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2 J. M. RESTREPO, G. K. LEAF, A. GRIEWANK[1]. IntroductionData assimilation has relatively recently become an important tool in many areas ofgeophysics, such as weather and climate forecasting [1{6], model sensitivity analysis [7,8], and in the inclusion of �eld data sets into theoretical model-studies [9{11]. In weatherforecasting, �eld data that may be spatially and/or temporally heteregeneous is continu-ously blended into dynamical models as soon as the �eld data is available. As a result,the predictive capabilities of today's weather models have signi�cantly improved [1,12].Ocean forecasting has, on the other hand, not experienced comparable success. Reasonsfor this are that (1) the spatial and temporal scales of the relevant oceanic dynamics areseveral orders of magnitude smaller and larger, respectively; (2) oceanic data gathering isat present very limited in coverage and sometimes of incompatible quality; (3) boundaryuxes at the air/sea interface are poorly understood and yet have a major inuence onoceanic ows; and (4) the computing demands of oceanic forecasting have only recentlybecome marginally suitable for some but not all of the types of studies at reasonableresolutions.A speci�c approach to data assimilation is called variational data assimilation [12]. Anobjective function is de�ned that provides a norm of the distance or mis�t of the state set toobservational data. The state set may comprise model predictions, parameters, boundarydata, and/or initial conditions. The mis�t is usually weighted in order to account formeasurement errors, model uncertainties, etc. The object is to �nd the state set thatextremizes the objective function. This procedure is usually carried out as a constrainedoptimization problem, which is generally solved iteratively by some extention of Newton'smethod or a descent algorithm.The optimization problem requires the computation of the gradient of the model withrespect to the state set. One of the other strategies that accomplishes the calculationof the gradient is the \adjoint method" [3]. Provided an adjoint to the tangent linearmodel exists, the process of computing the gradient involves integrating the original modelforward in time (the forward problem) recording the model's history, and then using thehistory in the adjoint model to integrate backward in time to the point of origin (theadjoint problem). Along the way the partial di�erentials that constitute the gradient ofthe results at some t �nal with respect to the state set at some particular time step aremultiplied in reverse order until the adjoint model reaches the origin once again. By thechain rule, the multiplication will yield the gradient, and it will do so at a computationalcost roughly twice that of the forward problem.As described above, the adjoint method is what we will call the \conventional approach."Its main advantage is its low computational cost. However, its disadvantage is that itquickly encounters computer memory storage problems even in low-resolution studies. Inthis paper we present an alternative to the conventional approach that circumvents in asigni�cant way the storage problems of the adjoint method at the expense of a possiblygreater, but manageable computational expense.The problem is motivated in Section 2. The alternative gradient method is presentedin Section 3 and is compared with the conventional approach. Section 4 demonstrateshow such alternative is implemented in practice in an ocean climate problem, and wedescribe how it compares with the conventional approach in terms of computational e�ort



CIRCUMVENTING STORAGE LIMITATIONS 3and memory usage. Section 5 summarizes our �ndings, provides details of the strategy'scomputer implementation, and tells where to obtain code that implements the method.[2]. Statement of the ProblemFor the sake of clarity we will assume that the physical problem in question can bemodeled by an evolutionary equation. The physicalm-dimensional real domain is R � Rmwith boundary @R. The evolution equation is discretized in time so that the problem isde�ned at physical times tl = tl�1 + �tl. Without loss of generality we may assume thatdiscrete time progresses in equal-interval steps, hence �tl = �t and tl = l�t. In the discreteforward/adjoint method of computing a gradient the state set is required at periodic timeintervals of time. The state set is computed using the evolution equation, which, forsimplicity, will be assumed to be computed at equally-spaced intervals of time �t. Inmost instances �t � �t. We de�ne the time-index i 2 T � Z+ so that i�t = l�t. Thesemi-discretized \forward problem" is de�ned asui = Fi(fujg)(2.1) i = 1::n, 0 � j � iu0 = U;uij@R = Vi;(2.2)where the completely or partially unknown U and V are respectively the initial and bound-ary data for the state set that minimize an objective function. The \reverse problem" isthe adjoint of (2.1), u�i = F �i (fu�kg; fujg)(2.3) i = n::0, i � k � n, j 2 [0; n]:If the forward problem is a semi-discretization of an evolution equation, we think of ui andu�i with domain R� T as vectors of the state variables and their adjoints.Equations (2.1) and (2.3) will be solved in some high-level computer language such asFortran or C. De�ne S = [jsj and S� = [ks�k as the set of computer memory addressesrequired to represent the vector set fug and fu�g at index location i, so that uj and u�khave temporary memory locations sj and s�k, respectively. It is assumed that sj \ sk = ;,s�j \ s�k = ;, and sj \ s�k = ;. We call this temporary computer storage medium the\register".Let f and f� be the representations of F and F �, respectively in some high levelcomputer program, or \program" for short. These take the form of subroutines, functions,etc. The action of f : S ! S and f� : S� ! S�. De�ne the m- and t- norms as thememory and time of execution of some program Q as kQkm and kQkt, respectively. Aswill be evident in what follows, these norms amount to simple direct sums. The registermemory of the state set is kSkm = R, and it is safe to assume that kS�km � R. The othertype of memory that will play an important role in the analysis is the available memoryexternal to the program. This is usually some external storage device such as a memory



