
Parallel Heuristics for Improved, Balanced Graph ColoringsyRobert K. Gjertsen, Jr.Computer Science DepartmentUniversity of Illinois, Urbana, IL 61801(gjertsen@ncsa.uiuc.edu)Mark T. JonesDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996(jones@cs.utk.edu)Paul E. PlassmannMathematics and Computer Science DivisionArgonne National Laboratory, Argonne, IL 60439(plassman@mcs.anl.gov)Abstract: The computation of good, balanced graph colorings is an essential part ofmany algorithms required in scienti�c and engineering applications. Motivated by an e�ectivesequential heuristic, we introduce a new parallel heuristic, PLF, and show that this heuristichas the same expected runtime under the P-RAM computational model as the scalable coloringheuristic introduced by Jones and Plassmann (JP). We present experimental results performed onthe Intel DELTA that demonstrate that this new heuristic consistently generates better coloringsand requires only slightly more time than the JP heuristic.In the second part of the paper we introduce two new parallel color-balancing heuristics,PDR(k) and PLF(k). We show that these heuristics have the desirable property that theydo not increase the number of colors used by an initial coloring during the balancing process.We present experimental results that show that these heuristics are very e�ective in obtainingbalanced colorings and, in addition, exhibit scalable performance.
yThis work was supported by the Mathematical, Information, and Computational Sciences Divi-sion subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. In addition, the second author received support fromthe 1994-1995 UTK Professional Development Award Program.

1. Introduction. The graph coloring problem arises in many scienti�c computing applica-tions. For example, the e�cient computation of sparse Jacobian matrices [4] and the parallelsolution of sparse triangular linear systems [5] [11] [12] [14] [17] [18] [19] [21] require graph color-ings. Determining an optimal coloring for a general graph is known to be an NP-hard problem[7]. Fortunately, e�ective sequential heuristics [4] [19] have been developed and implemented forgraph coloring problems of practical importance.On serial computers these heuristics are inexpensive relative to the other required compu-tational tasks in most applications. However, if these other tasks are executed on a massivelyparallel computer, the sequential coloring heuristics may dominate the execution time. In ad-dition, it may not be practical to use a serial implementation of these heuristics because theproblems may be too large to �t into the memory available to a single processor. To address thisproblem, Jones and Plassmann developed a scalable graph coloring heuristic [13]. By scalable wemean that if the size of the subproblem assigned to each processor is kept constant, the runningtime of the heuristic remains constant (or increases very slowly) as the number of processors isincreased.Although it is e�ective in many contexts, the Jones and Plassmann (JP) parallel coloringheuristic has two apparent de�ciencies. First, the colorings produced by this heuristic oftenuse slightly more colors than colorings computed by the best sequential heuristics. Second, forgraphs that have highly variable local structure, the JP heuristic can generate colorings wherethe number of vertices assigned a particular color varies signi�cantly among processors. Thiscolor imbalance can result in a signi�cant load imbalance in subsequent parallel computationbased on this coloring. In this paper we introduce new heuristics that address both of theseproblems while maintaining the scalable performance of the original heuristic.To solve the �rst problem, we recall that the JP heuristic achieves a fast parallel running timeby coloring a sequence of independent sets based on random numbers assigned to the vertices [13].In this paper, we combine this approach with a more sophisticated strategy based on ideas from asuccessful sequential coloring heuristic. This new heuristic (PLF) has the same expected runtimeas the JP heuristic under the P-RAM parallel computation model, and we show experimentallythat it generates better colorings.To address the second problem, we introduce two new parallel heuristics, PDR(k) andPLF(k), that dramatically improve the color balance of the JP and PLF heuristics on highlyirregular graphs. An important feature of these heuristics is that they use an existing coloring(such as that produced by JP or PLF) and balance that coloring without increasing the totalnumber of colors used. In addition, we show that these heuristics empirically exhibit scalableperformance.In the remainder of this paper, we specify the graph coloring problem and review e�ectivesequential heuristics in x2. In x3 the JP heuristic is reviewed, and we introduce the PLF heuristic.The balanced coloring problem is described in more detail in x4, prior work is discussed, andthe new heuristics, PDR(k) and PLF(k), are introduced. Computational experiments performedon the Intel DELTA are described in x3 and x4 to support the claims of improved quality andscalability of the new methods. Finally, we summarize this work in x5.2. The Graph Coloring Problem and Sequential Heuristics. We begin by �rst re-viewing the necessary graph terminology. Let G = (V;E) be an undirected graph with vertexset V and edge set E = f(u; v) j u; v 2 V g. The set of vertices adjacent to v 2 V is denotedas adj(v), and the degree of a vertex v, de�ned by deg(v) = jadj(v)j, is the number of verticesadjacent to v. We write the maximum degree of the graph G as �(G) = maxfdeg(v) j v 2 V g.We say that a set of graphs is of bounded degree if for each G in this set, �(G) is bounded andindependent of jV j (i.e., �(G) is not proportional to the number of vertices of G). A connectedcomponent of G is a subgraph G0 = (V 0 ; E0) of G such that for all u; v 2 V 0 there exists a pathfrom u to v in G0 . A clique C = (V 0 ; E0) is a connected component of G for which there existsan edge in E0 between each pair of vertices in V 0 . An independent set of G is a set of vertices I1

