete
case. In the continuous case, the fundamental concepts are not obscured by technical details
of notation, so we adopt this point of view; eventually, however, we will apply the results
to the discrete case only.

10



In general, the iterative method on £2; is based on a splitting of the differential expression
L(e)=Lio(e)+ Li1(e) on ;, : =0, 1. (2.34)

The iterative method is
Li70(5)u(m’”) =fi— Li71(5)u(m’”_1) on Q;, ul™" = gz(m) on 09, n=1,2,..., (2.35)

so L;o(e) represents the implicit part, L;1(¢) the explicit part of L(e). We denote the
solution of (2.35) by ugm’n)(g).

The choice of the components L; o and L, ; is critical. As a general rule, L; o contains the
terms that generate the dominant part of the asymptotic expansion of u;. On the regular
domain, these terms are found directly, in the boundary layer, after a transformation to the
boundary layer variables. For example, in the problem (2.1) and the iterative procedure
(2.2), we took L;o(¢) equal to the identity and L;1(e) = —eA. (Recall that we are really
interested only in the discrete case, so read Ay instead of A.) As a result, the iterative
procedure (2.2) generated successive partial sums of the regular asymptotic expansion. The
best we can say at this point is that the expansion converges asymptotically to u; as € | 0.
However, we will argue that the expansion actually converges in the classical sense for each
fixed (but sufficiently small) . We will also see that the iterative procedure does not suffer
from the usual instability associated with any procedure that treats higher-order derivatives
explicitly.

The loss of boundary conditions introduces a complication on the regular domain, €.
In principle, we identify Lgo(e) with the formal limit L(0) of L(¢) as ¢ | 0. But as L(0)
is of lower order than L(¢), the boundary data on 0€y are incompatible with Lg(e),
and a correction is needed. We accomplish this correction by means of a cut-off function,
X :(0,e0) — C(Q), which coincides with the unit function on the overlap region, Qo Ny,
and whose support is asymptotically equivalent with Qg Ny as e | 0. The cut-off function
serves two purposes. First, it enables us to formulate a well-posed boundary value problem
on the regular domain. Second, when implemented in combination with a discretization
of the differential expressions L;(e) and L;1(¢), it accomplishes the numerical analog of
asymptotic matching for the Schwarz alternating procedure.

After these general remarks, we turn to the specifics. On the regular domain, g, we
define the components in (2.34) formally by

Loo(e) = L(0) + x(e)(L(¢) = L(0)),  Loa(e) = (1 = x(¢))(L(e) = L(0)), (2.36)

where x is a cut-off function of the type discussed earlier. Thus, in (and possibly a little
beyond) the overlap region ¢ N Qy, Lgg is the same as L(¢), but everywhere else in g
it is the formal limit L(0). The decomposition (2.36) is somewhat ad hoc, in the sense
that the resulting solution need not be twice continuously differentiable everywhere in g,
but the method appears to work in practical problems, provided one has some knowledge

11



of the position of the boundary and transition layers. If the position of the layers is not
known, one can use a variant of the y method developed for the Navier-Stokes equations [10,
29]. Note, however, that in the present method the higher-order derivatives are preserved,
although the treatment depends on their order of magnitude, whereas normally in the y
method higher-order derivatives are dropped. Consequently, one is not faced with the usual
difficulty of justifying the y method, nor with the fact that it is difficult to say whether the
method will work or not.

In the boundary layer, 1, we define the components in (2.34) indirectly by considering
the boundary value problem in terms of the boundary layer variables. If T'(¢) denotes the
regularizing transformation, which maps the original coordinates (z) onto the boundary
layer coordinates (&), and L¢(¢) is the differential expression in terms of the boundary layer
variables, then

Lio(e) = T(e) " Le(0)T(2),  Laa(e) = T(e)™ (Le(2) — Le(0)T(e).  (2.37)
Here, L¢(0) denotes the formal limit of Le¢(e) as e | 0.
(myn) _

7

The convergence analysis of (2.35) is straightforward. The error at the nth step, e

wi(e) — ugm’n)(g), satisfies the homogeneous boundary value problem

Li70(5)e£m’n) = —Li71(5)e(m’n_1) on €;, ™™ = 0 on 08, 1=0,1. (2.38)

K3 K3

Assume that the expression L;¢(¢) is invertible, and denote its inverse on Xo(€2;), the
subspace of X (£;) consisting of those elements that vanish on 9Q;, by LZ& (¢). Then,

e = L e Lig(e)e™ Y. (2.39)

K3

Let the amplification factor p;(¢) be defined by

. 1/n
pi(e) = lim sup (H (L7k(e)Lea(e)) eHX(Qi)/HeHX(Qi)) Li= 0,1, (2.40)

The definition is independent of the vector e € Xo(£;).
Lemma 3 If p;(¢) < 1, then

lim_{|ul™(e) — ™" (e)l|x (@, = 0, i = 0, 1. (2.41)

n—oo ¢

Proof. It follows from the definition (2.40) that

[ad™ () = u™" ()lx @ < (i) [ud™ () = ul™ ()| x(ays i = 0,1 (2.42)

If pi(e) < 1, the convergence follows. 1
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If L;&(e)Lm(g) is a bounded linear operator, then

pie) < I1Lip()Lia()lleix(@n- (2.43)

so a sufficient (but not necessary) condition for convergence is that the operator norm of
L:5(e)Lia(¢) is less than one.

One realizes on a moment’s reflection that Lemma 3 could never make sense in the
continuous case, where the differential expressions lead to unbounded operators and the
amplification factor is never going to be less than one. In the discrete case, however,
Lemma 3 works out, because discrete approximations define bounded operators in finite-
dimensional vector spaces. The norms generally depend on the mesh width and grow beyond
bounds as the mesh width goes to zero, but if the growth happens at a controlled rate as
¢ | 0, Lemma 3 provides a tool for the convergence analysis of the iterative procedure (2.35).

2.6 Combining the Schwarz and Iterative Procedures

We now combine the Schwarz alternating procedure and the iterative solution technique on
each subdomain. Again, we take the continuous point of view.

Lemma 4 Suppose L(¢) satisfies the mazimum principle for every ¢ € (0,e0). If the
propagation factor { of the Schwarz alternating procedure and the amplification factors p;
(i = 0,1) of the iterative procedures satisfy the asymptotic order relations ((¢) = o(1) and
pile)=o(1) as e | 0, then

lui(e) = ™" (o)l x (@) = o(C™ + pf° +p1), i = 0,1, (2.44)
Proof. We use the abbreviations

M) = wi(e) — ugm’n)(g), n=0,1,...; ™ = wi(e) — ugm)(g); t=0,1.