4 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKdisk or tape. For simplicity we call this recording device the \tape" and assume that ithas �xed memory of size T . The speci�c use of the term \writing" will be reserved forthe process of recording to tape. Similarly, the term \reading" is reserved for the processof accessing information from tape. The distinction between a non-reading or non-writingprogram procedure fi and the same procedure that reads or writes the state set on tapewill be indicated as f̂i. It will be convenient to de�ne the following speci�c m- and t-norms: � = max0�i�n kfikm� = max0�i�n kfikt;(2.4)respectively, the maximum memory required to restore fi given S and the maximumcomputing time (wall-clock time) to execute fi. It is worth noting that � is essentially�xed regardless of the number of processors, while � can vary signi�cantly depending onthe number of processors. Since f� is a linear mapping on S�, it can be assumed that�� � � and �� � c�̂� � c0�̂ ;where �� and �̂ refer respectively to analogous norms to (2.4) of f� and f̂ , and the c's arepositive multiplicative constants. Note that kfikt � R, since the subroutines may requireworking registers.In the discretization and coding of a typical evolution equation (for example, of a climateor meteorology problem) we can identify fi as the collection of subroutines and functionsthat take the state set from time ti to ti+1 (forward integration) in which kfikm and kfiktare approximately the same for each level 0 < i � n and thus equal to � and � , respectively.In the same fashion f�i is the collection of subroutines that take the state set from timeti to ti�1 (reverse integration) in which kf�i km and kf�i kt are approximately the same foreach level 0 < i � n and thus equal to �� and � � respectively. Let us consider the memoryand the time norms of two strategies that may be used in the n�step gradient computationby the adjoint method.In one strategy the minimal memory norm is achieved by writing nothing on tape. Itrequires stepping forward from u0 to un using fi, followed by a single reverse step from unto un�1 using f�n. The process starts again from u0 forward to un�1 using fi followed bya reverse f�n�1 from un�1 to un�2. This process is repeated until the reverse integrationreaches step 0 once again. The t- and m- norms for this strategy are respectively� +�� = (n� 1)n2 � + n�� � (n+ 1)n2 �̂kSkm + kS�km = 2R;(2.5)where only register memory is used. For simplicity we are ignoring here, as we will dofrom now on, the register memory that is used for working arrays, etc. For an explicitfourth-order Runge-Kutta time integration scheme, for example, this register memory canbe signi�cant but can be easily accounted in the estimates provided.



