Parallel Heuristics for Improved, Balanced Graph ColoringsT

RoOBERT K. GJERTSEN, JR.

Computer Science Department
University of Illinois, Urbana, 1L 61801
(gjertsen@ncsa.uiuc.edu)

Mark T. JONES

Department of Computer Science
University of Tennessee
Knoxville, TN 37996
(jones@cs.utk.edu)

PauL E. PLASSMANN

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439
(plassman@mcs.anl.gov)

Abstract: The computation of good, balanced graph colorings is an essential part of
many algorithms required in scientific and engineering applications. Motivated by an effective
sequential heuristic, we introduce a new parallel heuristic, PLF, and show that this heuristic
has the same expected runtime under the P-RAM computational model as the scalable coloring
heuristic introduced by Jones and Plassmann (JP). We present experimental results performed on
the Intel DELTA that demonstrate that this new heuristic consistently generates better colorings
and requires only slightly more time than the JP heuristic.

In the second part of the paper we introduce two new parallel color-balancing heuristics,
PDR(k) and PLF(k). We show that these heuristics have the desirable property that they
do not increase the number of colors used by an initial coloring during the balancing process.
We present experimental results that show that these heuristics are very effective in obtaining
balanced colorings and, in addition, exhibit scalable performance.

t This work was supported by the Mathematical, Information, and Computational Sciences Divi-
ston subprogram of the Office of Computational and Technology Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38. In addition, the second author received support from
the 1994-1995 UTK Professional Development Award Program.

1. Introduction. The graph coloring problem arises in many scientific computing applica-
tions. For example, the efficient computation of sparse Jacobian matrices [4] and the parallel
solution of sparse triangular linear systems [5] [11] [12] [14] [17] [18] [19] [21] require graph color-
ings. Determining an optimal coloring for a general graph is known to be an NP-hard problem
[7]. Fortunately, effective sequential heuristics [4] [19] have been developed and implemented for
graph coloring problems of practical importance.

On serial computers these heuristics are inexpensive relative to the other required compu-
tational tasks in most applications. However, if these other tasks are executed on a massively
parallel computer, the sequential coloring heuristics may dominate the execution time. In ad-
dition, it may not be practical to use a serial implementation of these heuristics because the
problems may be too large to fit into the memory available to a single processor. To address this
problem, Jones and Plassmann developed a scalable graph coloring heuristic [13]. By scalable we
mean that if the size of the subproblem assigned to each processor is kept constant, the running
time of the heuristic remains constant (or increases very slowly) as the number of processors is
increased.

Although it is effective in many contexts, the Jones and Plassmann (JP) parallel coloring
heuristic has two apparent deficiencies. First, the colorings produced by this heuristic often
use slightly more colors than colorings computed by the best sequential heuristics. Second, for
graphs that have highly variable local structure, the JP heuristic can generate colorings where
the number of vertices assigned a particular color varies significantly among processors. This
color imbalance can result in a significant load imbalance in subsequent parallel computation
based on this coloring. In this paper we introduce new heuristics that address both of these
problems while maintaining the scalable performance of the original heuristic.

To solve the first problem, we recall that the JP heuristic achieves a fast parallel running time
by coloring a sequence of independent sets based on random numbers assigned to the vertices [13].
In this paper, we combine this approach with a more sophisticated strategy based on ideas from a
successful sequential coloring heuristic. This new heuristic (PLF) has the same expected runtime
as the JP heuristic under the P-RAM parallel computation model, and we show experimentally
that it generates better colorings.

To address the second problem, we introduce two new parallel heuristics, PDR(k) and
PLF(k), that dramatically improve the color balance of the JP and PLF heuristics on highly
irregular graphs. An important feature of these heuristics is that they use an existing coloring
(such as that produced by JP or PLF) and balance that coloring without increasing the total
number of colors used. In addition, we show that these heuristics empirically exhibit scalable
performance.

In the remainder of this paper, we specify the graph coloring problem and review effective
sequential heuristics in §2. In §3 the JP heuristic is reviewed, and we introduce the PLF heuristic.
The balanced coloring problem is described in more detail in §4, prior work is discussed, and
the new heuristics, PDR(k) and PLF(k), are introduced. Computational experiments performed
on the Intel DELTA are described in §3 and §4 to support the claims of improved quality and
scalability of the new methods. Finally, we summarize this work in §5.

2. The Graph Coloring Problem and Sequential Heuristics. We begin by first re-
viewing the necessary graph terminology. Let G = (V| E) be an undirected graph with vertex
set V and edge set F = {(u,v) | u,v € V}. The set of vertices adjacent to v € V is denoted
as adj(v), and the degree of a vertex v, defined by deg(v) = |adj(v)|, is the number of vertices
adjacent to v. We write the maximum degree of the graph G as A(G) = max{deg(v) | v € V}.
We say that a set of graphs is of bounded degree if for each G in this set, A(G) is bounded and
independent of |V| (i.e., A(G) is not proportional to the number of vertices of G). A connected
component of G is a subgraph G = (VI, EI) of (G such that for all u,v € V' there exists a path
from w to v in G. A cligue C' = (VI, EI) is a connected component of &G for which there exists
an edge in E' between each pair of vertices in V'. An independent set of G is a set of vertices 1

1

such that there exists no edge (u,v) with u,v € I. A coloring of GG is a mapping ¢ : V — K that
maps each vertex v € V to a color K = {1,2, ..., k} such that o(v) # o(u) for each (u,v) € E.
Note that the set of vertices assigned a color in K is an independent set in G. We denote the
number of colors used in the mapping o by |o|.