such that there exists no edge (u; v) with u; v 2 I. A coloring of G is a mapping � : V ! K thatmaps each vertex v 2 V to a color K = f1; 2; : : : ; kg such that �(v) 6= �(u) for each (u; v) 2 E.Note that the set of vertices assigned a color in K is an independent set in G. We denote thenumber of colors used in the mapping � by j�j.The objective of the graph coloring problem is to �nd a coloring � of G such that j�j � j� j forall colorings � . The smallest number of colors required for coloring G is known as the chromaticnumber of G and is denoted by �(G). As previously mentioned, the graph coloring problem isNP-hard for graphs that require three or more colors [7]. There are some well-known bounds on�(G) including �(G) � �(G) + 1 and �(G) � jCmaxj, where Cmax is the largest clique in G.Numerous fast greedy coloring heuristics appear in the literature; all color a graph by usingsome criterion to order the vertices. The general procedure followed by these methods is outlinedin Figure 1. All the greedy methods choose a vertex color in the same way; they di�er in how theV 0 V ;For i = 1 to n doChoose vertex vi 2 V 0 according to coloring criterion;Choose the smallest possible color �(vi) for vertex vi;V 0 V 0 n fvig;endfor Fig. 1. General sequential coloring heuristicvertices to be colored are ordered. E�ective, well-known ordering techniques include the largest�rst ordering (LFO) [23], the incidence degree ordering (IDO) [4], and the saturation degreeordering (SDO) [2]. The vertex ordering for each of these methods is determined at each step iin the above greedy heuristic as follows:� LFO chooses vi 2 V 0 such that deg(vi) � deg(vj) for all j > i. At each step the vertexwith the maximum degree in the graph G0 = (V 0 ; E0) is chosen. Intuitively, the method�rst colors the vertices that could produce the highest colors.� IDO chooses the �rst vertex v1 to be the vertex with the maximum degree in G. Sub-sequently, vertex vi is chosen as the vertex with the maximal degree in the subgraphinduced by fv1; v2; : : : ; vi�1; vig. That is, the vertex with the maximum incidence degreeis chosen at each step, where the incidence degree of a vertex is the number of adja-cent colored vertices. At each step the IDO algorithm chooses the vertex maximallyconstrained by G0 .� SDO chooses the initial vertex v1 to be the vertex with the maximum degree in G.Subsequently, vertex vi is chosen as the vertex with the maximum saturation degree inV 0 where the saturation degree of a vertex v is the number of di�erent colored verticesadjacent to v.The IDO method has a running time proportional to Pv2V deg(v), and LFO has a run-ning time of Pv2V deg(v) + jV j log jV j. The SDO method is the slowest heuristic and requiresPv2V deg2(v) time; this complexity can be improved toPv2V deg(v), but requires approximatelydoubling the amount of storage [4].Sequential coloring heuristics have been compared by several authors, including a study byMatula et al. with random graphs [16], an analysis by Br�elaz on general random graphs [2], andwork by Coleman and Mor�e [4] with random graphs and matrices from various well-known testsuites such as the Harwell collection [6]. Overall, these studies found SDO to be best, closelyfollowed by IDO. LFO performed well, but was not quite as good as either SDO or IDO. Featuresof the LFO heuristic are incorporated in the PLF heuristic described in the next section.2

3. An Improved Parallel Graph Coloring Heuristic. We begin by reviewing the con-text of a practical, distributed-memory heuristic for coloring a graph G. We assume that wehave a good graph partitioning (an assignment of vertices to partitions) and a good assignmentof partitions to processors. We combine these two aspects by assuming that the number of par-titions equals the number of processors. Let the set of processors be P , and let the mapping� : V ! P represent the assignment of the vertex set V to the set of processors P .We note that good heuristics exist for determining such partitionings [9] [20] [22]. By \good"we mean that the heuristics are able to assign nearly equal numbers of vertices (or vertex weights)to each processor while minimizing the edges that cross partitions (edges whose vertices areassigned to di�erent processors). Of course, these heuristics are not able to determine an optimalpartitioning because this problem is NP-hard; however, they perform well in practice.Assuming that we possess a good graph partitioning and assignment mapping �, we initiallyfocus on a high-level procedure for coloring the graph G = (V;E) in parallel. We use theoriginal approach of Jones and Plassmann [13]. With this method the vertices on each processorare classi�ed as either local or global nodes. The set of local nodes V L is de�ned by V L =fv j �(v) = �(u) 8(v; u) 2 Eg. We de�ne the set of global nodes V G to be the remaining vertices,that is, V G = fv j 9(v; u) with �(v) 6= �(u)g. The local and global vertices assigned to processori by � are denoted by V Li and V Gi , respectively, and their union as Vi. The approach uses twophases to color the graph:1. Color the global vertices (i.e., those vertices that are on the global edge separator). Theglobal edge separator EG is the set of edges whose vertices are assigned to di�erentprocessors.2. Color the local vertices independently on each processor, thereby extending the globalcoloring to a coloring � for the entire graph.This approach produces a valid coloring � as stated by the following theorem.Theorem 3.1. Let �G be a coloring for G(V G). This coloring, restricted to V Gi , can beindependently extended to a coloring �i for the subgraph G(Vi). If we de�ne the function � by�(v) = �i(v) when v 2 Vi, then � is a coloring for G.Proof: See [13]. 2The primary advantage of the method is that once the global separator vertices are colored,the processors can work independently to color their local vertices. An additional bene�t is that(V G; EG) may be sparser than G and hence may require fewer colors than a heuristic that mustconsider all of G simultaneously. This two-level approach is used for all the methods describedin this paper. With this approach, one must determine how to color the separator vertices inthe global phase and how to color the local vertices in the second phase. For the local phase,a good sequential coloring heuristic such as IDO or SDO can be used by each processor; theSDO method generates a better coloring but is more time consuming. The problematic issue ofcoloring the global vertices is considered next.3.1. Previous Parallel Coloring Heuristics. The JP heuristic [13] colors the global ver-tices by �nding independent sets of vertices, coloring them, and updating nonlocal neighborsasynchronously. The heuristic is inspired by a parallel algorithm introduced by Luby to deter-mine a maximal independent set in a graph [15]. The Luby heuristic has a fast expected runtime(logarithmic in the number of vertices) under the P-RAM computational model. However, theLuby algorithm has the practical disadvantage that it is an inherently synchronous algorithm,requiring many global synchronizations (for each color, the algorithm requires the same numberglobal synchronizations as its P-RAM runtime complexity). The JP heuristic has a slightly fasterexpected runtime, but its major advantage is that is an asynchronous algorithm. This feature ofthe heuristic allows for very e�cient, scalable implementations on distributed-memory machines.We �rst formulate the JP heuristic under the CREW P-RAM model [10] with each processorassigned a single vertex from the graph. Later we will study the heuristic modi�ed for a parallel,3

