
Experiences with the Application of theADIC Automatic Di�erentiation tool to theCSCMDO 3-D Volume Grid Generation Code�Christian H. BischofyWilliam T. JoneszAndrew MaueryJamshid Samareh-AbolhassanizTo appear in Proceedings of the 34th AIAA Aerospace Sciences Meeting and ExhibitJanuary 15-19, 1996, AIAA Paper 96-0716Argonne Preprint MCS-P512-0595Abstract. Automatic di�erentiation (AD) is a methodology for developing reliable sensitivity-enhanced versions of arbitrary computer programs with little human e�ort. As such, it can vastlyaccelerate the use of advanced simulation codes in a multdisciplinary design optimization context,as the time for generating and verifying derivative codes is greatly reduced. In this paper, we reporton the application of the recently developed ADIC automatic di�erentiation tool for ANSI C pro-grams on the CSCMDO multiblock three-dimensional volume grid generator. The ADIC-generatedcode can easily be interfaced with FORTRAN derivative codes generated with the ADIFOR ADtool for FORTRAN 77 programs, thus providing e�cient sensitivity-enhancement techniques formultilanguage, multidiscipline problems.1 IntroductionMultidisciplinary Design Optimization (MDO) is a methodology for the design ofcomplex engineering systems and subsystems that coherently exploits the synergism of�This work was supported by the Mathematical, Information, and Computational Sciences Di-vision subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38, and by the National Aerospace Agency under PurchaseOrder L25935D.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,fbischof,mauerg@mcs.anl.gov.zComputer Sciences Corporation, 3217 N. Armistead Ave., Hampton, Virginia 23666,fw.t.jones,j.s.abolhassanig@larc.nasa.gov.1



mutually interacting phenomena. Typically, the MDO process proceeds in an iterativefashion, with each MDO cycle including at least the generation of a numerical solution,determination of associated design sensitivities, and system optimization.Of these parts, the generation of the numerical solution is the truly domain-dependent piece of this process, where in-depth knowledge of the problem at handis used to develop the necessary simulation codes. For system optimization, on theother hand, a wide suite of existing optimization algorithms is readily available (see,for example, [11]).An MDO problem of particular interest in the aerospace community is the de-sign optimization of the high-speed civil transport. This problem, at the minimum,includes Computational Fluid Dynamics (CFD), and therefore numerical grid gener-ation, as an integral part of the design process. The possible variation of simulationmethod employed for modeling this problem leaves the computation of design sensi-tivities for the simulation codes in question. Here, we should keep the following issuesin mind:Reliability: The computed derivatives should be computed accurately.Computational Cost: The amount of memory and runtime required for the deriva-tive code should be minimized.Scalability: Whatever method we choose should be applicable to large codes.Human E�ort: A user should not have to spend much of his or her time on devel-oping computational procedures for computing derivatives.Traditionally, handcoding, �nite di�erence approximations, and symbolic meth-ods have been used for the computation of derivatives. However, these methods fallshort with respect to the previously mentioned critera. The main drawback of �nitedi�erence approximations is their numerical unpredictability as well as their compu-tational cost. In contrast, the handcoding and symbolic approach cannot be directlyapplied to large codes and require considerable human e�ort. In addition, signi�cante�ort has to be expended whenever the analysis code is modi�ed.Recently, so-called \automatic di�erentiation" (AD) tools have emerged as apromising approach for computing derivatives. AD techniques rely on the fact thatevery function, no matter how complicated, is executed on a computer as a (poten-tially very long) sequence of elementary operations such as additions, multiplications,and elementary functions such as sin and cos (see, for example, [6,12]). By apply-ing the chain rule of derivative calculus over and over again to the composition of2