The objective of the graph coloring problem is to find a coloring o of G such that || < || for
all colorings 7. The smallest number of colors required for coloring G is known as the chromatic
number of G and is denoted by x(G). As previously mentioned, the graph coloring problem is
NP-hard for graphs that require three or more colors [7]. There are some well-known bounds on
x(G) including x(G) < A(G)+ 1 and x(G) > |Cpax|, where Chax is the largest clique in G.

Numerous fast greedy coloring heuristics appear in the literature; all color a graph by using
some criterion to order the vertices. The general procedure followed by these methods is outlined
in Figure 1. All the greedy methods choose a vertex color in the same way; they differ in how the

ViV,

For i =1ton do
Choose vertex v; € V' according to coloring criterion;
Choose the smallest possible color o(v;) for vertex v;;
Vi VI {uils

endfor

Fic. 1. General sequential coloring heuristic

vertices to be colored are ordered. Effective, well-known ordering techniques include the largest
first ordering (LFO) [23], the incidence degree ordering (IDO) [4], and the saturation degree
ordering (SDO) [2]. The vertex ordering for each of these methods is determined at each step ¢
in the above greedy heuristic as follows:

e LFO chooses v; € V' such that deg(v;) > deg(v;) for all j > i. At each step the vertex
with the maximum degree in the graph G = (VI , EI) is chosen. Intuitively, the method
first colors the vertices that could produce the highest colors.

o IDO chooses the first vertex v1 to be the vertex with the maximum degree in G. Sub-
sequently, vertex v; is chosen as the vertex with the maximal degree in the subgraph
induced by {v1,vs,...,v;_1,v;}. That is, the vertex with the maximum incidence degree
is chosen at each step, where the incidence degree of a vertex is the number of adja-
cent colored vertices. At each step the IDO algorithm chooses the vertex maximally
constrained by G

e SDO chooses the initial vertex v; to be the vertex with the maximum degree in G.
Subsequently, vertex v; is chosen as the vertex with the maximum saturation degree in
V' where the saturation degree of a vertex v is the number of different colored vertices
adjacent to v.

The IDO method has a running time proportional to }_ . deg(v), and LFO has a run-
ning time of)" . deg(v) + [V[log|V]. The SDO method is the slowest heuristic and requires
D ovev deg*(v) time; this complexity can be improved to > _vev deg(v), but requires approximately
doubling the amount of storage [4].

Sequential coloring heuristics have been compared by several authors, including a study by
Matula et al. with random graphs [16], an analysis by Brélaz on general random graphs [2], and
work by Coleman and Moré [4] with random graphs and matrices from various well-known test
suites such as the Harwell collection [6]. Overall, these studies found SDO to be best, closely
followed by IDO. LFO performed well, but was not quite as good as either SDO or IDO. Features
of the LFO heuristic are incorporated in the PLF heuristic described in the next section.

3. An Improved Parallel Graph Coloring Heuristic. We begin by reviewing the con-
text of a practical, distributed-memory heuristic for coloring a graph . We assume that we
have a good graph partitioning (an assignment of vertices to partitions) and a good assignment
of partitions to processors. We combine these two aspects by assuming that the number of par-
titions equals the number of processors. Let the set of processors be P, and let the mapping
I': V — P represent the assignment of the vertex set V' to the set of processors P.

We note that good heuristics exist for determining such partitionings [9] [20] [22]. By “good”
we mean that the heuristics are able to assign nearly equal numbers of vertices (or vertex weights)
to each processor while minimizing the edges that cross partitions (edges whose vertices are
assigned to different processors). Of course, these heuristics are not able to determine an optimal
partitioning because this problem is NP-hard; however, they perform well in practice.

Assuming that we possess a good graph partitioning and assignment mapping I', we initially
focus on a high-level procedure for coloring the graph G = (V, E) in parallel. We use the
original approach of Jones and Plassmann [13]. With this method the vertices on each processor
are classified as either local or global nodes. The set of local nodes V¥ is defined by VI =
{v | T(v) = T'(u) ¥(v,u) € E}. We define the set of globalnodes V< to be the remaining vertices,
that is, V¢ = {v | (v, u) with ['(v) # ['(u)}. The local and global vertices assigned to processor
i by T are denoted by V;F and V,, respectively, and their union as V;. The approach uses two
phases to color the graph:

1. Color the global vertices (i.e., those vertices that are on the global edge separator). The
global edge separator E“ is the set of edges whose vertices are assigned to different
processors.

2. Color the local vertices independently on each processor, thereby extending the global
coloring to a coloring o for the entire graph.

This approach produces a valid coloring o as stated by the following theorem.

THEOREM 3.1. Let o be a coloring for G(V). This coloring, restricted to V,%, can be

independently extended to a coloring o; for the subgraph G(V;). If we define the function o by
o(v) = o;(v) when v €V;, then o is a coloring for G.

Proof: See [13]. O

The primary advantage of the method is that once the global separator vertices are colored,
the processors can work independently to color their local vertices. An additional benefit is that
(VY EY) may be sparser than G and hence may require fewer colors than a heuristic that must
consider all of ¢ simultaneously. This two-level approach is used for all the methods described
in this paper. With this approach, one must determine how to color the separator vertices in
the global phase and how to color the local vertices in the second phase. For the local phase,
a good sequential coloring heuristic such as IDO or SDO can be used by each processor; the
SDO method generates a better coloring but is more time consuming. The problematic issue of
coloring the global vertices is considered next.

3.1. Previous Parallel Coloring Heuristics. The JP heuristic [13] colors the global ver-
tices by finding independent sets of vertices, coloring them, and updating nonlocal neighbors
asynchronously. The heuristic is inspired by a parallel algorithm introduced by Luby to deter-
mine a maximal independent set in a graph [15]. The Luby heuristic has a fast expected runtime
(logarithmic in the number of vertices) under the P-RAM computational model. However, the
Luby algorithm has the practical disadvantage that it is an inherently synchronous algorithm,
requiring many global synchronizations (for each color, the algorithm requires the same number
global synchronizations as its P-RAM runtime complexity). The JP heuristic has a slightly faster
expected runtime, but its major advantage is that is an asynchronous algorithm. This feature of
the heuristic allows for very efficient, scalable implementations on distributed-memory machines.