distributed-memory MIMD machine. We assign each vertex v a unique number �(v), which weuse to generate a partial ordering of the vertices. Let u(v) be an independent random number,uniformly distributed between 0 and 1. The JP heuristic chooses �(v) = u(v). Consider, at somepoint in the heuristic, the subset of uncolored vertices I, where v 2 I if and only if �(v) > �(w)for all uncolored vertices w 2 adj(v). Note I is an independent set of vertices and, therefore, canbe colored in parallel. We do not have to explicitly construct these independent sets. Instead, foreach vertex v we divide adj(v) into two sets, those vertices w 2 adj(v) with �(w) > �(v) and theremaining vertices. We wait for messages from the former set that give the colors these verticeshave been assigned; color v the smallest unused color; and send this color to the latter, uncoloredset. This asynchronous heuristic is outlined in Figure 2. By enforcing the coloring invariant�(v) > �(w) for all uncolored w 2 adj(v), we obtain a consistent coloring, and there is no needfor processor synchronization. The running time of the heuristic for bounded degree graphs underthe CREW P-RAM model is EO(log(n)= log log(n)). As shown in [13], this time is proportionalto the expected maximum length monotonic path in G, where a monotonic path of length t is apath of t vertices fv1; v2; : : : ; vtg such that �(v1) > �(v2) > : : : > �(vt).Choose �(v);n-wait = 0;send-queue = ;;For each w 2 adj(v) doSend �(v) to processor responsible for w;Receive �(w);if (�(w) > �(v)) thenn-wait = n-wait +1;else send-queue send-queue [fwg;endifendforn-recv = 0;While (n-recv < n-wait) doReceive �(w);n-recv = n-recv +1;endwhile�(v) = smallest available color consistent with thepreviously colored neighbors of v;For each w 2 send-queue doSend �(v) to processor responsible for w;endforFig. 2. Jones/Plassmann (JP) CREW P-RAM asynchronous parallel coloring heuristicThe parallel distributed-memoryMIMD version of this heuristic, given in Figure 3, maintainsa group of vertices on each processor. Let the global edge separator EG be the set of edges (u; v)such that �(u) 6= �(v). In Figure 3 Seq-color () colors a queue of vertices given a partial coloring�. The procedure Pack-and-send () packs these new colors into messages for the appropriateprocessors and sends the information to the designated processors. The Pack-and-send () routineis designed to overcome the high communication start-up cost, a characteristic of most message-passing architectures. The JP coloring technique is fast and produces good colorings for �nite-di�erence stencils and �nite-element models [13].4

Determine V Gi , V Li ; fPartition verticesgcolor-queue = ;;For each v 2 V Gi do fSet up queues for separator verticesgn-wait (v) = 0;send-queue (v) = ;;For each edge (v; w) 2 EG doCompute �(w);if (�(w) > �(v)) thenn-wait (v) = n-wait (v) + 1;elsesend-queue (v) send-queue (v) [fwg;endifendforif (n-wait (v) = 0) thencolor-queue color-queue [fvg;endifendforSeq-color (�, color-queue); fColor any vertices in V Gi notgn-colored = j color-queue j; fwaiting for messagesgPack-and-send (�, color-queue, send-queue);color-queue = ;;While (n-colored < jV Gi j) doReceive msg;For each w 2 msg.vertex-list do�(w) = msg.vertex-color;For each v 2 msg.vertex-adj don-wait (v) = n-wait (v) � 1;if (n-wait (v) = 0) thencolor-queue color-queue [fvg;endifendforendforSeq-color (�, color-queue); fColor subsets of V Gi once requiredgn-colored = n-colored + j color-queue j; fmessages are receivedgPack-and-send (�,color-queue, send-queue);color-queue = ;;endwhileSeq-color (�, V Li); fColor local vertices lastgFig. 3. The Jones/Plassmann distributed-memory coloring heuristic for the i-th processor5

