
On the Implementation of a Modi�edSag-Szekeres Quadrature Method�J. N. LynessMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439 U.S.A.L. M. DelvesInstitute of Advanced Scienti�c ComputationUniversity of Liverpool L69 3BXEnglandAbstractWe describe a modi�ed Sag-Szekeres multidimensional quadrature algorithm and discussits implementation as a general-purpose library procedure on serial and parallel architectures.Examples illustrate its e�ectiveness for both smooth and singular integrands.1 IntroductionIn the practice of numerical quadrature, many di�erent special-purpose algorithms are availableand are e�cient when used in the appropriate circumstances. We are interested in developing analgorithm for more general use as a software item in a software library. Speci�cally we seek a generalpurpose algorithm that accepts as wide a class of integrands and regions as possible, without gravecompromise of e�ciency. To this end, we have chosen one suitable for N -dimensional integrationover a product region RN = R11 �R21 � ::::RN1 ;where each Rj1 stands for one of [a; b]; [a;1)(�1; b] or (�1;1). The algorithm that we describeuses a modi�ed version of the Sag-Szekeres (1994) method in each direction. It is e�cient whenthe integrand function is regular over RN or when it has integrable singular behavior con�ned tovertices or edges of this region. This ability to handle edge singularities without special codingmakes it particularly appealing for a numerical library.�This work was supported in part by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38, and by the Commission of the European Community within Esprit Project P2528: Supernode II.lyness@mcs.anl.gov; delves@liverpool.ac.uk10 May 1995 1

2 One-Dimensional Algorithm for the Finite Interval [0,1]As a preliminary to constructing a general N -dimensional algorithm, we focus on one dimensionand on the �nite interval [0,1]. Here we seek an algorithm that will handle an integrable singularityat x = 0 or at x = 1. The appropriate Gaussian rule is undoubtedly the most e�cient rule known.However, to implement this requires that a weight function incorporate the singularity; weightsand abscissas depend on the actual weight function. Extrapolation quadrature is marginally lesse�cient and marginally more general than the Gaussian rule; it requires only limited informationabout the singularity. Yet even this information, we believe, may not be not normally available tothe applications programmer.However, a modi�cation of the Sag-Szekeres approach does seem to be promising. Here thetrapezoidal rule is used, but it is applied to a transformed function. The transformation is or maybe the same for all integrands. The resulting rule is e�cient for integrands that are analytic in(0,1) and integrable in [0,1].Following Sag-Szekeres (1964), we set (t) = 12(1 + tanh(1=(1� t)� 1=t)); (2.1) 0(t) = 12((1� t)�2 + t�2)(1� tanh2(1=(1� t)� 1=t));and set x = (t) to e�ect If = Z 10 f(x)dx = Z 10 f((t)) 0(t)dt:We denote the integrand on the right by F (t). We now apply an m-panel trapezoidal rule, namely,Q(m)F = 1m mXj=0 "F (j=m) = 1m mXj=0 "f((jm)) 0(j=m);to approximate IF = Z 10 F (t)dt = Z 10 f((t)) 0(t)dt = If:The expression Q(m)F may be treated as a conventional quadrature rule for f(x) whose abscissasare (j=m) and whose weights are 0(j=m). Many functions (t) of form (2.1) are suitable; theone chosen above was used by Sag and Szekeres (1964). This rule was later used by Murota andIri (1982), who called it the TANH rule and noted that it was a variant of the IMT method ofIri, Moriguti, and Takasawa (1970) (see also Davies and Rabinowitz (1980)). (Takahasi and Mori(1973) use the term TANH to refer to a completely di�erent transformation.)Several other choices for (t) are described in the literature. All necessarily satisfy (0) = 0; (1) = 1 and 0(t) > 0 for t in (0; 1);and all suggested to date have 0(t) symmetric about t = 1=2. Perhaps the earliest is a set due toKorobov (1963); the most recent is a set due to Sidi (1993). For these, the functions 0(t) comprise2

