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Heterogeneous Domain Decomposition for SingularlyPerturbed Elliptic Boundary Value ProblemsAbstractA heterogeneous domain-decomposition method is presented for the numerical so-lution of singularly perturbed elliptic boundary value problems. The method, whichis parallelizable at various levels, uses several ideas of asymptotic analysis. The sub-domains match the domains of validity of the local (\inner" and \outer") asymptoticexpansions, and cut-o� functions are used to match solutions in neighboring subdo-mains. The positions of the interfaces, as well as the mesh widths, depend on the smallparameter, ". On the subdomains, iterative solution techniques are used, which mayvary from one subdomain to another. The global convergence rate depends on "; itgenerally increases like some power of (log("�1))�1 as " # 0. The method is illustratedon several two-dimensional singular perturbation problems.1 IntroductionWe are interested in the numerical solution of singularly perturbed second-order ellipticboundary value problems with Dirichlet boundary data, generically represented by theequations L(")u = f on 
; u = g on @
: (1:1)Here, 
 is a bounded domain in Rd, whose boundary @
 is Lipschitz continuous; " is a smallpositive parameter, " 2 (0; "0) say, where "0 is arbitrarily small positive but �xed; L(") isa di�erential expression, uniformly elliptic for every " 2 (0; "0), which reduces formally toa lower-order di�erential expression L(0) as " # 0. The functions f and g are given; theyare de�ned on 
 and @
, respectively. We assume that (1.1) has a unique classical solutionu
(") 2 C2(
) \ C(
) for every " 2 (0; "0). The point values of u
(") are u
(")(x) =u
("; x), x 2 
. The set of all solutions u
(") de�nes a mapping u
 : (0; "0)! X(
).Notation. In general, we use the symbol X(�) to denote a �nite- or in�nite-dimensionalBanach space of functions de�ned on the argument set, endowed with the topology ofuniform convergence.Solutions of singular perturbation problems typically display rapid variations acrossnarrow regions (boundary layers, transition layers, fronts). These variations pose obviousobstacles to an e�cient numerical solution scheme. Although singular perturbation prob-lems have been studied extensively in asymptotic analysis [1{7] , the results of these studieshave, at least so far, not found their way into computational algorithms. To the best ofour knowledge, Chin et al. [8] were the �rst to suggest a domain-decomposition algorithmbased on asymptotic arguments. Subsequent references addressing domain decomposition1



in the context of singular perturbation problems are [9{17]. Conference proceedings [18{23]are an excellent source for articles on domain decomposition in general, but they do notaddress the issues involved in the solution of singular perturbation problems.In the present article, we construct, in a systematic way, a heterogeneous domain-decomposition method for the numerical solution of (linear) singularly perturbed ellipticboundary value problems. The method is inspired directly by the method of matchedasymptotic expansions and incorporates several concepts of asymptotic analysis; for exam-ple, the subdomains correspond to the \regular domains" and the \singular layers," andsolutions on neighboring subdomains are \matched" by means of cut-o� functions. (Weprefer, and will use, the terms \regular domain" and \singular layer," instead of the morearcane expressions \outer" and \inner" domain customary in asymptotic analysis.) Theposition of the interfaces depends on the small parameter, ", and is determined in sucha way that the truncation error is asymptotically of the same order on each subdomain.The domain decomposition is combined with a Schwarz alternating procedure, which al-ternates between the regular domains and the singular layers, and an iterative solution oneach subdomain. The Schwarz procedure is implemented in its most elementary form: thesubdomains overlap, and Dirichlet data are speci�ed at the interfaces [24]. Thus, it is easyto couple di�erent approximations on the various subdomains. The procedure requires thetemporary speci�cation of data in the interior of 
, and its convergence depends on theway these data propagate into the interior of the domain. As was shown in [25], the propa-gation factor can be made arbitrarily small for the most common �nite-di�erence schemes,provided the mesh size is properly chosen as a function of ". On each subdomain, theiterative method is designed to generate successive terms in the asymptotic expansion ofthe solution. By judiciously choosing the mesh widths as functions of the small parameter,we achieve convergence of the asymptotic expansions in the classical sense for �xed (butsu�ciently small) values of ". The iterative solver may vary from one subdomain to another,so the method is truly heterogeneous. The global convergence rate of the method generallyimproves like some power of (log("�1))�1 as " # 0.The algorithm was designed from the perspective of parallel computing. It o�ers par-allelism at the large-granularity level (domain decomposition) and at the small-granularitylevel (subdomain solution). Moreover, it solves irregular structures such as boundary lay-ers and transition layers on Cartesian grids with large aspect ratios. Thus, a regular datastructure is maintained, and the potential for parallelism is preserved. Load balancing re-mains a critical issue in the parallel implementation. Even if the number of iterations persubdomain is chosen to match the estimated convergence rate, di�erent numbers of proces-sors may have to be assigned to di�erent subdomains to balance the cost of the iterativesolvers. Some of the ideas described in this article have been implemented and used to solvenonlinear boundary value problems on MIMD architectures [26{28].The method is described in detail in Section 2 and illustated on a singularly perturbeddi�usion problem (Section 3), a singularly perturbed convection problem (Section 4), and2



a turning-point problem (Section 5). Several relevant concepts of asymptotic analysis aresummarized in Appendix A.2 Description of the MethodIn singular peturbation problems of the type (1.1), the domain 
 decomposes naturally intoregular subdomains and singular layers. A singular layer may be situated in the interior of 
between two regular subdomains (transition layer) or adjacent to (a part of) the boundary@
 (boundary layer).By de�nition, a regular subdomain is a subset of 
, where the solution admits a regularasymptotic expansion. The expansion is an asymptotic approximation to the solution onthe regular subdomain. Characteristically, the expansion does not extend to an asymptoticapproximation on the entire domain, because of the presence of singular layers. However,in a singular layer there usually exist special local variables (layer variables), which arescaled versions of the original variables, in terms of which the solution does have a regu-lar asymptotic expansion. The scaling factor de�ning the layer variables depends on thesmall parameter. It then becomes a matter of matching this local expansion to the regularasymptotic expansion in the neighboring regular domain. The idea of decomposing the do-main into regular subdomains and singular layers, constructing asymptotic expansions oneach subdomain, and matching expansions across interfaces is at the heart of the methodpresented in this article.Before describing the method proper, we illustrate the ideas on a simple example,L(")u � �"�u + u = f on 
; u = g on @
; (2:1)where g is the trace of f on @
. In this case, there are no singular layers, and the solutionu
(") admits an asymptotic approximation on the entire domain 
. The approximation hasthe form of a regular asymptotic expansion in powers of ". That is, there exist functionsvi that do not depend on ", such that the di�erence between u
(") and the partial sumu(n)(") = Pni=0 "ivi vanishes as " # 0 for each (�xed) n, n = 0; 1; : : : . The functions vi areobtained recursively; v0 = f on 
, and v1; v2; : : : are found by solving the boundary valueproblem vi = �vi�1 on 
, vi = 0 on @
, successively for i = 1; 2; : : : . Thus, the regularasymptotic expansion is generated by the iterative procedureu(n) = f + "�u(n�1) on 
; u(n) = 0 on @
; n = 1; 2; : : : ; (2:2)starting with u(0) = f . The expansion does not converge in the classical sense, as n ! 1,because the Laplacian de�nes an unbounded operator in the underlying vector space.The concept of asymptotic convergence, on which the preceding argument is based, is notvery useful for computational purposes. Because " is given, it cannot be made arbitrarily3



small, and if " is �xed, we do not have convergence as n ! 1. But we claim that thediscrete analog of (2.2) is worth considering. Suppose 
h is the computational grid on 
and �h is the discrete approximation to the Laplacian on 
h. The discrete analog of (2.2)is u(n) = fh + "�hu(n�1) on 
h; u(n) = 0 on @
h; n = 1; 2; : : : ; (2:3)with u(0) = fh. It generates a sequence, fu(n)("; h) : n = 0; 1; : : :g, of vectors u(n)("; h)on 
h. Whether this sequence converges as n ! 1 depends on the norm of the operatorde�ned by the expression "�h on the underlying vector space. For most approximationschemes, the discrete Laplacian �h de�nes an operator whose norm is bounded by some(negative) power of the mesh width, h�p say. Suppose that h is allowed to vary with ",and suppose, in particular, that "(h("))�p = o(1) as " # 0. The mapping de�ned by "�h isthen a contraction for all su�ciently small ", and the sequence fu(n)("; h(")) : n = 0; 1; : : :gconverges in the classical sense (that is, as n!1) for each su�ciently small, but �xed, ".The limiting function, u("; h(")), is the solution of the discrete analog of (2.1) on the grid
h("), L("; h("))u � �"�h(")u+ u = fh(") on 
h("); u = gh(") on @
h("): (2:4)The truncation error|the distance between the trace of u
(") on 
h(") and u("; h("))|canbe estimated in terms of the mesh width h(") by the usual methods of numerical analysis.The discrete iterative procedure (2.3) thus leads to a computationally useful algorithm.The example shows that the crucial ingredient of the method is the boundedness of�h. Whereas the Laplacian � leads to an unbounded operator, its discrete approximation�h de�nes a bounded operator. The bound may (and does) depend on the mesh widthh, but if h depends on the small parameter, ", and we choose the functional dependenceasymptoptically speaking \just right" as " # 0, we generate a sequence of approximationsthat converges in the classical sense for each �xed (but su�ciently small) ". In essence,we propose to take limits along certain admissible curves S = f("; h(")) : " 2 (0; "0)g inthe ("; h)-plane. All admissible curves terminate in the origin within an asymptoticallyprescribed cone as " # 0. Thus, while asymptotic convergence is concerned with limitsalong lines of constant h and classical convergence with limits along lines of constant ",we propose a new paradigm by combining aspects of both. Given this idea, the remainingdi�culties are primarily technical: How to design e�cient iterative solution techniques onthe subdomains, and how to combine the expansions generated by the iterative solvers onthe subdomains into a global solution on the entire domain.2.1 Domain DecompositionConsider the singular perturbation problem (1.1). To miminize the complexity of the pre-sentation, we assume that the problem has a single boundary layer, which is adjacent to asmooth part � (the singular part) of @
. More complicated situations can be handled by adivide-and-conquer technique, as will be evident from the example in Section 5. Generally,4