3.2. An Improved Coloring Heuristic. To improve the resulting colorings, we modifythe above method by using the degree of a vertex v in a manner analogous to sequential LFOheuristic. The heuristic is essentially the same as the JP heuristic except that a vertex v is colored�rst if its degree is larger than that of its uncolored adjacent vertices. If adjacent vertices have thesame degree, the random numbers are used to determine the coloring order. Since this heuristicis related to the LFO sequential heuristic, we call the new method the parallel largest �rst (PLF)heuristic. We note that Allwright et al. [1] has independently determined that this heuristic ise�ective in numerical calculations involving dynamically triangulated random surfaces.The PLF heuristic can be implemented by a straightforward modi�cation of the JP heuristic.Let �(v) = u(v) + deg(v), and recall that u(v) is between 0 and 1. Thus, replacing the function� () in Figure 3 yields an implementation of the PLF heuristic.The motivation for PLF, as with LFO, is to color the most di�cult vertices (those of largestdegree) �rst, where we might be constrained to use the largest colors. Unlike the JP heuristic,PLF considers the local structure of the graph when forming independent sets, producing animproved coloring. However, this strategy may make the execution time of the heuristic moreproblem dependent.The following theorem states that PLF has the same CREWP-RAM expected runtime boundas the JP heuristic for graphs whose maximum degree is bounded by some constant �.Theorem 3.2. The expected running time of the PLF heuristic under the CREW P-RAMmodel is EO(log(n)= log log(n)) for a bounded degree graphs with n vertices.Proof: Random numbers are used to break ties for inclusion in the independent set amongvertices of the same degree. This is equivalent to using the JP heuristic to determine a se-quence of independent sets among vertices with the same degree and hence requires at mostEO(log(n)= log log(n)) time. By assumption, the maximum degree of the graph is bounded bysome constant �; thus the number of distinct vertex degrees is also bounded by �. Hence, thetotal expected runtime is EO(log(n)= log log(n)). 2Although the JP and PLF heuristics have the same expected runtimes, one would expectthe actual runtime for PLF to be at least that of the JP heuristic. If there are many distinctvertex degrees, one might expect that the runtime could be much higher. However, the followingexperimental results show that the PLF heuristic takes only slightly more time than the originalheuristic and produces better colorings.3.3. Comparison of the JP and PLF Heuristics. In this section we experimentallycompare the JP and PLF parallel coloring heuristics. The experiments were performed on theIntel DELTA computer, a 16�32 mesh-connected array of Intel i860 processors. Communicationis accomplished via message passing on this MIMD architecture.Two problem types are used to perform these comparisons. The Crystal problem is a setof graphs arising from a �nite-element model of a piezoelectric crystal [3]. The domain is arectangular solid that is regularly discretized and second-order, hexahedral elements are used.The sequence of graphs is chosen such that each graph is twice as large as its predecessor. Inthis way, the problem size can be scaled with the number of processors such that the numberof vertices on an individual processor is kept nearly constant. Details about the sequence ofgraphs are given in Table 1, where w(V G) = Pv2V G w(v) gives the total global vertex weightand w(V L) =Pv2V L w(v) gives the total local vertex weight. Unless otherwise noted, the vertexdegrees, w(v) = deg(v), are used for the vertex weights.The second problem, the Kall problem, is a single problem unlike the sequence of Crystalproblems. The Kall problem is a 3D �nite-element mesh from a structural mechanics application.The model includes primarily tetrahedral elements; however, it also includes some beam and plateelements. Table 2 gives details on the characteristics of this graph as it is partitioned over anincreasing number of processors.For both the JP and PLF coloring heuristics, the IDO method is used for the Seq-color ()routine for the global phase, and the SDO method was used for the local phase. This combination6

Table 1Crystal problem speci�cation for di�erent jP jProcessors jV j jV Gj w(V G) jV Lj w(V L)1 866 0 0 866 1428502 1446 337 79220 1109 1724304 2278 886 206030 1392 2080528 4918 2225 533245 2693 41613316 10294 5260 1282125 5034 78123732 21334 11487 2833756 9847 155357464 43606 24712 6136937 18894 2985113128 88726 51212 12802343 37514 5981147256 179350 105438 26476597 73912 11803341Table 2Kall problem speci�cation for various jP jProcessors jV j jV Gj w(V G) jV Lj w(V L)1 10556 0 0 10556 1627742 10556 393 9258 10163 1535164 10556 977 22992 9579 1397828 10556 1864 40673 8692 12210116 10556 2455 52743 8101 11003132 10556 4604 80865 5952 81909performs at least as well as any other combination of the heuristics tested in [8]. The number ofcolors required for the global phase and the total coloring are given for the JP and PLF heuristicsfor the Crystal and Kall problems in Tables 3 and 4, respectively. Note that the PLF heuristicis consistently superior. Table 3Colors required for Crystal problem using JP and PLF parallel heuristicsProcessors JP j�Gj JP j�j PLF j�Gj PLF j�j1 108 108 108 1082 110 110 108 1084 110 110 108 1088 113 114 108 10816 115 116 108 11332 117 118 108 11364 118 120 109 113128 118 120 110 114256 120 121 114 114The Crystal problem is used to measure the scalability of the PLF heuristic. The problemsize is kept proportional to the number of processors. Hence, in order to be scalable the runtimeof the heuristics should remain constant as the number of processors is increased. Observe inFigure 4 that the PLF and JP methods essentially do meet this criterion; although there is aslight increase in running time, it is a very slowly growing function of the number of processors.Times for small numbers of processors are omitted because the ratio of global to local verticesand edges does not stabilize until jP j = 8, as indicated by Table 1.The Kall problem is used to directly compare the execution times of PLF and JP and to7

Table 4Colors required for Kall using JP and PLF parallel heuristicsProcessors JP j�Gj JP j�j PLF j�Gj PLF j�j1 9 9 9 92 10 11 8 94 11 11 8 98 13 13 9 916 12 12 9 932 13 13 9 10

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

JP o

PLF x

Processors

T
im

e
in

 s
ec

on
ds

Scalability of parallel coloring methods for Crystal problem

Fig. 4. Time required by the JP and PLF parallel heuristics for the Crystal problem sequence. Note that thetime required is nearly independent of the number of processors, demonstrating the scalability of both heuristics.8

examine their performance for a �xed size problem as jP j increases. Comparing the executiontime of the methods in Figure 5, we see that JP and PLF are nearly indistinguishable. Theheuristic performs well as jP j increases, with some deterioration as the ratio of communicationto computation increases.
10

