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principle in algebraic geometry. This rule is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove theuniqueness of the 5-ary Steiner law on an elliptic curve. Very much likethe binary case, this theorem provides an algebraic characterization of ageometric construction process involving conics and cubics. The well-knowntheorem of the uniqueness of the group law on such a curve is shown to bea consequence of this result.1 IntroductionThe so-called identity theorems of classical function theory state that if twofunctions (belonging to a \nice" class) agree on a dense open set, they agreeeverywhere. This is the heart of several uniqueness theorems of algebraicstructures in mathematics. An analog in algebraic geometry is the so-calledChow's theorem [7, p. 67]: \Every compact complex manifold has at mostone algebraic structure, and moreover, every compact 1-dimensional com-plex manifold admits a unique algebraic structure". These are analyticallyisomorphic to projective varieties. This is a deep theorem, and the unique-ness of a group law on an elliptic curve � is a special case. We say thatan algebraic curve � admits an algebraic law, say f(x1; x2; � � � ; xn), if f is an-ary morphism (i.e., a regular function or a rational function) on the curve�. The nonsingular cubic curves are pregnant with a number of universalalgebras all of which are morphisms of the curve: every algebraic curve in-duces a rational operation on cubic curves via a complete intersection cycle(see, e.g., Fig. 1 for the binary linear process and Fig. 3 for the 5-ary conicprocess).In this paper, we give a pure equational characterization for the 5-arymorphism determined by the conic process. We believe that the blendingof universal algebra and algebraic geometry is an important application ofuniversal algebra and a new tool for algebraic geometry. And the additionof automated theorem proving will do a great deal to bring attention to therole of computers in symbolic reasoning in real mathematical questions.With this theme as our backdrop, let us now rephrase the uniqueness ofthe group law in the language of �rst-order logic with equality:ff(x; y) is a group law on �g ) ff(x; y) = f(y; x)gff(x; y) and g(x; y) are group laws, with a common identity, on �g) ff(x; y) = g(x; y)g.2
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e=eeFigure 1: Chord-Tangent ConstructionThis gives rise to a model-theoretic question of whether one can extract some�rst-order properties from the theory of projective curves and formulate andprove the various uniqueness theorems within the framework of �rst-orderlogic with equality. The answer is an emphatic yes: the following rigiditylemma|a powerful local-to-global principle valid for morphisms of completevarieties|proves the validity of the above implications.Lemma 1 Let X be a projective curve and Y and Z be irreducible algebraicvarieties, all de�ned over an algebraically closed �eld k. Let f be a regularmapping from X � Y into Z such that f(X � fy0g) is a singleton z0 forsome y0 2 Y . Then f(X � fyg) is a singleton for every y 2 Y .Proofs of this basic fact may be found in [10, p. 156], [5, p. 104], or in [11,p. 156]. 3



2 Methodology and TheoremsWe now rewrite the rigidity lemma as a formal implication, where (gL)stands for \Local to global", \geometric Logic", \geometric Law".9y09z08x(f(x; y0) = z0)) 8x8y8z(f(x; y) = f(z; y)) (gL)We view the rule (gL) as an equation-deriving principle extending the scopeof the usual equational logic. Whenever the programmeets the local equalityf(x; y0) = z0 for some word f and some elements y0, z0, it churns out theglobal multivariable identity f(x; y) = f(z; y) (multivariable because here x,y, or z could be vectors, namely, x = (x1; x2; ::; xm), because x, y, or z couldthemselves be product spaces). This idea of viewing (gL) as an inferencerule was �rst stated and systematically used by R. Padmanabhan in [7].See R. W. Quackenbush [9] for the history of a closely related and recentlydiscovered concept of \term condition".We use the following notation. If � is a set of identities and if � is anidentity in the language of �, we write� =(gL)) �if �[ (gL)) � in the usual equational logic. Whenever convenient, we alsosay that the axioms � \(gL)-implies" �, etc.Using the rule (gL), let us now give a \mindless" proof of the powerfulfour-variable median law just from the relatively weak two-variable Steinerquasigroup laws fx � (y � x) = y; (y � z) � z = yg.Theorem 1 fx(yx) = y; (yz)z = yg =(gL)) f(xy)(zt) = (xz)(yt)g.Proof. De�ne the 5-ary composite operation f byf(x; y; z; t; u) = ((xy)(zt))(u((xz)(yt))):By the law x(yx) = y, we have f(x; c; c; t; d) = d for all x. Thus by therule (gL), the 5-ary expression f(x; y; z; t; u) does not depend upon x for ally; z; t; u. In particular, we havef(x; y; z; t; u) = f(x1; y; z; t; u) 8x8x1((xy)(zt))(u((xz)(yt)))= ((x1y)(zt))(u((x1z)(yt))) 8x8x1= (((yz)y)(zt))(u(((yz)z)(yt))) letting x1 = yz4