We first formulate the JP heuristic under the CREW P-RAM model [10] with each processor
assigned a single vertex from the graph. Later we will study the heuristic modified for a parallel,

distributed-memory MIMD machine. We assign each vertex v a unique number p(v), which we
use to generate a partial ordering of the vertices. Let u(v) be an independent random number,
uniformly distributed between 0 and 1. The JP heuristic chooses p(v) = u(v). Consider, at some
point in the heuristic, the subset of uncolored vertices I, where v € I if and only if p(v) > p(w)
for all uncolored vertices w € adj(v). Note T is an independent set of vertices and, therefore, can
be colored in parallel. We do not have to explicitly construct these independent sets. Instead, for
each vertex v we divide adj(v) into two sets, those vertices w € adj(v) with p(w) > p(v) and the
remaining vertices. We wait for messages from the former set that give the colors these vertices
have been assigned; color v the smallest unused color; and send this color to the latter, uncolored
set.

This asynchronous heuristic is outlined in Figure 2. By enforcing the coloring invariant
p(v) > p(w) for all uncolored w € adj(v), we obtain a consistent coloring, and there is no need
for processor synchronization. The running time of the heuristic for bounded degree graphs under
the CREW P-RAM model is FO(log(n)/ loglog(n)). As shown in [13], this time is proportional
to the expected maximum length monotonic path in G, where a monotonic path of length ¢ 1s a
path of ¢ vertices {vy,va,..., v} such that p(vi) > p(va) > ... > p(v¢).

Choose p(v);
n-wait = 0;
send-quene = 0
For each w € adj(v) do
Send p(v) to processor responsible for w;
Receive p(w);
if (p(w) > p(v)) then
n-wait = n-wait + 1;
else
send-quene «— send-quene U {w};
endif
endfor
n-recv = 0;
While (n-recv < n-wait) do
Receive o(w);
n-recv = n-recv + 1;
endwhile
o(v) = smallest available color consistent with the
previously colored neighbors of v;
For each w € send-queue do
Send o(v) to processor responsible for w;
endfor

Fic. 2. Jones/Plassmann (JP) CREW P-RAM asynchronous parallel coloring heuristic

The parallel distributed-memory MIMD version of this heuristic, given in Figure 3, maintains
a group of vertices on each processor. Let the global edge separator £ be the set of edges (u, v)
such that T'(u) # T'(v). In Figure 3 Seg-color () colors a queue of vertices given a partial coloring
o. The procedure Pack-and-send () packs these new colors into messages for the appropriate
processors and sends the information to the designated processors. The Pack-and-send () routine
is designed to overcome the high communication start-up cost, a characteristic of most message-
passing architectures. The JP coloring technique is fast and produces good colorings for finite-
difference stencils and finite-element models [13].

4

Determine V<, V.I; {Partition vertices}

color-queue = 0;

For each v € V¢ do
n-wait(v) = 0;
send-queue (v) = 0;

For each edge (v,w) € E¥ do
Compute p(w);
if (p(w) > p(v)) then

n-wait (v) = n-wait(v) + 1;
else

send-quene (v) — send-quene (v) U {w};
endif

endfor

if (n-wait (v) = 0) then
color-queune — color-queue U {v};

{Set up queues for separator vertices}

endif
endfor
Seq-color (o, color-queue); {Color any vertices in V;“ not}
n-colored = | color-queue | {waiting for messages}

Pack-and-send (o, color-queue, send-queue);
color-queue = 0;
While (n-colored < |V;¥]) do
Receive msg;
For each w € msg.vertez-list do
o(w) = msg.vertex-color;
For each v € msg.vertez-adj do
n-wait (v) = n-wait(v) — 1;
if (n-wait (v) = 0) then
color-queune — color-quene U {v};
endif
endfor
endfor

Seq-color (o, color-queue); {Color subsets of V;% once required}
n-colored = n-colored 4 | color-queune|; {messages are received}
Pack-and-send (o, color-queue, send-queue);
color-queue = 0;

endwhile

Seq-color (o, ViF); {Color local vertices last}

FiG. 3. The Jones/Plassmann distributed-memory coloring heuristic for the i-th processor

3.2. An Improved Coloring Heuristic. To improve the resulting colorings, we modify
the above method by using the degree of a vertex v in a manner analogous to sequential LFO
heuristic. The heuristic is essentially the same as the JP heuristic except that a vertex v is colored
first if its degree is larger than that of its uncolored adjacent vertices. If adjacent vertices have the
same degree, the random numbers are used to determine the coloring order. Since this heuristic
is related to the LFO sequential heuristic, we call the new method the parallel largest first (PLF)
heuristic. We note that Allwright et al. [1] has independently determined that this heuristic is
effective in numerical calculations involving dynamically triangulated random surfaces.

The PLF heuristic can be implemented by a straightforward modification of the JP heuristic.
Let p(v) = u(v) + deg(v), and recall that u(v) is between 0 and 1. Thus, replacing the function
p() in Figure 3 yields an implementation of the PLF heuristic.

The motivation for PLF, as with LFO, is to color the most difficult vertices (those of largest
degree) first, where we might be constrained to use the largest colors. Unlike the JP heuristic,
PLF considers the local structure of the graph when forming independent sets, producing an
improved coloring. However, this strategy may make the execution time of the heuristic more
problem dependent.