a set of algebraic polynomials and a set of trigonometric polynomials, respectively. For integrandswithout singularities, undoubtedly Sidi's functions are excellent and probably more e�cient thanthe ones we have proposed. We have retained the choice (2.1) because in some respects it is moreconvenient for functions with unbounded singularities at the end point.Clearly when f(x) is bounded in a �nite interval (�; �) and (t) is monotonic and di�erentiable,it follows that F (t) = f((t)) 0(t) is also bounded in this interval. When f(x) has a singularity atx = 0, it may or may not happen that F (t) has a singularity at t = 0. This depends on the naturesof f(x) and of (t). To �x ideas, let us suppose f(x) = x�. Then we haveF (t) = (t)� 0(t) = 1�+ 1 ddt (t)�+1 � 6= �1;and we may con�rm that F (t) is integrableIF = Z 10 F (t)dt = 1� + 1 (t)�+1����10 = 1�+ 1 � 6= �1and is naturally identical with If . For some values of �, it may happen that F (t) has a singularityat t = 0.Theorem 2.1 For f(x) = x� and choice (2.1) for (t), we haveF (t) � (1=t2)(exp(�2=t))�+1 as t approaches 0 + :This is straightforward to prove.It follows that, even though f(x) is singular at x = 0, the natural continuation of F (t) andall its derivatives at t = 0 are zero. Clearly one may omit the function value at t = 0 in form-ing the trapezoidal rule sum. Ultimately, the convergence rate of a sequence of trapezoidal ruleapproximations is exponential in the number of panels used.In this case, the corresponding functions of Sidi, while robust, do not produce a sequence thatconverges exponentially. This situation is illustrated by the circumstance that for � greater thanbut su�ciently close to {1, the limit in the theorem is in�nite when F (t) is calculated using thesetrigonometric polynomials for 0(t).3 The Numerical Stability of the One-Dimensional Algorithmfor Interval [0,1]The formulas given in Section 2 appear to be straightforward to implement. In several distinctplaces, however, careful programming is required to avoid unnecessary inaccuracy or breakdownresulting from unexpected overow or inconvenient underow. Some of the underlying causes forsensitivity are interrelated. All are connected with function evaluation at or near the integrationinterval endpoints. (In the multidimensional extension considered later, this stability problemoccurs in each dimension separately.) 3

In the following discussion, it is important to distinguish between the underow parameter, �u,and the machine accuracy parameter, �m. We shall illustrate the discussion by setting �u = 10�73and �m = 10�12. This discussion is in the context of a machine with quiet underow. That is, leftto itself, any number too small to be represented is simply replaced by zero.The density of machine-representable numbers plays a key role in quantifying, understanding,and controlling the numerical instability. Naturally, one tries to arrange the calculation so that themost sensitive calculations are carried out where this density is greatest, namely near the origin.In general, the smallest positive machine-representable number is the underow parameter, �u:Between �u and 2�u are 1=�m di�erent machine-representable numbers. In general, when X is apower of 2, there are 1=�m machine-representable numbers regularly arranged between X and 2X .This pattern continues until the largest machine-representable number (usually approximately orexactly 1=�u). The negative machine-representable numbers follow almost exactly the same pattern.As mentioned earlier, we treat the interval [0,1]. We term the zero end of this interval the\sensitive" end, since there we can distinguish numbers very close to each other, this distancebeing of order �u. We term the other end the \insensitive" end. The corresponding distance here is�m. To help control the calculational error, we introduce the quantities �x = 1�x and � (t) = 1� (t).It turns out that for t in the interval (0.95,1), the nearest machine-representable number to (t)is 1. In some cases we can organize the internal coding so that we use � (t) and avoid (t). Thisallows a more sensitive calculation. But for t in (0.99,1), we �nd � (t) is represented by zero in themachine. The end-point problem is mitigated but not removed.It is a straightforward exercise to program the calculation of (t), � (t) = 1� (t), and 0(t) sothat each is available to near machine accuracy. Only one exponential call is required to obtain allthree. As mentioned above, when t � 0:01 and when t � 0:99, either (t) or � (t) is smaller than �uand hence cannot be represented in the machine. Normally, such a number would be replaced byzero. For reasons that will become apparent later, we recommend that these minute