From (2.42), we deduce the estimates

m m,n; m,0 .
led™ — ™™l xa, < pFllel™ = eVl x(ay, i = 0,1,
Hence,
IeS™ ™ M ey < Iraed™ lxe) + 28 1eS™ = e x (@0 (2.45)

We estimate the first term in the upper bound in terms of the solution on {2y obtained in
the previous step in the Schwarz procedure,

m— l,nl)H

11268 1 (ry) < Gollvoet X(To)-

13



A rough estimate of the second term is obtained by going back a whole step in the Schwarz
procedure,

leS™ = e xiaey < Clel™ P llxan) + 22 1ed™ ™ llx @0)-

This estimate shows that, as { = o(1) and pg = o(1) as ¢ | 0, it is certainly possible to
) _ (m,0)

achieve the inequality Heém —ey llx(ny < 1for m =1,2,...; if necessary, we decrease
0. Thus, (2.45) reduces to

™™ ey < ollroet™ ™™ llxeo) + 05" (2.46)
Similarly,
et llx o) < Glimes™ ™ ey + 05" (2.47)
Combining (2.46) and (2.47), we obtain the estimate
s ey < Climes”™ ™" ey + Gopt” + 5"

Repeated application of this inequality yields the estimate

(m,mo (0,m0

Iv1eS™ Ny < el Ny + (1= 7 (Cop + p20).

Therefore,
(T)’L,?’LO

g™ lx ey = oC™ + 5 + o). (2.48)
By applying the maximum principle, we extend this asymptotic estimate to 5. The asymp-
totic estimate on €2y is obtained similarly. 1

The results of this section are summarized in the following theorem.

Theorem 2 (Convergence) The convergence of the Schwarz alternating procedure (2.23),
combined with the iterative solution (2.35) on each subdomain, is optimal if the number of
steps n; in (2.35) and the number of steps m in (2.23) is chosen in such a way that p;* ~ p"
for i =0,1 and (™ = O(p") as ¢ | 0. The convergence rate of the combined procedure
depends on £ and is asymptotically of the same order as p.

In summary, the method proposed here for the numerical solution of singular perturba-
tion problems of the type (1.1) has two aspects. First, there is the domain decomposition
and subsequent discretization, going from (1.1) to (2.14). Here, the issue is accuracy; it is
addressed in Theorem 1. Then, there is the Schwarz alternating procedure and the iter-
ative solution, going from (2.14) to (2.35). Here, the issue is convergence; it is addressed
in Theorem 2. The success of the method depends on whether it is possible to choose the
mesh widths as a function of ¢ in such a way that both the accuracy and the convergence
rate improve as € | 0. In the following sections we show that this goal can indeed be accom-
plished for three second-order problems of increasing complexity. We restrict the discussion
to two-dimensional problems (coordinates  and y).

14



3 A Singularly Perturbed Zero-Order Equation

We begin with the singular perturbation problem
Le)u=—-eAu+q(z,y)u= fon§, u=gondQ, (3.1)
where the coefficient ¢ is strictly positive,

qg(z,y) > qo >0, (z,y) € Q. (3.2)

We take © = (0,1)? and assume that there is a boundary layer (codimension one) along the
left edge, I' = {0} x (0,1), and no corner layers near the origin or the top left corner. The
boundary layer coordinates are £ = e=1/22 and n = y.

We decompose Q as in (2.5), with Qo = (b,1) X (0,1) and @y = (0,a) x (0,1), with
0 <b<a<1;a and b depend on . The overlap region is Qo Ny = (b, a) X ( 1). To
obtain an asymptotically balanced scheme (Lemma 1), we require that a and b satisfy the
order relations

a(e) ~ b(e) ~ e'/?log(e™"). (3.3)

We impose regular rectangular grids on €y and €4,

QhO = {(1 - b+ ihO,l’vjhO,y)) : Zv] = 07 . '7N}7 th = {(ihl,wvjhl,y)) : Zv] = 07 . 7N}

(3.4)
The grids have the same number of mesh cells in the z and y directions, so the mesh widths
are hg, = (1 —b)/N and hg, = 1/N on Qq, by, = a/N and hy, = 1/N on Q4. The
boundary points are obtained if either ¢ or 7 is equal to 0 or N. The composite grid is
Q. Because the coarse grid must conform with the overlap region, and € is a refinement
of Qo there, it must be the case that a = b 4 koho, and a = b + k1hy, for some pair of
integers (ko, k1). In terms of N, ko, and ki, we have

o — ko/N b (ko/N)(1—k1/N)

1—(1—ko/N)1—=ki/N)Y = 1—(1—ko/N)1—Fk/N)

(3.5)

A minimum overlap decomposition results if kg = 1.

The choice of a discretization procedure is open, except for the fact that the approxima-
tions must satisfy the maximum principle on each subdomain and that an estimate of the
type (2.15) must hold. We choose the usual five-point stencil approximation of the Lapla-
cian on each subdomain, which is second-order accurate in both directions. The estimate
(2.15) holds with kg = k; = 2 and Iy = l; = 2, and we conclude from (2.22) that a good
asymptotic estimate of the truncation error is given by

lua(e)la, — u(e, )| x (@, = O (N ~*log(s™") . (3.6)
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It remains to fix the dependence of N on . The choice is the result of a compromise, which
seeks to maximize both the accuracy and the convergence rate. An appropriate choice for

the present problem is
-1
N & (M1og(e™h) (3.7)

Once this choice has been made, the grid 25 becomes connected asymptotically with .
We emphasize this fact by writing (). The asymptotic behavior of hg = (ho g, hoy) and
hi = (h1,3, h1,y) is summarized by the expressions

hole) ~ (h(e),h(e)). h(e) = (£1/h(e). b)) (3.8)
where h = N~!is a characteristic global mesh width,
he) = e'/?log(e™"). (3.9)

The accuracy of the approximation obtained on the grid €2 is a function of ¢ alone. In
fact, we see from (3.6) that the truncation error decreases almost linearly as ¢ | 0,

lug(@)ay., - ule hE@Nx ., = O (cloge™). (3.10)

The asymptotic order of the propagation numbers of the Schwarz alternating procedure,
(o and (3, can be computed [25, Lemma 4]. With @ = b 4 hg, (minimum overlap, ko = 1
in (3.5)), we have (o &~ ¢ and (1 ~ (log(e™'))™2, so the propagation factor of the Schwarz
alternating method satisfies the estimate

((e)=0 (5 (log(e_l)) _1) . (3.11)

1

(Recall that we always lump all powers of the logarithm of e~! into one.)