CIRCUMVENTING STORAGE LIMITATIONS 5Another strategy is the conventional approach, which steps forward from u0 to un usingf̂i, then steps in reverse using f�i , reading the appropriate state variables from tape. Thetime and memory norms for the latter strategy are�̂ + �̂� = n�̂ + n�̂� � 2n�̂kŜkm + kŜ�km = nR+ 2R = T + 2R:(2.6)Hence the conventional approach yields the adjoint as a �xed multiple of the time for theforward program. However, the tape grows linearly in both number of steps and size ofthe state set, which for typical geophysical applications will quickly overwhelm even thelargest storage capabilities of computer facilities [13].[3]. Recursive Adjoint MethodThe recursive strategy or \schedule" is speci�cally designed to circumvent the storagelimitations of the conventional adjoint method at the expense of a larger computationale�ort. The computational e�ort will be de�ned more precisely below, but for now it su�cesto know that the computational e�ort is directly proportional to the wall-clock time, whichin turn depends on the number of processors. One strategy that reduces the tape size is toproduce the gradient by using the usual forward/adjoint sweep but writing less often thanis really required. While this alternative saves some tape space, it produces a degradedgradient. It will be shown below that the gradient produced by the recursive method willbe identical to its nondegraded counterpart obtained in the conventional way.The description that follows will present a heuristic explanation of the theoretical de-velopment that appears in [14]. The basis of this strategy is to limit the tape size todR, , where d � n snapshots (snaps, for short) of states fug at any given point duringthe program execution. This is done by carefully overwriting. It requires at most anadditional r-fold increase in additional full forward unrecorded computations, or \reps".The recursive strategy is not unique. However, from Theorem 6.1 due to Griewank [14],among the partitioning algorithms the \binomial partitioning" schedule is optimal. Thetheorem states that an n-step gradient calculation with the adjoint method can be solvedrecursively by using up to d � 0 snaps and at most r � 0 reps if and only ifn � n(d; r) = (d+ r)!d!r! :(3.1)Note that n(d; r) = n(r; d) and n(0; r) = n(d; 0) = 1. To illustrate the sense in which thismethod is superior we appeal to Stirling's formula and �nd that for a �xed d or r,r = O(n1=d)ord = O(n1=r):(3.2)To see more clearly the relationship between n and the number of snaps and reps, acontour plot of lnn as a function of the number of snaps and reps based on (3.1) we present
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Figure 1. Contours of lnn versus snaps d and reps r.Figure 1. Since the values that the binomial takes are discrete, the contours appear jagged.The �gure clearly illustrates the logarithmic rate of growth of n when d � r. In fact, whend = r these grow as log4 n.The schedule for n = 56, r = 5 reps, and d = 3 snaps appears in Figure 2 and is worthexplaining in some detail. Note thatn = 56 = �r + ss �:Along the horizontal is the number of reps, and along the vertical the time step i. Thetree structure of the schedule is evident. Horizontal lines are drawn at locations in whichwriting is performed. As is evident, when reading the �gure from left to right, there are�ve self-similar groups or pennants. The top pennant and the �rst to be executed hasthree snaps at i = 0; 35, and 50. A write occurs at 35 = �r�1+ss � and the write at timestep 50 = 55� r. Execution requires a forward sweep from i = 0 to 56. The state at 50 isrestored once more, and a forward sweep to 55 follows. A forward/adjoint from 55 to 56and back again to 55 is executed then. The �rst pennant is completely swept by repeatingthe last two steps until the adjoint reaches 50. State 35 is then restored and a forwardsweep follows, writing at 45 = 49� (r � 1). After the second uppermost triangle is sweptthrough, state 35 is recovered, and a forward sweep follows, writing at 41 = 44 � (r � 2).After completing the �rst pennant, state 0 is restored, and a forward sweep is initiated thatends at 35 = �r�1+ss �, writing along the way at �r�2+ss �. At this point, the schedule shouldbe obvious. the last pennant is performed when �r�5+ss � = 1. Note that at no instant willthe depth of the tape be more than three records long. In addition, if the tape is thought of
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Figure 2. Schedule for n = 56, r = 5 reps, and d = 3 snaps.as a stack, the order of the records is maintained, as a result of its last-in-�rst-out nature.It is evident from the �gure that there are a total of 1 forward recorded sweep, 1 adjointreverse sweep, and r forward unrecorded sweeps.From Figure 2 it may be concluded that the t-norm andm-norm of the recursive scheduleare, respectively, Dt = �̂ + �̂� + r� � (2 + r)n�̂ ;(3.3) Dm = T + 2R = (d+ 2)R;(3.4)since T = dR. The �rst expression on the right-hand side of Equations (3.2) and (3.3)hold generally for any n(d; r), d � 0, and r � 0 recursive adjoint problem and the far



8 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKright-hand side for any general recursive adjoint problem involving the evolution equationtypically encountered in climate or meteorology studies. Also note that if the number ofreps r and sweeps d are similar, thenDm � 2RR � Dt � 2n�̂�̂ � log4 n:

0.0 2.0 4.0 6.0 8.0 10.0 12.0
log(effort)