numbers bereplaced by �u. However, when appropriate, we happily allow 0(t) to be replaced by zero. Whent � 0:05 or t � 0:95, either (t) or � (t) is less than �m. Note that all these quantities, howeversmall, are properly calculated to machine accuracy | except, of course, when they are too smallto be represented.The calculation involves the numerical integration, using the trapezoidal rule, of the integrandfunction F (t) = f((t)) 0(t). Since 0(t) = 0 at the endpoints, it is obvious that when f(x) isbounded, the endpoint contribution is zero and can be omitted. As shown above, when f(x) hasan integrable singularity at x = 0 or x = 1, the integrand function f((t)) 0(t) is zero at t = 0 andat t = 1. At these values of x, function evaluation of f(x) is unnecessary.In theory, the abscissa x = (t) is 0 or 1 only when t = 0 or 1; otherwise, x = (t) in(0,1). So, in an ideal world where there is \in�nite-precision arithmetic", we can safely use thetrapezoidal rule to approximate the integral, simply ignoring the two endpoint function values. Inpractice, however, values of (t) may appear that are closer to 0 (or 1) than to any othet machine-representable number. It is necessary to ensure that, in such cases, these are not replaced in themachine by 0 (or 1). If that were to happen and f(x) happens to have a singularity there, anoverow would occur. 4

To obviate this possibility, the quadrature routine should replace (t) by maxf (t); �ug neart = 0 and by minf (t); 1��mg near t = 1. Then it will not ask for a function value of f(x) preciselyat an endpoint of its integration interval. Naturally, the used-provided procedure from which f(x)is calculated, must not overow for any machine-representable number x 2 (0; 1). It is importantto emphasize this precaution because, while function values at x = 0 and x = 1 are not required,function values at points x exceptionally close to x = 0 or x = 1 may well be required.Corresponding restrictions should be applied independently to � (t). However, 0(t) should notbe restrained in this way. When this is too small to be represented, it is replaced by zero.The above remarks cover the situation at t = 0 and t = 1. Next we turn to the situation nearthese endpoints. To clarify our ideas, we look at the trapezoidal rule sum1m m�1Xj=1 [f((j=m)) 0(j=m)]:For integrands f(x) that are regular, one may be tempted to omit terms for which 0(t) is less thanthe machine accuracy parameter. Doing this, one omits about 5% of the integration interval ateach end. If the program omits the corresponding function evaluation, a 10% economy may ensue.However, in some cases unnecessary inaccuracy could arise: for example, if f(x) were large verynear an endpoint but minuscule elsewhere. In particular, there is no justi�cation for this doubtfuleconomy when f(x) has any sort of singular behavior at either endpoint.To illustrate these remarks, we look at three examples, namely, f(x) = 1, f(x) = x�2=3, andf(x) = (1�x)�2=3. The exact integrals If are 1, 3, and 3, respectively. We consider the �fty-paneltrapezoidal rule sum (m = 50). In the �rst two examples we examine the contribution of the threeterms j = 1; 2; 3 to this trapezoidal rule sum. This is0:02 � (f((0:02)) � 0(0:02) + f((0:04)) � 0(0:04) + f((0:06)) � 0(0:06)) =0:02 � (0:14D� 38 � f(0:28D� 42) + 0:19D� 17 � f(0:15D� 20) + 0:15D� 10 � f(0:28D� 13)):We write this as w1f1 + w2f2 + w3f3with wj = 0:28D� 40; 0:38D� 19; and 0:30D� 12; (3:1)respectively.In the �rst example, f(x) = 1, and the �rst three terms contribute precisely these amounts toa sum that is approximately 1. The �rst two terms, which are comfortably smaller than �m, haveno practical e�ect on the result. If all three and the corresponding three at the other end of theinterval are ignored, the result may be compromised by an amount 0.60D-12.That was a particularly simple example. The second example, f(x) = x�2=3, is quite di�erent.The three function values involved are not all 1, but they are large. They arefj = 0:23D+ 29; 0:786D+ 14; and 0:11D+ 10; (3:2)5