3.1 Regular Domain
On the regular domain, we use a cut-off function x : (0,e0) — X (), which is identically

equal to one in the overlap region and zero one mesh cell beyond the overlap region,

. 1 ifb§$§azb—|-k0ho7ls,
X(E)@,y) = { 0 ifz>a+hos=b+ (ko+ 1ho (3.12)
Following the definitions (2.34) and (2.36), we take L(¢) = Loo(e) + Lo1(¢), where

Loo(e)u = —ex(e)Au+ g(z,y)u, Loi(e)u = —e(1— x(e))Au. (3.13)

Thus, beyond the overlap region, the z and y derivatives are both treated explicitly. The
discrete approximations are

_ ) —e(Apot)ij + qrosiguig, i i=1,... ko,
(Lh070(€)u)i7j - { qh0727]u27] 1f7/ — ko _I_ 17 . .7N B 17 (314)
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] 0, ife=1,...,ko,
(Lhoa(e)u); ; = { —e(Apou)ij, fi=ho+1,...,N—1, (3.15)
where Aypg is the five-point stencil approximation to the Laplacian on the grid Qpq,
(Ahou)i,j = u +1.j u sJ —I_ u 1,5 _I_ u J+1 U »J —I_ U =1 . (316)

h(QJ,ac h(zl,y
We proceed to estimate the amplification factor pg(e); cf. (2.40). The differential expression
Lo o(¢) is a small perturbation of the zero-order expression ¢ (i.e., multiplication by the local
value of ¢), which is positive everywhere. Hence, the inverse L&é(e) exists and is asymp-
totically bounded in £(X(€g)) by a constant that does not depend on e. This property
carries over to its discrete analog. The expression Lg1(¢) is certainly unbounded. However,
its discrete analog, Lyp1(¢), is bounded in £(X(Qp0)); in fact, its norm is 45h6§, + 45h6,12/-
Consequently, Ly ,(¢)Lro1(¢) is an element of £(X(Q0)), and its norm is bounded by a
constant multiple of 5ha§, + 5h6,12,- The latter quantity is of order (log(e™'))™" on Q).
Hence,

-1 -1
po(e) = O (log(e™)) ) on Oy, (3.17)
so convergence is assured for all sufficiently small e.

We observe that we can relax the iterative procedure without jeopardizing its conver-
gence. Instead of (3.14) and (3.15), we may take

—5(Ah0u)i D+ QRos U s ifi=1,...,ko
L i= 2J VIV o 9 9 ’ 1
( ho,o(é)u) sJ { (thJ’] _I_ T(g))uz,] 1f 7 = kO _I_ 17 . .7N _ 17 (3 8)
] 0, ife=1,...,ko,
(LhO,l(g)U)h] - { _5(Ah0u)i,j _ 7‘(8)?”7],7 if i = ko + 17 N .,N . 17 (3-19)
where the e-dependent relaxation factor is
2 2
SR (3.20)

7‘(5): @ @

The amplification factor, which is pg = 7(qo + r)~1, satisfies the same estimate, (3.17).

3.2 Boundary Layer

Following the definitions (2.34) and (2.37), we base the iterative solution in the boundary
layer on the splitting L(¢) = Ly o(e) + L1,1(¢), where

Lio(e)u = —d?u+ q(z,y)u, Lii(e)u= —58y2u. (3.21)
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Thus, the derivatives with respect to = are treated implicitly, those with respect to y
explicitly. The discrete approximations are

Wiy — 22U+ uiy
= 2
' hl,ac

(Ln1o(e)u); d 4 Gty Us s (3.22)

Ui g1 — 2U4 5 + w51

(th,l(g)u)m‘ = - h% (3.23)
7y

We proceed to estimate the amplification factor pq(e); cf. (2.40). We claim that Lié(e) is
bounded in norm by a(e)g_l/Q. In the boundary layer, the appropriate variables are £ =
£~1/2z and i = y; they extend over the rectangle (0, a(e)e='/?)x(0,1). Upon transformation
to the boundary layer variables, Lq o(¢) reduces to the differential expression —852 + ¢q. The
Green’s function for this Sturm-Liouville expression, subject to homogeneous (Dirichlet)
boundary conditions, is uniformly continuous, so the corresponding linear integral operator
considered on the space of continuous functions is bounded in norm by a(g)e=/2. Tt follows
that Lié(e) in £(X(9;)) is also bounded in norm by a(¢)e~'/2. This property carries over
to the discrete analog, ijll,o(g)- Of course, Lq1(¢) is unbounded, but its discrete analog,
Lp11(¢€),is bounded; in fact, its norm in £(X(Q41)) is 45h1_712/. Consequently, L}:1170(5)Lh171(5)
is en element of £(X (1)), and its norm is bounded by a constant multiple of a(e)gl/zhfé.
The latter quantity is of order (log(¢™'))™" on Q.. Hence,

~1
p1(e)=0 ((log(g—l)) ) on Q) (3.24)
so convergence is again assured for all sufficiently small e.

As in the regular domain, we can relax the iterative procedure without jeopardizing its
convergence. Instead of (3.22) and (3.23), we may take
Uitl,j = 2Uij + Ui,

(Lrio(e)u); ; = —¢ 72 + (qrazig + 7(e))ui g, (3.25)

Ui i — 22U+ -
(Lri(e)u), ; = —¢ Sha 2 ! L (e, (3.26)
1,y

where r is an e-dependent relaxation factor,

2e
1,y

The amplification factor, which is p; = 7(qo + r)~1, satisfies the same estimate, (3.24).

Given the asymptotic results (3.11), (3.17), and (3.24), we conclude from Theorem 2
that the Schwarz alternating procedure, combined with the iterative solution techniques,
converges at a rate of (log(e™1))~'.
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3.3 General Configurations

If Q is more generally a simply connected domain with smooth boundary, and a boundary
layer is adjacent to some part I' of the boundary, much of the preceding theory still applies.
In the boundary layer, we introduce a local coordinate system with coordinates s and t,
such that the Laplacian is represented in divergence form,

Agiu = (a(s, 1)) 05a(s, 1)0su + 0y(a(s, 1))  Opu; (3.28)

a is a known function of s and ¢, which is strictly positive and bounded. Such a coordinate
system certainly exists; see [30, Section 1V.8.2]. The regularizing transformation stretches
the coordinate in the s direction by a factor e='/2. Instead of (3.22) and (3.23), we have
the more complicated expressions

_1 ai+1/2,j(6ju)i,j - ai—l/?,j(és_u)iJ

(Lno(e)u); ; = —ea;; + Qhasi i g, (3.29)
3J »J hl s
-1 + -1 _
a; 1200 Wi — ag iy (67w
(Lhm(g)u)” = —¢ Jt1/2\ Jh J=1/2\71 17 (3.30)
! 1,¢
where a;1/9; = %(am‘ + it1,5)s 6% are the forward and backward differences in the s
direction,
(63 = T (70, = < (3.31)
1,s 1,s

and similarly in the ¢ direction. In the relaxed scheme, one takes a variable relaxation
—1 —1 -2
factor, r; ; = e(a; 12t ai7j_1/2)h17t.

