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which occur naturally in many applications. In Sec-tion 2, we formulate a signal de-noising problem. Insolving this problem, we achieve, in addition, a com-pression of the signal. In Section 3, we present someideas from wavelet analysis that motivate our approach.In particular, we lay the ground for the so-called dis-crete wavelet transform that we introduce in Section 4.Section 4 is pivotal for the paper: it presents the essenceof the simultaneous compression/de-noising algorithms.In the last two sections (5 and 6) we present briey somenew ideas from algebraic geometric coding theory which,we believe, can be used bene�cially in source and chan-nel coding for image-based information, especially thatresulting from our compression/de-noising algorithms.Novelty and strength of the algebraic geometric codesare discussed.1. Noisy Signal ModelsWe begin by describing the class of noise processesthat we are concerned with. Since we are going to dealwith multiparameter signals in general, the corruptingnoise will be modeled as a random �eld parametrized byt 2 Rd. The cases d = 1 and d = 2 correspond to one-and two-dimensional signals, respectively.For each t 2 Rd, letCt denote the cuboid determinedby t and 0, and let VCt denote the Euclidean volume ofCt. We suppose that a probability space (
;F ; P ) hasbeen de�ned.De�nition 1.1 We de�ne a fractional Wiener sheet(fWs) on Rd with parameter H 2 (0; 1] to be a real-valued Gaussian random �eldWH � (WH (t))t2Rd suchthati) WH (0) = 0, P a.s.,ii) EWH (t) = 0, 8t 2 Rd,iii) E(WH (t)�WH (s))2 = kH �jVCt+VCs�2VCt\Cs j2H ,8t; s 2 Rd, kH = const > 0,



where E denotes the expectation w.r.t. the probabilityfunction P .Remark 1.1 A fractional Wiener sheet on Rd was �rstconstructed and studied in [2].Remark 1.2 In the case d = 1, a fractional Wienersheet coincides with fractional Brownian motion (fBm)and is denoted by BH � (BH (t))t2R. For the classicalde�nition of fBm, see, for example, [18]. A discussionof various real-life phenomena giving rise to fBm can befound in [12]. The fWs extends the concept of fBm tothe multiparameter case and is very useful in modelingmultiparameter disturbances whose intensities dependon the size of the perturbed object.Remark 1.3 Note that in the case H = 12 , the fWsis equivalent to an ordinary Brownian motion with ad-dimensional \time" parameter.Let _WH � ( _WH (t))t2Rd be a random �eld consist-ing of distributional derivatives of the fWs WH w.r.t.t 2 Rd. We shall call such a random �eld a fractionalWiener noise (fWn). In the case H = 12 , _WH is theGaussian white noise on Rd.The class of noisy signals that we are consideringin this paper consists of random �elds (R(t))t2Rd suchthat R(t) = S(t) +WH (t); t 2 Rd (1:1)or R(t) = S(t) + _WH(t); t 2 Rd (1:10)where S(�) 2 L2(Rd). The function S(�) is called theoriginal signal and R(�) the recorded (or measured, orobserved) signal.2. The Problem of Signal De-noisingSimply put, the abstract problem of signal de-noisingamounts to estimating S(�) from the noisy observationR(�). From the standpoint of statistical theory, it is aregression problem and, most typically, a nonparametricone.In practice, one does not have access to the entireR(�), but only to a �nite number of sampled values: ei-ther R(ti) or some average of R(�) in a small neighbor-hood of ti for i = 1; � � � ; I. The practical problem, there-fore, is to estimate S(�) given the data R(ti); i = 1; � � � ; Iand the relation (1.1) or (1.10).Let F = ffk; k 2 Kg be a basis for L2(Rd). We canwriteR(ti) = Xk2K ckfk(ti) +WH(ti); i = 1; � � �; I; (2:1)orR(ti) = Xk2K ckfk(ti) + _WH(ti); i = 1; � � �; I; (2:10)