� is a manifold of codimension d0, where d0 may be any integer less than or equal to d. Ifd = 2, the two possible con�gurations correspond to a (true) boundary layer (d0 = 1) anda corner layer (d0 = 2).As a �rst step, we decompose 
 into two overlapping subdomains,
 = 
0 [ 
1; 
0 \ 
1 6= ;: (2:5)The index i identi�es the subdomain; our convention is that i = 0 refers to the regularsubdomain, i = 1; 2; : : : to the singular layers. (In this case, there is only one singular layer,so i = 1.) The boundaries @
0 and @
1 coincide partially with @
; the complementaryparts are the interfaces �0 and �1,@
i = (@
i \ @
)[ �i; �i = @
in(@
i \ @
); i = 0; 1: (2:6)Thus, �0 � 
1 and �1 � 
0. The position of the interfaces may vary with ". Note that thesingular part of the boundary, �, is a subset of @
1n�1.The decomposition (2.5) must satisfy the following asymptotic relations as " # 0:diamj(
0) = O](1); j = 1; : : : ; d; (2:7)diamj(
1) = o(1); j = 1; : : : ; d0; diamj(
1) = O](1); j = d0 + 1; : : : ; d; (2:8)diamj(
1) � distj(�;�0); j = 1; : : : ; d0: (2:9)Here, diamj denotes the diameter in the direction of the jth coordinate. The conditions(2.7) and (2.8) reect the fact that the boundary layer becomes in�nitesimally thin in the�rst d0 coordinate directions as " # 0. The condition (2.9) implies that, in each directiontransverse to �, the diameter of 
1 remains comparable to the distance from � to �0 as" # 0.The decomposition (2.5) induces a decomposition of the boundary value problem (1.1),L(")u = fi on 
i; u = gi on @
i; i = 0; 1; (2:10)where fi = f j
i ; gi = ( g on @
in�i;iu
(") on �i: (2:11)Here, i is the trace operator on �i. The solution of (2.10), which we denote by ui("),coincides with the restriction of u
(") to 
i,ui(") = u
(")j
i : (2:12)5



2.2 Discretization ProcedureFor the numerical solution of (1.1), we impose a uniform grid on 
. To avoid the need forinterpolation on the interfaces, we assume that this grid conforms with the overlap region
0 \
1. We re�ne this grid uniformly in the boundary layer. Let 
h0 denote the set of allpoints of the coarse grid that belong to 
0 and its boundary @
0, and 
h1 the set of allpoints of the �ne grid that belong to 
1 and its boundary @
1. If necessary, we distinguishbetween points of 
hi (i = 0; 1) that lie inside 
i (also denoted by 
hi) and points that lieon the boundary @
i of 
i (denoted by @
hi). The composite grid is 
h = 
h0 [ 
h1.On each grid 
hi, the mesh widths generally vary from one coordinate direction toanother; hence, 
hi is characterized by a vector of mesh widths hi = (hi;1; : : : ; hi;d). Themesh widths may depend on ", but we impose the restriction that, in any direction (indexj), the number of grid points on each subdomain (index i) is asymptotically of the sameorder as " # 0, diamj(
i)hi;j � Nj; j = 1; : : : ; d: (2:13)The quantities Nj may depend on ", but not on i.We approximate each boundary value problem (2.10) by a discrete problem,Li("; hi)u = fi on 
hi; u = gi on @
hi; i = 0; 1: (2:14)The order of the approximation may vary by subdomain, and even by direction within asubdomain, so the procedure is truly heterogeneous. We denote the solution of (2.14) byui("; hi).The accuracy of the discretization procedure is measured by the truncation error. Weassume that there exist (positive) integers (kj ; lj) such that, on each subdomain 
i,kui(")j
hi � ui("; hi)kX(
hi) = O0@ dXj=1 hkji;j(diamj(
i))ljk@kj+ljj uikX(
i)1A ; (2:15)as " # 0. The exact values of kj and lj are unimportant; eventually, these integers areabsorbed in the constants in the asymptotic equivalence relation of Lemma 1 below. Hence,if they vary from one subdomain to the next, it su�ces to identify kj and lj with the largestamong the integers ki;j and li;j, respectively. We also subsume all mixed partial derivativesunder the highest-order partial derivative in each direction.2.3 Truncation ErrorThe domain-decomposition and discretization procedure leads to an asymptotically balancedapproximation scheme if the condition (2.13) is satis�ed and if, in addition, the truncation6



errors on the subdomains are asymptotically of the same order as " # 0. The latter conditionimposes a constraint on the choice of the interfaces.Lemma 1 Suppose the transformation that regularizes (1.1) in the boundary layer stretchesthe jth coordinate by a factor "��j . Then the domain decomposition (2.5), combined with thediscretization procedure (2.14), results in an asymptotically balanced approximation schemeif diamj(
1) � "�j log("�1).Proof. The proof requires an evaluation of the estimates (2.15). We introduce the notationaj = diamj(
1); bj = distj(�;�0); (2:16)for j = 1; : : : ; d0 . Because 
0 \
1 has a nonempty interior, we have bj < aj . The numbersaj and bj depend on "; the conditions (2.7) and (2.8) imply that aj = o(1), bj = o(1), andaj � bj for j = 1; : : : ; d0 as " # 0. If convenient, we extend the de�nition of aj by takingaj = 1 for j = d0 + 1; : : : ; d.With hj = 1=Nj , it follows from (2.13) that h0;j � hj and h1;j � ajhj .On 
0, the regular domain, the solution u0(") is the sum of an n-term asymptoticexpansion and a boundary layer correction. The n-term asymptotic expansion de�nes asmooth function of position, which is O](1) and whose derivatives are O(1) as " # 0. On thescale of the boundary layer variables (�), the boundary layer correction and its derivativesdecay exponentially with the distance from �. Since � is at least a distance bj away fromany point of 
0, we have �j � bj"��j . Any derivative with respect to xj corresponds to "��jtimes the derivative with respect to �j . Hence, @mj u0(") = O (1 + "��jm exp (�j"��j bj(")))for some positive constant j , andk@kj+ljj u0kX(
0) = O �1 + "��j(kj+lj) exp ��j"��j bj(")�� : (2:17)Next, consider the solution u1(") on 
1. The transformation from the original variables(x) to the boundary layer variables (�) sends u1(") into a function U1("), which is O](1)and whose partial derivatives (with respect to the variables �j) are O(1) as " # 0. Everyderivative with respect to xj corresponds to "��j times a derivative with respect to �j .Hence, @mj u1 = O("��jm), andk@kj+ljj u1kX(
1) = O �"��j(kj+lj)� : (2:18)Using the results (2.17) and (2.18) in (2.15), we �ndku0(")j
h0 � u0("; h0)kX(
h0) = O0@ dXj=1hkjj �1 + "��j(kj+lj) exp ��j"��j bj(")��1A ; (2:19)7



ku1(")j
h1 � u1("; h1)kX(
h1) = O0@ dXj=1 hkjj �"��jaj(")�kj+lj1A : (2:20)These estimates show that the order of the truncation error decreases exponentially withthe order of bj on 
0 and increases algebraically with the order of aj on 
1. If aj � bj , asrequired, then the truncation errors balance if�"��jaj(")�kj+lj � 1 + "��j (kj+lj) exp ��j"��jaj(")� : (2:21)This asymptotic equivalence relation holds if "��jaj(") � log("�1).We summarize the results of this and the preceding section in the following theorem.Theorem 1 (Accuracy) Suppose that the domain decomposition (2.5) satis�es the con-ditions (2.7), (2.8), and (2.9) and that the grids imposed on the subdomains satisfy theconstraint (2.13). If the approximation scheme is asymptotically balanced, thenku
(")j
h � u("; h)kX(
h) = O0@ dXj=1N�kjj log("�1)1A : (2:22)Note that we have lumped all powers of the logarithm into one. The estimate (2.22) ismeant to convey the fact that the truncation error is determined primarily by a characteristicmesh width, hj = N�1j , which generally vanishes like a power of ", but the accuracy ismitigated somewhat by a logarithmic correction factor.2.4 Schwarz Alternating ProcedureThe decomposition (2.10) leads in a natural way to a simple Schwarz alternating procedure,where one solves a Dirichlet boundary value problem alternatingly on 
0 and 
1. Theprocedure, though simple, is particularly suited to heterogeneous methods, where di�erentsolution techniques, or even di�erent representations of the boundary value problems, maybe used on di�erent subdomains. Moreover, the simple Schwarz alternating procedure, whenimplemented with overlapping subdomains, constitutes a direct analog of the matchingprocedure of asymptotic analysis.The discussion in this section applies equally well to the solution of the continuousboundary value problem (2.10) and to the solution of its discrete analog, (2.14). We adoptthe continuous point of view, even though we will apply the results later to the discretecase. Since the parameter " does not play a role in the present section, we suppress ittemporarily. 8



