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Abstract

The concepts of random wavelet transforms and discrete
random wavelet transforms are introduced. It is shown
that these transforms can lead to simultaneous compres-
sion and de-noising of signals that have been corrupted
with fractional noises. Potential applications of alge-
braic geometric coding theory to encode the ensuing
data are also discussed.

Introduction

In this paper, we first outline the main ideas be-
hind classical wavelet-based algorithms of compression
and de-noising of signals. We then introduce the con-
cept of random wavelet transforms and discrete random
wavelet transforms, which are more effective than their
classical counterparts in handling fractional noises. Fi-
nally, we discuss potential applications of the method of
algebraic geometric coding of data produced by our new
algorithms.

Since this article is not a detailed survey, many as-
pects of both compression and coding algorithms will
not be presented here. For example, we do not discuss
thresholding algorithms; we limit discussion of wavelet
bases to the orthonormal ones generated by the well-
known Daubechies scaling functions (see [13,14] for a
discussion of a new method to construct biorthogonal
bases); and we do not give a detailed analysis of cod-
ing algorithms. Instead, this paper is meant to be an
overview of a methodology dealing with a specific class
of signal+noise models that we have in mind.

In Section 1, we describe a class of noisy signal mod-
els. In particular, we focus on fractional random fields,
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which occur naturally in many applications. In Sec-
tion 2, we formulate a signal de-noising problem. In
solving this problem, we achieve, in addition, a com-
pression of the signal. In Section 3, we present some
ideas from wavelet analysis that motivate our approach.
In particular, we lay the ground for the so-called dis-
crete wavelet transform that we introduce in Section 4.
Section 4 is pivotal for the paper: it presents the essence
of the simultaneous compression/de-noising algorithms.
In the last two sections (5 and 6) we present briefly some
new ideas from algebraic geometric coding theory which,
we believe, can be used beneficially in source and chan-
nel coding for image-based information, especially that
resulting from our compression/de-noising algorithms.
Novelty and strength of the algebraic geometric codes
are discussed.

1. Noisy Signal Models

We begin by describing the class of noise processes
that we are concerned with. Since we are going to deal
with multiparameter signals in general, the corrupting
noise will be modeled as a random field parametrized by
t € R%. The cases d = 1 and d = 2 correspond to one-
and two-dimensional signals, respectively.

For each t € R%, let C; denote the cuboid determined

by ¢ and 0, and let Vi, denote the Euclidean volume of
Cy. We suppose that a probability space (£, F, P) has
been defined.
Definition 1.1 We define a fractional Wiener sheet
(fWs) on R? with parameter H € (0,1] to be a real-
valued Gaussian random field W = (W# (t))teRd such
that

i) WH(0) =0, ,
i) EWH(t) =0, vteRY

iii) E(WH(t)—WH(S))2 =k |Ve,+Ve, —2Ve,ne,
Vt,s € Rd, kg = const > 0,

P a.s.

2H

bl




where F denotes the expectation w.r.t. the probability
function P.

Remark 1.1 A fractional Wiener sheet on R? was first
constructed and studied in [2].

Remark 1.2 In the case d = 1, a fractional Wiener
sheet coincides with fractional Brownian motion (fBm)
and is denoted by BY = (BH(t))teR' For the classical
definition of fBm, see, for example, [18]. A discussion
of various real-life phenomena giving rise to fBm can be
found in [12]. The fWs extends the concept of fBm to
the multiparameter case and is very useful in modeling
multiparameter disturbances whose intensities depend
on the size of the perturbed object.

Remark 1.3 Note that in the case H = %, the fWs
1s equivalent to an ordinary Brownian motion with a
d-dimensional “t¢me” parameter.

Let WH = (WH(t))teRd be a random field consist-
ing of distributional derivatives of the fWs W w.r.t.
t € RY. We shall call such a random field a fractional
Wiener noise (fWn). In the case H = %, WH is the
Gaussian white noise on R?.

The class of noisy signals that we are considering
in this paper consists of random fields (R(t)), g such
that
teR?

R(t) = S(t) + WH (1), (1.1)

or

R(t)=S@t)+ WH(t),t e R? (1.1)
where S(-) € L*(R%). The function S(-) is called the

original signal and R(-) the recorded (or measured, or
observed) signal.

2. The Problem of Signal De-noising

Simply put, the abstract problem of signal de-noising
amounts to estimating S(-) from the noisy observation
R(-). From the standpoint of statistical theory, it is a
regression problem and, most typically, a nonparametric
one.

In practice, one does not have access to the entire
R(-), but only to a finite number of sampled values: ei-
ther R(t;) or some average of R(-) in a small neighbor-
hood of t; for 7 = 1,---,I. The practical problem, there-
fore, is to estimate S(-) given the data R(¢;),i=1,---,1
and the relation (1.1) or (1.1').