where ck; k 2 K are the coe�cients of S(�) in the ba-sis F . The estimation problem for S(�) may thereforebe reduced to that of the ck's. Obviously, one cannothope to get good estimates of all the ck's when usingonly a �nite number I of observations R(ti). Thereforethe expansions in (2.1) and (2.10) are truncated to a �-nite number of coe�cients, and one estimates only thecoe�cients that are retained. It is clear that the suc-cess of this method depends, to a large extent, on theaccuracy of the approximation of S(�) by the reducedexpansion. It turns out that very good results can beobtained if one uses the so-called wavelet basis to carryout the expansions in (2.1) or (2.10).3. Wavelet Transform and Random WaveletTransformWe will discuss, for simplicity, only one-dimensionalwavelets. Higher-dimensional wavelets can be treatedin a similar way. In her seminal paper [5], IngridDaubechies presented the construction of two sequences(pk) and (qk) of real numbers that solve the two-scaleequations, �(x) =Xk pk�(2x� k) (3:1) (x) =Xk qk (2x� k) (3:2)for all x 2 Rd.She proved the existence of compactly supported so-lutions in L2(R). For each solution, the functions �(�)and  (�) are called the scaling function and motherwavelet, respectively. The name wavelet for  (�) is mo-tivated by the following property:ZR  (x)dx = 0: (3:3)A very important role in wavelet theory is played bythe translated and dilated version of the basic functions�(�) and  (�), �j;k(x) := 2j=2�(2jx� k) (3:4) j;k(x) := 2j=2 (2jx� k) (3:5)for all x 2 R; j; k 2 Z.Let us denote, for J 2 Z,�J = f�J ;k(�); k 2 Zg;and 	J = f j;k(�); j � J ; k 2 Zg:Then, as shown in [5], (�J ;	J ) is an orthonormal basisfor L2(R) for each J 2 Z, under appropriate choice ofthe coe�cients (pk) and (qk). Such a choice of (pk)and (qk) will be assumed from now on. In particular,	�1 = f j;k; j; k 2 Zg is an orthonormal wavelet basisfor L2(R).2



For each locally square integrable function f , we de-�ne the scaling coe�cients (aj;k) and wavelet coe�cients(bj;k) as the respective integral transformsaj;k := ZR f(x)�j;k(x)dx; (3:6)and bj;k := ZR f(x) j;k(x)dx (3:7)for all j; k 2 Z. The right hand side of (3.7) is called thewavelet transform of f(�). If f 2 L2(R) then we havef(x) = 1Xk=�1 aJ ;k�J ;k(x)+ 1Xj=J 1Xk=�1 bj;k j;k(x) (3:8)and f(x) = 1Xk=�1 1Xj=�1 bj;k j;k(x); (3:9)where the expansions are in the L2(R) sense. The fol-lowing notation will be useful.Vj := closureL2(R)f�j;k; k 2 Zg; V�1 := �; (3:10)Wj := closureL2(R)f j;k; k 2 Zg:Then we have (see [5] or [4])Vj+1 = VjMWj : (3:11)Therefore, if we denote by fj the projection of f on Vj ,and by gj the projection of f on Wj, we see that foreach f 2 L2(R) and all M � N we havefM = fN + gN + gN+1 + � � �+ gM�1: (3:12)The projection fM is thus obtained by adding variouslevels of \detail", encoded in gj's, to the \blurred" ver-sion fN of fM . In particular, we havef = fN + 1Xj=N gj ; (3:13)which is the same as (3.8), andf = 1Xj=�1 gj; (3:14)which is the same as (3.9).Let us denote by (cjk; k 2 Z) and (djk; k 2 Z) thecoe�cients of f in the basis of V j and W j , respectively,for each j 2 Z. That is,fj =Xk cjk�j;k; (3:15)

gj =Xk djk j;k (3:16)for each j 2 Z. There exists a unique pair of numericalsequences f(~pk); (~qk)g so that one can obtain the coe�-cients (cjk; k 2 Z), (djk; k 2 Z), j = M � 1;M � 2; � � �; N ,from the coe�cients (cMk ; k 2 Z), by means of the fol-lowing \decomposition algorithm":cj�1k =Xl ~pl�2kcjl (3:17)dj�1k =Xl ~ql�2kdjl ; j = M;M � 1; � � �; N: (3:18)It is also possible to \reconstruct" the cMk 's from thesequences (cjk; k 2 Z) and (djk; k 2 Z), j = N; � � �;M�1,by means of the \reconstruction algorithm":cjk =Xl (pk�2lcj�1l + qk�2ldj�1l ); j = N + 1; � � �;M;(3:19)where pk; qk are the original Daubechies coe�cients.The above algorithms are the Mallat pyramidal al-gorithms ([17]).It is important to note that the coe�cients (cNk ; k 2Z), (djk; k 2 Z), j = N;N + 1; � � �;M � 1, can be ob-tained from (cMk ; k 2 Z) in one shot. Let us denote by(rM;N;kl ; l 2 Z) and (sM;j;kl ; l 2 Z) the coe�cients of�N;k and �j;k, j = N;N + 1; � � �;M � 1, respectively, inthe basis of VM . That is,�N;k =Xl rM;N;kl �M;l (3:20) j;k =Xl sM;j;kl  M;l (3:21)for k 2 Z and j = N;N + 1; � � �;M � 1. ThencNk =Xl rM;N;kl cMl (3:22)djk =Xl sM;j;kl cMl (3:23)for k 2 Z and j = N;N + 1; � � �;M � 1. The formulas(3.23) and (3.24) express the simultaneous projectionsof fM on the spaces VN ;WN ;WN+1; � � �;WM�1. We canwrite (3.22) and (3.23) in matrix form as2666664 cNdNdN+1...dM�1 3777775 = 2666664 rM;NsM;NsM;N+1...sM;M�1 3777775cM ; (3:24)where ci = [cil]l2Zdj = [djl ]l2Z3