those elementary operations, one can compute, in a completely mechanical fashion,derivatives of f that are correct up to machine precision [8].In this paper, we report on the applicaton of the recently developed ADIC auto-matic di�erentiation tool for ANSI-C programs on the CSCMDO multi-block three-dimensional volume grid generator. CSCMDO (Coordinate and Sensitivity Calculatorfor Multidisciplinary Design Optimization) is a general purpose grid generator tay-lored speci�cally to MDO applications. The next section gives a brief overview ofCSCMDO. ADIC (Automatic Di�erentiation of C Programs) provides AD capabilityfor codes written in ANSI C and the philosophy and approach underlying ADIC aredescribed in x 3. In x 4, we report on the results obtained with sensitivity-enhancedversions of CSCMDO generated with ADIC. Lastly, we summarize our results.2 The CSCMDO Multiblock 3-D Volume Grid GeneratorCSCMDO is a general purpose, multi-block, three-dimensional, structured volumegrid generator with specialized features which are highly suitable for MDO type gridmodi�cations. The code is designed to execute in a batch environment with controlprovided via an ASCII user input �le. The code is capable of modifying any of thesix faces of a block to reect changes in the optimized geometry as de�ned by aninput surface(s). This section gives a brief overview of CSCMDO; a more detaileddiscussion can be found in [9].With the code executing in a batch mode, it can be incorporated directly intothe design loop as shown in Figure 1. As mentioned before, the \computationalmethod" at the very least contains a CFD analysis. Information input from outsideof the loop is generated one time before the loop is initiated. This informationincludes the baseline geometry surface(s), baseline CFD volume grid, and the userinput �le. The design loop is then rendered self su�cient requiring no further humanintervention. CSCMDO operates within the design loop to provide automated volumegrid generation/modi�cation for each design cycle.The surface de�nition(s) is provided in the form of a structured mesh of discretepoint data. The number and distribution of points de�ning the surface are not re-quired to match those of the desired CFD grid. However, su�cient point resolutionmust be provided so as to adequately de�ne all surface curvature.The baseline volume grid may be generated using any structured grid generationpackage. CSCMDO supports the �le formats commonly used in the �eld of CFD. Norestriction on grid topology is imposed. However, the topology of the volume gridmust be consistent with the CFD analysis and capable of incorporating design cycle3



CSCMDO

Computational
Method

Configuration
Optimization

Modified surface(s)

Baseline
Grid

Baseline surface(s)

DESIGN LOOP
Modified grid

Input
File

Figure 1: Integration of CSCMDO into the design loopgeometry modi�cations. The changes represented by modi�ed geometry surface(s) areassumed to be small, but in the event that geometry changes do violate the volumetopology, grid quality checks provide return codes to the software controlling the loopfor appropriate action.Individual block faces may be modi�ed independently using a variety of methodsincluding direct injection of a modi�ed surface, parametric updates to a modi�edsurface, projection to a modi�ed surface, and deformations conforming to a modi�edsurface. Volume modi�cations are accomplished for each block using algebraic re-initialization of the block interior, or by deformation of the original block interiorbased on changes de�ned on the six block faces.3 The ADIC Automatic Di�erentiation ToolTraditionally, two approaches to automatic di�erentiation have been developed:the so-called forward and reverse modes. These modes are distinguished by howthe chain rule is used to propagate derivatives through the computation. We brieysummarize the main points about these two approaches, a more detailed descriptioncan be found in [2] and the references therein.Let us assume that we have a function f that maps an n-vector x into an m-vectory. The forward mode propagates derivatives of intermediate variables with respect4



to the independent variables and follows the control ow of the original program.Exploiting the linearity of di�erentiation, the forward mode allows us to computearbitrary linear combinations J � S (1)of columns of the Jacobian J = 0BBB@ @ y(1)@ x(1) � � � @ y(1)@ x(n)... ...@ y(m)@ x(1) � � � @ y(m)@ x(n) 1CCCA : (2)For an n � p matrix S, the e�ort required is roughly O(p) times the runtime andmemory of the original program. In particular, when S is a vector s, we compute thedirectional derivative J � s = limh!0 f(x+ h � s)� f(x)h : (3)In contrast, the so-called reverse mode of automatic di�erentiation propagatesderivatives of the �nal result with respect to an intermediate quantity, so-called ad-joint quantities. To propagate adjoints, one must be able to reverse the ow of theprogram, and remember or recompute any intermediate value that nonlinearly im-pacts the �nal result. This may not be easily achieved for general programs, and theseissues are further discussed in [2]. In either case, AD computes derivatives accurateto machine precision [8] and is directly applicable to computer programs of arbitrarylength containing branches, loops, and subroutines.From a user's perspective, AD tools preferably should behave like \black boxes",which, given the code describing the \function" to be di�erentiated, and an indicationof which program variables correspond to the independent and dependent variableswith respect to di�erentiation, generate an e�cient \sensitivity-augmented" code forcomputing the desired derivatives without any need for human intervention.Fundamentally, there are two approaches for augmenting a computer code withderivative computations. Languages like C++ or FORTRAN 90 support a languagefeature called \operator overloading," which allows the rede�nition of the behavior ofthe elementary arithmetic operations and hence can be employed to attach, \underthe rug", so to speak, derivative objects to original program variables, and apply therules of di�erentiation one operation at a time. The ADOL-C tool [7] employs suchan approach to compute derivatives of arbitrary order.5