0
10

1
10

2
10

-1

10
0

10
1

10
2

JP o

PLF x

Processors

T
im

e
in

 s
ec

on
ds

Comparison of methods for Kall problem

Fig. 5. Comparison of the execution times of the JP and PLF heuristics as a function of the number ofprocessors used4. Balanced Graph Colorings for Irregular Problems. A graph coloring is often usedto represent how work is scheduled for execution on a parallel computer. The graph verticesindicate the tasks to be performed, vertices of the same color represent independent work thatcan be performed concurrently, and the graph edges represent dependencies between the tasks.Processors can simultaneously work on the vertices (tasks) of color i and proceed to verticescolored i + 1 when all adjacent vertices of color i are completed.The problem can be generalized to include a weight, w(v), associated with each vertex v,representing the amount of work required by that task. Load-balancing problems occur whensome processors have a signi�cantly larger number of vertices (or total weight) of the current colori than other processors have. This color imbalance can cause a processor workload imbalanceeven if the total weight assigned to each processor is equal.Such imbalances are more likely to occur when the underlying graph is not homogeneous, orregular, in structure. A �nite-di�erence discretization using a single stencil or a uniform order�nite-element model is homogeneous, and the coloring imbalance for such graphs is generallynot signi�cant. However, an irregular, or nonhomogeneous, graph can arise when di�erent �nite-element types or �nite-di�erence stencils are used to model di�erent portions of a physical domain.The resulting graph contains subgraphs that may have very di�erent edge connection patternsand vertex degrees. If these subgraphs are assigned to di�erent processors, one may expect thatthe assignment of tasks to colors would not be balanced on di�erent processors. Such situationsoften occur in complex engineering applications.On a homogeneous parallel computer, a graph coloring is ideally balanced when the processorseach have the same total vertex weight per color. It is assumed throughout this section that thevertices have been partitioned among the processors such that each processor is assigned a nearly9

equal weighted sum of vertices. Without such an assignment, a balanced coloring is not possible.In the discussions that follow, we assume the parallel computer is homogeneous; however, thede�nitions and methods can be extended to a heterogeneous system.In [19] the imbalance of a coloring is quanti�ed by using the following de�nitions. Theaverage weight of color c with the processor set P is given by�c = 1jP j Xv2V j�(v)=cw(v) :(4.1)The imbalance for color c on processor p, I(c; p), is de�ned byI(c; p) = 0@ Xv2Vpj�(v)=cw(v)1A � �c :(4.2)The imbalance of color c is given by I(c) = maxp2P fI(c; p)g :(4.3)The total color imbalance, I� , is given by the expressionI� =Xc2� I(c) :(4.4)A coloring is ideally balanced if I� = 0. The metric I(c) measures the largest amount of imbalancefor a color c produced by a processor, and I� indicates the total imbalance over all colors used.One could construct other measures; however, we have found this method to be a simple ande�ective indicator.Pommerell et al. [19] give algorithms for producing balanced colorings; a parallel variant oftheir most e�ective algorithm is summarized in Figure 6. This heuristic colors only the globalvertices, ignoring edge dependencies between vertices on the same processor. The algorithmChoose tolerance Imax;c = 1;tol = 0;While uncolored global vertices remain doAll processors attempt to color a global vertex with color c;if all processors are not successful thenif tol < Imax thentol = tol + 1;else tol = 0;c = c+ 1;endifendifendwhileFig. 6. Parallel version of the balanced coloring heuristic given by Pommerell et al. with w(v) = 1clearly limits I(c) to Imax, a user-chosen tolerance, and I� � j�jImax. A potential shortcomingof the method is that, in general, the number of colors required to color the graph will increase10

for small Imax. Note that the algorithms given in [19] were designed to run on a sequentialcomputer and are not well suited for MIMD implementation. In parallel, at most jP j vertices arecolored per step, and a global synchronization is required after each step. These synchronizationsteps result in a poor communication-to-computation ratio.4.1. Two New Parallel Balancing Heuristics. The two parallel heuristics introduced inthis section, PDR(k) and PLF(k), work by improving the balance of an existing coloring withoutincreasing the number of colors. Both heuristics are local optimization techniques that improvethe balance by selectively moving vertices from one color to another legal color.We begin by introducing a measure of the deviation of a coloring from a perfectly balancedcoloring; our heuristics will perform local optimizations with respect to this measure. Supposethe coloring that we have already computed is � and that it uses j�j colors. Given the sum of theweights of all the vertices, ideally we could require that this total weight be equally distributedamong all the colors. Thus, we de�ne our goal on processor p, �(p), to be�(p) = 1j�j Xv2V j �(v)=pw(v) ;(4.5)the ideal weight of the vertices assigned each color. Given a particular coloring �, we can measurehow close to that ideal we are by calculating (c; p) for each color c = 1; 2; : : :; j�j as(c; p) = Xv2V j �(v)=c; �(v)=pw(v) :(4.6)This sum gives the current total weight of all vertices assigned color c. The balance deviation,�(c; p), for color c on processor p is de�ned as�(c; p) = (c; p)� �(p) :(4.7)We choose to attempt to minimize the balance deviations, �(c; p), instead of the total imbal-ance, I� , for two reasons. First, balancing the weight assigned each color is important to ensureload balancing for many problems. For example, when using the coloring to solve sparse trian-gular systems [12], we would like the work associated with each color to be equal. The conditionI� = 0 by itself does not imply this equality. Second, performing optimizations that minimizebalance deviations can be done locally on a processor; this process does not require vertices to bemoved between processors. We note that if the total weight assigned to each processor is equal,then �nding a coloring with zero total deviation implies that I� = 0. Finally, a lower bound onI� using these recoloring strategies is based on the inherent weighted imbalance in the graph Gwith partitioning �, I(G;�), which isI(G;�) = maxi2P fw(Vi)� w(V)jP j g:(4.8)From this de�nition it is clear that I� � I(G;�).The deviance reduction heuristic works by moving vertices from one color j with positivedeviation to another legal color k with a lower deviation when this exchange will reduce thetotal deviation. If one imagines a bin associated with each color, the color-balancing problemis similar to the bin-packing problem, with the added constraint that a vertex cannot be placedin the same bin as an adjacent vertex. One of the best theoretical bounds for the bin-packingproblem is obtained by the \�rst �t decreasing" heuristic [7], which works by �rst sorting theitems by size and trying to pack the largest items �rst. We use a greedy strategy, working �rstwith the color with the largest positive deviance. Based on the bin-packing heuristic results,for a speci�c color, the vertex with the largest weight is chosen. This vertex is moved to theleast-�lled bin consistent with colors of its neighbors. In Figure 7, we give a sequential version of11