respectively. Their respective contributions to the sum are obtained by multiplying them by theweights in (3.1) above, givingwjfj = 0:64D� 12; 0:29D� 5; and 0:33D� 3; (3:3)respectively. Terms of this size cannot be routinely omitted simply because one of the factorsinvolved in their evaluation is small. Note that the computer has all these numbers available tomachine accuracy (i.e., in this example, to twelve decimal places). To make this description easierto read, we have written down only the �rst two places in the above discussion.The third example, f(x) = (1�x)�2=3, is again di�erent. Because of symmetry, one might haveexpected this example to correspond in all signi�cant respects to the previous example. However,because the singularity is at the end t = 1, the situation is much worse. Here the critical pointsare the �nal three. We can calculate the weights correctly; these are the same as in (3.1) above.The correct function values f50�j and the correct values of w50�jf50�j are those in (3.2) and (3.3)above. But (t) has to be represented in the machine and has to be less than 1. The nearestmachine representable number is x = 1 � �m, and so the largest value of f(x) calculable is about1.00D+8. Hence, instead of function values (3.2) we �nd all three to be about 1.00D+8, which aremuch too small. The true contributions (3.3) to the overall sum are then underestimated, leavingan overall error of about 0.30D-3.Clearly, a singularity at t = 1 is unwelcome. The user should, if possible, arrange that thesingularity occurs at the t = 0 end of this integration interval, possibly reprogramming the integrandfunction to exploit the higher density of machine- representable numbers in that neighborhood.However, as we shall see later, the user need not worry about any singularity induced by thetransformation from an in�nite or semi-in�nite interval. This is taken care of automatically in anyproper implementation.4 The One-Dimensional Algorithm for Other IntervalsOne advantage of our approach is that it can be modi�ed to intervals other than [0,1] by meansof an additional transformation of a user-provided function g(y). This transformation, denoted byy = �(x), is chosen so that Z ba g(y)dy = Z 10 f(x)dx:Here we allow either or both of a and b to be in�nite but assume, when germane, that b > a.Naturally there is a wide choice of possible transformations. For our program, we have choseny = a+ (b� a)x; f(x) = (b� a)g(a+ (b� a)x); [a; b]y = a+ 1�xx ; f(x) = x�2g(a+ (1� x)=x); [a;1) (4.1)y = b� 1�xx ; f(x) = x�2g(b� (1� x)=x); (�1; b]y = 11�x � 1x ; f(x) = (x�2 + (1� x)�2)g(1=(1� x)� 1=x) (�1;1):6

In our implementation, the user provides g(y). It is clear from the transformations that when jg(y)jis bounded in (a; b), then jf(x)j is bounded in (0,1). But it is easy to show that when a or b is�nite, then any singularity of g(y) at a or b may induce a corresponding singularity of f(x) at 0or 1. Moreover, in general, when the interval is semi-�nite or doubly in�nite, one may encounter atransformation-induced singularity in f(x) at the end of [0,1] which corresponds to in�nity.In the preceding section, we discussed in some detail the care necessary to deal with a singularityin f(x). In the present case, the user provides g(y) and our program determines f(x). We haveto arrange that this part of our program provides an integrand function f(x) thatis �nite forall machine-representable x 2 (0; 1). Doing so is not di�cult because the terms that induce thesingularity are x = (t) or �x = 1�x = � (t), and these can be determined so long as x or �x exceeds�u. For example, on the semi-�nite interval [a;1), supposeg(y) = (�2 + (y � a)2)�=2with � < �1 to ensure convergence. This gives rise tof(x) = x�2g�a+ 1� xx � ;= x�2x��(�2x2 + (1� x)2)�=2:For noninteger �, this has a singularity at x = 0. In the integration of f(x), the quantity x�2is critical. This quantity is isolated by the program and accurately calculated. The value ofg �a+ 1�xx � for x close to zero is small but is readily calculable and not sensitive to small changesin y. Thus, the coding of this can safely be left to the user. When the singularity is at the insensitiveend x = 1, the term �x is provided by the program and plays the same role as above.We note that the program for the �nite interval demands that, for all machine-representablenumbers in (0,1), the function f(x) not exceed the highest machine-representable number. Toensure this, the user must provide a function g(y) that does not produce overow in f(x) whenf(x) is calculated using one of (4.1). The result in the following theorem is apposite.Theorem 4.2 Let g(y) satisfya, b �nite jg(y)j < M=(b� a) for all y , (i)a �nite, b in�nite jg(y)j < M=4 and (y � a)2jg(y)j< M=4 for all y , (ii)both in�nite jg(y)j < M=8 and y2jg(y)j< M=8 for all y . (iii)Then jf(x)j < M for all x 2 (0; 1).The user may exploit this by choosing M near the overow parameter and \capping" theintegrand function g(y) appropriately. 7