= t(ut) by the Steiner laws= u= ((xz)(yt))(u((xz)(yt)))Hence, one right-cancellation of the common term u((xz)(yt)) immediatelyyields the desired median law (xy)(zt) = (xz)(yt).Let us now apply this to the geometry of plane cubic curves without anyfurther reference to the geometry or the topology of curves.Corollary 1 Every binary morphism \�" de�ned on a nonsingular cubiccurve � over an algebraically closed �eld satisfying the Steiner quasigroupidentities must be medial (see Fig. 2).
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(xy)(zt)=(xz)(yt)Figure 2: The Medial LawHistorical remark. This corollary was �rst proved for plane cubic curves byI. M. S. Etherington using the classical Bezout theorem (see [1]). In [7],Padmanabhan gave a proof for elliptic curves over an arbitrary algebraicallyclosed �eld k (see also Knapp [2, pp. 67{74]).Proof. A nonsingular cubic curve is an Abelian variety and hence, as men-tioned in the introduction, satis�es (the rigidity lemma and consequently)the rule (gL) for all morphisms. 5



3 Otter and the Implementation of =(gL))Otter [3] is a computer program that attempts to prove theorems statedin �rst-order logic with equality. Here we restrict our attention to its ca-pabilities in equational logic. The user inputs axioms and the denial ofthe goal(s), and Otter searches for a contradiction by working both for-ward from the axioms and backward from the goal(s). Equational reasoningis accomplished by paramodulation and demodulation. Paramodulation isan equality substitution rule extended with uni�cation: if the two terms inquestion can be made identical by instantiating variables, then equality sub-stitution is applied to the corresponding instances. Demodulation is the useof equalities as rewrite rules to simplify other equalities. The following ex-ample illustrates the interplay between paramodulation and demodulation.Consider ff(x; f(g(x); y)) = y; f(u; g(u)) = e; f(w; e) = wg, where e is aconstant; Otter can infer x = g(g(x)) \in one step" by unifying f(u; g(u))and f(g(x); y)) (which instantiates u to g(x) and y to g(g(x))), replacingf(g(x); g(g(x))) with e, and then demodulating with f(w; e) = w.The rule (gL) was implemented in Otter in two ways that are analo-gous to paramodulation and demodulation. Let F [a1; x] represent a termthat contains a subterm a1 at a particular position, with x representing ev-erything else in the term. Suppose we have F [a1; x] = F [a2; y], (i.e., a1,and a2 are in corresponding positions), with a1 and a2 uni�able. By (gL)we infer F [z; x0] = F [z; y0], where z is a new variable, and x0 and y0 are theappropriate instances of x and y. For example, fromf(f(x; y); f(z; f(x; z))) = f(u; f(y; u));we can (gL)-infer f(f(x; y); f(z; w)) = f(f(x; z); f(y;w))by unifying u and f(x; z) and introducing the variable w. We also use (gL)as a rewrite rule whenever possible. That is, we rewrite F [a; x] = F [a; y] toF [z; x] = F [z; y] (again, z is a new variable).Otter Proof Notation. Each derived clause has a justi�cation. Thenotation \m ! n" indicates paramodulation from m into n; \: i; j; k; : : :"indicates rewriting with the demodulators i; j; k; : : :; and \,
ip" indicatesthat equality was reversed (usually so that the complex side occurs on the6



left). The justi�cation \[(gL)" indicates the use of =(gL)) as an inferencerule, and \:(gL)" indicates its use as a rewrite rule.4 Uniqueness of 5-ary Steiner LawLet � be a nonsingular cubic, and let x; y; z; t; u be �ve points on the curve.Let Q be the unique conic determined by these �ve points. By the cele-brated Bezout theorem of classical geometry, we have j� \Qj = 6, countingmultiplicities. Let now F (x; y; z; t; u) be the 5-ary morphism on � de�ned bythe complete intersection cycle � \ Q = fx; y; z; t; u; F (x; y; z; t; u)g. Thenthe unique sixth point F (x; y; z; t; u) can be found by a simple ruler con-struction as shown in Figure 3; a proof using the rigidity lemma was given
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Figure 3: The Sixth Point of Intersectionby N. S. Mendelsohn, R. Padmanabhan, and B. Wolk in [4]). Here wecharacterize the above synthetic geometric process by means of equationalidentities.The 5-ary law is totally symmetric in all of its �ve arguments, and everyin
ection point is an idempotent for f : f(e; e; e; e; e) = e. The geometricreason for this is that the intersection multiplicity at an in
ection point e issix. Moreover, it satis�es the Steiner identity f(e; e; e; x; f(e; e; e; x; y)) = y.7



