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Abstract. An n-ary Steiner law f(z1,22,---,,) on a projective curve I
over an algebraically closed field £ is a totally symmetric n-ary morphism f
from I to I' satisfying the universal identity

f(wlvx%' : '7$n—17f($17$27' ' 7$n)) = Zn-

An element e in I' is called an idempotent for f if f(e,e,---,e) = e. The
binary morphism « *y of the classical chord-tangent construction on a non-
singular cubic curve is an example of a binary Steiner law on the curve,
and the idempotents of * are precisely the inflection points of the curve.
In this paper, we prove that if f and ¢ are two h-ary Steiner laws on an
elliptic curve I' sharing a common idempotent, then f = g. We use a new
rule of inference rule =(¢glL)= , extracted from a powerful local-to-global
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principle in algebraic geometry. This rule is implemented in the theorem-
proving program OTTER. Then we use OTTER to automatically prove the
uniqueness of the 5-ary Steiner law on an elliptic curve. Very much like
the binary case, this theorem provides an algebraic characterization of a
geometric construction process involving conics and cubics. The well-known
theorem of the uniqueness of the group law on such a curve is shown to be
a consequence of this result.

1 Introduction

The so-called identity theorems of classical function theory state that if two
functions (belonging to a “nice” class) agree on a dense open set, they agree
everywhere. This is the heart of several uniqueness theorems of algebraic
structures in mathematics. An analog in algebraic geometry is the so-called
Chow’s theorem [7, p. 67]: “Every compact complex manifold has at most
one algebraic structure, and moreover, every compact 1-dimensional com-
plex manifold admits a unique algebraic structure”. These are analytically
isomorphic to projective varieties. This is a deep theorem, and the unique-
ness of a group law on an elliptic curve I' is a special case. We say that
an algebraic curve I' admits an algebraic law, say f(z1,22,---,2,),if fisa
n-ary morphism (i.e., a regular function or a rational function) on the curve
I'. The nonsingular cubic curves are pregnant with a number of universal
algebras all of which are morphisms of the curve: every algebraic curve in-
duces a rational operation on cubic curves via a complete intersection cycle
(see, e.g., Fig. 1 for the binary linear process and Fig. 3 for the 5-ary conic
process).

In this paper, we give a pure equational characterization for the 5-ary
morphism determined by the conic process. We believe that the blending
of universal algebra and algebraic geometry is an important application of
universal algebra and a new tool for algebraic geometry. And the addition
of automated theorem proving will do a great deal to bring attention to the
role of computers in symbolic reasoning in real mathematical questions.

With this theme as our backdrop, let us now rephrase the uniqueness of
the group law in the language of first-order logic with equality:

{f(z,y)is a group law on I'} = {f(z,y) = f(y,x)}
{f(z,y) and g(z,y) are group laws, with a common identity, on I'}

= {/f(z,y) = g(z,y)}.



y=X(xy)

Figure 1: Chord-Tangent Construction

This gives rise to a model-theoretic question of whether one can extract some
first-order properties from the theory of projective curves and formulate and
prove the various uniqueness theorems within the framework of first-order
logic with equality. The answer is an emphatic yes: the following rigidity
lemma—a powerful local-to-global principle valid for morphisms of complete
varieties—proves the validity of the above implications.

Lemma 1 Let X be a projective curve and Y and Z be irreducible algebraic
varieties, all defined over an algebraically closed field k. Let f be a regular
mapping from X XY into Z such that f(X x {yo}) is a singleton zy for
some yo € Y. Then f(X x {y}) is a singleton for every y € Y.

Proofs of this basic fact may be found in [10, p. 156], [5, p. 104], or in [11,
p. 156].



2 Methodology and Theorems

We now rewrite the rigidity lemma as a formal implication, where (gl.)

stands for “Local to global”, “geometric Logic”, “geometric Law”.

dyoTzoVa(f(z,yo) = 20) = VaVyVz(f(z,y) = f(z,y)) (glL)

We view the rule (gl.) as an equation-deriving principle extending the scope
of the usual equational logic. Whenever the program meets the local equality
f(z,y0) = zo for some word f and some elements yg, zo, it churns out the
global multivariable identity f(z,y)= f(z,y) (multivariable because here z,
y, or z could be vectors, namely, z = (21, 23, .., £ ), because z, y, or z could
themselves be product spaces). This idea of viewing (gl.) as an inference
rule was first stated and systematically used by R. Padmanabhan in [7].
See R. W. Quackenbush [9] for the history of a closely related and recently
discovered concept of “term condition”.

We use the following notation. If ¥ is a set of identities and if o is an
identity in the language of Y., we write

Y Hgl)»> o

if YU (gL) = o in the usual equational logic. Whenever convenient, we also
say that the axioms ¥ “(gL)-implies” o, etc.