5 The Multidimensional AlgorithmThe extension of the algorithm to more than one dimension is trivial: we use a product trapezoidalrule with product mapping. There is, however, additional interest in the implementation details,and we discuss these in the context of a MIMD distributed-memory architecture.The sums required are product trapezoidal rule sums. In the context of a parallel computer,one convenient method for evaluating any product sum is using a cyclic distribution of the functionevaluations. We describe this now in a four dimensional setting in a slightly more general contextthan we need. The generalization to other dimensions is straightforward.We consider a product rule of the formQF = n1Xj1=1 n2Xj2=1 n3Xj3=1 n4Xj4=1F (x1j1 ; x2j2 ; x3j3; x4j4)w1j1w2j2w3j3w4j4 : (5:1)In our application we ignore boundary points so ni = mi � 1 and, in each dimension, all weightsare equal so wkji = 1=mk ji = 1; 2; : : : ; ni; k = 1; 2; 3; 4:We now reindex this sum, using a single index ` de�ned by` = j1 + n1j2 + n1n2j3 + n1n2n3j4� j1 + n1(j2 + n2(j3 + n3j4)):It is straightforward to verify that this mapping is one to one and that ` 2 [1; L] with L = n1n2n3n4.Given a value of ` 2 [1; L], one may �nd j1; j2; j3; and j4 by successive division. The sum (5.1) maybe reexpressed, �rst in the form QF = LX̀=1 F (x`)w(x`); (5:2)and then, with any integer p � 1, in the formQF = pXq=1Sq = pXq=10BBBB@ X`=q(mod p)`2[1;L] F (x`)w(x`)1CCCCA : (5:3)The overall e�ect is that we have partitioned the sum in (5.1) into p di�erent and distinct sums,which may be handled respectively by the p di�erent processors. The number of elements in eachsum Sq is either bL=pc or bL=pc+ 1.The interesting aspect of a program to e�ect this is that there is no need for any processor tobe explicitly aware of the values of ` involved. All of the processors are initially provided with(or calculate simultaneously) a list of weights and abscissas xkjk ; wkjk jk = 1; 2; : : : ; nk k = 1; 2; 3; 4.Each processor handles a selection of allowable indices (j1; j2; j3; j4), that is, a set where each ji iswithin limit, namely, ji 2 [1; ni]. 8

The program handles an allowable index (j1; j2; j3; j4) by adding into a running sum the con-tribution w1j1w2j2w3j3w4j4F (x1j1 ; x2j2 ; x3j3 ; x4j4):The q-th processor is initialized by being given index (q; 1; 1; 1). (As long as q 2 [1; n1], this isallowable. If it is not, one applies the procedure described below to transform this index into anallowable index.)After an allowable index (j1; j2; j3; j4) has been processed, the next index considered is (j1 +p; j2; j3; j4). If this is allowable, it is processed immediately. Otherwise, it is transformed into anallowable index by applying a sequence of transformations, each of the typeTi (ji = ji � n1ji+1 = ji+1 + 1:If j1 is out of limits, transformation T1 is applied as many times as necessary to put j1 into limits.Next T2 and then T3 are applied in the same way. Should j4 become out of limits (while j1; j2; j3 arein limits), the part of the calculation assigned to this processor is complete. The same algorithmmay be described in the following way.�) if j1 > n1, then j1 = j1 � n1 and j2 = j2 + 1; goto �)�) if j2 > n2, then j2 = j2 � n2 and j3 = j3 + 1; goto �)) if j3 > n3, then j3 = j3 � n3 and j4 = j4 + 1; goto)If it �nds j4 > n4, the sum is complete and the processor should return its contribution to the �rst(or a master) processor or, in some other way, amalgamate the distinct sums.A program arranged in this way has several \computing virtues":1. Simplicity: Each processor is given an identical program.2. Adaptability: p, n1, n2, n3, etc., appear as simple parameters.3. Low Interprocessor Communication: Communication is needed only at the start (to assignthe initial point) and at the end (to assemble the �nal result).4. Even Load Balancing: The points have been shared as evenly as possible. Each processortakes a fair share of easy and di�cult regions.We close this section with some remarks about load balancing. The key to even load balancingis the elimination of processor wait time. If all function evaluations take an identical time (andthere are many problems in which this is the case), then arranging even load balancing reducessimply to seeing that each processor treats, as far as possible, the same number of points. Thescheme described above does this, as would most properly constructed schemes.9