The following theorem states that PLF has the same CREW P-RAM expected runtime bound
as the JP heuristic for graphs whose maximum degree is bounded by some constant A.

THEOREM 3.2. The expected running time of the PLF heuristic under the CREW P-RAM
model is EO(log(n)/loglog(n)) for a bounded degree graphs with n vertices.

Proof: Random numbers are used to break ties for inclusion in the independent set among
vertices of the same degree. This is equivalent to using the JP heuristic to determine a se-
quence of independent sets among vertices with the same degree and hence requires at most
EO(log(n)/loglog(n)) time. By assumption, the maximum degree of the graph is bounded by
some constant A; thus the number of distinct vertex degrees is also bounded by A. Hence, the
total expected runtime is FO(log(n)/ loglog(n)). O

Although the JP and PLF heuristics have the same expected runtimes, one would expect
the actual runtime for PLF to be at least that of the JP heuristic. If there are many distinct
vertex degrees, one might expect that the runtime could be much higher. However, the following
experimental results show that the PLF heuristic takes only slightly more time than the original
heuristic and produces better colorings.

3.3. Comparison of the JP and PLF Heuristics. In this section we experimentally
compare the JP and PLF parallel coloring heuristics. The experiments were performed on the
Intel DELTA computer, a 16 x 32 mesh-connected array of Intel 1860 processors. Communication
i1s accomplished via message passing on this MIMD architecture.

Two problem types are used to perform these comparisons. The Crystal problem is a set
of graphs arising from a finite-element model of a piezoelectric crystal [3]. The domain is a
rectangular solid that is regularly discretized and second-order, hexahedral elements are used.
The sequence of graphs is chosen such that each graph is twice as large as its predecessor. In
this way, the problem size can be scaled with the number of processors such that the number
of vertices on an individual processor is kept nearly constant. Details about the sequence of
graphs are given in Table 1, where w(V%) = > veve w(v) gives the total global vertex weight
and w(V©L) =3, oz w(v) gives the total local vertex weight. Unless otherwise noted, the vertex
degrees, w(v) = deg(v), are used for the vertex weights.

The second problem, the Kall problem, is a single problem unlike the sequence of Crystal
problems. The Kall problem is a 3D finite-element mesh from a structural mechanics application.
The model includes primarily tetrahedral elements; however, it also includes some beam and plate
elements. Table 2 gives details on the characteristics of this graph as it is partitioned over an
increasing number of processors.

For both the JP and PLF coloring heuristics, the IDO method is used for the Seg-color ()
routine for the global phase; and the SDO method was used for the local phase. This combination

6

TaBLE 1
Crystal problem specification for different |P)|

Processors | V| | [V | w(V) | [V | w(VE) |
1 866 0 0 866 142850
2 1446 337 79220 1109 172430
4 2278 886 206030 1392 208052
8 4918 2225 533245 2693 416133
16 10294 5260 1282125 5034 781237
32 21334 11487 2833756 9847 1553574
64 43606 24712 6136937 | 18894 2985113
128 88726 51212 | 12802343 | 37514 5981147
256 179350 | 105438 | 26476597 | 73912 | 11803341
TABLE 2
Kall problem specification for various |P)|
| Processors | [V [VO] [w(VF) | VI] w(VE)]
1 10556 0 0 | 10556 | 162774
2 10556 393 9258 | 10163 | 153516
4 10556 977 22992 9579 | 139782
8 10556 | 1864 40673 8692 | 122101
16 10556 | 2455 52743 8101 | 110031
32 10556 | 4604 80865 5952 81909

performs at least as well as any other combination of the heuristics tested in [8]. The number of
colors required for the global phase and the total coloring are given for the JP and PLF heuristics
for the Crystal and Kall problems in Tables 3 and 4, respectively. Note that the PLF heuristic
is consistently superior.

TABLE 3
Colors required for Crystal problem using JP and PLF parallel heuristics

Processors | JP |og| | JP |0 | PLF |og| [PLF [o] |

1 108 108 108 108
2 110 110 108 108
4 110 110 108 108
8 113 114 108 108
16 115 116 108 113
32 117 118 108 113
64 118 120 109 113
128 118 120 110 114
256 120 121 114 114

The Crystal problem is used to measure the scalability of the PLF heuristic. The problem
size is kept proportional to the number of processors. Hence, in order to be scalable the runtime
of the heuristics should remain constant as the number of processors is increased. Observe in
Figure 4 that the PLF and JP methods essentially do meet this criterion; although there is a
slight increase in running time, it is a very slowly growing function of the number of processors.
Times for small numbers of processors are omitted because the ratio of global to local vertices
and edges does not stabilize until |P| = 8, as indicated by Table 1.

The Kall problem is used to directly compare the execution times of PLF and JP and to

7

TABLE 4
Colors required for Kall using JP and PLF parallel heuristics

| Processors || JP |og| [IJP |o] || PLF |og| | PLF [o] |

1 9 9 9 9
2 10 11 8 9
4 11 11 8 9
8 13 13 9 9
16 12 12 9 9
32 13 13 9 10

Scalability of parallel coloring methods for Crystal problem
14 T T T T T

101 PLF x R

JP o

Time in seconds

O 1 1 1 1 1
0 50 100 150 200 250 300

Processors

Fic. 4. Time required by the JP and PLF parallel heuristics for the Crystal problem sequence. Note that the
time required 1s nearly independent of the number of processors, demonstrating the scalability of both heuristics.

examine their performance for a fixed size problem as |P| increases. Comparing the execution
time of the methods in Figure 5, we see that JP and PLF are nearly indistinguishable. The
heuristic performs well as |P| increases, with some deterioration as the ratio of communication
to computation increases.