D

4 A Singularly Perturbed Convection Problem

Next, we consider the singular perturbation problem
—eAu+p(a,y)0.u= fon Q,u=gon 0N, (4.1)

where p is strictly positive,
plz,y) > po > 0,(x,y) € . (4.2)

We assume that p is differentiable with respect to z, with a uniformly bounded derivative
on . Again, we take Q = (0,1)% The unperturbed equation prescribes the rate of change
of the solution in the z direction. If the boundary data are incompatible with this rate of
change, a boundary layer will develop. If the coefficient p is positive, the boundary layer
will be adjacent to the right edge, so I' = {1} x (0,1). Again, we assume that there are no
corner layers. The boundary layer coordinates are ¢ = e~(1 — z) and n = y.
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We decompose Q into two overlapping subdomains, Qo = (0,1 —b) x (0,1) and ©; =
(1—a,1)x(0,1),with 0 < b < a < 1. The overlap region is QN2 = (1 —a,1-0) x(0,1).
To obtain an asymptotically balanced scheme (Lemma 1), we require that a and b satisfy
the asymptotic order relations

a(e) = b(e) ~ clog(e™h). (4.3)
We impose rectangular grids on Qg and €4,

Qho = {(ih07$,jh07y)) 1= 0,. . ,NQU,] = 0,. . .,Ny},
th = {(1 —a+ ih17$,jh17y) 1= 0,. . ,NQU,] = 0,. . .,Ny}. (44)

The grids have a different number of mesh cells in the 2 and y directions, and the mesh
widths are hg, = (1 — b)/N, and hg, = 1/N, on Qo, hy, = a/N, and by, = 1/N,
on 3. We approximate the Laplacian by the usual five-point stencil and the derivative
in the z direction by backward differences. (If p is negative, the boundary layer is along
the left edge of the domain, and one takes the forward-difference approximation.) The
approximation is first-order accurate in the z direction and second-order accurate in the y
direction. According to (2.22), the truncation error satisfies the estimate

lus(e)la, — (e, Ml x(ay = O (N5 log(e™!) + Ny ?log(=™)) (4.5)

With the choice

-1 -1

N, = (5log(5_1)) , Ny = (51/2 log(g_l)) , (4.6)

we tie the grid ), in with . We write ;) and summarize the asymptotic behavior of the
mesh widths by

ho(e) = (ho(e), hy(€)) s hale) = (eha(e), hy(e)) (4.7)

where h, = N7t and hy, = Ny_1 are characteristic global mesh widths,
he(e) ~ elog(e™), hy(e) ~ '/ log(e ™). (4.8)

On (), the truncation error decreases almost linearly as ¢ | 0,

lua()lay., — ule, heD|x(@y.,) = O (clog(e™h)) . (4.9)

The asymptotic order of the propagation numbers of the Schwarz alternating procedure
can be computed [25, Lemma 5]. With the minimum overlap, we have (, ~ 1 and (| =

(log(¢71))™1, so
((e) = (log(e™ 1)~ (4.10)
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4.1 Regular Domain

On the regular domain, we use a cut-off function y, which is identically one in the overlap
region and zero one mesh cell beyond the overlap region,

- 0 if$§1—a—h07$I(N$—k0—1)h07ls,
x(e)(@.y) = { 1 ifl—a=(N,—kohop <2 <1—0b. (4.11)
The iterative procedure is based on the splitting L(¢) = Loo(e) + Lo(¢), where
Loou = —ex(e)Au+ p(z,y)0,u, Loiu= —e(1— x(¢))Au. (4.12)
The discrete approximations are
Phosisi(670,0ij i=1,... No—ko—1,
L ehu); ; = o . 4.13
( h0,0( ) ) & { ph0§i7](6h0,xu)i7] — 5(Ah0u)m, 1= N, — ko, .. .,Nl, — 1, ( )

S —5(Ah0u)m‘, iIl,...,Nl,—ko—l,
(Lnoa(e)u)i; = { 0 O (4.14)

where Sus - + S +
Uip1,5 — 25 + Wi1j U1 — 2U5 5 + Uy j—
(Apou)i; = +1.7 . W 1. + Jtl . W J—1 : (4.15)
0,z 0,y
(850 ,10)i = — b (4.16)
’ hO z

)

We proceed to estimate the amplification factor. The differential expression Lgg(e) is a
small perturbation of the first-order expression pd,, where p is positive everywhere. Its
inverse on the subspace Xo(€2g) of X () is a simple integral, so

(1650 0a(e)e) (o) = = [ 07 (o) (e +026) (eapyd= (41)

Upon integration by parts, we obtain
(L5b() Loa(e)e) (w,9) = —= { P10z - / 0.p71(2.9)0:¢(2.y) dz}

—€ /090 p (2. y)00e(z,y) dz. (4.18)

1

Here, p~" and its derivative with respect to the first argument are uniformly bounded.

The expression in the right member is certainly unbounded. But consider its discrete
analog. The integrals are replaced by sums, and derivatives by finite differences; function
evaluations take place on the grid. On each subinterval, we can estimate the derivate 0,e
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by QHeHhaé and the derivative d}e by 4H6Hh6712/. Thus, there exists a positive constant C'
such that

‘ (ijol,o(g)Lho,l(@e) '

Z7j

£ £
<Ol —+4+ — . 4.19
< (7= + 55 ) Mo (1.19)

The estimate shows that L] (¢)Lpo1(¢) is a bounded linear operator on X (o) and
that its norm is bounded by a constant multiple of 5haé + 5h6,12,- The bound is of order
(log(¢71))™! on Qp(e), 50

pole) = O ((log(e™) ™) on o), (4.20)
and convergence is assured for all sufficiently small e.