0

4

8

12

16

20

24

28

32

36

40

44

48

sn
ap

s

Figure 3. Conventional versus Recursive strategy comparison. Theadded e�ort due to increased reps r. From left to right, the conven-tional case, then r = 1, r = 2, r = 3. The curve represented by starscorresponds to r = d.Comparison of (3.2) with (2.6) leads to a working measure of the \computational e�ort,"which is proportional to the wall-clock time: a convenient measure is the total number offorward steps. We shall employ this measure in this and in the following section, in whicha comparison between the recursive and the conventional approach is e�ected. Table 1shows the schedule characteristics for several values of n, d, and r. From Table 1 con�rmssome of the particulars of the recursive strategy which have previously been mentioned,such as the fact that the number of reverses and the n is identical. It can also be surmisedthat the number of reads is one less than the number of reverses because every reverse
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Figure 4. Conventional versus Recursive strategy comparison. Thepoints on the conventional curve correspond to n in intervals of 5, the�rst point being n = 10. The other curves are labeled with their corre-sponding n.requires a prior read, except for the last reverse. By inspection, the number of writes is�d�1r � so that d=(d+ r) is the ratio of writes to n.The performance of the recursive method compared with the conventional one may beassessed graphically. Figure 3 illustrates the relation of the memory, measured in snaps, andthe wall-clock time, assuming it is proportional to the e�ort. The conventional approachis represented by the left-most curve. All other curves represent di�erent snap and repcombinations. In both the conventional and the recursive case, the memory required tosolve a problem will be equal to dR, where R is de�ned as before and depends on theresolution and the number of spatial dimensions in the problem. On the other hand, thee�ort for the conventional case is basically n, while in the recursive strategy it depends onthe choice of snaps and reps. From left to right the recursive strategy curves correspond todecreasing the number of snaps. The line-connected curve in the lower corner correspondsto the case of snaps and reps being equal. The conventional case is, in e�ect, the limitof snaps d equal to n in the recursive strategy. As can be surmized, the curves reectthe previously mentioned characteristic of the recursive method, namely, that the e�ort



10 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKTable 1. Schedule details for severalsets of snaps d, reps r, and steps n.steps snaps reps e�ort reverses reads writes252 5 5 1302 252 251 126126 5 4 546 126 125 70126 4 5 630 126 125 5670 4 4 294 70 69 3556 5 3 196 56 55 3556 3 5 266 56 55 2135 4 3 119 35 34 2035 3 4 140 35 34 1521 5 2 56 21 20 1521 2 5 91 21 20 620 3 3 65 20 19 1015 4 2 39 15 14 1015 2 4 55 15 14 510 3 2 25 10 9 610 2 3 30 10 9 46 5 1 11 6 5 56 2 2 14 6 5 36 1 5 21 6 5 15 4 1 9 5 4 45 1 4 15 5 4 14 3 1 7 4 3 34 1 3 10 4 3 13 2 1 5 3 2 23 1 2 6 3 2 12 1 1 3 2 1 1increases for the recursive method when fewer snaps are used. Hence, in practice, the userwishes to maximize the number of snaps in the calculation rather than the number of reps.Figure 4 illustrates in greater detail the memory and computational e�ort dependence onthe number of snaps and reps. In this �gure it is possible to gauge the relative additionale�ort required by the recursive strategy over the conventional procedure for a given n.For example, for n = 50 the conventional strategy requires 50 snaps and an e�ort of 3:9,whereas the recursive strategy for the same n requires between 11 and 48 snaps with ane�ort of about 4:8. Hence, we expect an order of magnitude increase in the wall clock time,



CIRCUMVENTING STORAGE LIMITATIONS 11a very reasonable price to pay for the signi�cant savings in terms of tape memory. Thenon-smooth changes in the curves corresponding to the recursive strategy in the Figure 4are a result of changing the value of the rep count. A comparison of Figure 4 and Figure3 bears this conclusion. recursive curves
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Figure 5. Comparison of the conventional and recursive strategy. Thememory requirement of the conventional case is n. The recursive curvesare labeled according to the number of snaps d used. Natural logarithmsare used.Figure 5 shows a comparison of the conventional strategy (the left-most solid curve)with the recursive strategy with regards to the e�ort given by n. The �nite extent of thelines joining the points as well as the density of points per curve is a result of the wayin which the graph was generated: the maximum number of snaps and reps was limitedto 20. Bounding the snaps and reps this way limits the number of points belonging toeach line and the density of points corresponding to d = 2, say, is much greater than thenumber of points corresponding to d = 20. The slope of the recursive curves gets closer tothe slope of the conventional case the more snaps are used. Note that in the conventionalcase the number of snaps is equal to n. Hence, this �gure shows the clear advantage ofthe recursive method with regard to memory. Speci�cally, whereas an increase in n in the