The Schwarz alternating procedure for (2.10) isL0u = f0 on 
0; u = g(m)0 on @
0; L1u = f1 on 
1; u = g(m)1 on @
1; m = 0; 1; : : : :(2:23)The inhomogeneous terms f0 and f1 do not vary throughout the iterative process,fi = f j
i ; i = 0; 1: (2:24)The boundary data g(m)0 and g(m)1 , on the other hand, vary from one step to the next, asthey depend on the trace of the solution of the preceding boundary value problem on theinterface. Let i denote the trace on �i (i = 0; 1).At the initial step (m = 0), we take g(0)0 = g on @
0n�0 and assign arbitrary values tog(0)0 on �0. Having found the solution, u(0)0 , of the boundary value problem (2.23) on 
0,we take g(0)1 = g on @
1n�1 and g(0)1 = 1u(0)0 on �1 and determine the solution, u(0)1 , of theboundary value problem (2.23) on 
1. After this initial step, we proceed successively form = 1; 2; : : : , takingg(m)0 = ( g on @
0n�0;0u(m�1)1 on �0; g(m)1 = ( g on @
1n�1;1u(m)0 on �1: (2:25)The convergence of the Schwarz method depends essentially on the way errors introducedon the interfaces propagate into the subdomains.Consider the boundary value problemL0e = 0 on 
0; e = ( 0 on @
0n�0;0e1 on �0; (2:26)where e1 2 X(
1) is given. The solution of this boundary value problem is an element e0 2X(
0), whose trace on �1 is 1e0. Thus, (2.26) de�nes a mapping Z0 2 L(X(�0); X(�1)),Z0 : 0e1 7! 1e0; e1 2 X(
1): (2:27)The operator norm of this mapping de�nes a propagation number,�0 = kZ0kL(X(�0);X(�1)) = sup(k1e0kX(�1)k0e1kX(�0) : e1 2 X(
1)) : (2:28)In the same way, we obtain a mapping Z1 2 L(X(�0); X(�1)) by considering the boundaryvalue problem L1e = 0 on 
1; e = ( 0 on @
1n�1;1e0 on �1; (2:29)where e0 2 X(
0) is given. If e1 2 X(
1) is the solution of (2.29), thenZ1 : 1e0 7! 0e1; e0 2 X(
0): (2:30)9



The corresponding propagation number is�1 = kZ1kL(X(�1);X(�0)) = sup(k0e1kX(�0)k1e0kX(�1) : e0 2 X(
0)) : (2:31)The product of the two propagation numbers (2.28) and (2.31) de�nes the propagationfactor of the Schwarz alternating procedure,� = �0�1: (2:32)The following lemma establishes the condition for convergence of the Schwarz alternatingprocedure.Lemma 2 If L0 and L1 satisfy a maximum principle, and the propagation factor of theSchwarz alternating procedure satis�es the inequality � < 1, thenlimm!1 kui � u(m)i kX(
i) = 0; i = 0; 1: (2:33)Proof. Let e(m)i = ui � u(m)i denote the error on 
i at the mth step of the Schwarzalternating procedure. Because of the linearity, e(m)0 satis�es (2.26) with e1 = e(m�1)1 ,and e(m)1 satis�es (2.29) with e0 = e(m)0 . Hence, 1e(m)0 � �0�11e(m�1)0 and 0e(m)1 ��0�10e(m�1)1 , so the errors on �0 and �1 are reduced by a factor �. If � < 1, convergenceon �0 and �1 follows. If, in addition, L satis�es the maximum principle, the convergenceextends to 
0 and 
1.Recall that we have suppressed the parameter " throughout the preceding discussion.The propagation numbers and the propagation factor do indeed depend on ". In the discretecase, the propagation factor depends on the mesh widths hi as well.2.5 Iterative Solution on SubdomainsWe now turn to the solution of the boundary value problems (2.10) and their discrete analogs(2.14). We propose to use domain-dependent iterative solvers that generate successive termsof the asymptotic expansions on the respective subdomains. The iterative procedures areimplemented within each step of the Schwarz alternating procedure; the index m (m =1; 2; : : :) refers to the current Schwarz step.The following discussion applies again equally well to the continuous and the discretecase. In the continuous case, the fundamental concepts are not obscured by technical detailsof notation, so we adopt this point of view; eventually, however, we will apply the resultsto the discrete case only. 10



In general, the iterative method on 
i is based on a splitting of the di�erential expressionL(") = Li;0(") + Li;1(") on 
i; i = 0; 1: (2:34)The iterative method isLi;0(")u(m;n) = fi � Li;1(")u(m;n�1) on 
i; u(m;n) = g(m)i on @
i; n = 1; 2; : : : ; (2:35)so Li;0(") represents the implicit part, Li;1(") the explicit part of L("). We denote thesolution of (2.35) by u(m;n)i (").The choice of the components Li;0 and Li;1 is critical. As a general rule, Li;0 contains theterms that generate the dominant part of the asymptotic expansion of ui. On the regulardomain, these terms are found directly, in the boundary layer, after a transformation to theboundary layer variables. For example, in the problem (2.1) and the iterative procedure(2.2), we took Li;0(") equal to the identity and Li;1(") = �"�. (Recall that we are reallyinterested only in the discrete case, so read �h instead of �.) As a result, the iterativeprocedure (2.2) generated successive partial sums of the regular asymptotic expansion. Thebest we can say at this point is that the expansion converges asymptotically to ui as " # 0.However, we will argue that the expansion actually converges in the classical sense for each�xed (but su�ciently small) ". We will also see that the iterative procedure does not su�erfrom the usual instability associated with any procedure that treats higher-order derivativesexplicitly.The loss of boundary conditions introduces a complication on the regular domain, 
0.In principle, we identify L0;0(") with the formal limit L(0) of L(") as " # 0. But as L(0)is of lower order than L("), the boundary data on @
0 are incompatible with L0;0("),and a correction is needed. We accomplish this correction by means of a cut-o� function,� : (0; "0)! C1(
), which coincides with the unit function on the overlap region, 
0 \
1,and whose support is asymptotically equivalent with 
0 \ 
1 as " # 0. The cut-o� functionserves two purposes. First, it enables us to formulate a well-posed boundary value problemon the regular domain. Second, when implemented in combination with a discretizationof the di�erential expressions Li;0(") and Li;1("), it accomplishes the numerical analog ofasymptotic matching for the Schwarz alternating procedure.After these general remarks, we turn to the speci�cs. On the regular domain, 
0, wede�ne the components in (2.34) formally byL0;0(") = L(0) + �(")(L(")� L(0)); L0;1(") = (1� �("))(L(")� L(0)); (2:36)where � is a cut-o� function of the type discussed earlier. Thus, in (and possibly a littlebeyond) the overlap region 
0 \ 
1, L0;0 is the same as L("), but everywhere else in 
0it is the formal limit L(0). The decomposition (2.36) is somewhat ad hoc, in the sensethat the resulting solution need not be twice continuously di�erentiable everywhere in 
0,but the method appears to work in practical problems, provided one has some knowledge11



of the position of the boundary and transition layers. If the position of the layers is notknown, one can use a variant of the � method developed for the Navier-Stokes equations [10,29]. Note, however, that in the present method the higher-order derivatives are preserved,although the treatment depends on their order of magnitude, whereas normally in the �method higher-order derivatives are dropped. Consequently, one is not faced with the usualdi�culty of justifying the � method, nor with the fact that it is di�cult to say whether themethod will work or not.In the boundary layer, 
1, we de�ne the components in (2.34) indirectly by consideringthe boundary value problem in terms of the boundary layer variables. If T (") denotes theregularizing transformation, which maps the original coordinates (x) onto the boundarylayer coordinates (�), and L�(") is the di�erential expression in terms of the boundary layervariables, thenL1;0(") = T (")�1L�(0)T ("); L1;1(") = T (")�1(L�(")� L�(0))T ("): (2:37)Here, L�(0) denotes the formal limit of L�(") as " # 0.The convergence analysis of (2.35) is straightforward. The error at the nth step, e(m;n)i =ui(")� u(m;n)i ("), satis�es the homogeneous boundary value problemLi;0(")e(m;n)i = �Li;1(")e(m;n�1)i on 
i; e(m;n)i = 0 on @
i; i = 0; 1: (2:38)Assume that the expression Li;0(") is invertible, and denote its inverse on X0(
i), thesubspace of X(
i) consisting of those elements that vanish on @
i, by L�1i;0 ("). Then,e(m;n)i = �L�1i;0 (")Li;1(")e(m;n�1)i : (2:39)Let the ampli�cation factor �i(") be de�ned by�i(") = lim supn!1��L�1i;0 (")Li;1(")�n eX(
i) = kekX(
i)�1=n ; i = 0; 1: (2:40)The de�nition is independent of the vector e 2 X0(
i).Lemma 3 If �i(") < 1, thenlimn!1 ku(m)i (")� u(m;n)i (")kX(
i) = 0; i = 0; 1: (2:41)Proof. It follows from the de�nition (2.40) thatku(m)i (")� u(m;n)i (")kX(
i) � (�i("))nku(m)i (")� u(m;0)i (")kX(
i); i = 0; 1: (2:42)If �i(") < 1, the convergence follows. 12