The iterative procedure can be relaxed,

(Ph02]‘|'7‘(€))(5;:0 u)z]v t= 17"-7N1’_k0_17
L el = T el WS . 4.21
(Lnoole)u)iy { Phoii, (00 p )iy — E(Apott)ij, @ = Ny —ko,..., Ny — 1, (4-21)
—€(Ah0u)i]‘—7‘(€)( hO u)i]‘, 1=1,..., Ny — kg — 1,
L = ’ w i 4.22
( hO,l({f)u) 2] { 0 ’LINx—ko,...,Nx—l, ( )
where :
r(e) = . (4.23)
hO,ac
The amplification factor satisfies the same estimate, (4.20).
4.2 Boundary Layer
For the iterative procedure, we take L(e) = ¢™! (L1 0(¢) + L11(¢)), where
Lio(e)u = —2u+ep(x,y)0pu, Lyj(e)u=—c*du. (4.24)
The extra factor ¢ is brought in for convenience. The discrete approximations are
Uig1,; — 2ui5 + U1 Uij — Ui—1,j
(Lpio(e)u), = —e2 =4 — — -t B ey (4.25)
" hl,l’ h17l’
(L)), ; = —e> 2t =200 T M, (4.26)

" h% y
?

We use an energy argument to estimate the amplification factor. We first analyze the semi-
discrete case, where 2 ranges over the interval (1 —a(e), 1) and y is discrete. In the nth step

of the iterative procedure, the error e;n) = ugm) — ugm’n) at y = y; satisfies the equation
(n—1) (n—1) (n—1)
n n €iv1 " — 2e; +e
— 2926l 4 epi(a) el = 2 é : (4.27)
7y
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on the interval (1 — a(e),1) and zero boundary conditions at the end points. (The index

m refers to the Schwarz step.) When we take the L*inner product over (1 — a(e),1) of
(n)
J

—(e,02%¢) = (Oye, 0pe) and (e, pjdue) = —%(e, €dyp;) with e = egn), we obtain the identity

g2 (agge;n),@xegn)) — 3 (egn),egn)aij) = €2h1_3/ (e(n) (n=1) _ Qe;n_l) + e(n_l)) . (4.28)

AR J—1

both sides of the differential equation with e}/, integrate by parts, and use the identities

We first estimate the quantity in the left member. (We drop the subscript 7 and the
superscript (n) on e temporarily.) The function 9,p is uniformly bounded, so there exists
a positive constant C' such that |(e, ed,p;)| < C(e,e). Using the inequality

(e,e) < a(e)*(0ye, Dpe), (4.29)

we conclude that |(e, edyp;)| < Ca(e)*(ye, Ore). But a(e) ~ elog(e™!), so we may assume,
without loss of generality, that C'a(¢)? < ¢ for all ¢; hence, |(e, €dyp;)| < (dre, dze). This
result leads to the following estimate of the quantity in the left member of (4.28),

‘52 (axegn),axegn)) — %5 (egn),egn)axpj)‘ > %52 (axegn),axegn)) ) (4.30)
Next, we proceed to the right member of (4.28). Using the Cauchy-Schwarz inequality and

the estimate (4.29) with e = egn), we readily obtain a uniform bound for the inner product,

(47, b7 = 2"V ) | < da(@)l|0ne o e D@y (431)
Here, we have introduced the abbreviation
1 llz2 (@) = sup{(f5, £)/2 5= 0,... N} (4.32)
Combining the inequalities (4.30) and (4.31) with (4.28), we find that
L (000, 0,687 < aa()hT 21006 1120l |20y (4.33)

Taking the supremum over all j, we obtain the desired energy estimate,
5100 20,y < da(@)h 31612 (q,)- (4.34)

Since the errors and their partial derivatives are uniformly bounded, the energy estimate
translates directly into an inequality involving the sup norms; in fact, for any f we have

112200 < ale) 21 lx ey < ale):fllzza,)- (4.35)

S50
171 x 0, < Ba(e)*h 31" Vlxay)- (4.36)

This result carries over to the discrete case. It shows that the amplification factor is bounded
by a constant multiple of a(e)thé. The latter quantity is of order e(log(e™"))™" on Q).
Hence,

pi(e) =0 (5 1og(5_1)) on Qp(e).- (4.37)
Given the results (4.10), (4.20), and (4.37), we conclude from Theorem 2 that the method
converges and that the convergence rate is of the order of (log(¢7!))™! as ¢ | 0.
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4.3 General Configurations

The preceding arguments generalize to the case where () is a simply connected domain with
smooth boundary. Let n denote the unit vector normal to 9f2 oriented toward the exterior
of Q. and let e, denote the unit vector in the direction of increasing z. We use the symbols
0_Q, 0p2, and 041 to denote the part of 92, where n - e, is negative, zero, and positive,
respectively. Because Q is simply connected, 9 is the union of these three disjoint sets.
We assume that the singular part of the boundary, T, is a subset of ;€ and that T is
described by an equation of the form z = ¢(y), where ¢ is smooth.

As usual, we decompose  into two overlapping subdomains, g and 4, where the
latter covers the boundary layer. To obtain a balanced scheme, we choose the thickness of
Q1 to be asymptotically of the order of ¢log(e~1).

In the boundary layer, we introduce nonorthogonal local coordinates s and ¢,

v . N\ 1/2
s=olp)—w, t= [ (1+@m?) " an (43%)
The inverse transformation is © = —s + ¢((t)), y = ¥(t). In terms of the new coordinates,
the differential equation in (4.1) assumes the form
—€ [020352 + ¢11050; + co20F + 1005 + 001315] u— pdsu = f. (4.39)

The coefficients ¢y, ... are known; they depend on t only, cog = coz = (1 4 (¢')?), e11 =

2¢'(1 4 (¢")Y?), 10 = ¢, and ¢o; = ¢'¢"(1 + (¢')?)~/2. The regularizing transformation

stretches the s coordinate by a factor e7!.

Instead of (4.24), we have

Lyio(e)u = —e? (czoafu + cloasu) + ep(s, t)0su,

L171(5)u = —82 (cnatasu + Cogafu + cmatu) ) (440)
and instead of (4.25) and (4.26),
I L 2 Uit1,5 — 2u 5 4 Uui—1,j Uy U1y S e 1Y)
( hLO(g)u)%] = =& | €20y 12 + c10;5 A + EDn1yi g A —
1,s 1,5 1,s
(4.41)
Ugg+1 — Ui—1,541 Ui g—1 — Ui—1,5-1
I, P—— . Jt it S LY | J
(Lraa(e)u)is = = [C“’f ( 201 s 201 s
Ui 41 — 2U5 5 + Ui i1 Ui j41 — U j—1
+eo;j— 72 Z — 4 m‘W] : (4.42)