12 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKconventional case leads to an increase in tape usage, the recursive strategy enables theuser to consider a wider range of n for a �xed tape size dR. The feasibility of this latterstrategy is dictated by the speed of the machine or the willingness to pay for the highere�ort involved. Compare this to the previous �gure, which shows the price paid in higherwall-clock times as a result of the smaller number of snaps employed. It may be that thee�ort required in large problems is signi�cant, but this must be weighed against the factthat these problems may be simply impossible to consider with the conventional strategy.[4]. Application to a Quasi-Geostrophic Ocean ProblemThe recursive procedure's viability will be demonstrated by applying it to a quasi-geostrophic model [15] [16], which was considered in Tziperman and Thacker's study [13],hereafter referred to as T&T. The dimensionless equations over a unit-square box in x andy are �t +  x +RJ( ; �) = ��b� + �h�� + curl�� = � ;(4.1)where  (x; y; t) and �(x; y; t) are the streamfunction and the vorticity, � (x; y) is the windstress, J(�; �) is the Jacobian of its arguments, and � is the Laplacian operator. Thedimensionless real parameters R, �b, and �h are the Rossby number, the bottom frictionfactor, and the horizontal friction factor, respectively. The state variables evolve in time tand are subject to no-ux and no-stress boundary conditions at the edges of the box.The equations were discretized using multigrid �nite-di�erence techniques. In whatfollows it will be understood that the state variables are de�ned only on the uniformlydiscretized grid in x and y. For the sake of clarity w e will omit explicit mention that thesequantities are discretized in space. On a discrete time grid t = i�t, the state variables �iand  i evolve to a steady state e� and e . Following [13], an assimilation problem is de�nedas follows. The observational data will be the steady-state vorticity e�, which is independentof time. The state set is taken to be the forcing term curl� , the initial vorticity �0, and theparameters �b and �h. The observations e� are determined from a particular (�xed) choiceof friction factors e�b and e�h, initial vorticity �0 and forcing curle� . The system is thenintegrated forward in time until a steady state is reached, at which point the observationsare written. For purposes of this arti�cial assimilation problem, we now \forget" the stateset values which produced the observations. The task of the assimilation will then be toreconstruct the state set that generated the observations. To this end, a cost function ischosen that measures the �t of the model result to the observations. Since the observationsrepresent the steady state, the cost function should measure the departure of the modelfrom steady state as well as the departure from the observations. In [13] the authors usethe following discrete cost function:Hn(curl�; �0; �b; �h) =XhC(�0 � b�)2 +D(�n � �0)2i ;where the sum indicates a sum over all the discrete values of the variables over the unitbox. The �rst term measures the deviation from the observations, while the second term



CIRCUMVENTING STORAGE LIMITATIONS 13in conjunction with the �rst measures the deviation from steady state. The matrices Cand D are the inverse of the covariance matrices of the observations. The �nal time step,n, is arbitrary in this problem. It is chosen to be su�ciently large so that steady state isachieved. A small value of n reduces the computational cost per optimization iteration;however, it increases the number of optimization iterations. Since the number of writtenhistories depends on the number of time steps n, the storage requirements are reducedwhen n is small.The optimization task is to �nd the state set fcurl�; �0; �b; �hg for which Hn is a mini-mum subject to the constraints of the model equations. A common strategy for computingthe minimum is to introduce Lagrange multipliers and the corresponding Lagrange func-tions for which we seek an unconstrained extremum. A gradient-based iterative algorithmsuch as the conjugate gradient method is then applied to this unconstrained problem. Forthe discrete quasi-geostrophic model, the Lagrange function has the formLn =Hn +X nXi=0 �i[�i �� i]+X nXi=1 �i�@�i@t + @ i�1@x +RJ( i; �i) + �b�i�1 � �h��i�1 � curl�� :The descent algorithm requires the calculation of the gradient of Ln with respect tothe state set. The gradient involves the Lagrange multipliers f�i; �ig, which are deter-mined from the gradients of Ln with respect to f�i;  ig. Equating these gradients to zerogenerates the adjoint equations for f�i; �ig, which may be symbolically expressed as�t + �x +R[J(�;� )��J(�; )] = �b�� �h��+	;�� = �;(4.2)where 	 is the forcing term arising from the gradients of the cost function with respect tof�i;  ig. The discrete adjoint equations are integrated backward in time to generate theLagrange multipliers �i used in computing the gradients of the cost function as neededby the conjugate gradient procedure. Thus, in the conventional approach, each conjugategradient iteration requires a forward integration of n steps, which generates the value ofthe cost function, followed by a backward integration of the adjoint equations. This adjointintegration generates the gradients used in the conjugate gradient iteration. Observe thatthe state set is required to e�ect the calculation of the Lagrange multipliers from theadjoint equations. Thus, in the conventional approach involving n time steps, n state setshave to be saved. Since only the state variables are time dependent in this particularproblem, we need only to write the state variables �i;  i at each time step. The remainingcomponents of the state set need to be written only once during the forward-backwardsweep. The observations were synthesized by running the discretized version of (4.1) tosteady-state using curl� = � sin(�x) sin(�y), �b = 0:05, �h = 0:0001, and R = 0:01.To demonstrate the performance of the recursive forward-backward integration strategyfor the calculation of the gradient, we compared model runs of this experiment using theoriginal multigrid Fortran code against a version of the code which was identical in all