If L�1i;0 (")Li;1(") is a bounded linear operator, then�i(") � kL�1i;0 (")Li;1(")kL(X(
i)); (2:43)so a su�cient (but not necessary) condition for convergence is that the operator norm ofL�1i;0 (")Li;1(") is less than one.One realizes on a moment's reection that Lemma 3 could never make sense in thecontinuous case, where the di�erential expressions lead to unbounded operators and theampli�cation factor is never going to be less than one. In the discrete case, however,Lemma 3 works out, because discrete approximations de�ne bounded operators in �nite-dimensional vector spaces. The norms generally depend on the mesh width and grow beyondbounds as the mesh width goes to zero, but if the growth happens at a controlled rate as" # 0, Lemma 3 provides a tool for the convergence analysis of the iterative procedure (2.35).2.6 Combining the Schwarz and Iterative ProceduresWe now combine the Schwarz alternating procedure and the iterative solution technique oneach subdomain. Again, we take the continuous point of view.Lemma 4 Suppose L(") satis�es the maximum principle for every " 2 (0; "0). If thepropagation factor � of the Schwarz alternating procedure and the ampli�cation factors �i(i = 0; 1) of the iterative procedures satisfy the asymptotic order relations �(") = o(1) and�i(") = o(1) as " # 0, thenkui(")� u(m;ni)i (")kX(
i) = o(�m + �n00 + �n11 ); i = 0; 1: (2:44)Proof. We use the abbreviationse(m;n)i = ui(")� u(m;n)i ("); n = 0; 1; : : : ; e(m)i = ui(")� u(m)i ("); i = 0; 1:From (2.42), we deduce the estimateske(m)i � e(m;ni)i kX(
i) � �nii ke(m)i � e(m;0)i kX(
i); i = 0; 1:Hence, k1e(m;n0)0 kX(�1) � k1e(m)0 kX(�1) + �n00 ke(m)0 � e(m;0)0 kX(
0): (2:45)We estimate the �rst term in the upper bound in terms of the solution on 
1 obtained inthe previous step in the Schwarz procedure,k1e(m)0 kX(�1) � �0k0e(m�1;n1)1 kX(�0):13



A rough estimate of the second term is obtained by going back a whole step in the Schwarzprocedure, ke(m)0 � e(m;0)0 kX(
0) � �ke(m�1)0 kX(
0) + �n00 ke(m�1;0)0 kX(
0):This estimate shows that, as � = o(1) and �0 = o(1) as " # 0, it is certainly possible toachieve the inequality ke(m)0 � e(m;0)0 kX(
0) � 1 for m = 1; 2; : : : ; if necessary, we decrease"0. Thus, (2.45) reduces tok1e(m;n0)0 kX(�1) � �0k0e(m�1;n1)1 kX(�0) + �n00 : (2:46)Similarly, k0e(m;n1)1 kX(�0) � �1k1e(m;n0)0 kX(�1) + �n11 : (2:47)Combining (2.46) and (2.47), we obtain the estimatek1e(m;n0)0 kX(�1) � �k1e(m�1;n0)0 kX(�1) + �0�n11 + �n00 :Repeated application of this inequality yields the estimatek1e(m;n0)0 kX(�1) � �mk1e(0;n0)0 kX(�1) + (1� �)�1(�0�n11 + �n00 ):Therefore, k1e(m;n0)0 kX(�1) = o(�m + �n00 + �n11 ): (2:48)By applying the maximum principle, we extend this asymptotic estimate to 
0. The asymp-totic estimate on 
1 is obtained similarly.The results of this section are summarized in the following theorem.Theorem 2 (Convergence) The convergence of the Schwarz alternating procedure (2.23),combined with the iterative solution (2.35) on each subdomain, is optimal if the number ofsteps ni in (2.35) and the number of steps m in (2.23) is chosen in such a way that �nii � �nfor i = 0; 1 and �m = O(�n) as " # 0. The convergence rate of the combined proceduredepends on " and is asymptotically of the same order as �.In summary, the method proposed here for the numerical solution of singular perturba-tion problems of the type (1.1) has two aspects. First, there is the domain decompositionand subsequent discretization, going from (1.1) to (2.14). Here, the issue is accuracy; it isaddressed in Theorem 1. Then, there is the Schwarz alternating procedure and the iter-ative solution, going from (2.14) to (2.35). Here, the issue is convergence; it is addressedin Theorem 2. The success of the method depends on whether it is possible to choose themesh widths as a function of " in such a way that both the accuracy and the convergencerate improve as " # 0. In the following sections we show that this goal can indeed be accom-plished for three second-order problems of increasing complexity. We restrict the discussionto two-dimensional problems (coordinates x and y).14



3 A Singularly Perturbed Zero-Order EquationWe begin with the singular perturbation problemL(")u � �"�u + q(x; y)u = f on 
; u = g on @
; (3:1)where the coe�cient q is strictly positive,q(x; y) � q0 > 0; (x; y) 2 
: (3:2)We take 
 = (0; 1)2 and assume that there is a boundary layer (codimension one) along theleft edge, � = f0g � (0; 1), and no corner layers near the origin or the top left corner. Theboundary layer coordinates are � = "�1=2x and � = y.We decompose 
 as in (2.5), with 
0 = (b; 1) � (0; 1) and 
1 = (0; a) � (0; 1), with0 < b < a � 1; a and b depend on ". The overlap region is 
0 \ 
1 = (b; a)� (0; 1). Toobtain an asymptotically balanced scheme (Lemma 1), we require that a and b satisfy theorder relations a(") � b(") � "1=2 log("�1): (3:3)We impose regular rectangular grids on 
0 and 
1,
h0 = f(1� b+ ih0;x; jh0;y)) : i; j = 0; : : : ; Ng; 
h1 = f(ih1;x; jh1;y)) : i; j = 0; : : : ; Ng:(3:4)The grids have the same number of mesh cells in the x and y directions, so the mesh widthsare h0;x = (1 � b)=N and h0;y = 1=N on 
0, h1;x = a=N and h1;y = 1=N on 
1. Theboundary points are obtained if either i or j is equal to 0 or N . The composite grid is
h. Because the coarse grid must conform with the overlap region, and 
h1 is a re�nementof 
h0 there, it must be the case that a = b + k0h0;x and a = b + k1h1;x for some pair ofintegers (k0; k1). In terms of N , k0, and k1, we havea = k0=N1� (1� k0=N)(1� k1=N) ; b = (k0=N)(1� k1=N)1� (1� k0=N)(1� k1=N) : (3:5)A minimum overlap decomposition results if k0 = 1.The choice of a discretization procedure is open, except for the fact that the approxima-tions must satisfy the maximum principle on each subdomain and that an estimate of thetype (2.15) must hold. We choose the usual �ve-point stencil approximation of the Lapla-cian on each subdomain, which is second-order accurate in both directions. The estimate(2.15) holds with k0 = k1 = 2 and l0 = l1 = 2, and we conclude from (2.22) that a goodasymptotic estimate of the truncation error is given byku
(")j
h � u("; h)kX(
h) = O �N�2 log("�1)� : (3:6)15



It remains to �x the dependence of N on ". The choice is the result of a compromise, whichseeks to maximize both the accuracy and the convergence rate. An appropriate choice forthe present problem is N � �"1=2 log("�1)��1 : (3:7)Once this choice has been made, the grid 
h becomes connected asymptotically with ".We emphasize this fact by writing 
h("). The asymptotic behavior of h0 = (h0;x; h0;y) andh1 = (h1;x; h1;y) is summarized by the expressionsh0(") � (h("); h(")) ; h1(") � �"1=2h("); h(")� ; (3:8)where h = N�1 is a characteristic global mesh width,h(") � "1=2 log("�1): (3:9)The accuracy of the approximation obtained on the grid 
h(") is a function of " alone. Infact, we see from (3.6) that the truncation error decreases almost linearly as " # 0,ku
(")j
h(") � u("; h("))kX(
h(")) = O �" log("�1)� : (3:10)The asymptotic order of the propagation numbers of the Schwarz alternating procedure,�0 and �1, can be computed [25, Lemma 4]. With a = b + h0;x (minimum overlap, k0 = 1in (3.5)), we have �0 � " and �1 � (log("�1))�2, so the propagation factor of the Schwarzalternating method satis�es the estimate�(") = O�" �log("�1)��1� : (3:11)(Recall that we always lump all powers of the logarithm of "�1 into one.)3.1 Regular DomainOn the regular domain, we use a cut-o� function � : (0; "0) ! X(
); which is identicallyequal to one in the overlap region and zero one mesh cell beyond the overlap region,�(")(x; y) = ( 1 if b � x � a = b+ k0h0;x;0 if x � a+ h0;x = b+ (k0 + 1)h0;x: (3:12)Following the de�nitions (2.34) and (2.36), we take L(") = L0;0(") + L0;1("), whereL0;0(")u = �"�(")�u + q(x; y)u; L0;1(")u = �"(1� �("))�u: (3:13)Thus, beyond the overlap region, the x and y derivatives are both treated explicitly. Thediscrete approximations are(Lh0;0(")u)i;j = ( �"(�h0u)i;j + qh0;i;jui;j ; if i = 1; : : : ; k0;qh0;i;jui;j if i = k0 + 1; : : : ; N � 1; (3:14)16