The approximation is first-order accurate in s, second-order accurate in t.
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The amplification factor can be found with the same type of argument from an energy
estimate, but there is a complication because of the occurrence of the s-derivative in Ly ;.
Again, it is convenient to analyze the semi-discrete case. Instead of (4.28), we have the
more complicated identity

ez, (3se§n),8se(n)) — e (egn),egn)axpj) = ¢? [Cl# (egn),asegzl) — 856(@;1))

J 2hy ¢ 7=
€025 ( (n) (n—1) (n—1) (n-1) o155 ( (n) (n=1) _ (n-1)
-I-@ (ej €541 —er +e ) —I_Wu(ej €41 T €y )] . (4.43)
We find a lower bound for the quantity in the left member in the same way as before,
‘52020;j (asegn),asegn)) - %5 (egn),egn)axpj)‘ > %52 (8Se§n),8se§n)) . (4.44)

The expression inside the brackets in the right member of (4.43) satisfies a uniform estimate
of the type
11 < Ce2a(e) [AT10:e D 2,
‘|‘4h1_,3H€(n_1)HL2(91) + hl_,me(n_l)HB(Ql)] Hase(n)HB(Ql)- (4.45)
The desired energy estimate follows from (4.43), (4.44), and (4.45),
0.6 120y < Cale) [hi%H@se(n_l)HB(Ql) +4h 3" 2y + hf,%He(n_l)HB(Ql)] :
(4.46)
If we compare this inequality with the earlier estimate (4.34), we notice that the upper

bound contains a new term involving the L2-norm of the s-derivative of e(»=1 . It is not

possible to estimate this term in terms of the norm of (=1 ¢f. (4.35). We therefore take

a different approach, estimating the norms of ("1 in terms of the norm of d,e("~1),

U10se™ |20,y < Cale) [pr} + (4077 + b1} ) a(@)] 119567V 2y (4.47)

This result carries over to the discrete case. It shows that the amplification factor is bounded
by a constant multiple of a(¢) [hi% + (hi? + hl_;) a(e)]. The latter quantity is of order
/2 log(e~1) on Q) Hence,

,01(8) =0 (81/2 10g (8_1)) on Qh(s)' (448)
After n steps of the iterative procedure, we have

10,6 Lx(an) < (&) 211056 120y < () (p1())" 1906y (4:49)

which shows that the method also converges in the sup norm. The convergence rate is the
same and of the order of '/2log(¢~!) as ¢ | 0.
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The price one pays for the use of a nonorthogonal coordinate system is that the con-
vergence rate is of the order of ¢'/?log(e™"), instead of elog(¢~"). On the other hand,
with this nonorthogonal coordinate system the solution in the boundary layer is computed
on a Cartesian grid that is imbedded in the global Cartesian grid. In the example of the
next section, we demonstrate that this approach applies to ordinary transition layers as
well. Because the location of a transition layer is usually not known a priori, it is useful
to have a Cartesian grid that does not vary in the direction normal to the transition layer.
Also, it is easy to compute an approximation in the direction tangential to the transition
layer, because the first-order derivative of the solution is of minimal order in this direction.
For ordinary transition layers, the derivatives in the direction tangential to the front are of
order one, and the mesh width % ¢ must be of same order as the mesh width in the regular
domain, hy ¢+ & e(log(e™1))~L.

We note that the method used in this section to prove the convergence of the iterative
scheme does not work in the case of a singularly perturbed zero-order equation, —eAu+qu =
f, on a general domain ). In general, therefore, we cannot conclude that the use of a
nonorthogonal grid leads to a convergent algorithm for ordinary layers.

5 A Singularly Perturbed Turning-Point Problem

We demonstrate the application of the method to a two-dimensional turning point problem,
—ecAu+ p(z,y)0u =0on Q, Bu=gon 09, (5.1)

with @ = (—=2,2)x(—1,1), where a mixture of Dirichlet and Neumann conditions is imposed
on the boundary,

(Bu)(=2,y)=u(-2,y) = -1, (Bu)(2,y)=u(2,y)=1, —-1<y<l1, (5.2)
(Bu)(z,—1) = dyu(z,—1) =0, (Bu)(z,1) = (—0,u+dy)u)(z,1)=0, —-2<z<2. (5.3)
The coefficient p changes sign in €2,

- if y <0,

—x—y ify>0. (5-4)

plz,y) = {

Here, our interest is not so much in the theoretical analysis as in the numerical results.
The analysis of Section 3 needs modification at several points, because the estimates of the
propagation factor and the amplification numbers are more complicated. We will not go
into these details here. (A variant of the problem (5.1) was studied in [25].)

The solution of (5.1) has a transition layer inside € along the piecewise linear curve 5,

S={(z,y)e:a2=0ify<0,2=—-yify > 0}. (5.5)
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An asymptotic analysis shows that ug(e) = —1 + o(1) to the left of the transition layer,
and ug(e) = 14 o(1) to the right of the transition layer as ¢ | 0. The transition layer has
a complex structure. Away from the origin, it is essentially a one-dimensional transition
layer, so only the transverse coordinate needs to be stretched, but near the origin, it is a
true corner layer (codimension 2), and both coordinates need to be stretched simultaneously.
The corner layer variables are £ = ¢=%/2z and 5 = e=1/2y,

The domain decomposition now involves several different subdomains,
Q=0Q0UQ UQy, (5.6)

where each subdomain is in turn the union of two disjoint components,

B B 2 <z<P(y)—b B
QO—QO—UQO-I—v QO:I:—{(xvy)GQ' ¢(y)—|—b<x<2 > 1<y<1 > (5'7)
y>b
Ql:Ql—UQH-v My = (x,y)€Q|x—¢(y)| <a, y < —b ) (58)
Qo ={(z,y)€eQ:|e -y <a,—-a<y<a}, (5.9)
Here, 0 < b < @ € 1; @ and b satisfy the asymptotic relations
a(e) ~ b(e) ~ e'/?log(e™"). (5.10)

We impose a regular grid on €, which we refine in the transition layer, and use the same
finite-difference approximations for the Laplacian and the partial z-derivative as in Sec-
tion 4, so the approximation is first-order accurate in z, second-order accurate in y. Asymp-
totically, the mesh widths satisfy the relations

ho(e) & (ho(€), hy(€)), ha(e) = (2 ha(e) hy(e))s hale) = (e Pha(e), e 2Ry e)),  (5.11)
where
he(e) ~ elog(e™), hy(e) ~ '/ log(e ™). (5.12)
The truncation error is linear in ¢, apart from a logarithmic factor.

In the Schwarz procedure, we alternate the computation on the regular domain, Qg, with
the computation in the layer, 4 U 5. In the layer, in turn, we alternate the computation
away from the origin, in )y, with the computation in the corner layer near the origin, 5.