14 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKrespects to T&T's code, except for a subroutine that generates the schedule and for minormodi�cations to the program to enable us to implement the schedule. As a �rst step, weveri�ed that our program results yielded identical results to the conventional case. Thewall-clock time was negligibly higher for the recursive program running in the conventionalmode, reecting the additional computational expense of generating the schedule.In the experiments to be reported, the optimality tolerance for the NAG conjugategradient routine was set to 10�3 in all model runs. The square of  i �  i�1 summed overthe box was used as the error tolerance in the conjugate-gradient calculation. The forwardrun used to create the observations stepped in time until the residual was below 10�7.The multigrid depth was �xed at four levels for all experiments that follow. The codeswere executed on a Sparc 10/51 running SunOS 4.1.3U1. The Fortran Sun compiler usedwas Fortran Version 1.4 with optimization ags turned o�. All runs were performed indouble-precision arithmetic. Wall-clock times reported encompass the solution to the fullproblem. In all experiments performed, the answers from both strategies were identical.In T&T's study, n = 1. In their experiment such a choice is possible since the assimila-tion occurs at just one time level. The role of the integration time length in connection toT&T's problem was investigated by Marotzke [9], where he concluded that in this quasi-geostrophic model, advective phenomena would not adjust quickly enough. He suggestedthat the assimilation be carried out over longer time spans. Hence there is some exibilityin choosing the integration time, since the only requirement is that it must be longer thann�, where n� is the minimum number of steps for a steady-state solution. In the generalcase, assimilations may occur at multiple time levels, in which case the number of timesteps used is determined by the problem and cannot be arbitrarily chosen.Suppose that for a particular resolution the problem \�ts" and thus can be solved ona particular machine using the conventional approach. In order to double the spatialresolution, the conventional strategy would require a sixteenfold increase in tape storage:fourfold due to the increase in resolution, and fourfold for the increase in the number of timesteps. The doubly resolved experiment no longer could be performed on this particularmachine. However, the problem could be solved by using the recursive approach as longas the maximum tape length was not exceeded. Suppose that the maximum tape lengthon this machines is 100000 oats. The requirement of the singly resolved T&T problemwith n = 56 and a 32� 32 spatial grid with four re�nement levels is 60984 oats. Table 2provides the results of a couple of runs using the recursive strategy for the doubly-resolvedproblem. Supposing that the conventional procedure could be could be carried out, forn = 224, the tape length for the doubly-resolved problem would be 946400 oats and itwould have taken 153:56 seconds to execute. The table demonstrates that the doubly-resolved problem can be succesfully carried out in approximately twice the amount of timethat it would take to run the conventional procedure assuming that it could be possible tocompute conventionally in the �rst place.A di�erent situation in which tape length is a limiting factor in assimilation studies ariseswhen the integration times are very long, causing the state set history stored on tape to beextremely large. Figure 6 shows a comparison of tape usage for the conventional and therecursive strategy. In the recursive trials the snap count was held �xed at �ve, explainingwhy its curve for tape usage is a vertical straight line. As mentioned previously, for the
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Figure 6. Comparison of the conventional and recursive strategy onthe T&T problem. In the recursive strategy the snap count was held�xed at d = 5. The recursive strategy has a �xed tape length of 10890oats.conventional case the tape usage is proportional to the number of time steps n. FromFigure 6 the tape T = 1089n for the conventional case. It follows from this experimentthat with a �xed amount of tape on a particular machine, the conventional approachwould quickly fail as the number of time steps increased. Figure 7 shows the wall-clocktime for the same experiment. In all trials the conjugate gradient procedure converged inthree iterations. The conventional strategy took a wall-clock time of t = 0:147n+ 0:0571seconds. The recursive strategy took longer to complete, and its growth is not linear.Table 3 contains further information on this particular set of trials.[5]. ConclusionsWe have shown in this study how a recursive strategy for the adjoint-method calcula-tion of the gradient may be applied to variational data assimilation studies of large-scalegeophysical problems. The main result is that signi�cantly larger assimilation studies canbe performed with this recursive strategy than is possible with the conventional forward-adjoint methods, given the physical limitations of available computer storage hardware.
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Figure 7. Comparison of the conventional (left) and recursive (right)strategy for the T&T problem. In the recursive strategy the snap countwas held �xed at d = 5.Table 2. Wall-clock time and tape length for therecursive and convnetional approaches in the T&Tproblem for a doubling of resolution. n = 224.Strategy Time (sec) Tape (oats) Snaps Repsrecursive 356.94 42250 10 3recursive 315.92 84500 20 2conventional 153.56 946400While the recursive strategy requires additional computational e�ort (or wall-clock time)the strategy is viable. Furthermore, the recursive strategy yields the gradient with nodegradation, as compared with the conventional approach.In theory, when the number of snaps and reps (i.e., the number of storage units measuredin R, and the number of additional unrecorded forward runs) is equal, these are bothbounded by log4 n, where n is the number of time steps in the evolution equation. In