We claim that a nonsingular cubic curve over an algebraically closed �eldadmits at most one such 5-ary morphism. First we prove the universalSteiner identity.Lemma 28<: f(u; v; w; x; y) = f(u; v; w; y; x)f(e; e; e; e; e) = ef(e; e; e; x; f(e; e; e; x; y)) = y 9=; =(gL)) ff(u; v; w; x; f(u; v; w; x; y)) = yg:Proof (found by Otter3.0.3+ on gyro at 3.93 seconds).3 f(x; y; z; u; v) = f(x; y; z; v; u)4 f(e; e; e; e; e) = e7,6 f(e; e; e; x; f(e; e; e; x; y)) = y9,8 f(e; e; e; x; f(e; e; e; y; x)) = y [3 ! 6]12 f(x; y; z; u; f(e; e; e; u; e)) = f(x; y; z; e; e) [6 ! 4 :(gL) :(gL) :(gL), 
ip]21 f(e; e; e; x; f(y; z; u; f(v; w; v6; e; e); x)) = f(v; w; v6; v7; f(y; z; u; v7; e))[8 ! 12 :(gL) :(gL) :(gL), 
ip]214 f(x; y; z; f(x; y; z; e; e); u) = f(e; e; e; e; u) [(gL) 21, 
ip]255 f(x; y; z; u; f(x; y; z; u; e)) = e [214 ! 21 :9, 
ip]332 f(x; y; z; u; f(x; y; z; u; v)) = v [6 ! 255 :(gL) :7]Line 332 is the universal Steiner identity.Theorem 2 Let S be the set of identities of type (5,5,0) de�ned byS = � f(e; e; e; e; e) = e; f is symmetric; f(e; e; e; x; f(e; e; e; x; y)) = y;g(e; e; e; e; e) = e; g is symmetric; g(e; e; e; x; g(e; e; e; x; y)) = y � :Then S =(gL)) ff(x; y; z; t; u) = g(x; y; z; t; u)g.By Lemma 2, we may assume the general 5-ary Steiner lawsf(u; v; w; x; f(u; v;w; x; y)) = y;g(u; v; w; x; g(u; v;w; x; y)) = y:Full symmetry of the operations causes an explosion in the Otter searchspace; to constrain the search, we incompletely specify symmetry withf(u; v; w; x; y) = f(u; v; w; y; x)g(u; v; w; x; y) = g(u; v; w; y; x)g(x; y; z; u; w) = f(x; y; z; u; v)! g(y; z; u; w; x) = f(y; z; u; v; x):Proof (found by Otter3.0.3+ on gyro at 400.44 seconds).8