Using the rule (gl), let us now give a “mindless” proof of the powerful
four-variable median law just from the relatively weak two-variable Steiner

quasigroup laws {z - (y-2) =y,(y-2) -z = y}.
Theorem 1 {z(yz) =y, (y2)z =y} Hgl)= {(xy)(zt) = (22)(y1)}.

Proof. Define the 5-ary composite operation f by

F(@y, 2.t 0) = ((zy)(20))(u((22)(y1)))-

By the law z(yz) = y, we have f(z,c,c,t,d) = d for all . Thus by the
rule (gl.), the 5-ary expression f(z,y,z,t,u) does not depend upon z for all
Y, z,t,u. In particular, we have

fla,y,z,t,u) = f(z1,y,2,t,u) VoV
((zy)(2t))(u((22)(yt)))= ((z19)(z1))(u((z12)(yt))) VaViy
= (((y2)y)(2t))(u(((y2)z)(yt))) letting z1 = yz



= t(ut) by the Steiner laws

= ((z2)(y0))(u((22)(yt)))

Hence, one right-cancellation of the common term u((2z)(yt)) immediately
yields the desired median law (2y)(zt) = (z2)(yt).

Let us now apply this to the geometry of plane cubic curves without any
further reference to the geometry or the topology of curves.

Corollary 1 FEvery binary morphism “7 defined on a nonsingular cubic
curve I' over an algebraically closed field satisfying the Steiner quasigroup
identities must be medial (see Fig. 2).

(xy)(z)=(2) (1)

Figure 2: The Medial Law

Historical remark. This corollary was first proved for plane cubic curves by
I. M. S. Etherington using the classical Bezout theorem (see [1]). In [7],
Padmanabhan gave a proof for elliptic curves over an arbitrary algebraically
closed field k (see also Knapp [2, pp. 67-74]).

Proof. A nonsingular cubic curve is an Abelian variety and hence, as men-
tioned in the introduction, satisfies (the rigidity lemma and consequently)
the rule (gL) for all morphisms.



3 OTTER and the Implementation of =¢L)=

OTTER [3] is a computer program that attempts to prove theorems stated
in first-order logic with equality. Here we restrict our attention to its ca-
pabilities in equational logic. The user inputs axioms and the denial of
the goal(s), and OTTER searches for a contradiction by working both for-
ward from the axioms and backward from the goal(s). Equational reasoning
is accomplished by paramodulation and demodulation. Paramodulation is
an equality substitution rule extended with unification: if the two terms in
question can be made identical by instantiating variables, then equality sub-
stitution is applied to the corresponding instances. Demodulation is the use
of equalities as rewrite rules to simplify other equalities. The following ex-
ample illustrates the interplay between paramodulation and demodulation.
Consider {f(z, f(g(z),y)) = vy, f(u,g(u)) = €, f(w,e) = w}, where e is a
constant; OTTER can infer # = ¢g(g(«)) “in one step” by unifying f(u,g(u))
and f(g(z),y)) (which instantiates u to g(x) and y to g(g(2))), replacing
flg(x),9(g(x))) with e, and then demodulating with f(w,e) = w.

The rule (gL) was implemented in OTTER in two ways that are analo-
gous to paramodulation and demodulation. Let Flay,x] represent a term
that contains a subterm ay at a particular position, with z representing ev-
erything else in the term. Suppose we have Flaq,z] = Flag,y], (i.e., ay,
and ag are in corresponding positions), with a; and ag unifiable. By (gL)
we infer F[z,a2'] = F[z,y'], where z is a new variable, and z’ and 3y’ are the
appropriate instances of z and . For example, from

f(f(xvy)vf(zvf(xvz))) = f(u,f(@/,u)),

we can (gL)-infer

f(f(xvy)vf(sz)) = f(f(xvz)vf(va))

by unifying u and f(z,2) and introducing the variable w. We also use (gL)
as a rewrite rule whenever possible. That is, we rewrite Fla, 2] = Fla,y] to
Flz,z] = F[z,y] (again, z is a new variable).

OTTER Proof Notation. Fach derived clause has a justification. The
“aug k.
indicates rewriting with the demodulators ¢,j,k,..; and “flip” indicates
that equality was reversed (usually so that the complex side occurs on the

notation “m — n” indicates paramodulation from m into n;



left). The justification “[(gl.)” indicates the use of =¢L)= as an inference
rule, and “:(gL)” indicates its use as a rewrite rule.

