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Abstract

The flow of an incompressible viscous fluid between parallel plates
becomes unstable when the plates are tumbled. As the tumbling rate
increases, the flow restabilizes. This phenomenon is elucidated by path-
following techniques. The solution of the Navier-Stokes equations is ap-
proximated by spectral techniques. The linear stability of these solutions

is studied.

1 Introduction

Recently, studies of plane Couette flow in the presence of a Coriolis force
have led to the discovery of new solutions of the Navier-Stokes equations (see
[Nagata, 1990] [Conley, 1994] [Conley & Keller, 1995]). One observation of these
studies has been that, as the Coriolis force is increased, the parallel shear flow
bifurcates to a new solution that reconnects to the parallel flow at larger Coriolis

force. This paper is a description of similar phenomena in Poiseuille flow.



Poiseuille flow is the inviscid, incompressible flow between infinite, paral-
lel, stationary plates (see Fig. 1). The addition of a Coriolis force causes
plane Poiseuille flow to become unstable. The solutions that bifurcate from
plane Poiseuille flow are stable and, at larger Coriolis force, reconnect to plane
Poiseuille flow. Thus the Coriolis force destabilizes the flow and restabilizes it.

Poiseuille flow with a Coriolis force can be seen as the thin—gap limit of the
Taylor—Dean problem. The Taylor—Dean problem consists of a fluid between
concentric and rotating cylinders with an azimuthal pressure gradient. The
thin—gap limit makes the gap between the cylinders infinitesimal compared to
the radius of curvature of the inner cylinder. In this limit, the cylinders become
plates and the flow between the plates i1s subject to an additional Coriolis force.

Define

Ulx,y,2)

[j(a:,y, z) = Vi(z,y,2)
Wiz, y,z)

to be the velocity of the flow at location (x,y, z) (see Fig. 1). Define P(z,y, 2)

to be the pressure of the flow. Traveling wave solutions of the Navier—Stokes

equations for flow between parallel, tumbling plates satisfy the following:

U

5 = R (T -V)T + V20 = VP 420(2 x U) (1.1)
+¢,0,U + ¢.0,U + Fyy,
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Here ¢, and c, are the wave speeds in the y and z directions, respectively; F
is the force on the fluid in the y direction; and €2 is the tumbling rate of the
plates. The solutions of these equations are required to satisfy no-slip boundary
conditions at the plates (# = £1/2) and periodic boundary conditions in the y

and z directions:
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U(xay'i'Ayaz) = U(x,y,z), (14)



P(z,y+ Ay, 2) = P(z,y,2), (1.5)
(z,y,2), (1.6)

P(z,y,z4+X;) = P(x,y,2). (1.7)
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To graph the flows, we introduce the wall-shear force,
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Plane Poiseuille flow,
0
U(x,y, z) = Fy/21/4—2%) |, (1.9)
0

satisfies these equations for all 2. This paper describes solutions that bifurcate
from plane Poiseuille flow as Q 1s varied. Plane Poiseuille flow refers to the
solution (1.9) above; Poiseuille flow refers to any solution of Eqs. (1.1)-(1.7).
Section 2 describes the approximation. Section 3 describes the path-following
methods and Section 4 the eigenvalue paths. Section 5 contains the results of

this formulation, and Section 6 discusses the results.

2 Approximation of Velocity and Pressure Fields

The solutions are expanded in terms of
Crmn(z,y, 2) = Ti(22) cos(mayy + no, z),

Stmn (2, y, 2) = Ti(22) sin(may y + na, z),

Al,m,n = (Cl,m,n + Z.Sl,m,n) = Tl(?x)ei(m%yﬂmzz).

Here, ay = i—” and a, = i—” are the y and z wave numbers, respectively. Each
Y -

of U, V,W, and P is approximated by finite expansions of the form
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As a result, the approximated U and P are determined by a total of 4(L +
1)(2M 4+ 1)(2N 4 1) coefficients. The same notation for the approximations and
the solutions is used in this paper.