(Lh0;1(")u)i;j = ( 0; if i = 1; : : : ; k0;�"(�h0u)i;j ; if i = k0 + 1; : : : ; N � 1; (3:15)where �h0 is the �ve-point stencil approximation to the Laplacian on the grid 
h0,(�h0u)i;j = ui+1;j � 2ui;j + ui�1;jh20;x + ui;j+1 � 2ui;j + ui;j�1h20;y : (3:16)We proceed to estimate the ampli�cation factor �0("); cf. (2.40). The di�erential expressionL0;0(") is a small perturbation of the zero-order expression q (i.e., multiplication by the localvalue of q), which is positive everywhere. Hence, the inverse L�10;0(") exists and is asymp-totically bounded in L(X(
0)) by a constant that does not depend on ". This propertycarries over to its discrete analog. The expression L0;1(") is certainly unbounded. However,its discrete analog, Lh0;1("), is bounded in L(X(
h0)); in fact, its norm is 4"h�20;x + 4"h�20;y.Consequently, L�1h0;0(")Lh0;1(") is an element of L(X(
h0)), and its norm is bounded by aconstant multiple of "h�20;x + "h�20;y . The latter quantity is of order (log("�1))�1 on 
h(").Hence, �0(") = O��log("�1)��1� on 
h("); (3:17)so convergence is assured for all su�ciently small ".We observe that we can relax the iterative procedure without jeopardizing its conver-gence. Instead of (3.14) and (3.15), we may take(Lh0;0(")u)i;j = ( �"(�h0u)i;j + qh0;i;jui;j ; if i = 1; : : : ; k0;(qh0;i;j + r("))ui;j if i = k0 + 1; : : : ; N � 1; (3:18)(Lh0;1(")u)i;j = ( 0; if i = 1; : : : ; k0;�"(�h0u)i;j � r(")ui;j ; if i = k0 + 1; : : : ; N � 1; (3:19)where the "-dependent relaxation factor isr(") = 2"h20;x + 2"h20;y : (3:20)The ampli�cation factor, which is �0 = r(q0 + r)�1, satis�es the same estimate, (3.17).3.2 Boundary LayerFollowing the de�nitions (2.34) and (2.37), we base the iterative solution in the boundarylayer on the splitting L(") = L1;0(") + L1;1("), whereL1;0(")u = �"@2xu+ q(x; y)u; L1;1(")u = �"@2yu: (3:21)17



Thus, the derivatives with respect to x are treated implicitly, those with respect to yexplicitly. The discrete approximations are(Lh1;0(")u)i;j = �"ui+1;j � 2ui;j + ui�1;jh21;x + qh1;i;jui;j ; (3:22)(Lh1;1(")u)i;j = �"ui;j+1 � 2ui;j + ui;j�1h21;y : (3:23)We proceed to estimate the ampli�cation factor �1("); cf. (2.40). We claim that L�11;0(") isbounded in norm by a(")"�1=2. In the boundary layer, the appropriate variables are � ="�1=2x and � = y; they extend over the rectangle (0; a(")"�1=2)�(0; 1). Upon transformationto the boundary layer variables, L1;0(") reduces to the di�erential expression �@2� + q. TheGreen's function for this Sturm-Liouville expression, subject to homogeneous (Dirichlet)boundary conditions, is uniformly continuous, so the corresponding linear integral operatorconsidered on the space of continuous functions is bounded in norm by a(")"�1=2. It followsthat L�11;0(") in L(X(
1)) is also bounded in norm by a(")"�1=2. This property carries overto the discrete analog, L�1h1;0("). Of course, L1;1(") is unbounded, but its discrete analog,Lh1;1("), is bounded; in fact, its norm in L(X(
h1)) is 4"h�21;y . Consequently, L�1h1;0(")Lh1;1(")is en element of L(X(
h1)), and its norm is bounded by a constant multiple of a(")"1=2h�21;y.The latter quantity is of order (log("�1))�1 on 
h("). Hence,�1(") = O��log("�1)��1� on 
h("); (3:24)so convergence is again assured for all su�ciently small ".As in the regular domain, we can relax the iterative procedure without jeopardizing itsconvergence. Instead of (3.22) and (3.23), we may take(Lh1;0(")u)i;j = �"ui+1;j � 2ui;j + ui�1;jh21;x + (qh1;i;j + r("))ui;j; (3:25)(Lh1;1(")u)i;j = �"ui;j+1 � 2ui;j + ui;j�1h21;y � r(")ui;j ; (3:26)where r is an "-dependent relaxation factor,r(") = 2"h21;y : (3:27)The ampli�cation factor, which is �1 = r(q0 + r)�1, satis�es the same estimate, (3.24).Given the asymptotic results (3.11), (3.17), and (3.24), we conclude from Theorem 2that the Schwarz alternating procedure, combined with the iterative solution techniques,converges at a rate of (log("�1))�1. 18



3.3 General Con�gurationsIf 
 is more generally a simply connected domain with smooth boundary, and a boundarylayer is adjacent to some part � of the boundary, much of the preceding theory still applies.In the boundary layer, we introduce a local coordinate system with coordinates s and t,such that the Laplacian is represented in divergence form,�s;tu = (a(s; t))�1@sa(s; t)@su+ @t(a(s; t))�1@tu; (3:28)a is a known function of s and t, which is strictly positive and bounded. Such a coordinatesystem certainly exists; see [30, Section IV.8.2]. The regularizing transformation stretchesthe coordinate in the s direction by a factor "�1=2. Instead of (3.22) and (3.23), we havethe more complicated expressions(Lh1;0(")u)i;j = �"a�1i;j ai+1=2;j(�+s u)i;j � ai�1=2;j(��s u)i;jh1;s + qh1;i;jui;j ; (3:29)(Lh1;1(")u)i;j = �"a�1i;j+1=2(�+t u)i;j � a�1i;j�1=2(��t u)i;jh1;t ; (3:30)where ai+1=2;j = 12(ai;j + ai+1;j), ��s are the forward and backward di�erences in the sdirection, (�+s u)i;j = ui+1;j � ui;jh1;s ; (��s u)i;j = ui;j � ui�1;jh1;s ; (3:31)and similarly in the t direction. In the relaxed scheme, one takes a variable relaxationfactor, ri;j = "(a�1i;j+1=2 + a�1i;j�1=2)h�21;t .4 A Singularly Perturbed Convection ProblemNext, we consider the singular perturbation problem� "�u+ p(x; y)@xu = f on 
; u = g on @
; (4:1)where p is strictly positive, p(x; y) � p0 > 0; (x; y) 2 
: (4:2)We assume that p is di�erentiable with respect to x, with a uniformly bounded derivativeon 
. Again, we take 
 = (0; 1)2. The unperturbed equation prescribes the rate of changeof the solution in the x direction. If the boundary data are incompatible with this rate ofchange, a boundary layer will develop. If the coe�cient p is positive, the boundary layerwill be adjacent to the right edge, so � = f1g � (0; 1). Again, we assume that there are nocorner layers. The boundary layer coordinates are � = "�1(1� x) and � = y.19



We decompose 
 into two overlapping subdomains, 
0 = (0; 1� b) � (0; 1) and 
1 =(1�a; 1)� (0; 1), with 0 < b < a� 1. The overlap region is 
0\
1 = (1�a; 1�b)� (0; 1).To obtain an asymptotically balanced scheme (Lemma 1), we require that a and b satisfythe asymptotic order relations a(") � b(") � " log("�1): (4:3)We impose rectangular grids on 
0 and 
1,
h0 = f(ih0;x; jh0;y)) : i = 0; : : : ; Nx; j = 0; : : : ; Nyg;
h1 = f(1� a+ ih1;x; jh1;y) : i = 0; : : : ; Nx; j = 0; : : : ; Nyg: (4.4)The grids have a di�erent number of mesh cells in the x and y directions, and the meshwidths are h0;x = (1 � b)=Nx and h0;y = 1=Ny on 
0, h1;x = a=Nx and h1;y = 1=Nyon 
1. We approximate the Laplacian by the usual �ve-point stencil and the derivativein the x direction by backward di�erences. (If p is negative, the boundary layer is alongthe left edge of the domain, and one takes the forward-di�erence approximation.) Theapproximation is �rst-order accurate in the x direction and second-order accurate in the ydirection. According to (2.22), the truncation error satis�es the estimateku
(")j
h � u("; h)kX(
h) = O �N�1x log("�1) +N�2y log("�1)� : (4:5)With the choice Nx � �" log("�1)��1 ; Ny � �"1=2 log("�1)��1 ; (4:6)we tie the grid 
h in with ". We write 
h(") and summarize the asymptotic behavior of themesh widths by h0(") � (hx("); hy(")) ; h1(") � ("hx("); hy(")) ; (4:7)where hx = N�1x and hy = N�1y are characteristic global mesh widths,hx(") � " log("�1); hy(") � "1=2 log("�1): (4:8)On 
h("), the truncation error decreases almost linearly as " # 0,ku
(")j
h(") � u("; h("))kX(
h(")) = O �" log("�1)� : (4:9)The asymptotic order of the propagation numbers of the Schwarz alternating procedurecan be computed [25, Lemma 5]. With the minimum overlap, we have �0 � 1 and �1 �(log("�1))�1, so �(") � (log("�1))�1: (4:10)20