4 Uniqueness of 5-ary Steiner Law

Let ' be a nonsingular cubic, and let z,y, z, ¢, u be five points on the curve.
Let ) be the unique conic determined by these five points. By the cele-
brated Bezout theorem of classical geometry, we have |I' N Q)| = 6, counting
multiplicities. Let now F(z,y,z,t,u) be the 5-ary morphism on I' defined by
the complete intersection cycle I' N Q = {z,y,z,t,u, F(x,y,2,t,u)}. Then
the unique sixth point F(z,y,z,t,u) can be found by a simple ruler con-
struction as shown in Figure 3; a proof using the rigidity lemma was given

Figure 3: The Sixth Point of Intersection

by N. S. Mendelsohn, R. Padmanabhan, and B. Wolk in [4]). Here we
characterize the above synthetic geometric process by means of equational
identities.

The 5-ary law is totally symmetric in all of its five arguments, and every
inflection point is an idempotent for f: f(e,e,e,e,e) = e. The geometric
reason for this is that the intersection multiplicity at an inflection point e is
six. Moreover, it satisfies the Steiner identity f(e,e, e, z, f(e,e,e,z,y)) = y.



We claim that a nonsingular cubic curve over an algebraically closed field
admits at most one such 5-ary morphism. First we prove the universal
Steiner identity.

Lemma 2

flu,v,wx,y) = flu,v,w,y, )
{ f(e,e,e,e,e) e } =HgL)= {flu,v,w,, fu,v,w,z,y)) = y}.

fle,e e x, fle,e e, y)) =y
Proof (found by OTTER3.0.3+ on gyro at 3.93 seconds).
3 fle,y, z,u,0) = f(o,y,2,0,u)
4 f(e,e,e,e,e) e
7,6 fle, e,x fle,e,e,z,y)) =y
08 flererern flecey )=y 3 —
12 f(x y,z,u f(e,e,e,u e)) = fz,y,z,€,€) [6 — 4 :(gL) :(gL) :(gL), flip]
21 fle,e,e e, f(y,z,u, f(v,w,vs,e,€),2)) = f(v,w,ve,v7, f(y, 2, u, v7,€))

[8 — 12 :(gL) :(gL) :(gL), flip]

214 flx,y, 2z, f(x,y,z,e,€),u) = f(e,e,e,e,u) [(gL) 21, flip]
255 fla,y,z,u, f(x,y,2,u,e)) = [214 — 21 :9, flip]
332 flx,y,z,u, f(z,y,z,u,v)) = [6 — 255 :(gL) :7]

Line 332 is the universal Steiner identity.

Theorem 2 Let S be the set of identities of type (5,5,0) defined by
g { fle,e e e e) =e, fissymmetric, f(e,e e, x, fle,e,e,z,y)) =y, }

gle,e, e e e) = e, gissymmetric, g(e,e e z,g(e,e,e,x,y)) =y
Then S HglL)= {f(z,y,z,t,u)=g(z,y,z,t,u)}.
By Lemma 2, we may assume the general 5-ary Steiner laws

f(u7 /U7 w7 x? f(u7 /U7 w7 x? y)) = y?

g(u7 /U7 w7 $7g(u7 /U7 w7 x? y)) = y'
Full symmetry of the operations causes an explosion in the OTTER search
space; to constrain the search, we incompletely specify symmetry with

f(/U/?/U?w?x?y) = f(/U/?/U?w?y?x)
g(/U/?/U?w?x?y) = g(/U/?/U?w?y?w)
g($7y727u7w): f($7y727u7/v)_>g(y727u7w7$): f(y727u7/v7x)'

Proof (found by OTTER3.0.3+ on gyro at 400.44 seconds).



~1 O O = W N
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21

25

46

53
65
70
71
77

83

100
116
117

149
171
174

182
221
249
252
256
269
272
280
300

339
363

g(l‘ Y, 2, U, w) f(x,y,z,u,v) - g(y,z,u,w,x):f(y,z,u,v,x)
flu,v,w,2,y) = f(u,v,w,y,2)
f(e,e,e,e,e) e
flu,v,w,z, flu,v,w,z,y)) =y
g(u, wl‘y)—g(u, W, Y, )
g(e,e,e,e,e) e
g(u, v, w oz, g(u, v, w,z,¥) =y
f(l‘ Y, 2, U, g(e,e,e,e,e)) f(a:,y,z,e,u) [7_>3]
fe, e,e,g(e,e,e,e,e)) e [7 — 4]
f($ Yy, z,€ ( , W, Ve, g ( w,v6,v7))) = f(l‘,y,Z,U7,g(6,6,6,6,6))
[8 — 11, flip]

f(a:,y,z,e,g(u,v,w,v6,g(u,v,w,v7,v6))):f(x,y,z,w,g(e,e,e,e,e))

[6 — 15]
f(l‘,y,Z,e,g(u,v,w,v6,g(u,v,w,6,v7)))If(l‘,y,z,v7,g( €,€,0¢,€ ))