Perform initial coloring �;~� = �;V (j) = fv 2 V j �(v) = jg;� =Pv2V w(v)=j�j; fIdeal bin weightg(j) =Pv2V j �(v)=j w(v) for j = 1; 2; : : :; j�j; fCalculate current bin weightsgi = 1;Choose j such that (j) = maxf(l)g;While (j) � � > � and i � n doChoose vi 2 V (j) such that w(vi) � w(u) 8u 2 V (j);S = fl j l 6= ~�(adj(vi)) and (j) > (l) + w(vi)g; fFind eligible colorsgif S 6= ; then fMove vertex?gChoose k such that (k) = minfSg; fChoose smallest bing~�(vi) = k;(�(vi)) = (�(vi))� w(vi);(k) = (k) + w(vi);endifV (j) V (j) n fvig;i = i + 1Choose j such that (j) = maxf(l)g;endwhileFig. 7. Sequential version of the deviance reduction (DR) balanced coloring heuristica balancing heuristic based on deviance reduction (DR). Note that one can make multiple passesof the DR heuristic to further improve the balance.A major advantage of the DR heuristic is that it improves the balancing of an existingcoloring without increasing the number of required colors. Thus, the best available coloringheuristic can be used to obtain the initial coloring|using as few colors as possible|and a betterbalanced coloring can be obtained using that number of colors. The following theorem showsthat the number of colors is not increased by the DR heuristic.Theorem 4.1. Let � be an initial coloring of G. The DR heuristic computes a new coloring~�, with j�j � j~�j.Proof: Because a vertex can be recolored only with an existing color, it is clear that the numberof colors cannot increase. 2It is also important that the DR heuristic have a fast runtime. Consider a graph with nvertices, maximumdegree �, and assume that the vertex weights are the degrees of the vertices.Under these assumptions, the following theorem shows that the sequential heuristic has a linearruntime for bounded �.Theorem 4.2. Consider the DR heuristic given in Figure 7. Assume that graph on whichthe heuristic is used has maximum degree �. Let n be the number of vertices in the graph, andassume that we use vertex weights de�ned by w(v) = deg(v). Then the running time of thesequential DR heuristic is bounded by O(n�).Proof: The computation of the ideal bin weight � and the current bin weights (j) requirestime proportional to the number of vertices, or O(n) time.Recall that any greedy coloring requires no more than �+ 1 colors. Hence we can assumethat j�j � �+ 1. The number of bins is equal to the number of colors; thus, the vertices can besorted by color in O(n) time. In addition, because we use the vertex degrees as weights, verticesof each color can be sorted by weight in O(n) time.12

Using these sorted arrays, we can select the vertex vi in constant time at each iterationthrough the while loop. To compute the set S, we need to look at the color of each adjacentvertex. By de�nition, there can be no more than � adjacent vertices. To choose the smallestbin requires no more time than the maximumnumber of colors, or O(�) time. Finally, selectingthe bin with maximum (j) requires at most O(�) time. All the other steps in the while looprequire constant time.The number of times through the while loop is the number of vertices, n. Hence, the entireheuristic requires O(n�) time. 2Given an initial parallel coloring �; fj�j is the maximum color among the processorsg~� = �;(j; i) =Pv2Vi j �(v)=j w(v) for j = 1; 2; : : :; j�j;�(i) =Pv2Vi w(v)=j�j; fIdeal bin weight for this processorg�(j; i) = (j; i) � �(i) for j = 1; 2; : : : ; j�j;�(v) = �(�(v); i) + u(v) for all v 2 V Gi ;Set up n-wait, send-queue and color-queue according to new �;DR-Seq-color (~�, color-queue); fColor any vertices in V Gi notgn-colored = j color-queue j; fwaiting for messagesgPack-and-send (~�, color-queue, send-queue);color-queue = ;;While (n-colored < jV Gi j) doReceive msg;For each w 2 msg.vertex-list do~�(w) = msg.vertex-color;For each v 2 msg.vertex-adj don-wait (v) = n-wait (v) � 1;if (n-wait (v) = 0) thencolor-queue color-queue [fvg;endifendforendforDR-Seq-color (~�, color-queue); fColor subsets of V Gi once requiredgn-colored = n-colored + j color-queue j; fmessages are receivedgPack-and-send (~�,color-queue, send-queue);color-queue = ;;endwhileDR-Seq-color (~�, V Li); fColor local vertices lastgFig. 8. Parallel deviance reduction (PDR) coloring heuristic for the i-th processorWe now introduce two parallel heuristics, PLF(k) and PDR(k), that use the sequential DRheuristic to obtain balanced colorings. An initial coloring is required for both of these methods;we assume that the PLF heuristic is used. The PLF(k) heuristic performs k recolorings forbalancing. The recoloring heuristic is the same as the JP MIMD heuristic given in Figure 3 withthe same ordering function as with PLF, �(v) = u(v) + deg(v), and the sequential DR heuristicused for Seq-color ().To construct the PDR(k) heuristic, we also use the the sequential DR heuristic for Seq-color (). However, rather than using the vertex degree in �(v), we use the local color deviationsat the start of each recoloring. Thus, we choose �(v) = �(�(v); p) + u(v), where �(�(v); p) isthe color deviation before any vertices have been recolored on the k-th iteration. By using13