4.1 Regular DomainOn the regular domain, we use a cut-o� function �, which is identically one in the overlapregion and zero one mesh cell beyond the overlap region,�(")(x; y) = ( 0 if x � 1� a � h0;x = (Nx � k0 � 1)h0;x;1 if 1� a = (Nx � k0)h0;x � x � 1� b: (4:11)The iterative procedure is based on the splitting L(") = L0;0(") + L0;1("), whereL0;0u = �"�(")�u+ p(x; y)@xu; L0;1u = �"(1� �("))�u: (4:12)The discrete approximations are(Lh0;0(")u)i;j = ( ph0;i;j(��h0;xu)i;j ; i = 1; : : : ; Nx� k0 � 1;ph0;i;j(��h0;xu)i;j � "(�h0u)i;j ; i = Nx � k0; : : : ; Nx � 1; (4:13)(Lh0;1(")u)i;j = ( �"(�h0u)i;j ; i = 1; : : : ; Nx� k0 � 1;0 i = Nx � k0; : : : ; Nx � 1; (4:14)where (�h0u)i;j = ui+1;j � 2ui;j + ui�1;jh20;x + ui;j+1 � 2ui;j + ui;j�1h20;y ; (4:15)(��h0;xu)i;j = ui;j � ui�1;jh0;x : (4:16)We proceed to estimate the ampli�cation factor. The di�erential expression L0;0(") is asmall perturbation of the �rst-order expression p@x, where p is positive everywhere. Itsinverse on the subspace X0(
0) of X(
0) is a simple integral, so�L�10;0(")L0;1(")e� (x; y) = �" Z x0 p�1(z; y) �@2ze+ @2ye� (z; y) dz: (4:17)Upon integration by parts, we obtain�L�10;0(")L0;1(")e� (x; y) = �"�hp�1@ze(z; y)iz=xz=0 � Z x0 @zp�1(z; y)@ze(z; y) dz�� " Z x0 p�1(z; y)@2ye(z; y) dz: (4:18)Here, p�1 and its derivative with respect to the �rst argument are uniformly bounded.The expression in the right member is certainly unbounded. But consider its discreteanalog. The integrals are replaced by sums, and derivatives by �nite di�erences; functionevaluations take place on the grid. On each subinterval, we can estimate the derivate @ze21



by 2kekh�10;x and the derivative @2ye by 4kekh�20;y. Thus, there exists a positive constant Csuch that �����L�1h0;0(")Lh0;1(")e�i;j���� � C  "h0;x + "h20;y! kekX(
h0): (4:19)The estimate shows that L�1h0;0(")Lh0;1(") is a bounded linear operator on X(
h0) andthat its norm is bounded by a constant multiple of "h�10;x + "h�20;y. The bound is of order(log("�1))�1 on 
h("), so �0(") = O �(log("�1))�1� on 
h("); (4:20)and convergence is assured for all su�ciently small ".The iterative procedure can be relaxed,(Lh0;0(")u)i;j = ( (ph0;i;j + r("))(��h0;xu)i;j ; i = 1; : : : ; Nx� k0 � 1;ph0;i;j(��h0;xu)i;j � "(�h0u)i;j ; i = Nx � k0; : : : ; Nx � 1; (4:21)(Lh0;1(")u)i;j = ( �"(�h0u)i;j � r(")(��h0;xu)i;j ; i = 1; : : : ; Nx � k0 � 1;0 i = Nx � k0; : : : ; Nx � 1; (4:22)where r(") = "h0;x : (4:23)The ampli�cation factor satis�es the same estimate, (4.20).4.2 Boundary LayerFor the iterative procedure, we take L(") = "�1 (L1;0(") + L1;1(")), whereL1;0(")u = �"2@2xu+ "p(x; y)@xu; L1;1(")u = �"2@2yu: (4:24)The extra factor " is brought in for convenience. The discrete approximations are(Lh1;0(")u)i;j = �"2ui+1;j � 2ui;j + ui�1;jh21;x + "ph1;i;j ui;j � ui�1;jh1;x ; (4:25)(Lh1;1(")u)i;j = �"2ui;j+1 � 2ui;j + ui;j�1h21;y : (4:26)We use an energy argument to estimate the ampli�cation factor. We �rst analyze the semi-discrete case, where x ranges over the interval (1�a("); 1) and y is discrete. In the nth stepof the iterative procedure, the error e(n)j = u(m)j � u(m;n)j at y = yj satis�es the equation� "2@2xe(n)j + "pj(x)@xe(n)j = "2 e(n�1)j+1 � 2e(n�1)j + e(n�1)j�1h21;y (4:27)22



on the interval (1 � a("); 1) and zero boundary conditions at the end points. (The indexm refers to the Schwarz step.) When we take the L2-inner product over (1 � a("); 1) ofboth sides of the di�erential equation with e(n)j , integrate by parts, and use the identities�(e; @2xe) = (@xe; @xe) and (e; pj@xe) = �12(e; e@xpj) with e = e(n)j , we obtain the identity"2 �@xe(n)j ; @xe(n)j �� 12" �e(n)j ; e(n)j @xpj� = "2h�21;y �e(n)j ; e(n�1)j+1 � 2e(n�1)j + e(n�1)j�1 � : (4:28)We �rst estimate the quantity in the left member. (We drop the subscript j and thesuperscript (n) on e temporarily.) The function @xp is uniformly bounded, so there existsa positive constant C such that j(e; e@xpj)j � C(e; e). Using the inequality(e; e) � a(")2(@xe; @xe); (4:29)we conclude that j(e; e@xpj)j � Ca(")2(@xe; @xe). But a(") � " log("�1), so we may assume,without loss of generality, that Ca(")2 � " for all "; hence, j(e; e@xpj)j � "(@xe; @xe). Thisresult leads to the following estimate of the quantity in the left member of (4.28),���"2 �@xe(n)j ; @xe(n)j �� 12" �e(n)j ; e(n)j @xpj���� � 12"2 �@xe(n)j ; @xe(n)j � : (4:30)Next, we proceed to the right member of (4.28). Using the Cauchy-Schwarz inequality andthe estimate (4.29) with e = e(n)j , we readily obtain a uniform bound for the inner product,����e(n)j ; e(n�1)j+1 � 2e(n�1)j + e(n�1)j�1 ���� � 4a(")k@xe(n)kL2(
1)ke(n�1)kL2(
1): (4:31)Here, we have introduced the abbreviationkfkL2(
1) = supf(fj ; fj)1=2 : j = 0; : : : ; Nyg: (4:32)Combining the inequalities (4.30) and (4.31) with (4.28), we �nd that12 �@xe(n)j ; @xe(n)j � � 4a(")h�21;yk@xe(n)kL2(
1)ke(n�1)kL2(
1): (4:33)Taking the supremum over all j, we obtain the desired energy estimate,12k@xe(n)kL2(
1) � 4a(")h�21;yke(n�1)kL2(
1): (4:34)Since the errors and their partial derivatives are uniformly bounded, the energy estimatetranslates directly into an inequality involving the sup norms; in fact, for any f we havekfkL2(
1) � a(")1=2kfkX(
1) � a(")k@xfkL2(
1); (4:35)so ke(n)kX(
1) � 8a(")2h�21;yke(n�1)kX(
1): (4:36)This result carries over to the discrete case. It shows that the ampli�cation factor is boundedby a constant multiple of a(")2h�21;y. The latter quantity is of order "(log("�1))�1 on 
h(").Hence, �1(") = O �" log("�1)� on 
h("): (4:37)Given the results (4.10), (4.20), and (4.37), we conclude from Theorem 2 that the methodconverges and that the convergence rate is of the order of (log("�1))�1 as " # 0.23



4.3 General Con�gurationsThe preceding arguments generalize to the case where 
 is a simply connected domain withsmooth boundary. Let n denote the unit vector normal to @
 oriented toward the exteriorof 
, and let ex denote the unit vector in the direction of increasing x. We use the symbols@�
, @0
, and @+
 to denote the part of @
, where n � ex is negative, zero, and positive,respectively. Because 
 is simply connected, @
 is the union of these three disjoint sets.We assume that the singular part of the boundary, �, is a subset of @+
 and that � isdescribed by an equation of the form x = �(y), where � is smooth.As usual, we decompose 
 into two overlapping subdomains, 
0 and 
1, where thelatter covers the boundary layer. To obtain a balanced scheme, we choose the thickness of
1 to be asymptotically of the order of " log("�1).In the boundary layer, we introduce nonorthogonal local coordinates s and t,s = �(y)� x; t = Z y0 �1 + (�0(�))2�1=2 d�: (4:38)The inverse transformation is x = �s+ �( (t)); y =  (t). In terms of the new coordinates,the di�erential equation in (4.1) assumes the form� " hc20@2s + c11@s@t + c02@2t + c10@s + c01@ti u� p@su = f: (4:39)The coe�cients c20; : : : are known; they depend on t only, c20 = c02 = (1 + (�0)2), c11 =2�0(1 + (�0)1=2), c10 = �00, and c01 = �0�00(1 + (�0)2)�1=2. The regularizing transformationstretches the s coordinate by a factor "�1.Instead of (4.24), we haveL1;0(")u = �"2 �c20@2su+ c10@su�+ "p(s; t)@su;L1;1(")u = �"2 �c11@t@su+ c02@2t u+ c01@tu� ; (4:40)and instead of (4.25) and (4.26),(Lh1;0(")u)i;j = �"2 "c20;j ui+1;j � 2ui;j + ui�1;jh21;s + c10;j ui;j � ui�1;jh1;s # + "ph1;i;j ui;j � ui�1;jh1;s ;(4:41)(Lh1;1(")u)i;j = �"2 "c11;j  ui;j+1 � ui�1;j+12h1;sh1;t � ui;j�1 � ui�1;j�12h1;sh1;t !+c02;j ui;j+1 � 2ui;j + ui;j�1h21;t + c01;j ui;j+1 � ui;j�12h1;t # : (4:42)The approximation is �rst-order accurate in s, second-order accurate in t.24