[(gL) 15]

fle,y, z e, 9(u, v, w,e,06)) = f(a,y, 2, vz, g(w, v, w, v7, v6))

[21 — 25 :(gL) :(sL) :(5L) (5L
fle,y, z,u, 9(v, w,ve,u,v7)) = flo,y, 2, vs, g(v, W, ve, vs, v7)) [46 — 46]
fle,e e,z glee e xe))=e [12 — 46, flip]
fleje e x, g(e,e,e,e,a:)) —e [6 — 65]
g(e,e,e,x e)=fle,e,e,x,€) [65 — 5, flip]
fle,y, z,u, g(v, w,ve, v7,u)) = fla,y, 2, vs, g(v, W, ve, v7, Vs))

[70 — 70 :(gL) :(gL) :(gL) :(gL) :(gL) :(gL) :(gL)]

g(e e,xr,e e) fle,e,z,e,€) [71,2]

fe, (eea:ee)):e [83 — 5]

fle e, v g( y))=e [77 — 100]
f(x Y, z,u, g(v, v6,v7)) = f(z,y,vs,u,g(v, w, vs, vs, v7))

[100 — 100 :(gL) :(gL) :(sL) :(gL) :(gL) :(gL) :(gL)]

fle,e ey, g9(e e x,y,e)) = e [65 — 117, flip]

gleje,z,e,y) = fle,e,x,y,€) [116 — 5, flip]

f(x,y,z,u,g(v,w,Z,U,U6)) = f($aya v7a08ag(vawav7a08av6))

[149 — 149 :(gL) :(gL) :(gL) :(gL) :(gL)]
ge, VY) = f(eex €,y) [3 — 171]
f( gle,e,z e, y)) =y [8 — 182, flip]
f(@,@,l‘ Y, g(ea a$ ya )) < [174 — 221]
gle,e,z,y,2) = fle e, x,y,2) [8 — 249, flip]
g(e,x y,z,e) fle,x y,z,e) [252,2]
9(z, y,Z,e,e) f(z,y,2,e¢) [256,2]
fle,z,y,2,9(e,x,y,2z,€)) = e [256 — 5]
flz,y,z,e,9(x,y,2, e e)) e [269 — 5]
flx, y,z,u g(v,y,z,u,w)) = f(x,ve, vz, vs, g(v, ve, v7, Vg, W))
[272 — 272 :(gL) :(gL) :(gL)]
flz,y,z,u,g9(x,y,z,u,e)) = e [63 — 280]
g(z,y,z,u,e) = fe,y,z,u,€) [339 — 5, flip]



375 g(x,y,z,e,u) = f(a:,y,z,e,u) [363,2]
408 f(x,y,z,e,9(x,y,z,e,u)) = u [8 — 375, flip]
471 f(x, y,z,u g(x Y, 2, u v)) v [300 — 408]
652 g(x,y,z,u,v) = f(x,y,2,u,v) [8 — 471, flip]

Line 652 completes the proof of Theorem 2.

We now apply Theorem 2 to derive a ruler construction to locate the
unique sixth point f(z,y,z,t,«) on the cubic.

Corollary 2 f(z,u,z,t,u) = ((z+y)*(zx1))*u, where “” stands for the
binary morphism of secant-tangent construction on the cubic.

Proof. Define g(z,y,z,t,u) = ((z*xy)*(z*t))*xu. It is clear that g is totally
symmetric and that every inflection point is an idempotent for g. Moreover,
g satisfies the 5-ary Steiner law g(e,e,e,z,g(e,e,e,2,y)) = y. Hence, by
Theorem 2, f = g.

In a similar fashion, we can derive the well-known theorem of the unique-
ness of the group law on such a curve is shown to be a consequence of this
result.

Corollary 3 If v + y and x - y are two group law on an elliptic curve, and
ife+e=e-e=¢e, where e is an inflection point, then x +y = x -y for all
points x and y on the curve.

Proof. Let “4”7 and “-” be two group laws having the same identity element,
say e. Using the group law z 4 y, define the 5-ary law f(z,y,z,u,v) =
—x —y—z—u—v, where —z is the inverse morphism corresponding to the
law z 4+ y. Similarly, using the second group law z - y, define the 5-ary law
g(z,y,z,u,v) = 2’y Z'u'v'. Clearly both f and ¢ are Steiner laws sharing
a common idempotent. Hence, by the Theorem 2, —x —y — 2z —u —v =
a'y'Zu'v'. Substitute y = 2 = ¢t = u = e to get the equality —z = 2'.
Finally, substitute z = v = v = e to get (—2)+ (—y) = (—2)( — y). Hence,

T+ y=uzy.
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