ADIC, in contrast, employs a source transformation approach to directly rewritingthe source code to compute �rst-order derivatives. This approach requires consider-able compiler infrastructure, and ADIC employs part of the Sage++ [4] source trans-formation infrastructure for C++ programs to transform ANSI C programs. Withminor restrictions, the current ADIC prototype accepts arbitrary ANSI C programsand can handle, for example, subroutines, dynamic memory allocation, and pointers.The code generated is portable ANSI C code that can easily be modi�ed to print outsensitivities, say. The features and limitations of ADIC are discussed in detail in [3],here we briey summarize the main points.ADIC, like ADIFOR, employs a hybrid forward/reverse mode approach to gener-ating derivatives. For each assignment statement, the reverse mode is used to generatecode that computes the partial derivatives of the result with respect to the variableson the right-hand side and then the forward mode is employed to propagate overallderivatives. Hence, ADIC and ADIFOR provide the directional derivative compu-tation possibilities (see equation 1) associated with the forward mode of automaticdi�erentiation. As a result, derivatives generated by a FORTRAN code di�erentiatedwith ADIFOR, say, can easily be used as \seed matrix" for an ADIC-augmented Ccode, whose derivatives, in turn, can again easily be ingested by a FORTRAN code.As we will see in the next section, this is of vital importance in the MDO context.We also mention that ADIC can transparently exploit sparsity in derivative com-putations through the use of the SparsLinC library [2, 3], which, as a byproduct ofthe computation, will automatically compute the sparsity pattern of large sparse Ja-cobians. Information on ADIC and ADIFOR as well as application highlights andreports can be found on the world-wide web athttp://www.mcs.anl.gov/autodiff/index.html.4 Experimental ResultsTo improve the aerodynamic performance of the high-speed civil transport, weembed the system shown in Figure 2 in an optimization context. The Rapid AirplaneParametric Input Design (RAPID) code [10] is written in FORTRAN 77, and, givengeometric design variables (gdv) (for example camber) produces a aircraft surface grid(sfg). From this output, CSCMDO builds a 3-D volume grid (vlg). TLNS3D, a 3-DNavier-Stokes solver for turbulent ow [14, 13] then uses the geometry informationas well as the stream parameters (strm) to compute the ow (flw) over the aircraftand from there, measures of performance such as lift or drag. In the MDO designcontext, we then need @ flw@ gdv at every pass through the design cycle.6



wstrmvlgsfggdv ? ---- TLNS3DCSCMDORAPIDFigure 2: Structure of CFD Design ProblemWe mention several issues that are important to keep in mind when approachingthis problem:1. Computationally, this process is dominated by the CFD solver. The runtime ofthe grid generators is almost insigni�cant compared to that of TLNS3D.2. Accurate sensitivities are required for all modules, and in particular for thegrid generators, as errors in their derivatives would contaminate derivatives ofTLNS3D.3. The number of design objectives (flw) is small, whereas the number of surfacegrid points (sfg) and certainly the number of volume grid points (vlg) usuallyis very large.4. The codes employed continue to be developed and re�ned.In our experiments, we only concerned ourselves with computing the derivatives@ vlg@ sfg , employing the RAPID and CSCMDO codes. The ADIFOR tool [1, 2] wasapplied to RAPID and a �le containing @ sfg@ gdv was written by the sensitivity-enhancedversion of RAPID. We also mention that ADIFOR has also been successfully appliedto the single-block version of TLNS3D, and the results are summmarized in [5].The ADIC prototype was applied to CSCMDO. The fact that the ADIC inter-face allows for \derivative chaining" is essential in this context. That is, instead ofcomputing @ vlg@ sfg , which would be a huge (albeit sparse) matrix, which then would bemultiplied with @ sfg@ gdv to obtain @ vlg@ gdv , we can directly compute @ vlg@ gdv by using @ sfg@ gdv as the\derivative seed matrix" associated with the inputs corresponding to the surface grid(sfg). As a result, the complexity of CSCMDO.AD, the ADIC-generated derivative7