2 g(x; y; z; u; w) = f(x; y; z; u; v) ! g(y; z; u; w; x) = f(y; z; u; v; x)3 f(u; v; w; x; y) = f(u; v; w; y; x)4 f(e; e; e; e; e) = e5 f(u; v; w; x; f(u; v; w; x; y)) = y6 g(u; v; w; x; y) = g(u; v; w; y; x)7 g(e; e; e; e; e) = e8 g(u; v; w; x; g(u; v; w; x; y)) = y11 f(x; y; z; u; g(e; e; e; e; e)) = f(x; y; z; e; u) [7 ! 3]12 f(e; e; e; e; g(e; e; e; e; e)) = e [7 ! 4]15 f(x; y; z; e; g(u; v; w; v6; g(u; v; w; v6; v7))) = f(x; y; z; v7; g(e; e; e; e; e))[8 ! 11, 
ip]21 f(x; y; z; e; g(u; v; w; v6; g(u; v; w; v7; v6))) = f(x; y; z; v7; g(e; e; e; e; e))[6 ! 15]25 f(x; y; z; e; g(u; v; w; v6; g(u; v; w; e; v7))) = f(x; y; z; v7; g(e; e; e; v6; e))[(gL) 15]46 f(x; y; z; e; g(u; v; w; e; v6)) = f(x; y; z; v7; g(u; v; w; v7; v6))[21 ! 25 :(gL) :(gL) :(gL) :(gL)]53 f(x; y; z; u; g(v; w; v6; u; v7)) = f(x; y; z; v8; g(v; w; v6; v8; v7)) [46 ! 46]65 f(e; e; e; x; g(e; e; e; x; e)) = e [12 ! 46, 
ip]70 f(e; e; e; x; g(e; e; e; e; x)) = e [6 ! 65]71 g(e; e; e; x; e) = f(e; e; e; x; e) [65 ! 5, 
ip]77 f(x; y; z; u; g(v; w; v6; v7; u)) = f(x; y; z; v8; g(v; w; v6; v7; v8))[70 ! 70 :(gL) :(gL) :(gL) :(gL) :(gL) :(gL) :(gL)]83 g(e; e; x; e; e) = f(e; e; x; e; e) [71,2]100 f(e; e; x; e; g(e; e; x; e; e)) = e [83 ! 5]116 f(e; e; x; y; g(e; e; x; e; y)) = e [77! 100]117 f(x; y; z; u; g(v; w; z; v6; v7)) = f(x; y; v8; u; g(v; w; v8; v6; v7))[100 ! 100 :(gL) :(gL) :(gL) :(gL) :(gL) :(gL) :(gL)]149 f(e; e; x; y; g(e; e; x; y; e)) = e [65! 117, 
ip]171 g(e; e; x; e; y) = f(e; e; x; y; e) [116 ! 5, 
ip]174 f(x; y; z; u; g(v; w; z; u; v6)) = f(x; y; v7; v8; g(v; w; v7; v8; v6))[149 ! 149 :(gL) :(gL) :(gL) :(gL) :(gL)]182 g(e; e; x; e; y) = f(e; e; x; e; y) [3 ! 171]221 f(e; e; x; e; g(e; e; x; e; y)) = y [8 ! 182, 
ip]249 f(e; e; x; y; g(e; e; x; y; z)) = z [174! 221]252 g(e; e; x; y; z) = f(e; e; x; y; z) [8 ! 249, 
ip]256 g(e; x; y; z; e) = f(e; x; y; z; e) [252,2]269 g(x; y; z; e; e) = f(x; y; z; e; e) [256,2]272 f(e; x; y; z; g(e; x; y; z; e)) = e [256 ! 5]280 f(x; y; z; e; g(x; y; z; e; e)) = e [269 ! 5]300 f(x; y; z; u; g(v; y; z; u; w)) = f(x; v6; v7; v8; g(v; v6; v7; v8; w))[272! 272 :(gL) :(gL) :(gL)]339 f(x; y; z; u; g(x; y; z; u; e)) = e [53! 280]363 g(x; y; z; u; e) = f(x; y; z; u; e) [339 ! 5, 
ip]9



375 g(x; y; z; e; u) = f(x; y; z; e; u) [363,2]408 f(x; y; z; e; g(x; y; z; e; u)) = u [8 ! 375, 
ip]471 f(x; y; z; u; g(x; y; z; u; v)) = v [300! 408]652 g(x; y; z; u; v) = f(x; y; z; u; v) [8 ! 471, 
ip]Line 652 completes the proof of Theorem 2.We now apply Theorem 2 to derive a ruler construction to locate theunique sixth point f(x; y; z; t; u) on the cubic.Corollary 2 f(x; u; z; t; u) = ((x � y) � (z � t)) � u, where \�" stands for thebinary morphism of secant-tangent construction on the cubic.Proof. De�ne g(x; y; z; t; u) = ((x�y)� (z � t))�u. It is clear that g is totallysymmetric and that every in
ection point is an idempotent for g. Moreover,g satis�es the 5-ary Steiner law g(e; e; e; x; g(e; e; e; x; y)) = y. Hence, byTheorem 2, f = g.In a similar fashion, we can derive the well-known theorem of the unique-ness of the group law on such a curve is shown to be a consequence of thisresult.Corollary 3 If x+ y and x � y are two group law on an elliptic curve, andif e+ e = e � e = e, where e is an in
ection point, then x + y = x � y for allpoints x and y on the curve.Proof. Let \+" and \�" be two group laws having the same identity element,say e. Using the group law x + y, de�ne the 5-ary law f(x; y; z; u; v) =�x� y� z � u� v, where �x is the inverse morphism corresponding to thelaw x + y. Similarly, using the second group law x � y, de�ne the 5-ary lawg(x; y; z; u; v) = x0y0z0u0v0. Clearly both f and g are Steiner laws sharinga common idempotent. Hence, by the Theorem 2, �x � y � z � u � v =x0y0z0u0v0. Substitute y = z = t = u = e to get the equality �x = x0.Finally, substitute z = u = v = e to get (�x) + (�y) = (�x)_(� y). Hence,x+ y = xy.References[1] I. M. S. Etherington. Quasigroups and cubic curves. Proc. EdinburghMath. Soc., 14:273{291, 1965. 10
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