Comparison of methods for Kall problem

10 ;
JP o
10' & 1
" PLF x
he]
=
o
(5]
Q
"
=
()
£
£
10° F 1
1
10 ‘
10° 10 10°

Processors

Fic. 5. Comparison of the execution times of the JP and PLF heuristics as a function of the number of
processors used

4. Balanced Graph Colorings for Irregular Problems. A graph coloring is often used
to represent how work is scheduled for execution on a parallel computer. The graph vertices
indicate the tasks to be performed, vertices of the same color represent independent work that
can be performed concurrently, and the graph edges represent dependencies between the tasks.
Processors can simultaneously work on the vertices (tasks) of color ¢ and proceed to vertices
colored ¢ + 1 when all adjacent vertices of color ¢ are completed.

The problem can be generalized to include a weight, w(v), associated with each vertex v,
representing the amount of work required by that task. Load-balancing problems occur when
some processors have a significantly larger number of vertices (or total weight) of the current color
¢ than other processors have. This color imbalance can cause a processor workload imbalance
even if the total weight assigned to each processor is equal.

Such imbalances are more likely to occur when the underlying graph is not homogeneous, or
regular, in structure. A finite-difference discretization using a single stencil or a uniform order
finite-element model is homogeneous, and the coloring imbalance for such graphs is generally
not significant. However, an irregular, or nonhomogeneous, graph can arise when different finite-
element types or finite-difference stencils are used to model different portions of a physical domain.
The resulting graph contains subgraphs that may have very different edge connection patterns
and vertex degrees. If these subgraphs are assigned to different processors, one may expect that
the assignment of tasks to colors would not be balanced on different processors. Such situations
often occur in complex engineering applications.

On a homogeneous parallel computer, a graph coloring is ideally balanced when the processors
each have the same total vertex weight per color. It is assumed throughout this section that the
vertices have been partitioned among the processors such that each processor is assigned a nearly

9

equal weighted sum of vertices. Without such an assignment, a balanced coloring is not possible.
In the discussions that follow, we assume the parallel computer is homogeneous; however, the
definitions and methods can be extended to a heterogeneous system.

In [19] the imbalance of a coloring is quantified by using the following definitions. The
average weight of color ¢ with the processor set P is given by

1
(4.1) He = 1p] Y w)

veEV|o(v)=c

The imbalance for color ¢ on processor p, I(c,p), is defined by

(4.2) I{e,p) = Yoo w) | —p

vEV,|o(v)=¢c
The imbalance of color ¢ is given by
(4.3) 1(¢) = max{I(c,p)}
peP

The total color imbalance, I,;, 1s given by the expression

(4.4) I, =) Ie)

cEo

A coloring is ideally balanced if I, = 0. The metric I(c) measures the largest amount of imbalance
for a color ¢ produced by a processor, and I, indicates the total imbalance over all colors used.
One could construct other measures; however, we have found this method to be a simple and
effective indicator.

Pommerell et al. [19] give algorithms for producing balanced colorings; a parallel variant of
their most effective algorithm is summarized in Figure 6. This heuristic colors only the global
vertices, ignoring edge dependencies between vertices on the same processor. The algorithm

Choose tolerance Iaq;
c=1;
tol = 0;
While uncolored global vertices remain do
All processors attempt to color a global vertex with color ¢;
if all processors are not successful then
if tol < I,,,4 then

tol = tol + 1;
else
tol = 0;
c=c—+1;
endif
endif

endwhile

F1G. 6. Parallel version of the balanced coloring heuristic given by Pommerell et al. with w(v) =1

clearly limits I(¢) to Ipqy, a user-chosen tolerance, and I, < |o|lngy. A potential shortcoming
of the method is that, in general, the number of colors required to color the graph will increase

10

for small I,,,,. Note that the algorithms given in [19] were designed to run on a sequential
computer and are not well suited for MIMD implementation. In parallel, at most | P| vertices are
colored per step, and a global synchronization is required after each step. These synchronization
steps result in a poor communication-to-computation ratio.

4.1. Two New Parallel Balancing Heuristics. The two parallel heuristics introduced in
this section, PDR(k) and PLF(k), work by improving the balance of an existing coloring without
increasing the number of colors. Both heuristics are local optimization techniques that improve
the balance by selectively moving vertices from one color to another legal color.

We begin by introducing a measure of the deviation of a coloring from a perfectly balanced
coloring; our heuristics will perform local optimizations with respect to this measure. Suppose
the coloring that we have already computed is ¢ and that it uses || colors. Given the sum of the
weights of all the vertices, ideally we could require that this total weight be equally distributed
among all the colors. Thus, we define our goal on processor p, v*(p), to be

(4.5) »y*(p):%' S w)

veV | I'(v)=p

the ideal weight of the vertices assigned each color. Given a particular coloring ¢, we can measure
how close to that ideal we are by calculating v(¢, p) for each color ¢ = 1,2,...,|c] as

(4.6) Aep) = S)

veV | o(v)=¢, T'(v)=p

This sum gives the current total weight of all vertices assigned color ¢. The balance deviation,
8(c, p), for color ¢ on processor p is defined as

(4.7) o(c,p) = v(e,p) = 7" (p)

We choose to attempt to minimize the balance deviations, §(c, p), instead of the total imbal-
ance, I, for two reasons. First, balancing the weight assigned each color is important to ensure
load balancing for many problems. For example, when using the coloring to solve sparse trian-
gular systems [12], we would like the work associated with each color to be equal. The condition
I, = 0 by itself does not imply this equality. Second, performing optimizations that minimize
balance deviations can be done locally on a processor; this process does not require vertices to be
moved between processors. We note that if the total weight assigned to each processor is equal,
then finding a coloring with zero total deviation implies that I, = 0. Finally, a lower bound on
I, using these recoloring strategies is based on the inherent weighted imbalance in the graph G
with partitioning I', (g 1), which is

w(V)

(4.8) lig.ry = maxdw(Ve) = =5}

From this definition it is clear that I, > (g).