rM;N = [rM;N;kl ]l;k2ZsM;j = [sM;j;kl ]l;k2Zfor i = M;N , j = N;N +1; � � �;M� 1. If we denote theleft hand side of (3.24) by wM;N , and the matrix on theright-hand side by WM;N , we can write it aswM;N =WM;N � cM : (3:25)This is the key relation for the discrete wavelet trans-form to be introduced in Section 4.In the remaining part of this section, we shall brieydescribe transforms of the fractional Brownian motionBH . The results given below can be extended to thecase of Wiener sheet by using the result of [2].The scaling and wavelet coe�cients of BH are ran-dom sequences given byaHj;k = ZRBH (x)�j;k(x)dx; (3:26)and bHj;k = ZRBH (x) j;k(x)dx (3:27)respectively, for j; k 2 Z. Using the results of [1], wecan also de�ne what we call random scaling and randomwavelet coe�cients of BH . We have used stochastic in-tegrals of scaling and wavelet functions with respect toBM . That is, we de�ne�aHj;k = ZR �j;k(x)dBH (x) (3:28)and �bHj;k = ZR  j;k(x)dBH (x) (3:29)for j; k 2 Z. Several properties of the random waveletcoe�cients of BM are demonstrated in [3]. The trans-form in (3.29) is called the random wavelet transform.The scaling and wavelet transforms of _BH can bede�ned in terms of (3.29) and (3.30) asZR �j;k(x) _BH (x)dx = �aHj;k (3:30)ZR  j;k(x) _BH (x)dx = �bHj;k (3:31)for j; k 2 Z.For d = 1, the models (1.1) and (1.10) can be writtenas R(t) = S(t) +BH (t) (3:32)or R(t) = S(t) + _BH (t) (3:320)for t 2 R. This implies the following relations for therespective scaling and wavelet coe�cients,aRj;k = aSj;k + aMj;k (3:33)

bRj;k = bSj;k + bMj;k (3:34)or aRj;k = aSj;k + �aMj;k (3:330)bRj;k = bSj;k + �bMj;k (3:340)for j; k 2 Z. The above relations are used in the com-pression and de-noising algorithms given in the next sec-tion.4. Discrete Wavelet Transform and SignalDe-NoisingSuppose that the I = 2M coe�cients of the pro-jection fM of f on VM , M > 0, are known. Usingthese I coe�cients, we can compute approximationsto c00; d00; d10; d11; � � � ; dM�10 ; � � � ; dM�1I=2�1, the coe�cients in-troduced in the preceding section. We shall use a �nite-dimensional counterpart of (3.25). In other words, de-noting by cI the vector of I known coe�cients of fMand by WI the appropriate �nite dimensional part ofWM;0, we de�ne the vector wI of \discrete" waveletcoe�cients of f by wI :=WIcI : (4:1)The matrix transform in (4.1) is called the discretewavelet transform. The vector wI approximates the co-e�cient vector [c00; d00; d10; d11; � � �; dM�10 ; � � �; dM�1I=2�1].It is not di�cult to see that WI is an orthogonalmatrix. Therefore we havecI :=WTI wI ; (4:2)where T denotes the transposition operation. The ma-trix transform in (4.2) is called the inverse discretewavelet transform.An important feature of (4.1) is that, typically, manyof the elements of wI are near zero and therefore canbe discarded for compression and estimation purposeswithout signi�cantly altering the outcome of the inversetransformation (4.2). This property is the basis for theidea of a simultaneous signal compression and de-noisingthat we shall briey discuss below.Let cRI ; cSI ; cHI , and cHI denote the vectors of coef-�cients obtained by convolving R(�); S(�); BH (�) and_BH (�), respectively, with I elements of the basis of VM .Only the coe�cients cRI are observed in practice, in otherwords, the elements of cRI are approximated by sampledmeasurements of R(�) at I points.Now, we can obviously writecRI = cSI + �cMI (4:3)or cRI = cSI + �cMI : (4:30)Applying (4.1) to (4.3) or (4.30) we getwRI = wSI +wMI (4:4)4