Number of Design Variables1 2 3 4 5 6 7Best-Case FD 39 59 79 99 118 138 158CSCMDO.AD (1) 130 174 223 281 324 526 560CSCMDO.AD (2) 69 84 103 119 144 192 212Table 1: Timing Results for RS/6000 (Times in User Seconds)Number of Design Variables1 2 3 4 5 6 7Best-Case FD 57 86 115 144 172 201 230CSCMDO.AD (1) 149 205 278 351 465 546 637CSCMDO.AD (2) 83 104 131 160 184 213 242Table 2: Timing Results for Sun-4 (Times in User Seconds)code for CSCMDO, depends on the number of geometric design variables (gdv), noton the number of surface grid points (sfg).Varying the number of geometric design variables from 1 to 7, we compare theruntime performance of CSCMDO.AD with that of a one-sided �nite di�erence ap-proximation on a Sun Sparcstation 5 and IBM RS/6000 platform. Employing version2.5.8 of the GNU C compiler with the -O2 -ffast-math compiler ags, we obtainthe performance shown in Tables 1 and 2.To generate a grid, CSCMDO can be thought of as using a two-step approach.First, it generates a grid, secondly, it validates the quality of the generated grid. Inthe line labelled \CSCMDO.AD (1)", we di�erentiated through the entire CSCMDOcode, including the validation part. The line labelled \CSCMDO.AD (2)" refers toa somewhat more judicious use of CSCMDO, where derivatives are only propagatedthrough the grid generation part, and not through the validation part. Note, however,that since ADIC intersperses derivatives and original program variables (see [3] fordetails), the validation part also had to be modi�ed by ADIC to have data structurescompatible with the sensitivity-enhanced grid generation part, but it did not includecode for propagating derivatives. The line labelled \Best-case FD" lists the time8



required for a one-sided �nite di�erence (FD) approximation of the derivatives, underthe assumption that the correct stepsize was chosen. This is an optimistic assumption,as typically, several perturbation sizes had to be tried before a good match of thewith FD derivative approximations with the values obtained by CSCMDO.AD wasobtained.We see that the code generated by ADIC when applied to all of CSCMDO isconsiderably slower than a \best-case" �nite-di�erence approximation of derivatives.On the other hand, if we do avoid the (useless) derivative computation in the veri-�cation stage, CSCMDO.AD exhibits runtimes that are close to that of a best-case�nite di�erence approximation. Note that we cannot avoid the veri�cation stage in�nite di�erence approximations, as the new volume grid arising from a parameterperturbation must be veri�ed. We also mention that ADIC is still in the prototypestage and further improvements will narrow this gap. In either case, though, theseruntimes are dwarfed by the runtime of a CFD ow code such as TLNS3D. However,the accuracy of the grid sensitivities is essential for the accuracy of the overall designsensitivities.When examining our results, considering the sensitivity of the CFD volume gridX coordinate with respect to a change in wing root chord, we obtain the results shownin Figures 3 - 5. Note that our RAPID output assumes the wing trailing edge remains�xed with respect to the fuselage. Therefore, a change in the wing root chord shouldonly be propogated forward of the wing trailing edge/fuselage intersection.The volume grid shown consists of two blocks and over 525,000 grid points. Con-tour lines represent the sensitivity of the volume grid X component with respect to achange in the root chord. The expected symmetry can be noted in both �gures. Thegrid X component can be seen as most sensitive to changes in the wing root chordaround the leading edge of the wing/fuselage intersection. As mentioned, the surfacegrid points (sfg) and @ sfg@ gdv were obtained from the sensitivity-enhanced version ofRAPID. This data was used by CSCMDO.AD to produce the volume grid points(vlg) and the sensitivities @ vlg@ gdv shown in the �gures.5 ConclusionsIn this paper, we reported on the applicaton of the ADIC automatic di�eren-tiation tool for ANSI-C programs on the CSCMDO multi-block three-dimensionalvolume grid generator. CSCMDO (Coordinate and Sensitivity Calculator for Multi-disciplinary Design Optimization) is a general purpose grid generator tailored specif-ically for MDO applications. ADIC (Automatic Di�erentiation of C) is a prototype9