the local deviation of the color �(v) as the basis for independent sets, the processors with thecolors of greatest imbalance, having the largest quantities I(c; p), are given priority over otherprocessor/color pairs. The PDR(k) heuristic is given in detail in Figure 8.Note that a P-RAM analysis that assumes only one vertex per processor does not makesense for these balancing heuristics. Instead, we experimentally show that the algorithms have ascalable runtime similar to that of JP and PLF.4.2. Experimental Results for the Balanced Coloring Heuristics. In this subsectionwe present experimental results that demonstrate the e�ectiveness of the two heuristics at min-imizing the color imbalance. We use two test problems, the Kall problem that was describedearlier and the FDgrid problem. The FDgrid problem is a nonhomogeneous problem, speci�callydesigned to test balanced coloring methods. The problem is obtained from the discretizationof a square domain, using a 27-point stencil in the middle portion and a 7-point stencil at theeast and west ends. Table 5 describes the speci�cs of the FDgrid problem for the processor setsused. For all of the balancing experiments the vertex degrees are used as the vertex weights, i.e.,w(v) = deg(v). The experiments are again performed on the Intel DELTA.Table 5Description of the FDgrid problem for di�erent jP jProcessors jV j jV Gj w(V G) jV Lj w(V L)1 32768 0 0 32768 4606922 32768 1297 21588 31471 4391044 32768 3527 68286 29241 3924068 32768 5351 109130 27417 35156216 32768 7164 139217 25604 32147532 32768 9758 193565 23010 26712764 32768 12540 239332 20228 221360The �rst set of experiments examines how the imbalance is a�ected by varying the parameterk, the number of recolorings, for the heuristics PLF(k) and PDR(k). We measure the total colorimbalance, I� , as de�ned earlier in Equation 4.4. Tables 6 and 7 show the experimental resultsfor k = 0; 1; 2; 3; 4 with the FDgrid problem and jP j = 64. It appears that the most bene�t isreceived by using two recolorings, although one recoloring signi�cantly reduces the imbalance.Additional experiments that we performed support this conclusion, but we do not report thoseresults here. We also note that although PLF(0) and PDR(0) are the same heuristic, the order inwhich messages are received can vary. This fact accounts for di�erences in the results for PLF(0)and PDR(0) in the following tables. Table 6Total imbalance I� produced by PLF(k) and PDR(k) for jP j = 64 on the FDgrid problemk PLF(k) PDR(k)0 6739 66901 394 2912 188 1663 175 1604 175 160The next experiment examines the reduction in the coloring imbalance of the heuristics asthe number of processors, jP j, varies. In Tables 8, 9, and 10, one sees that applying PLF(1) andPDR(1) signi�cantly reduces the imbalance for the FDgrid and Kall problems. An additionalimprovement is obtained with one more balancing iteration as used by PLF(2) and PDR(2). In14

Table 7Maximum color imbalance maxfI(c)g produced by PLF(k) and PDR(k) with jP j = 64 for the FDgrid problemk PLF(k) PDR(k)0 1435 14311 77 332 17 173 17 174 17 17Table 8Total imbalance I� produced by PLF(k) and PDR(k) on the FDgrid problemProcessors Pc2� �c I(G;�) PLF(0) PDR(0) PLF(1) PDR(1) PLF(2) PDR(2)2 230344 0 5414 5414 24 29 15 204 115169 2 58109 58109 93 66 53 508 57582 17 18207 17827 143 146 68 6116 28787 13 20526 20596 319 227 134 10932 14390 11 11824 12115 326 233 167 14964 7191 17 6739 6690 394 291 188 166Table 9Maximum color imbalance maxfI(c)g for PLF(k) and PDR(k) on the FDgrid problemProcessors Pc2� �c PLF(0) PDR(0) PLF(1) PDR(1) PLF(2) PDR(2)2 230344 1841 1841 8 6 3 34 115169 17506 17506 31 10 6 78 57582 4482 4003 35 30 12 1016 28787 5609 5593 79 55 14 1132 14390 2898 3067 69 43 15 1764 7191 1435 1431 77 33 17 17Table 10Total imbalance I� produced by PLF(k) and PDR(k) on the Kall problem.Processors Pc2� �c I(G;�) PLF(0) PDR(0) PLF(1) PDR(1) PLF(2) PDR(2)2 81384 8 1663 1663 31 21 17 124 40689 22 4276 4276 70 97 27 298 20343 10 2513 2196 59 48 37 3916 10169 30 2336 2373 60 79 51 5132 5082 34 1448 1476 109 123 66 7815

Tables 8 and 10 we show the lower bound I(G;�) as de�ned in Equation 4.8. Recall that thislower bound results from the imbalance inherent to the vertex partitioning; note that the twoheuristics are able to obtain a total imbalance relatively close to this lower bound.
0 50 100 150 200 250 300