or wRI = wSI + �wMI : (4:40)As we indicated earlier, many elements of wRI will benear zero. Using appropriate thresholding, we �rst set tozero those elements of wRI that are appropriately small.In other words, we compress wRI . After that, we es-timate elements of wSI by using whatever informationis left in the compressed version of wRI . There are, ofcourse, numerous estimation procedures possible. Theone that we used in our simulations was based on appro-priate shrinkage of the elements of the compressed wRI .Actually, we have achieved a simultaneous compressionand estimation (de-noising) in one shrinkage operation.Let us denote by ŵSI the estimate of wSI . Applying(4.2) to ŵSI , we obtain the estimate of cSI , asĉSI =WTI ŵSI : (4:5)Note that (4.5) represents a simultaneous decompressionand estimation of the original, unobserved signal S(�).If we denote by sĉ00; sd̂00; sd̂10; sd̂11; � � �; sd̂M�10 ; � � �; sd̂M�1I=2�1the elements of cSI , then the estimate Ŝ(�) is obtainedbŷS(t) = sĉ00�0;0(t)+sd̂00 0;0(t)+sd̂10 1;0(t)+sd̂11 1;1(t)+���+ sd̂M�10  M�1;0(t) + � � �+ sd̂M�1I=2�1 M�1;I=2�1(t)(4:6)for t 2 R. 5. Digital CommunicationThe methodology of Sections 1 through 4 producesa vector of data ŵI that one may wish to store and/orto transmit. In this and the next section, we presentsome basic principles of algebraic geometric coding thatwe intend to use to code the data ŵI and transmit themvia digital communication channels.Digital communication o�ers various advantages andhas become increasingly important. Some of its ad-vantages are its exibility, reliability, and availability ofwide-band channels such as optical �bers and satellite.A typical (memoryless) digital communication systemhas these channels:digital source! source encoder! channel encoder ! modulator) Noisy Channel)detector ! channel decoder! source decoder ! digital sinkwhere the e�ect of the detector is a \demodulator."Source coding (here a form of lossless data compression)is a means to remove redundancy. It maps the digitalsource into some code, where full recovery is possible,

seeking to represent the source e�ciently in the sensethat the average length (bit per symbol) is minimal.Such average length is bounded below by the entropy,the information that the source carries (known as thesource coding theorem; see [10]). Low average lengthcan generally be made close to the entropy for the priceof decoding complexity.In the approach presented in this paper, randomwavelet representation is the main tool we use in signalcompression/de-noising. This compression procedure,accomplished with various thresholding techniques, isan entropy-reduction transformation. It actually ap-pears before the steps depicted in the above diagram,and produces the \digital source." Understanding thestatistics of the source (which in our case is the sta-tistical distribution of the wavelet representation of thesignals) or the statistics of the wavelet coe�cients canlead to signi�cant entropy reduction, thus increasing thecompression ratio. This feature reinforces the impor-tance of the noise modeling. The actual source codinginvolves encoding the coe�cients in the random waveletrepresentation of the signal.6. Algebraic Geometric Codes1. Channel Coding.The objective of channel coding (error control) is toachieve reliability of transmitting information through anoisy channel. Channel coding introduces redundancyin order to control the error as a result of channel noiseduring transmission. It seems to be the only practicalway to achieve reliability and e�ciency.A channel is described by the conditional probabilityof correct reception The term channel capacity, C, is in-troduced as the maximalmutual information to measurethe capacity of the channel ([10]). A classical theoremof Shannon (the channel coding theorem; compare thesource coding theorem in the preceding section) statesthat if H(S)Ts � CTc ;where, Ts is the source rate measured in symbol per Tsseconds, Tc is the channel rate in symbol per Tc seconds,and H(S) is the entropy, then there exists some codewith arbitrary small error probability.Two parameters are apparent to the designer: trans-mitted signal power and bandwidth. These parametersin turn, through a modulation scheme, determine theratio of the signal energy per bit Eb to the noise powerdensity N0. The reduction of this ratio Eb=N0 canmean lower transmitted power requirement and hard-ware cost, and thus serves as some measure of perfor-mance. Coding is the only practical way to achieve asmall error probability Furthermore, careful design andchoice of coding scheme can lead to the reduction ofEb=N0, known as the code gain. This is one factor thatprompts us to consider algebraic geometric codes.5