CIRCUMVENTING STORAGE LIMITATIONS 17Table 3. Ratio of the wall-clock time for therecursive (d = 5) and conventional approach versusn and number of reps for the T&T problem.n Time Ratio Reps21 1.7665 256 2.0687 3126 2.3139 4252 2.5274 5462 2.8306 6792 3.0425 7practice, the strategy is best used by picking the maximum number of snaps that theparticular computer hardware can manage, thus minimizing the number of reps.Insofar as computer program design, the best strategy for large-scale problems is to con-struct programs that are as compute-intensive as possible and the least memory-intensive.This yields the greatest variation in the computational e�ort for any given choice of snapsand reps. This is especially true in parallelized programs because the computational ef-fort will drop as more processors are used, whereas the storage requirements remain �xedindependent of the number of processors.The implementation of the recursive strategy requires minimal modi�cation of conven-tional codes that compute forward and adjoint problems. The requirements are that fourmodules be provided: (1) a forward module that runs without writing the state set be-tween a speci�ed starting and an ending time step; (2) a module that computes a singleunrecorded forward and a single adjoint step, given a speci�c time step; (3) a modulethat writes to tape the state set at the current time step; and (4) a module that retrievesfrom tape the last recorded state set. An additional module, which is to be considered thedriver, runs the above-mentioned modules according to the recursive schedule. The driverrequires as input the total number of time steps, the number of snaps, and the number ofreps.One approach in the implementation of the schedule driver is to have the schedulecomputed only once at the top of the program. The schedule instructions are saved ininteger arrays, which are then called in sequence to drive the four modules. The bene�t ofprecomputing the schedule is not warranted in some applications, since the schedule moduleincreases insigni�cantly the overall computational e�ort. The preferred alternative is touse the schedule driver to control the above-mentioned modules, thus not wasting registermemory for the schedule arrays needed in the �rst approach that could otherwise be usedin the adjoint problem. An estimate of the additional memory for the integer schedulearrays of the �rst approach is as follows: a \schedule array" with the instruction directivesof size 2rn is required, plus one or two arrays of similar size that direct the writing andreading of snaps from tape. The total register overhead is then on the order of 4rn integers.The user's particular application will clearly dictate which alternative works best.This schedule driver is available via anonymous ftp from info.mcs.anl.gov. The �le is



18 J. M. RESTREPO, G. K. LEAF, A. GRIEWANKcalled /pub/tech reports/restrepo/schedule.tar.Z. Alternatively, the schedule soft-ware is available in either Fortran or C versions from the Word-Wide-Web in the softwaresection of http://www.mcs.anl.gov/people/restrepo/index.html.
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