1

F

2
3

5
6

7

A
B

C
D

E
F

9
8

4

3
2

4
5

6
7

8
9

A
B

C
D

E

G

G 1.80E-5

F -6.65E-3

E -1.33E-2

D -2.00E-2

C -2.67E-2

B -3.33E-2

A -4.00E-2

9 -4.67E-2

8 -5.33E-2

7 -6.00E-2

6 -6.67E-2

5 -7.33E-2

4 -8.00E-2

3 -8.67E-2

2 -9.33E-2

1 -1.00E-1Figure 3: Sensitivity on the surface of CFD grid X coordinate wrt wing root chordtool for the automatic sensitivity enhancement of codes written in ANSI-C. In ourexperience, ADIC allowed us to obtain accurate derivatives with a minimum of hu-man e�ort. Without ADIC, we would have been forced to spend considerable e�ortdeveloping a sensitivity-enhanced version by hand. Instead, this e�ort was morepro�tably spent improving the features of CSCMDO. Together with the ADIFORtool for FORTRAN 77 programs, ADIC provides e�cient support for multilanguagemultidisciplinary design optimization where codes written in FORTRAN and C areembedded in the design loop.AcknowledgmentsWe thank Larry Green of the Multidisciplinary Optimization Branch of NASALangley for providing us with sensitivities from the RAPID code and Brad Homannof the Mathematics and Computer Science Division of Argonne National Laboratoryfor performing the CSCMDO benchmark runs. We are also indebted to Tom Zangof the Multidisciplinary Optimization Branch of NASA Langley for initiating thiscollaboration and to Dennis Gannon and his group at Indiana University for theirsupport with Sage++. 10



X

Y

Z

Figure 4: CFD volume grid produced by CSCMDO.AD
11



-9.56E-3

-2.50E-2

-4.05E-2

-5
.5

9E
-2

-1
.8

3E
-3

-1
.7

3E
-2

-3
.2

7E
-2

-4
.8

2E
-2

-6
.3

7E
-2

F 5.90E-3

E -1.83E-3

D -9.56E-3

C -1.73E-2

B -2.50E-2

A -3.27E-2

9 -4.05E-2

8 -4.82E-2

7 -5.59E-2

6 -6.37E-2

5 -7.14E-2

4 -7.91E-2

3 -8.68E-2

2 -9.46E-2

1 -1.02E-1

Figure 5: Sensitivity in the �eld of CFD grid X coordinate w.r.t wing root chord
12



References[1] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-land. ADIFOR: Generating derivative codes from Fortran programs. Scienti�cProgramming, 1(1):11{29, 1992.[2] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. TheADIFOR 2.0 system for the automatic di�erentiation of Fortran 77 programs,1994. Preprint MCS-P481-1194, Mathematics and Computer Science Division,Argonne National Laboratory, and CRPC-TR94491, Center for Research on Par-allel Computation, Rice University.[3] Christian Bischof and Andrew Mauer. ADIC { A tool for the automatic di�er-entiation of C programs. Preprint MCS-P499-0295, Mathematics and ComputerScience Division, Argonne National Laboratory, 1995.[4] Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Goutwals, SrinivasNarayana, Suresh Srinivas, and Beata Winnicka. Sage++: an object-orientedtoolkit and class library for building Fortran and C++ restructuring tools. InProceedings of the Second Annual Object-Oriented Numerics Conference. IEEE,1994.[5] Alan Carle, Lawrence Green, Christian Bischof, and Perry Newman. Applica-tions of automatic di�erentiation in CFD. In Proceedings of the 25th AIAA FluidDynamics Conference, AIAA Paper 94-2197. American Institute of Aeronauticsand Astronautics, 1994.[6] Andreas Griewank. On automatic di�erentiation. InMathematical Programming:Recent Developments and Applications, pages 83{108, Amsterdam, 1989. KluwerAcademic Publishers.[7] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package forthe automatic di�erentiation of algorithms written in C/C++. Preprint MCS-P180-1190, Mathematics and Computer Science Division, Argonne National Lab-oratory, 1990.[8] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices bythe Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Auto-matic Di�erentiation of Algorithms: Theory, Implementation, and Application,pages 126{135. SIAM, Philadelphia, 1991.13



[9] William T. Jones and Jamshid Samareh-Abolhassani. A grid generation systemfor multidisciplinary design optimization. In Proceedings of the Workshop onSurface Modeling, Grid Generation, and Related Issues in CFD Solutions, pages11{21, 1995. NASA-CP3291.[10] Robert E. Smith, MalcolmG. I. Bloor, MichaelWilson, and AlmuttilM. Thomas.Rapid Airplane Parametric Input Design (RAPID). In Proceedings of the 12thAIAA Computational Fluid Dynamics Conference, San Diego, AIAA 95-1687.American Institute of Aeronautics and Astronautics, June 1995.[11] Jorge J. Mor�e and Stephen J. Wright. Optimization Software Guide. SIAM,Philadelphia, 1993.[12] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume120 of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.[13] V. N. Vatsa, M. D. Sanetrik, and E. B. Parlette. Development of a exible ande�cient multigrid-based multiblock ow solver. In Proceedings of the 31st AIAAAerospace Sciences Meeting, AIAA 93-0677. American Institute of Aeronauticsand Astronautics, 1993.[14] V. N. Vatsa and B. W. Wedan. Development of a multigrid code for 3-D Navier-Stokes equations and its application to a grid-re�nement study. Computers &Fluids, 18(4):391{403, 1990.
14