2. Algebraic Geometric Codes.There are two types of code in common practice,block codes and convolutional codes. Among blockcodes, linear code is the most common for its easy ma-nipulation (because of the extra structure it carries).In this paper, we will not be concerned with convolu-tional codes. The economics of a linear code is mea-sured by the parameters [n, k, d] (sometimes [n; k; d]qto signify the presence of the underlying �nite �eld) oflength n, dimension k, and minimal distance d. It is ak-dimensional vector subspace sitting inside some stan-dard n-dimensional vector space over a given �nite �eld,say Fq , through an encoding process. Various ingenioustechniques (such as concatenation) can improve codeperformance. Classical constructions (typically cycliccodes) usually depend in some way on the parametersn and k (and d). It has been the case that, as thecodeword length n increases, either k or d gains poorly[15]; that is, dnumber or knumber will tend to 0. Inother words, the code cannot compensate satisfactorilyfor both error-correcting ability and information rate.Algebraic geometric (AG) codes come to the rescue.They were constructed about �fteen years ago, an in-terdisciplinary fruit of coding theory and algebraic ge-ometry, and were soon proven to be of theoretic im-portance. They are the �rst examples to exceed theGilbert-Varshamov bound; both dnumber and knumberare bounded away from 0 when n becomes large (indeed,far better bounds). Such measures are important so thatwe can check taht the code rate and error-correcting ca-pability do not diminish miserably. The complexity in-curred from aspects such as the increase of codewordlength (hence bandwidth requirement) can now be ana-lyzed.3. Construction of Algebraic Geometric Code�.An AG code is constructed ([16,23]) from a smoothprojective curve over a �nite �eld Fq. In one way it isthe image of the evaluation map from a certain spaceof sections L(D) at some n rational points Pi. HereD is a divisor with support disjoint from the divisorP := P1 + ::: + Pn. In most practical situations thesesections are represented by polynomials, and the eval-uation is done at speci�c points (e.g., on the projec-tive plane). By Weil's conjecture ([9]) for curves thereare approximately the scale of 2q (rational) points avail-able on the curve. Clearly, such construction providesus with numerous choices to construct linear codes. Al-though the actual minimal distance is hard to determinebecause the theorem of Riemann-Roch does not tell ushow to compute the dimension of the space of sectionsassociated to a special divisor, we can obtain a compa-rable quantity d� = deg(G) � 2g + 2 which plays a rolein measuring the code's error-correcting ability, where�We treat this topic informally.

g is the genus of the curve. This is called the designedminimal distance.To spell out some detail, let the above de�ned codehave parameters [n; k; d]. If we assume that 2g � 2 <deg(G) < n, then k = deg(G)�g+1, and d > d� ([17]).So for choice of deg(G) at the scale of n, it is clear thatboth k and d will be of the same scale.4. Decoding Algorithms.Decoding algorithms are one of the most importantfactors in channel coding. The study in this area be-gan late last decade; the e�orts are summarized in [23].The basic algorithm is similar to the idea of decodingcyclic codes: (1) write down a parity check matrix; (2)determine an error locator; (3) solve a system of linearequations to determine the error location; and (4) �-nally evaluate the correct value. But the error locatordoes not consist exactly of error locations; extra placesmay be introduced. The point has always been how tosolve a system of linear equations (not an arbitrary one)e�ectively.Three recent results in the area of decoding AG codesare worth attention. They have close error-correctingcapacity (by which we mean the number of errors thecode is capable of correcting) and similar complexity, asillustrated below, and are given respectively in Justesenet. al. [11], Feng and Rao [7], and Ehrhard [6].Ref. Curve Capacity Complexity[11] planar d�i2 � m28 + m4 � 98 O(n 73 )[7] any (d� � 1)=2 O(n3)[6] any (d� � 1)=2 O((d�)2n)In the above, m is the degree of the plane curve; d�should be considered as proportional to n. They eachwere able to make use of an algorithm generalizing somestandard ones to the cyclic codes (cases of [11] and [7]),thanks to the underlying algebraic structure. An equiv-alent description using di�erentials was the presentationin [7] and [6]. They all have the appeal of implementabil-ity.5. Perspective.AG codes are easy to construct, have rates and error-correcting capacity, and algorithms for decoding arefast. In [24] the authors constructed a code, for channelswith or without memory, with a rate arbitrarily closeto the channel capacity, and with the remarkable prop-erty (an example of the identi�cation coding theorem of6