When function evaluation times di�er from point to point, a more interesting or challengingsituation arises.It is convenient to de�ne a di�cult (easy) point as one where the function takes a longer (shorter)time than average to evaluate. A di�cult (easy) region is one that contains a preponderance ofdi�cult (easy) points. This depends only on the integrand function. A simple example of aneasy region might be an an edge where one component required in the calculation of the functionvalue happens to be identically zero. An example of a di�cult region might be an edge where,exceptionally, a limiting process has to be simulated to evaluate the function. Note that thisdepends simply on the time required to make the function evaluation. This is quite distinct fromthe concept of di�cult or easy regions in the context of adaptive quadrature. That depends on thesmoothness of the integrand.The circumstances required for even load balancing are slightly di�erent in a MIMD environ-ment, where the processors act independently, from the circumstances in a SIMD environment,where the processors act in lock step. To pinpoint the di�erence, let us suppose that the order inwhich the abscissas were treated was entirely random. In a MIMD environment this is desirable.With luck, each processor would receive the same mix of easy and di�cult points, so each wouldhave the same amount of work to do and each would �nish at about the same time; during theprocess, none have been kept waiting. On the other hand, this random ordering could be one ofthe worst possible for a SIMD environment. The di�cult points would be randomized too, andeach time slot would contain a mix of di�cult and easy points. Thus a processor apparently luckyenough to be treating an easy point might well �nd that, when it has �nished this point, it has towait until all other processors, some of which may be contemporaneously treating di�cult points,have also �nished.Clearly, what is needed for both the MIMD and the SIMD environments is that each processor isassigned roughly the same number of di�cult points and the same number of easy points. However,in the SIMD environment, the ordering may be critical while in the MIMD environment, thisordering is immaterial.On the other hand, hypothetically, a good situation for a SIMD environment might be onein which the points were treated strictly in order of di�culty. All processors go slowly when thedi�cult points are being treated and all speed up when they treat the easy ones.We now return to the scheme described above and see how these di�erent environments reactto a situation in which there exist well de�ned easy and di�cult regions but it is not known a prioriwhere these are. First, we note that the points of local regions are dispersed among the di�erentprocessors. This is precisely what is wanted in both MIMD and SIMD environments.In addition another e�ect may be helpful in a SIMD environment. Speci�cally, points in thesame locality are being treated to some extent at the same time. To wit, there are roughly [N=p]sets of p points that are treated simultaneously. Approximately a proportion of (n1 � p + 1)=n1of these sets comprise p adjacent points. The time taken for each set is the time taken by theslowest (which is the most di�cult) member of that set. Thus, when the di�cult points occurin well-de�ned local regions, there is a good chance that, to some extent, di�cult points will beprocessed at the same time. 10

6 Numerical ExamplesThe procedure described above has been implemented as a parallel library routine, running ontransputer-based systems, as part of Esprit project P2528: Supernode II; (see Plowman (1992).This routine is scheduled to appear in the quadrature section of the Liverpool{NAG TransputerSoftware Library. We give here some results obtained using this routine, to demonstrate the rapidconvergence obtained with both smooth and singular integrands, and to demonstrate the routine'se�ectiveness on a parallel MIMD architecture.6.1 ExamplesWe consider the following two dimensional problems, taken from Plowman (1992):1. R 32 R11 x�ydxdy = ln 2 2. R10 R10 