The ampli�cation factor can be found with the same type of argument from an energyestimate, but there is a complication because of the occurrence of the s-derivative in L1;1.Again, it is convenient to analyze the semi-discrete case. Instead of (4.28), we have themore complicated identity"2c20;j �@se(n)j ; @se(n)j �� 12" �e(n)j ; e(n)j @xpj� = "2 " c11;j2h1;t �e(n)j ; @se(n�1)j+1 � @se(n�1)j�1 �+c02;jh21;t �e(n)j ; e(n�1)j+1 � 2e(n�1)j + e(n�1)j�1 �+ c01;j2h1;t �e(n)j ; e(n�1)j+1 � e(n�1)j�1 �# : (4:43)We �nd a lower bound for the quantity in the left member in the same way as before,���"2c20;j �@se(n)j ; @se(n)j �� 12" �e(n)j ; e(n)j @xpj���� � 12"2 �@se(n)j ; @se(n)j � : (4:44)The expression inside the brackets in the right member of (4.43) satis�es a uniform estimateof the type j[: : :]j � C"2a(") hh�11;tk@se(n�1)kL2(
1)+4h�21;t ke(n�1)kL2(
1) + h�11;t ke(n�1)kL2(
1)i k@se(n)kL2(
1): (4:45)The desired energy estimate follows from (4.43), (4.44), and (4.45),12k@se(n)kL2(
1) � Ca(") hh�11;t k@se(n�1)kL2(
1) + 4h�21;tke(n�1)kL2(
1) + h�11;tke(n�1)kL2(
1)i :(4:46)If we compare this inequality with the earlier estimate (4.34), we notice that the upperbound contains a new term involving the L2-norm of the s-derivative of e(n�1). It is notpossible to estimate this term in terms of the norm of e(n�1); cf. (4.35). We therefore takea di�erent approach, estimating the norms of e(n�1) in terms of the norm of @se(n�1),12k@se(n)kL2(
1) � Ca(") hh�11;t + �4h�21;t + h�11;t� a(")ik@se(n�1)kL2(
1): (4:47)This result carries over to the discrete case. It shows that the ampli�cation factor is boundedby a constant multiple of a(") hh�11;t + �h�21;t + h�11;t�a(")i. The latter quantity is of order"1=2 log("�1) on 
h("). Hence,�1(") = O �"1=2 log �"�1�� on 
h("): (4:48)After n steps of the iterative procedure, we havek@se(n)kX(
1) � a(")1=2k@se(n)kL2(
1) � a(") (�1("))n k@se(0)kL2(
1); (4:49)which shows that the method also converges in the sup norm. The convergence rate is thesame and of the order of "1=2 log("�1) as " # 0.25



The price one pays for the use of a nonorthogonal coordinate system is that the con-vergence rate is of the order of "1=2 log("�1), instead of " log("�1). On the other hand,with this nonorthogonal coordinate system the solution in the boundary layer is computedon a Cartesian grid that is imbedded in the global Cartesian grid. In the example of thenext section, we demonstrate that this approach applies to ordinary transition layers aswell. Because the location of a transition layer is usually not known a priori, it is usefulto have a Cartesian grid that does not vary in the direction normal to the transition layer.Also, it is easy to compute an approximation in the direction tangential to the transitionlayer, because the �rst-order derivative of the solution is of minimal order in this direction.For ordinary transition layers, the derivatives in the direction tangential to the front are oforder one, and the mesh width h1;t must be of same order as the mesh width in the regulardomain, h1;t � "(log("�1))�1.We note that the method used in this section to prove the convergence of the iterativescheme does not work in the case of a singularly perturbed zero-order equation, �"�u+qu =f , on a general domain 
. In general, therefore, we cannot conclude that the use of anonorthogonal grid leads to a convergent algorithm for ordinary layers.5 A Singularly Perturbed Turning-Point ProblemWe demonstrate the application of the method to a two-dimensional turning point problem,� "�u+ p(x; y)@xu = 0 on 
; Bu = g on @
; (5:1)with 
 = (�2; 2)�(�1; 1), where a mixture of Dirichlet and Neumann conditions is imposedon the boundary,(Bu)(�2; y) = u(�2; y) = �1; (Bu)(2; y) = u(2; y) = 1; �1 � y � 1; (5:2)(Bu)(x;�1) = @yu(x;�1) = 0; (Bu)(x; 1) = (�@xu+@y)u)(x; 1) = 0; �2 � x � 2: (5:3)The coe�cient p changes sign in 
,p(x; y) = ( �x if y � 0;�x � y if y � 0: (5:4)Here, our interest is not so much in the theoretical analysis as in the numerical results.The analysis of Section 3 needs modi�cation at several points, because the estimates of thepropagation factor and the ampli�cation numbers are more complicated. We will not gointo these details here. (A variant of the problem (5.1) was studied in [25].)The solution of (5.1) has a transition layer inside 
 along the piecewise linear curve S,S = f(x; y) 2 
 : x = 0 if y � 0; x = �y if y � 0g: (5:5)26



An asymptotic analysis shows that u
(") = �1 + o(1) to the left of the transition layer,and u
(") = 1 + o(1) to the right of the transition layer as " # 0. The transition layer hasa complex structure. Away from the origin, it is essentially a one-dimensional transitionlayer, so only the transverse coordinate needs to be stretched, but near the origin, it is atrue corner layer (codimension 2), and both coordinates need to be stretched simultaneously.The corner layer variables are � = "�1=2x and � = "�1=2y.The domain decomposition now involves several di�erent subdomains,
 = 
0 [ 
1 [ 
2; (5:6)where each subdomain is in turn the union of two disjoint components,
0 = 
0� [ 
0+; 
0� = ((x; y) 2 
 : �2 < x < �(y)� b�(y) + b < x < 2 ;�1 < y < 1) ; (5:7)
1 = 
1� [ 
1+; 
1� = ((x; y) 2 
 : jx� �(y)j < a; y > by < �b ) ; (5:8)
2 = f(x; y) 2 
 : jx� �(y)j < a;�a < y < ag ; (5:9)Here, 0 < b < a� 1; a and b satisfy the asymptotic relationsa(") � b(") � "1=2 log("�1): (5:10)We impose a regular grid on 
, which we re�ne in the transition layer, and use the same�nite-di�erence approximations for the Laplacian and the partial x-derivative as in Sec-tion 4, so the approximation is �rst-order accurate in x, second-order accurate in y. Asymp-totically, the mesh widths satisfy the relationsh0(") � (hx("); hy(")); h1(") � ("1=2hx("); hy(")); h2(") � ("1=2hx("); "1=2hy(")); (5:11)where hx(") � " log("�1); hy(") � "1=2 log("�1): (5:12)The truncation error is linear in ", apart from a logarithmic factor.In the Schwarz procedure, we alternate the computation on the regular domain, 
0, withthe computation in the layer, 
1 [ 
2. In the layer, in turn, we alternate the computationaway from the origin, in 
1, with the computation in the corner layer near the origin, 
2.On the regular domain, 
0, we take a cut-o� function �, which is one in the domain ofoverlap with the layer and which decays exponentially to zero in the regular domain awayfrom the layer. On 
0, convection dominates. The iterative procedure could be based onthe same decomposition as in Section 4.1, �"�(")�u+p(x; y)@xu = "(1��("))�u, or on theeven simpler decomposition p(x; y)@xu = "�u. However, to bene�t from the convergence27



of the Schwarz procedure, it is preferable to retain part of the perturbation, at least in thedomain of overlap. We have therefore implemented a simpli�ed version,� "�(")@2xu+ p(x; y)@xu = "(1� �("))@2xu+ "@2yu; (5:13)where only the second-order derivative with respect to y is treated explicitly. This pro-cedure leads to a nicely parallel algorithm. Still better would be to use a nonorthogonaldecomposition of the Laplacian in 
0 \ fy � 0g. In either case, we can apply Dirichletboundary conditions on the interfaces in the transition layer.The transition layer is essentially a one-dimensional phenomenon. On 
1�, the part ofthe transition layer in the lower half plane, the x direction is normal to the front; x needsto be stretched, but y does not. The iterative scheme is based on the splitting� "@2xu+ p(x; y)@xu = "@2yu: (5:14)Although a poor initial guess for the Schwarz procedure may lead to a second-order deriva-tive with respect to y that is large in the overlap region with 
2�, it is our experience thatthe solution straigthens out rapidly. On 
1+, the part of the transition layer in the upperhalf plane, the normal direction to the front is (1; 1)t. The �rst-order term of the expansionof the exact solution is insensitive to the direction of the stretched variable as long as thisdirection is transverse to the front. The other space direction used in the change of variablesmust be tangential to the front; otherwise, the second-order term of the formal expansionis of the same order as the �rst-order term, and the expansion is not valid. We thereforemake a change of variables, s = x+ y, t = y. In the (s; t)-coordinate system, the Laplacianis represented by 2@2su+ 2@s@tu + @2t u. We then base the iterative scheme on the splitting� 2"@2su+ p(x; y)@su = "(2@s@tu+ @2t u): (5:15)On S, we have s = 0, so it is easy to obtain a �nite-di�erence approximation of the crossderivative and the second-order derivative with respect to t. In fact, we chose S as in(5.5) precisely to obtain a two-dimensional turning point problem with a very elementarynumerical implementation. In principle, however, there is no restriction on the curve S aslong as the angle between the tangent to S and the coordinate direction that is stretchedis at least 12�.Finally, in the corner layer, 
2, the derivatives with respect to both x and y are treatedimplicitly. The approximation scheme leads to a sparse matrix that is irreducible anddiagonally dominant. Since the mesh on 
2 is a local re�nement of the global mesh by afactor "1=2, and we need at least four points of the global mesh across 
2, the number ofmesh points on 
2 is at least 16"�1. Thus, even though the size of the corner layer is small,the fact that we treat both x and y derivatives implicitly on 
2 puts an e�ective lowerbound on the values of ". 28