The deviance reduction heuristic works by moving vertices from one color j with positive
deviation to another legal color k& with a lower deviation when this exchange will reduce the
total deviation. If one imagines a bin associated with each color, the color-balancing problem
is similar to the bin-packing problem, with the added constraint that a vertex cannot be placed
in the same bin as an adjacent vertex. One of the best theoretical bounds for the bin-packing
problem is obtained by the “first fit decreasing” heuristic [7], which works by first sorting the
items by size and trying to pack the largest items first. We use a greedy strategy, working first
with the color with the largest positive deviance. Based on the bin-packing heuristic results,
for a specific color, the vertex with the largest weight is chosen. This vertex i1s moved to the
least-filled bin consistent with colors of its neighbors. In Figure 7, we give a sequential version of

11

Perform initial coloring o;
c=o0;
Vi) ={veVle(v) =i}
v =3 vev w(v)/lo]; {ldeal bin weight}
YU) = Dvev | o(v)=j w(v) for j =1,2,...|o|; {Calculate current bin weights}
1=1;
Choose j such that v(j) = max{y(])};
While y(j) —7* > e and i < n do
Choose v; € V(j) such that w(v;) > w(u) Yu € V(j);
S={l|l#é&(adj(v;)) and y(j) > v({) + w(v;)}; {Find eligible colors}
if S# 0 then {Move vertex?}
Choose k such that y(k) = min{S}; {Choose smallest bin}
F(vi) = k;
Ho(es)) = 2(o(w1)) — wle);
J6) = 2 (k) + (),
endif
V(i) = V() \ vk
1=1+1
Choose j such that v(j) = max{y(])};
endwhile

F1G. 7. Sequential version of the deviance reduction (DR) balanced coloring heuristic

a balancing heuristic based on deviance reduction (DR). Note that one can make multiple passes
of the DR heuristic to further improve the balance.

A major advantage of the DR heuristic is that it improves the balancing of an existing
coloring without increasing the number of required colors. Thus, the best available coloring
heuristic can be used to obtain the initial coloring—using as few colors as possible—and a better
balanced coloring can be obtained using that number of colors. The following theorem shows
that the number of colors i1s not increased by the DR heuristic.

THEOREM 4.1. Let o be an initial coloring of G. The DR heuristic computes a new coloring
o, with |o| > |&|.
Proof: Because a vertex can be recolored only with an existing color, it is clear that the number
of colors cannot increase. O

It is also important that the DR heuristic have a fast runtime. Consider a graph with »
vertices, maximum degree A, and assume that the vertex weights are the degrees of the vertices.
Under these assumptions, the following theorem shows that the sequential heuristic has a linear
runtime for bounded A.

THEOREM 4.2. Consider the DR heuristic given in Figure 7. Assume that graph on which
the heuristic is used has mazimum degree A. Let n be the number of vertices in the graph, and
assume that we use vertexr weights defined by w(v) = deg(v). Then the running time of the
sequential DR heuristic is bounded by O(nA).

Proof: The computation of the ideal bin weight v* and the current bin weights y(j) requires
time proportional to the number of vertices, or O(n) time.

Recall that any greedy coloring requires no more than A 4 1 colors. Hence we can assume
that || < A+ 1. The number of bins is equal to the number of colors; thus, the vertices can be
sorted by color in O(n) time. In addition, because we use the vertex degrees as weights, vertices
of each color can be sorted by weight in O(n) time.

12

Using these sorted arrays, we can select the vertex v; in constant time at each iteration
through the while loop. To compute the set S, we need to look at the color of each adjacent
vertex. By definition, there can be no more than A adjacent vertices. To choose the smallest
bin requires no more time than the maximum number of colors, or O(A) time. Finally, selecting
the bin with maximum 7(j) requires at most O(A) time. All the other steps in the while loop
require constant time.

The number of times through the while loop is the number of vertices, n. Hence, the entire
heuristic requires O(nA) time. O

Given an initial parallel coloring o; {|o| is the maximum color among the processors}
c=o0;
Y1) =Y, | ()= w(v) for j =1,2,...,|o|;
(@) = > ey, w(v)/|ol; {ldeal bin weight for this processor}
6(.7a Z) = Py(ja Z) - 7*(1) for .7 = 1a 2a) |U|a
p(v) = 6(a(v),i) + u(v) for all v € V.7
Set up n-wait, send-queune and color-queue according to new p;
DR-Seq-color (&, color-queue); {Color any vertices in V; not}
n-colored = | color-queue | {waiting for messages}
Pack-and-send (&, color-queue, send-queue);
color-queue = 0;
While (n-colored < |V;¥]) do
Receive msg;
For each w € msg.vertez-list do
&(w) = msg.vertex-color;
For each v € msg.vertez-adj do
n-wait (v) = n-wait(v) — 1;
if (n-wait (v) = 0) then

color-queune — color-quene U {v};

endif
endfor
endfor
DR-Seq-color (&, color-queue); {Color subsets of V;% once required}
n-colored = n-colored 4 | color-queune|; {messages are received}

Pack-and-send (7, color-queue, send-queue);
color-queue = 0;

endwhile

DR-Seq-color (7, ViF); {Color local vertices last}

F1G. 8. Parallel deviance reduction (PDR) coloring heuristic for the i-th processor

We now introduce two parallel heuristics, PLF(k) and PDR(k), that use the sequential DR
heuristic to obtain balanced colorings. An initial coloring is required for both of these methods;
we assume that the PLF heuristic is used. The PLF(k) heuristic performs k recolorings for
balancing. The recoloring heuristic is the same as the JP MIMD heuristic given in Figure 3 with
the same ordering function as with PLF, p(v) = u(v) + deg(v), and the sequential DR heuristic
used for Seg-color ().