These approximations do not (in general) satisfy the Navier-Stokes equa-
tions. As a result, only certain projections of the Navier—Stokes equations are

required to be zero. Define the inner products,
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Define M to be the right-hand side of Eq. (1.1). Then the approximations are
required to satisfy the following 4(L + 1)(2M + 1)(2N + 1) equations:

0<I<L-2,
< A, M > = 08 |m| < M, (2.12)
In| < N
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Equations (2.12)—(2.14) are referred to as
F(u,A)=0

in the rest of this paper. The solution, u, is the set of coefficients that determine
U and P. The parameter, A, is typically Q, Re, or «.
Since the vortical flows have a phase freedom in z, the following phase con-

straint is imposed on the solutions:

<I>Z(u) =< Coo1, U(l‘, Y, Z) >= 0. (215)



On the plane Poiseuille branch of solutions, the phase constraint is trivially
satisfied, and the wave speed, ¢,, 1s undefined. When the phase constraint is
imposed (on the vortical flow), it is adjoined to F'(u, A) and ¢, is solved for, in

addition to the coefficients u.

3 Path Following

Continuation methods are used to approximate the solution path:
I'={(u,A): F(u,A)=0}.

Distinct methods are employed to follow regular paths and to switch paths of

solutions. In the case of regular path segments, the following algorithm is used:

Step 1. Start with an initial solution, (ug, Ag). Construct the Jacobian,

8F(u0, Ao)
Ou

FS =
Step 2. Construct the initial iterate and initial parameter with one of the
following:

e constant value continuation: X\; = A;_1 + 8A, uf = u;_q, or

e secant continuation: XA; = A;_1 + 8,

0 _ Ai—Ai—1
U = Uj—1 + X,

Xi—hia (Ui—1 - Ui—2)~

Step 3. Compute the special Newton iterates (indexed by v = 1,2, ...),
Fl¢" = —F(u¥; \),
1
w T =) e
until |[eN]];, < e.

Step 4. Set u; = ufv'l'l. If the parameter A; is still in the desired range and the

number of iterations is small (e.g., N < 30), return to Step 2.



This algorithm may fail for several different reasons. One is that the step 6
is too large. In this case, decrease the step size. Another reason the algorithm
may fail is that the iterates in Step 3 converge too slowly. In this case recom-
pute the Jacobian. Lastly, in the case that the solution path has trespassed a
bifurcation point, switch paths as described later in this section, or predict a
solution on the opposite side of the bifurcation point and continue with Step 3
of the algorithm above.

To switch from plane Poiseuille flow to the vortical flow solution, use the

following algorithm:

Step 1. Accurately find the parameter value A* at which

P OF (u(X*), A*%)
ou

is singular.
Step 2. Find the right null vector, ¢, of F' satisfying ®,(¢) = 0.

Step 3. Construct the initial guess for a solution on the new branch, u{ =

u(A*) + €.

Step 4. Compute the Newton iterates for the augmented system,

Fu, ey, A) 0
q)z(u) 0

The parameters ¢, and € have been freed as variables.
The path of vortical flow is regular if the phase constraint is adjoined to
F(u,A) and ¢, is solved for (in addition to u). As a result, the algorithm for a

regular path can be used, but the augmented system of equations,

Fuy ey, A)
H(u,c,,A) = @, (u) =0,
L(u

should be used instead of F(u, A) = 0.



4 Eigenvalue Paths

Once a path of solutions has been computed, it is useful to know the stability
of these solutions. The stability is given by the eigenvalues, pu, of the linear
system,
@€ = —Re(Uy V)&= Re(€-V)Uy +V2E—Vp+20(: x &) (4.16)
+eyOye+ ¢, 0.¢
0 = V-& (4.17)

The above system is obtained from Eqs. (1.1)—(1.7) by letting U= ﬁo(A) +
dA)ert, P = Py(A) + p(X)e#t | and ignoring terms of order (€?). Uy is a solution

of Egs. (1.1)—(1.7) with 6(5” = 0. As the solution Uy varies with the parameter A,
the eigenvalues of the above equations, p, vary. This variation leads to paths of
eigenvalues, p(A), which are functions not only of A but also the particular path
of solutions Uo(X). If Real(u(A))< 0 for all the eigenvalues, then the solution is

stable on that path segment. In this paper, € is approximated in the same way

as Uy with the same periodicities and resolution.