0

5

10

15

20

25

PLF o

PLF(1) x

PLF(2) +

Processors

T
im

e
in

 s
ec

on
ds

Scalability of parallel balanced coloring methods for Crystal problem

Fig. 9. Scalability of parallel balanced coloring heuristic PLF(k) on Crystal problemFinally, in Figure 9 we illustrate the scalability of the PLF(k) heuristic for k = 0; 1; 2 on theCrystal problem. The results of PDR(k) are omitted because they are essentially the same asthose given by the PLF(k) heuristic. PLF(0) previously was shown to be scalable, and it evidentfrom the graph that PLF(k) is empirically scalable. The execution time of the heuristic appearsto be a slowly increasing function of the number of processors and problem size.5. Conclusions. The two objectives of our study were to devise new scalable, parallel col-oring heuristics that (1) require fewer colors than existing methods, and (2) minimize coloringimbalance while using no more colors than the best parallel coloring method.The �rst objective has been achieved by introducing a new heuristic, PLF, that relies onusing vertex degrees for independent sets instead of solely random numbers as employed by theoriginal Jones/Plassmann (JP) heuristic. PLF was shown to have the same expected runtime asthe JP heuristic under the CREW P-RAM execution model. For our suite of test problems, PLFconsistently required fewer colors than JP, and required only slightly more execution time.To achieve the second objective, balanced colorings, we introduced the the PLF(k) andPDR(k) heuristics. Given an initial coloring, these heuristics perform one or more recoloringsthat strive to reduce the color deviance by using heuristics based on those successfully used inbin-packing problems. The PLF(k) and PDR(k) heuristics guarantee that the number of colorsused by the initial coloring does not increase in the recoloring, while signi�cantly reducing thecolor imbalance among the processors. Both the PLF(k) and PDR(k) heuristics were empiricallyshown to be scalable. 16

REFERENCES[1] J. Allwright, R. Bordawekar, P. Coddington, K. Dincer, and C. Martin, A comparison of parallelgraph coloring algorithms, Tech. Rep. SCCS-666, Northeast Parallel Architectures Center, SyracuseUniversity, 1995.[2] D. Br�elaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251{256.[3] T. Canfield, M. Jones, P. Plassmann, and M. Tang, Thermal e�ects on the frequency response ofpiezoelectric crystals, in New Methods in Transient Analysis, PVP-Vol. 246 and AMD-Vol. 143, NewYork, 1992, ASME, pp. 103{108.[4] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graph coloring problems,SIAM Journal on Numerical Analysis, 20 (1983), pp. 187{209.[5] I. S. Duff and G. A. Meurant, The e�ect of ordering on preconditioned conjugate gradients, BIT, 29(1989), pp. 635{657.[6] I. S. Duff and J. K. Reid, Performance evaluation of codes for sparse matrix problems, in PerformanceEvaluation of Numerical Software, L. Fosdick, ed., North-Holland, Amsterdam, 1979, pp. 121{135.[7] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, New York, 1979.[8] R. K. Gjertsen Jr., Parallel graph coloring heuristics, Master's thesis, University of Illinois at Urbana-Champaign, 1994.[9] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Tech. Rep. SAND93-1301,Sandia National Laboratories, Applied Mathematical Sciences, Albuquerque, NM, October 1993. Draft.[10] J. J�aj�a, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Company, 1992.[11] M. T. Jones and P. E. Plassmann, The e�ect of many-color orderings on the convergence of iterativemethods, in Proceedings of the Copper Mountain Conference on Iterative Methods, SIAM LA-SIG,1992.[12] , The e�cient parallel iterative solution of large sparse linear systems, in Graph Theory and SparseMatrix Computation, A. George, J. Gilbert, and J. W. Liu, eds., vol. 56 of The IMA Volumes inMathematics and Its Applications, Springer-Verlag, 1993, pp. 229{245.[13] , A parallel graph coloring heuristic, SIAM Journal on Scienti�c Computing, 14 (1993), pp. 654{669.[14] , Scalable iterative solution of sparse linear systems, Parallel Computing, 20 (1994), pp. 753{773.[15] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM Journal on Comput-ing, 4 (1986), pp. 1036{1053.[16] D. Matula, G. Marble, and J. Isaacson, Graph coloring algorithms, in Graph Theory and Computing,R. Read, ed., Academic Press, 1972, pp. 104{122.[17] R. G. Melhem and V. S. Ramarao, Multicolor reorderings of sparse matrices resulting from irregular grids,ACM Transactions on Mathematical Software, 14 (1988), pp. 117{138.[18] J. M. Ortega, Orderings for conjugate gradient preconditionings, SIAM Journal on Optimization, 1 (1991),pp. 565{582.[19] C. Pommerell, M. Annaratone, and W. Fichtner, A set of new mapping and coloring heuristics fordistributed-memory parallel processors, SIAM Journal on Scienti�cand StatisticalComputing, 13 (1992),pp. 194{226.[20] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAMJournal on Matrix Analysis, 11 (1990), pp. 430{452.[21] R. Schreiber and W.-P. Tang, Vectorizing the Conjugate Gradient method. Unpublished manuscript,Department of Computer Science, Stanford University, 1982.[22] S. Vavasis, Automatic domain partitioning in three dimensions, SIAM Journal on Scienti�c and StatisticalComputing, 12 (1991), pp. 950{970.[23] D. Welsh and M. Powell, An upper bound for the chromatic number of a graph and its application totimetabling problems, Comput. J., 10 (1967), pp. 85{86.
17