To construct the PDR(k) heuristic, we also use the the sequential DR heuristic for Seq-
color (). However, rather than using the vertex degree in p(v), we use the local color deviations
at the start of each recoloring. Thus, we choose p(v) = §(c(v),p) + u(v), where é(c(v),p) is
the color deviation before any vertices have been recolored on the k-th iteration. By using

13

the local deviation of the color o(v) as the basis for independent sets, the processors with the
colors of greatest imbalance, having the largest quantities I(e,p), are given priority over other
processor/color pairs. The PDR(k) heuristic is given in detail in Figure 8.

Note that a P-RAM analysis that assumes only one vertex per processor does not make
sense for these balancing heuristics. Instead, we experimentally show that the algorithms have a
scalable runtime similar to that of JP and PLF.

4.2. Experimental Results for the Balanced Coloring Heuristics. In this subsection
we present experimental results that demonstrate the effectiveness of the two heuristics at min-
imizing the color imbalance. We use two test problems, the Kall problem that was described
earlier and the FDgrid problem. The FDgrid problem is a nonhomogeneous problem, specifically
designed to test balanced coloring methods. The problem is obtained from the discretization
of a square domain, using a 27-point stencil in the middle portion and a 7-point stencil at the
east and west ends. Table 5 describes the specifics of the FDgrid problem for the processor sets
used. For all of the balancing experiments the vertex degrees are used as the vertex weights, 1.e.,
w(v) = deg(v). The experiments are again performed on the Intel DELTA.

TABLE 5
Description of the FDgrid problem for different |P|

| Processors | V| | [VE] | w(V) | VI | w(V?h) |

1 32768 0 0 | 32768 | 460692
2 32768 | 1297 | 21588 | 31471 | 439104
4 32768 | 3527 | 68286 | 29241 | 392406
8 32768 | 5351 | 109130 | 27417 | 351562
16 32768 | 7164 | 139217 | 256604 | 321475
32 32768 | 9758 | 193565 | 23010 | 267127
64 32768 | 12540 | 239332 | 20228 | 221360

The first set of experiments examines how the imbalance 1s affected by varying the parameter
k, the number of recolorings, for the heuristics PLF(k) and PDR(k). We measure the total color
imbalance, I, as defined earlier in Equation 4.4. Tables 6 and 7 show the experimental results
for k = 0,1,2,3,4 with the FDgrid problem and |P| = 64. It appears that the most benefit is
received by using two recolorings, although one recoloring significantly reduces the imbalance.
Additional experiments that we performed support this conclusion, but we do not report those
results here. We also note that although PLF(0) and PDR(0) are the same heuristic, the order in
which messages are received can vary. This fact accounts for differences in the results for PLF(0)

and PDR(0) in the following tables.

TABLE 6
Total imbalance Is produced by PLF(k) and PDR(k) for |P| = 64 on the FDgrid problem

[[PLF(k) | PDR(K) |

0 6739 6690
1 394 291
2 188 166
3 175 160
4 175 160

The next experiment examines the reduction in the coloring imbalance of the heuristics as
the number of processors, |P|, varies. In Tables 8, 9, and 10, one sees that applying PLF(1) and
PDR(1) significantly reduces the imbalance for the FDgrid and Kall problems. An additional
improvement is obtained with one more balancing iteration as used by PLF(2) and PDR(2). In

14

TABLE 7

Mazimum color imbalance max{I(c)} produced by PLF(k) and PDR(k) with |P| = 64 for the FDgrid problem

[k [PLF(k) [PDR(k) |
0 1435 1431
1 77 33
2 17 17
3 17 17
4 17 17

TABLE 8

Total imbalance 15 produced by PLF(k) and PDR(k) on the FDgrid problem

| Processors | > .. pte

| Iigm | PLF(0) | PDR(0) | PLF(1) | PDR(1) | PLF(2) | PDR(2) |

Mazimum color imbalance max{I(c)} for PLF(k) and PDR(k) on the FDgrid problem

2 230344 0 5414 5414 24 29 15 20

4 115169 2 58109 58109 93 66 53 50

8 57582 17 18207 17827 143 146 68 61

16 28787 13 20526 20596 319 227 134 109

32 14390 11 11824 12115 326 233 167 149

64 7191 17 6739 6690 394 291 188 166
TABLE 9

| Processors | - . p. | PLF(0) [PDR(0) | PLF(1) | PDR(1) | PLF(2) [PDR(2) |

Total imbalance Is produced by PLF(k) and PDR(k) on the Kall problem.

2 230344 1841 1841 8 6 3 3

4 115169 17506 17506 31 10 6 7

8 57582 4482 4003 35 30 12 10

16 28787 5609 5593 79 55 14 11

32 14390 2898 3067 69 43 15 17

64 7191 1435 1431 77 33 17 17
TABLE 10

| Processors | Y . pte

| Iigm | PLF(0) | PDR(0) | PLF(1) | PDR(1) | PLF(2) | PDR(2) |

2 81384 8 1663 1663 31 21 17 12
4 40689 22 4276 4276 70 97 27 29
8 20343 10 2513 2196 59 48 37 39
16 10169 30 2336 2373 60 79 51 51
32 5082 34 1448 1476 109 123 66 78

15

Tables 8 and 10 we show the lower bound I(g) as defined in Equation 4.8. Recall that this
lower bound results from the imbalance inherent to the vertex partitioning; note that the two
heuristics are able to obtain a total imbalance relatively close to this lower bound.