5 Results

For a fixed Reynolds number, the critical tumbling rate (i.e., the value of € at
which vortical flow bifurcates from plane Poiseuille flow) varies with «, (see Fig.
3). The critical Q is minimized when «, is near 4. For a fixed wave number,
the relation between Reynolds number and critical €2 is shown in Fig. 4.

The branch of vortical flow intersects the branch of plane Poiseuille flow
at Re = 140,9Q, = 32.05,a, = 4.0 and again at the larger tumbling rate,
Q. = 56.95, as can be seen in Fig. 2. The velocity of the vortical flow in the
plane perpendicular to the direction of forcing is shown in Fig. 7.

Linear stability analysis yields the paths of eigenvalues seen in Fig. 5. The

three branches of eigenvalues associated with the linear stability of plane Poiseuille



flow in Fig. 5 are double eigenvalues. As can be seen from the figure, plane
Poiseuille flow is unstable when the tumbling rate is in the range between the
two bifurcation points. In contrast, the vortical flow is stable along its full
path. (The zero eigenvalue is due to the phase freedom of the solution in the z

direction.)

6 Discussion

While Eqgs. (1.1)~(1.7) (with F, = 8, = 0) are known to have traveling wave
solutions for large Reynolds numbers (see [Drazin & Reid, 1981]), these flows
vary with # and y. In contrast, the vortical flow (stationary waves) calculated
here vary with # and z. The vortical flow is stable (at this Reynolds number
and wave number) for all values of Q for which it exists. In contrast, plane
Poiseuille flow is stable for values of {2 for which the vortical flow does not exist.
At larger Reynolds numbers; this picture may be more complicated as a result
of the existence of other bifurcating branches of solutions.

A similar phenomenon occurs in Couette flow, as can be seen in Fig. 6; a
solution bifurcates from Couette flow and rejoins at larger tumbling rates. These
results are obtained by the methods described in [Conley & Keller, 1995]. In
Couette flow it is easy to compute successive bifurcations (at larger Reynolds
numbers) to three-dimensional flows which exist with nontumbling plates (see
[Conley & Keller, 1995]). Tt seems that these solutions should exist in Poiseuille
flow but would probably be traveling waves.

This paper has presented analysis of the effect of tumbling plane shear flow.
This tumbling rate acts to destabilize plane Poiseuille flow and plane Couette
flow. At higher tumbling rates the flows are restabilized. There is a single path
of solutions that link the bifurcation points where plane shear flows becomes

destabilized and restabilized.
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Figure 1: The flow of an incompressible viscous fluid between parallel infinite
plates subject to a pressure gradient is called Poiseuille flow. The plates are

tumbling with angular velocity, Q.
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Figure 2: A path of vortical flows bifurcates from plane Poiseuille flow and then
reconnects at larger tumbling rates. Re = 140, o, = 4.0, Fy = 8,¢, = 0,L =
14, N =9.
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Figure 3: The critical €2 as a function of o,. Re = 600, L = 32, F,, = 8.

11

12



Locus of Bifurcation Points

10

Q

critical

1000
Critical Reynolds Number (logscale [200:5000])

Figure 4: Critical Reynolds number vs critical €2 with 32 Chebyshev polynomi-
als. Fy =8, a, =1.96.
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Paths of Eigenvalues (Real Part) along Solution Paths
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Figure 5: The (real part of ) eigenvalues resulting from the linear stability analy-
sis of both plane Poiseuille flow and vortical flow are graphed here as a function
of Q. All three paths of eigenvalues of the plane Poiseuille flow path are double
eigenvalues. Fy = 8,¢, = 400, Re = 140,y = 2,0, =4, L =14, M =1, N = 3.
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Figure 6: Shear stress vs. Q at Re = 85.0, 0, = 3.0,y = 1.6. This branch of
vortices shows that the two values of Q satisfying 2Q( Re — 2Q) = T, correspond

to bifurcation points on the same branch of vortex solutions.
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Figure 7: The projection of the velocity field of the vortex flow on the z-z plane

Fy =8,¢, =400, Re = 600,00y = 2,0, = 4,7 =

constant plane).

(i.e. they

—3.8202, = 5.6069. The bounding plates are at the top and bottom of the

flow field. One period of the flow is shown in the z direction.
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