exp(�x2 � y2)dxdy = �43. R 10 R 10 xpx2+y2 dxdy = 12 �ln(p2 + 1) +p2� 1� 4. R10 R10 px+ y exp(�x� y)dxdy = 3p�46.2 Convergence of the MethodThe convergence obtained by this method, as the number of function evaluations is increased, isexponential in nature. This is illustrated in Table 1.In each of these 24 examples, the same number of panels, m, was used in each of the twodimensions. Thus, the number of function evaluations required in each example is (m� 1)2. Theseresults were obtained with four processors using 64-bit IEEE arithmetic. Once the machine precisionis approached, the actual error depends slightly on the number of processors. This e�ect is notlimited to a parallel implementation. Naturally, the �nal �gure or two in any result depends on theactual coding. The last column gives the time taken, in seconds, for Problem 4 on one processor.Timings for the other problems are similar to these.Table 1. Absolute error for four problemsm Problem 1 Problem 2 Problem 3 Problem 4 Time (P.4)4 1.3E-01 1.5 1.6E-01 1.9 0.118 3.3E-04 3.0E-01 1.1E-03 7.4E-02 0.1116 2.8E-07 2.8E-02 7.2E-06 7.5E-03 0.1332 1.6E-10 1.9E-04 2.0E-08 5.8E-06 0.1864 8.9E-16 4.0E-08 1.1E-11 2.2E-12 0.41128 2.2E-16 4.4E-16 1.8E-15 2.2E-16 1.3111

These results are demonstrably consistent with exponential convergence for Problems 1 and 3and superexponential convergence for Problems 2 and 4.6.3 Parallel PerformanceIt is no surprise that the method implements well on a parallel distributed-memory architecture,since multidimensional quadrature methods are in general \embarrassingly parallel". In Table 2we illustrate this by giving the measured speedup factorsS(p) = T (1)=T (p);where T (n) is the time required when using n processors. Times were taken on a Transtech T800system with 20 MHz processors and links; the con�guration uses a master/slave paradigm withT800 master. We give two sets of results, using m = 64 and m = 128, respectively. Absolutetimings were given in Table 1.Table 2. Speedup factors S(p) for p slave processorsp Problem 1 Problem 2 Problem 3 Problem 4m = 642 1.8 1.8 1.8 1.84 3.1 3.0 2.9 3.18 4.4 4.2 3.9 4.3m = 1282 2.0 2.3 1.9 1.94 3.8 3.6 3.6 3.78 6.6 6.7 6.1 6.8The results are as expected: for �xed m and increasing p, the speedup factor achieved is limitedby the initialization of the library routine rather than by the cost of the �nal collection of partialsums from each processor. With the dynamic loading mechanism used for the transputer library,this initialization cost is dominated by the cost of sending the code for the integrand functionto each slave, which takes place when the routine is called. Naturally, this cost is relatively lesssigni�cant for larger problems. Indeed, the timings obtained provide an estimate of about 0.11seconds for the overheads involved.7 AcknowledgmentsThe routine used was implemented by Dr. Steve Plowman; we are indebted to him for many lengthydiscussions of implementation details. 12

References[1] P. J. Davies and P. Rabinowitz (1980), Methods of Numerical Integration, 2nd edition, Aca-demic Press, New York (1980), pp. 142{144.[2] N. M. Korobov (1963), Number-Theoretic Methods of Approximate Analysis, GIFL, Moscow(1963) (in Russian).[3] M. Mori (1978), An IMT-Type Double Exponential Formula for Numerical Integration, Pub.Res. Inst. Math. Sci. Kyoto Univ., 14, pp. 713{729.[4] M. Iri, S. Moriguti, and Y. Takasawa (1970), On a Certain Quadrature Formula, Kokyuroku ofthe Res. Inst. for Math. Sci. Kyoto Univ., 91 , pp. 82{118 (in Japanese). English translationin J. Comp. Appl. Math., 17, pp. 3{20.[5] K. Murota and M. Iri (1982), Parameter Tuning and Repeated Application of the IMT-typeTransformation in Numerical Quadrature, Numer. Math., 3, pp. 347{363.[6] S. Plowman (1992), Trapezoidal Rule Quadrature Algorithms for MIMD Distributed MemoryComputers: Part 2 Implementation, Supernode II Working Paper, Centre for MathematicalSoftware Research, University of Liverpool, U.K. (1992).[7] T. W. Sag and G. Szekeres (1964), Numerical Evaluation of High-Dimensional Integrals, Math.Comp., 18, pp. 245{253.[8] H. Takahasi, and M. Mori (1973), Quadrature Formulas Obtained by Variable Transformation,Numer. Math., 21, pp. 206{219.[9] A. Sidi (1993), A New Variable Transformation for Numerical Integration, in H. Brass and G.H�ammerlin (editors) Numerical Integration IV, Birkhauser, Berlin; ISNM 112, pp. 359,373.
13