On the regular domain, €, we take a cut-off function y, which is one in the domain of
overlap with the layer and which decays exponentially to zero in the regular domain away
from the layer. On )y, convection dominates. The iterative procedure could be based on
the same decomposition as in Section 4.1, —ex(e)Au+p(z, y)0yu = (1 —x(g))Au, or on the
even simpler decomposition p(z,y)0,u = ¢Au. However, to benefit from the convergence
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of the Schwarz procedure, it is preferable to retain part of the perturbation, at least in the
domain of overlap. We have therefore implemented a simplified version,

—ex(e)07u+ p(x,y)dpu = (1 — x(€))dou + €0y u, (5.13)

where only the second-order derivative with respect to y is treated explicitly. This pro-
cedure leads to a nicely parallel algorithm. Still better would be to use a nonorthogonal
decomposition of the Laplacian in Q¢ N {y > 0}. In either case, we can apply Dirichlet
boundary conditions on the interfaces in the transition layer.

The transition layer is essentially a one-dimensional phenomenon. On €}4_, the part of
the transition layer in the lower half plane, the z direction is normal to the front; = needs
to be stretched, but y does not. The iterative scheme is based on the splitting

—ed*u+ p(a,y)0u = 58y2u. (5.14)

Although a poor initial guess for the Schwarz procedure may lead to a second-order deriva-
tive with respect to y that is large in the overlap region with 5_, it is our experience that
the solution straigthens out rapidly. On 4, the part of the transition layer in the upper
half plane, the normal direction to the front is (1,1)". The first-order term of the expansion
of the exact solution is insensitive to the direction of the stretched variable as long as this
direction is transverse to the front. The other space direction used in the change of variables
must be tangential to the front; otherwise, the second-order term of the formal expansion
is of the same order as the first-order term, and the expansion is not valid. We therefore
make a change of variables, s = 2 + y, t = y. In the (s,?)-coordinate system, the Laplacian
is represented by 20%u + 20,0;u + 0?u. We then base the iterative scheme on the splitting

— 2e0%u 4 p(x, y)0su = £(20,0:u + 0 u). (5.15)

On S5, we have s = 0, so it is easy to obtain a finite-difference approximation of the cross
derivative and the second-order derivative with respect to ¢. In fact, we chose S as in
(5.5) precisely to obtain a two-dimensional turning point problem with a very elementary
numerical implementation. In principle, however, there is no restriction on the curve S as
long as the angle between the tangent to 5 and the coordinate direction that is stretched
is at least %ﬂ'.

Finally, in the corner layer, £}, the derivatives with respect to both z and y are treated
implicitly. The approximation scheme leads to a sparse matrix that is irreducible and
diagonally dominant. Since the mesh on {25 is a local refinement of the global mesh by a
factor £1/2, and we need at least four points of the global mesh across 5, the number of
mesh points on € is at least 161, Thus, even though the size of the corner layer is small,
the fact that we treat both = and y derivatives implicitly on €, puts an effective lower
bound on the values of ¢.
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5.1 Numerical Results

We have implemented the method outlined in the present article and solved the singular per-
turbation problem (5.1) with various parameter values. Here, we comment on the solution
obtained with ¢ = 0.005, N, = N, = 10, a mesh refinement factor of 10 in the layer, and a
minimum overlap between the various subdomains. The mesh widths are hg, = hg, = 0.2
on the regular domain (coarse grid), hy , = 0.02, hy , = 0.2 in the transition layer, away
from the origin; and Ay, = hy, = 0.02 in the corner layer. The cut-off function x involved
in the solution on )y is one in the overlap with the layer, extends two mesh cells into the
regular domain, and vanishes beyond. We used seven Schwarz iterations to alternate be-
tween g and the layer (m = 7 in Theorem 2), and two Schwarz iterations within the layer
to alternate between € and 3 (m = 2 in Theorem 2). On Qg and ©y, we made three
iterations on each subdomain, (ng = ny = 3 in Theorem 2)); on Qy, we solved the linear
system directly. Thus, the total number of steps was 14 on g, 42 on 4, and 21 on €.

Figure 1 gives the solution computed on the coarse grid. The front is sharp, but the
resolution is clearly inadequate in the layer. Figure 2 complements Figure 1 and shows the
solution on the fine grid in the transition layer. Figure 3 gives the solution in the various sub-
domains. Figure 4 illustrates the global convergence; the ratio ||u("+1) — (™) HX(Q)/Hu(m) —
u(m_l)HX(Q) in successive steps (m) of the Schwarz alternating procedure is approximately
0.09. The same calculation with ¢ = 0.01, when the refinement factor is exactly 10, resulted
in slower convergence. The observed convergence rate was 0.15, which is consistent with
the statement that the convergence rate is of the order of (log(¢7!)). Figure 5 shows the
convergence record on the various subdomains.

Convergence is very fast in all cases. Also, the smaller the ratios ¢/hg and ¢/hs, the
faster the convergence. Of course, these ratios must not be too small, because otherwise
the solution in the corner layer becomes unreasonably expensive. The choice hg = 0.2 and
hy = 0.02 for £ = 0.005 is a good compromise.

The iterative procedure in €4 is not doing well at the beginning of the iterative process.
Our initial condition for the Schwarz procedure was a numerical solution of the problem,
obtained with a direct method and ¢ = 0.1. In the layer, this solution is quite far from
the solution with ¢ = 0.005. Consequently, the solution varies rapidly in the overlap region
Q1 NQy at the beginning of the iteration process. The second-order derivative of the solution
in the direction tangential to the front is not small, and the splitting of the operator is not
very efficient.

The method has a high degree of parallelism at the domain-decomposition level and at
the level of the iterative procedures on each subdomain. At the domain-decomposition level,
however, the method does not scale. One may wish to use classical domain decomposition
in the regular domain for convection-dominant problems and in the corner layer for elliptic
problems. We have not explored these options. In the transition layer, one could use a line
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of processors to solve each ordinary differential equation in parallel. In the regular domain,
we have the classical method of lines with the same type of one-dimensional structure for
parallelism. Nevertheless, it is difficult to implement the proposed method efficiently on a
parallel architecture. In contrast to the approach first proposed in [25], we no longer use the
same scheme on each subdomain. Therefore, simply keeping the degrees of freedom the same
on each subdomain will not guarantee proper load balancing. The use of an asynchronous
method may seem appropriate at first sight, but, in fact, a totally asynchronous version
hides the difficulty. The solution will certainly converge faster on some subdomains, so
every compute node can be kept busy, but the efficiency will not be balanced evenly. With
a fixed geometry of the subdomains and a fixed number of iterations on each subdomain,
as in the turning-point example, it is relatively easy to compute a priori the computational
cost of each procedure and balance the tasks on a network of processors. Whether one
can implement a heterogeneous domain-decomposition method efficiently with a dynamic
load-balancing procedure on a massively parallel architecture is still an open question.