Scalability of parallel balanced coloring methods for Crystal problem

25 T T T T T
20 =
S5t .
c
o
Q
& o
£
iz 101 =
PLF(2) +
PLF(1) x
5r PLF o B
O | | | | |
0 50 100 150 200 250 300

Processors

F1G. 9. Scalability of parallel balanced coloring heuristic PLF(k) on Crystal problem

Finally, in Figure 9 we illustrate the scalability of the PLF(k) heuristic for £ = 0,1,2 on the
Crystal problem. The results of PDR(k) are omitted because they are essentially the same as
those given by the PLF (k) heuristic. PLF(0) previously was shown to be scalable, and it evident
from the graph that PLF(k) is empirically scalable. The execution time of the heuristic appears
to be a slowly increasing function of the number of processors and problem size.

5. Conclusions. The two objectives of our study were to devise new scalable, parallel col-
oring heuristics that (1) require fewer colors than existing methods, and (2) minimize coloring
imbalance while using no more colors than the best parallel coloring method.

The first objective has been achieved by introducing a new heuristic, PLF, that relies on
using vertex degrees for independent sets instead of solely random numbers as employed by the
original Jones/Plassmann (JP) heuristic. PLF was shown to have the same expected runtime as
the JP heuristic under the CREW P-RAM execution model. For our suite of test problems; PLF
consistently required fewer colors than JP, and required only slightly more execution time.

To achieve the second objective, balanced colorings, we introduced the the PLF(k) and
PDR(k) heuristics. Given an initial coloring, these heuristics perform one or more recolorings
that strive to reduce the color deviance by using heuristics based on those successfully used in
bin-packing problems. The PLF(k) and PDR(k) heuristics guarantee that the number of colors
used by the initial coloring does not increase in the recoloring, while significantly reducing the
color imbalance among the processors. Both the PLF(k) and PDR(k) heuristics were empirically
shown to be scalable.

16

(1]

(5]
(6]

(20]
(21]
(22]

(23]

REFERENCES

J. ALLWRIGHT, R. BORDAWEKAR, P. CODDINGTON, K. DINCER, AND C. MARTIN, A comparison of parallel
graph coloring algorithms, Tech. Rep. SCCS-666, Northeast Parallel Architectures Center, Syracuse
University, 1995.

D. BrELAZ, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251-256.

T. CaNrFIELD, M. JoNES, P. PLASSMANN, AND M. TaANG, Thermal effects on the frequency response of
piezoelectric crystals, in New Methods in Transient Analysis, PVP-Vol. 246 and AMD-Vol. 143, New
York, 1992, ASME, pp. 103-108.

T. F. CoLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring problems,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 187—209.

I. S. DUFrF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradients, BIT, 29
(1989), pp. 635-657.

I. S. Durr aND J. K. REID, Performance evaluation of codes for sparse matriz problems, in Performance
Evaluation of Numerical Software, L. Fosdick, ed., North-Holland, Amsterdam, 1979, pp. 121-135.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman, New York, 1979.

R. K. GIERTSEN JR., Parallel graph coloring heuristics, Master’s thesis, University of Illinois at Urbana-
Champaign, 1994.

B. HENDRICKSON AND R. LELAND, A multilevel algorithm for partitioning graphs, Tech. Rep. SAND93-1301,
Sandia National Laboratories, Applied Mathematical Sciences, Albuquerque, NM, October 1993. Draft.

J. JAJA, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Company, 1992.

M. T. JoneEs AND P. E. PLASSMANN, The effect of many-color orderings on the convergence of iterative
methods, in Proceedings of the Copper Mountain Conference on Iterative Methods, STAM LA-SIG,
1992.

, The efficient parallel iterative solution of large sparse linear systems, in Graph Theory and Sparse

Matrix Computation, A. George, J. Gilbert, and J. W. Liu, eds., vol. 56 of The IMA Volumes in

Mathematics and Its Applications, Springer-Verlag, 1993, pp. 229-245.

, A parallel graph coloring heuristic, SIAM Journal on Scientific Computing, 14 (1993), pp. 654-669.

, Scalable iterative solution of sparse linear systems, Parallel Computing, 20 (1994), pp. 753-773.

M. LuBy, A simple parallel algorithm for the maximal independent set problem, SIAM Journal on Comput-
ing, 4 (1986), pp. 1036-1053.

D. MaTuLa, G. MARBLE, AND J. ISAACSON, Graph coloring algorithms, in Graph Theory and Computing,
R. Read, ed., Academic Press, 1972, pp. 104-122.

R. G. MELHEM AND V. S. RAMARAO, Multicolor reorderings of sparse matrices resulting from irregular grids,
ACM Transactions on Mathematical Software, 14 (1988), pp. 117-138.

J. M. ORTEGA, Orderings for conjugate gradient preconditionings, SIAM Journal on Optimization, 1 (1991),
Pp. 565-582.

C. POMMERELL, M. ANNARATONE, AND W. FICHTNER, A set of new mapping and coloring heuristics for
distributed-memory parallel processors, SIAM Journal on Scientific and Statistical Computing, 13 (1992),
pp. 194-226.

A. PoTHEN, H. SiMON, AND K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM
Journal on Matrix Analysis, 11 (1990), pp. 430-452.

R. SCHREIBER AND W.-P. TaNG, Vectorizing the Conjugate Gradient method. Unpublished manuscript,
Department of Computer Science, Stanford University, 1982.

S. Vavasis, Automatic domain partitioning in three dimensions, SIAM Journal on Scientific and Statistical
Computing, 12 (1991), pp. 950-970.

D. WELSH AND M. POWELL, An upper bound for the chromatic number of a graph and its application to
timetabling problems, Comput. J., 10 (1967), pp. 85-86.

17