5.1 Numerical ResultsWe have implemented the method outlined in the present article and solved the singular per-turbation problem (5.1) with various parameter values. Here, we comment on the solutionobtained with " = 0:005, Nx = Ny = 10, a mesh re�nement factor of 10 in the layer, and aminimum overlap between the various subdomains. The mesh widths are h0;x = h0;y = 0:2on the regular domain (coarse grid), h1;x = 0:02, h1;y = 0:2 in the transition layer, awayfrom the origin; and h2;x = h2;y = 0:02 in the corner layer. The cut-o� function � involvedin the solution on 
0 is one in the overlap with the layer, extends two mesh cells into theregular domain, and vanishes beyond. We used seven Schwarz iterations to alternate be-tween 
0 and the layer (m = 7 in Theorem 2), and two Schwarz iterations within the layerto alternate between 
1 and 
2 (m = 2 in Theorem 2). On 
0 and 
1, we made threeiterations on each subdomain, (n0 = n1 = 3 in Theorem 2)); on 
2, we solved the linearsystem directly. Thus, the total number of steps was 14 on 
0, 42 on 
1, and 21 on 
2.Figure 1 gives the solution computed on the coarse grid. The front is sharp, but theresolution is clearly inadequate in the layer. Figure 2 complements Figure 1 and shows thesolution on the �ne grid in the transition layer. Figure 3 gives the solution in the various sub-domains. Figure 4 illustrates the global convergence; the ratio ku(m+1)�u(m)kX(
)=ku(m)�u(m�1)kX(
) in successive steps (m) of the Schwarz alternating procedure is approximately0:09. The same calculation with " = 0:01, when the re�nement factor is exactly 10, resultedin slower convergence. The observed convergence rate was 0.15, which is consistent withthe statement that the convergence rate is of the order of (log("�1)). Figure 5 shows theconvergence record on the various subdomains.Convergence is very fast in all cases. Also, the smaller the ratios "=h0 and "=h2, thefaster the convergence. Of course, these ratios must not be too small, because otherwisethe solution in the corner layer becomes unreasonably expensive. The choice h0 = 0:2 andh2 = 0:02 for " = 0:005 is a good compromise.The iterative procedure in 
1 is not doing well at the beginning of the iterative process.Our initial condition for the Schwarz procedure was a numerical solution of the problem,obtained with a direct method and " = 0:1. In the layer, this solution is quite far fromthe solution with " = 0:005. Consequently, the solution varies rapidly in the overlap region
1\
2 at the beginning of the iteration process. The second-order derivative of the solutionin the direction tangential to the front is not small, and the splitting of the operator is notvery e�cient.The method has a high degree of parallelism at the domain-decomposition level and atthe level of the iterative procedures on each subdomain. At the domain-decomposition level,however, the method does not scale. One may wish to use classical domain decompositionin the regular domain for convection-dominant problems and in the corner layer for ellipticproblems. We have not explored these options. In the transition layer, one could use a line29



of processors to solve each ordinary di�erential equation in parallel. In the regular domain,we have the classical method of lines with the same type of one-dimensional structure forparallelism. Nevertheless, it is di�cult to implement the proposed method e�ciently on aparallel architecture. In contrast to the approach �rst proposed in [25], we no longer use thesame scheme on each subdomain. Therefore, simply keeping the degrees of freedom the sameon each subdomain will not guarantee proper load balancing. The use of an asynchronousmethod may seem appropriate at �rst sight, but, in fact, a totally asynchronous versionhides the di�culty. The solution will certainly converge faster on some subdomains, soevery compute node can be kept busy, but the e�ciency will not be balanced evenly. Witha �xed geometry of the subdomains and a �xed number of iterations on each subdomain,as in the turning-point example, it is relatively easy to compute a priori the computationalcost of each procedure and balance the tasks on a network of processors. Whether onecan implement a heterogeneous domain-decomposition method e�ciently with a dynamicload-balancing procedure on a massively parallel architecture is still an open question.Appendix A Some Concepts of Asymptotic AnalysisIn this appendix we summarize some relevant results of asymptotic analysis and singularperturbation theory. For details, we refer the reader to our notes [31,32]Order relations for scalar-valued functions. Two positive-valued functions f and g,de�ned and continuous on some interval (0; "0) with "0 > 0, satisfy the asymptotic orderrelation f = O(g) as " # 0 if there exists an "0 > 0 and a positive constant C, which maydepend on "0 but not on ", such that f(") < Cg(") for all " 2 (0; "0); f = o(g) as " # 0if, for every positive constant c, there exists an "0 > 0, which may depend on c, such thatf(") < cg(") for all " 2 (0; "0); f = O](g) if f = O(g) and f 6= o(g); f � g if f = O(g) andg = O(f); f � g if f � g = o(1).Order relations for vector-valued and variable functions. The asymptotic orderrelations carry over to vector-valued functions. Suppose X and Y are normed vector spacesof functions de�ned on the domains 
X and 
Y , respectively. Let u : (0; "0) ! X andv : (0; "0) ! Y be such that the mappings f : " 7! ku(")kX and g : " 7! kv(")kY arecontinuous on some interval (0; "0). Then u = O(v) as " # 0 if f = O(g) as " # 0, et cetera.Variable functions are covered through the identi�cations u(")(x) = u("; x) for all x 2 
X ,v(")(y) = v("; y) for all y 2 
Y .Asymptotic approximations. Asymptotic approximations are de�ned with respect toa \gauge"|that is, an asymptotically ordered set of order functions. An order function is a30



positive-valued monotone function on (0; "0). A gauge is a set E = f�n(") : n = 0; 1; : : :g oforder functions �n on (0; "0), which satisfy the order relation �n+1 = o(�n) for n = 0; 1; : : :as " # 0. In most applications, one has �n = �n for n = 0; 1; : : : , where � is a �xed-orderfunction; for example, �(�) = "� with � > 0, or �(") = (log("�1))�1.Given two mappings u; un : (0; "0)! X , we say that un is an asymptotic approximationof order �n if u� un = o(�n) as " # 0.Regular asymptotic expansions. A regular asymptotic expansion is an asymptoticapproximation of the form un(") = Pi �i(")vi, where vi 2 X , vi independent of ". Thecoe�cients vi in a regular asymptotic expansion are de�ned with respect to the speci�cgauge; they are unique and can be determined successively by taking limits in X .If a function u admits a regular asymptotic expansion to any order, we say that thesequence fun : n = 0; 1; : : :g converges asymptotically to u as " # 0. Notice that asymptoticconvergence is much weaker than ordinary convergence, which concerns the behavior of thesequence as n !1 at a �xed value of ". An asymptotically convergent sequence need notconverge in the ordinary sense.Singular perturbation problems. Of particular interest for applications are asymptoticexpansions in spaces of continuous functions, where convergence means \uniform conver-gence." The coe�cients vi in a regular asymptotic expansion are then obtained as uniformlimits of continuous functions and are therefore themselves continuous. In singular pertur-bation problems, the limiting procedure breaks down, because of a lack of uniformity, andsingular (boundary and transition) layers develop as " # 0. The limiting procedure workson compact subsets of 
 (\regular subdomains"), but not on 
, and a separate asymptoticanalysis is needed in the singular layers.Singular layer analysis. In many instances, it is possible to regularize the singularboundary value problem locally in a singular layer. The regularization requires the existenceof a transformation �(") : x 7! �, de�ned for all " 2 (0; "0), which is monotone, one-to-one,invertible, and which stretches the transverse coordinate across the singular layer \in justthe right way."Suppose the singular layer is a boundary layer and is adjacent to a smooth manifold �(an open subset of the boundary @
). The transformation �(") maps 
 one-to-one onto�(")(
) and establishes a continuous mapping between X(
) andX(�(")(
)). In particular,it sends the solution u
(") of (1.1) into a function U("),U(")(�) = U("; �) = u
("; x); � = �(")x; x 2 
: (5:1)31



The domains �(")(
) are nested: �("1)(
) � �("2)(
) if "1 > "2. The union,�(
) = ["2(0;"0)�(")(
); (5:2)is a subset of Rd, which is unbounded in the directions transverse to the singular part of theboundary. The set X(�(
)) of all continuous functions on �(
), endowed with the inductivelimit topology, X(�(
)) = lim ind"#0X(�(")(
)); (5:3)is a complete normed vector space [33, Section 50]. This space is the proper framework forthe asymptotic analysis of the function U("). Convergence in X(�(
)) is uniform conver-gence on compact subsets of �(
).The family of stretching transformations � = f�(") : " 2 (0; "0)g is a regularizingtransformation for (1.1) in the boundary layer if, �rst of all, there exists a gauge with respectto which U(") admits a regular asymptotic expansion on any ("-independent) compact subsetof �(
), and if, furthermore, the domain of validity of this regular asymptotic expansionextends to any compact subset of �(
 [ �). The boundary layer is the pre-image of anysuch compact subset, and the stretched coordinates � = �(")x de�ned by the regularizingtransformation are the \boundary layer variables." The regular asymptotic expansion ofU(") yields an asymptotic expansion (though not a regular asymptotic expansion) of u
(")in the boundary layer. This expansion must then be matched to the regular asymptoticexpansion in the regular subdomain.
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Figure captions.� Figure 1. Solution of (5.1) on coarse grid� Figure 2. Solution of (5.1) and computational grid in the transition layer� Figure 3. Solution of (5.1) on the subdomains (clockwise from top left): regularsubdomain, 
0; lower transition layer, 
1�; corner layer, 
2; upper transition layer,
1+� Figure 4. Global convergence of the Schwarz alternating procedure; e(m) = ku(m) �u(m�1)kX(
).� Figure 5. Convergence of the iterative procedure on the subdomains (clockwise fromtop left): corner layer, 
2; lower transition layer, 
1�; regular subdomain, 
0; uppertransition layer, 
1+; e(n) = ku(n) � u(n�1)kX(
i).
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