Appendix A Some Concepts of Asymptotic Analysis

In this appendix we summarize some relevant results of asymptotic analysis and singular
perturbation theory. For details, we refer the reader to our notes [31,32]

Order relations for scalar-valued functions. Two positive-valued functions f and g,
defined and continuous on some interval (0,c9) with g9 > 0, satisfy the asymptotic order
relation f = O(g) as € | 0 if there exists an ¢g > 0 and a positive constant C', which may
depend on ¢g but not on ¢, such that f(¢) < Cyg(e) for all ¢ € (0,£0); f = o(g) as e | 0
if, for every positive constant ¢, there exists an g > 0, which may depend on ¢, such that
f(e) < cg(e) for all ¢ € (0,20); f = O%g)if f=0(g)and f#o(g); f=gif f=0(g)and
g=0(f); [ ~gif f—g=o(1).

Order relations for vector-valued and variable functions. The asymptotic order
relations carry over to vector-valued functions. Suppose X and Y are normed vector spaces
of functions defined on the domains Qx and Qy, respectively. Let u : (0,¢9) — X and
v : (0,e0) — Y be such that the mappings f : ¢ — [Ju(e)||x and ¢ : ¢ — ||v(¢)]|y are
continuous on some interval (0,e0). Then u = O(v)ase | 0if f =0O(g) as € | 0, et cetera.
Variable functions are covered through the identifications u(e)(z) = u(e, ) for all 2 € Qx,
v(e)(y) = v(e,y) for all y € Qy.

Asymptotic approximations. Asymptotic approximations are defined with respect to
a “gauge”—that is, an asymptotically ordered set of order functions. An order function is a
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positive-valued monotone function on (0,9). A gauge is a set & = {6,(¢):n=0,1,...} of
order functions ¢, on (0,¢q), which satisfy the order relation é,41 = o(é,,) for n = 0,1,...
as € | 0. In most applications, one has 6, = 6" for n = 0,1,..., where ¢ is a fixed-order
function; for example, §(¢) = ¥ with v > 0, or 6(¢) = (log(¢71))~ 1.

Given two mappings u, u, : (0,e9) — X, we say that u, is an asymptotic approximation
of order 6, if u — u,, = 0(6,,) as ¢ | 0.

Regular asymptotic expansions. A regular asymptotic expansion is an asymptotic
approximation of the form u,(e) = 3, é:(¢)v;, where v; € X, v; independent of ¢. The
coeflicients »; in a regular asymptotic expansion are defined with respect to the specific
gauge; they are unique and can be determined successively by taking limits in X.

If a function w admits a regular asymptotic expansion to any order, we say that the
sequence {u, : n =0,1,...} converges asymptotically to u as ¢ | 0. Notice that asymptotic
convergence is much weaker than ordinary convergence, which concerns the behavior of the
sequence as n — oo at a fixed value of . An asymptotically convergent sequence need not
converge in the ordinary sense.

Singular perturbation problems. Of particular interest for applications are asymptotic
expansions in spaces of continuous functions, where convergence means “uniform conver-
gence.” The coeflicients »; in a regular asymptotic expansion are then obtained as uniform
limits of continuous functions and are therefore themselves continuous. In singular pertur-
bation problems, the limiting procedure breaks down, because of a lack of uniformity, and
singular (boundary and transition) layers develop as ¢ | 0. The limiting procedure works
on compact subsets of Q (“regular subdomains”), but not on Q, and a separate asymptotic
analysis is needed in the singular layers.

Singular layer analysis. In many instances, it is possible to regularize the singular
boundary value problem locally in a singular layer. The regularization requires the existence
of a transformation 7(¢) : z — &, defined for all ¢ € (0,¢), which is monotone, one-to-one,
invertible, and which stretches the transverse coordinate across the singular layer “in just
the right way.”

Suppose the singular layer is a boundary layer and is adjacent to a smooth manifold T’
(an open subset of the boundary d€?). The transformation 7(¢) maps  one-to-one onto
7(€)(£2) and establishes a continuous mapping between X (€2) and X (7(¢)(€)). In particular,
it sends the solution ug(e) of (1.1) into a function U(e),

U)&)=U(e, &) =uale,z), E=T1(e)x, x € Q. (5.1)
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The domains 7(¢)(Q) are nested: 7(e1)() C 7(e2)() if €1 > 3. The union,
T(Q) = UEE(O,EQ)T(g)(Q)7 (52)

is a subset of R%, which is unbounded in the directions transverse to the singular part of the
boundary. The set X (7(£)) of all continuous functions on 7(£), endowed with the inductive
limit topology,

X(7(Q)) =lim ind. o X (7(e)(Q2)), (5.3)

is a complete normed vector space [33, Section 50]. This space is the proper framework for
the asymptotic analysis of the function U(e). Convergence in X (7(€)) is uniform conver-
gence on compact subsets of 7(Q).

The family of stretching transformations 7 = {r(¢) : ¢ € (0,20)} is a regularizing
transformation for (1.1) in the boundary layer if, first of all, there exists a gauge with respect
to which U(¢e) admits a regular asymptotic expansion on any (e-independent) compact subset
of 7(2), and if, furthermore, the domain of validity of this regular asymptotic expansion
extends to any compact subset of 7( U I'). The boundary layer is the pre-image of any
such compact subset, and the stretched coordinates £ = 7(¢)z defined by the regularizing
transformation are the “boundary layer variables.” The regular asymptotic expansion of
U(e) yields an asymptotic expansion (though not a regular asymptotic expansion) of ug(e)
in the boundary layer. This expansion must then be matched to the regular asymptotic
expansion in the regular subdomain.
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Figure captions.

e Figure 1. Solution of (5.1) on coarse grid
o Figure 2. Solution of (5.1) and computational grid in the transition layer

o Figure 3. Solution of (5.1) on the subdomains (clockwise from top left): regular
subdomain, g; lower transition layer, €24_; corner layer, 5; upper transition layer,

Q1

e Figure 4. Global convergence of the Schwarz alternating procedure; e(m) = [Jul™ —
(m—l)H

e Pigure 5. Convergence of the iterative procedure on the subdomains (clockwise from
top left): corner layer, Q3; lower transition layer, ©4_; regular subdomain, Q¢; upper
transition layer, Q14 e(n) = ||u(®) — U(n_l)HX(Qi).
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