Ahlswede and Dueck) that the transmission can achievedouble exponential rate. Two constructions were given.One was a triple-layered concatenated code; the otherused algebraic geometric codes that were equipped withextraordinary bounds. It is also known [21] that alge-braic geometric codes could be used to rewrite a nonlin-ear code into a linear code.We conclude that AG codes can be used to provideoptimal performance. We have performed some com-puter simulations of the decoding algorithms we men-tioned above and compared their performance to otherexisting ones. The results will be reported in the future.7. References[1] Bielecki, T., On integration with respect to frac-tional Brownian motions, Statistics and ProbabilityLetters, to appear 1995[2] Bielecki, T., On integration with respect to frac-tional Wiener sheet, preprint, 1995[3] Bielecki, T., Chen, J. and Yau, Stephen S. T., Ran-dom wavelet transformation and its properties, inWavelet Applications in Signal and Image Process-ing II, eds. A. F. Laine and M. A. Unser, SPIEProc. vol. 2303 (1994)[4] Chui, C., An Introduction to Wavelets, Aca-demic Press, 1992[5] Daubechies, I., Orthonormal basis of compactlysupported wavelets, Commun. Pure Appl. Math.,vol. 41, pp. 909-996 (1988)[6] Ehrhard, D., Achieving the designed error capac-ity in decoding algebraic-geometric codes, IEEETransactions on Information Theory, vol. 39, no.3 (1993)[7] Feng, G.-L. and Rao, T. R. N., Decoding algebraic-geometric codes up to the designed minimal dis-tance, IEEE Transactions on Information Theory,vol. 39, no. 1 (1993)[8] Gray, R. M., Source coding theory, Kluwer Aca-demic Publishers, 1990[9] Hartshorne, R. Algebraic Geometry, Springer-Verlag, 1990[10] Haykin, S. Digital Communications, John Wi-ley & Sons, 1988[11] Justesen, J., Larson, K. J., Jensen, H. E., andH�holdt, T. , Fast decoding of codes from alge-braic plane curves, IEEE Transactions on Informa-tion Theory, vol. 38, no. 1 (1992)[12] Keshner, M. S., 1f Noise, Proceedings of the IEEE,vol. 70, no. 3, pp. 212-218 (1982)

[13] Kwong, M. K. and P. T. Peter Tang, W -matrices,nonorthogonal multiresolution analysis, and �nitesignals of arbitrary length, Argonne National Lab-oratory Preprint MCS-P449-0794.[14] Kwong, M. K., MATLAB implementation of W -matrix multiresolution analyses, Argonne NationalLaboratory Preprint MCS-P462-0894.[15] van Lint, Introduction to Coding Theory,Springer-Verlag, 1991[16] van Lint and van der Geer, Introduction toCoding and Algebraic Geometry, Birkhauser,1988[17] Mallat, S., A theory for multiresolution signaldecomposition: the wavelet representation, IEEETransaction on Pattern Analysis and Machine In-telligence, vol. 11 pp. 674-693 (1989)[18] Mandelbrot, B. B. and van Ness, T., FractionalBrownian motions, fractional noises and applica-tions, SIAM Review, vol. 10, no. 4 (1968)[19] Morgera, S. D. and Krishma, H., Digital SignalProcessing, Academic Press, 1989[20] Oppenheim, A. V. and Schafer, R. W., Discrete-Time Signal Processing, Prentice Hall, 1989[21] SIAM News, vol. 27, number 2, Feb 1994.[22] Song, L., Lectures on error correcting codes, alge-braic geometric codes and the decoding algorithms,Lecture Notes, the University of Illinois at Chicago,fall 1993 and spring 1994[23] Tsfaman, M. G. and Vl�adut, S. G., AlgebraicGeometric Codes, Kluwer Academic Publishers,1991[24] Verd�o, S., and Wei, V. K., Explicit construction ofoptimal constant-weight codes for identi�cation viachannels, IEEE Transactions on Information The-ory, vol. 39, no. 1 (1993)
7