Let F' = {fi,k € K} be a basis for L(R%). We can

write

R(t;) = Z enfet)+WHE), i=1,--- 1,
keK

(2.1)

R(ti) =Y erfelts) + WH(t), i=1

keEK

oo 1 (2.1

where ¢p, k € K are the coefficients of S(-) in the ba-
sis F'. The estimation problem for S(-) may therefore
be reduced to that of the ¢;’s. Obviously, one cannot
hope to get good estimates of all the ¢;’s when using
only a finite number I of observations R(#;). Therefore
the expansions in (2.1) and (2.1’) are truncated to a fi-
nite number of coefficients, and one estimates only the
coefficients that are retained. It is clear that the suc-
cess of this method depends, to a large extent, on the
accuracy of the approximation of S(-) by the reduced
expansion. It turns out that very good results can be
obtained if one uses the so-called wavelet basis to carry
out the expansions in (2.1) or (2.1).

3. Wavelet Transform and Random Wavelet
Transform

We will discuss, for simplicity, only one-dimensional
wavelets. Higher-dimensional wavelets can be treated
in a similar way. In her seminal paper [5], Ingrid
Daubechies presented the construction of two sequences
(pr) and (gp) of real numbers that solve the two-scale
equations,

o(x) = 3 pré(2a — k) (3.1)

@)= 3 g2 — k) (3.2)

for all z € rd.

She proved the existence of compactly supported so-
lutions in L?(R). For each solution, the functions ¢(-)
and ¢(-) are called the scaling function and mother

wavelet, respectively. The name wavelet for (-) is mo-
tivated by the following property:

ué%@ﬂx:&

A very important role in wavelet theory is played by
the translated and dilated version of the basic functions

¢(-) and ¥(-),

(3.3)

¢ n(x) =223 (Pw — k)

b p(x) = 22(P e — k)
forallx € R,j, k € Z.
Let us denote, for J € Z,

o5 ={o7k(") k € Z},

(3.4)

(3.5)

and
Yy ={Yjr(-),j > T, ke€Z}

Then, as shown in [5], (®7, ¥ 7) is an orthonormal basis
for L?(R) for each J € Z, under appropriate choice of
the coefficients (pr) and (gz). Such a choice of (pi)
and (q;) will be assumed from now on. In particular,
U_o = {¢j,j,k € Z} is an orthonormal wavelet basis
for L*(R).



For each locally square integrable function f, we de-
fine the scaling coefficients (a; » ) and wavelet coefficients
(b; 1) as the respective integral transforms

aj ;= /R f(2)¢; x(z)de, (3.6)

and
bjyk = /R f(l‘)l/)]yk(l‘)dl‘

for all j, k € Z. The right hand side of (3.7) is called the
wavelet transform of f(-). If f € L*(R) then we have

(3.7)

oQ

Y agrdgr@)+Y ] Y birtir(z) (3.8)

=T k=—

fle) =

k=—o0

@)=Y D biwdirle),

k=—o00 j=—o00

(3.9)

where the expansions are in the L?(R) sense. The fol-
lowing notation will be useful.

Vi = closureLQ(R){quyk,k €Z}, V_s:=¢, (3.10)

W; = closureLQ(R){d)jyk, ke Z}.
Then we have (see [5] or [4])

Vier = V; QW (3.11)
Therefore, if we denote by f7 the projection of f on Vi,
and by ¢’ the projection of f on W;, we see that for
each f € L*(R) and all M > N we have

(3.12)
The projection ¥ is thus obtained by adding various
levels of “detail”, encoded 1n ¢?’s, to the “blurred” ver-
sion fN of fM. In particular, we have

F=m+> 4, (3.13)
j=N
which is the same as (3.8), and
f= Z ¢, (3.14)

j=—0c0

which is the same as (3.9). '

Let us denote by (¢}, k € Z) and (d},k € Z) the
coefficients of f in the basis of VJ and W/, respectively,
for each j € Z. That is,

= Zci;¢j,ka

k

(3.15)

g = dk (3.16)
k

for each j € Z. There exists a unique pair of numerical
sequences {(pr), (4r)} so that one can obtain the coeffi-
cients (¢}, k € Z), (&, k€ Z),j=M—-1,M—2,--- N,
from the coefficients (¢}, k € Z), by means of the fol-
lowing “decomposition algorithm”:

C“;c_l = Zﬁl—zkcg
]

di_l = Z Qi—2ndy
]

It is also possible to “reconstruct” the cfcw’s from the
sequences (¢}, k € Z) and (&}, k €Z),j=N,---, M—1
by means of the “reconstruction algorithm”:

c*?; = Z(Pk—zlcg_l + Qk—zld{_l),

l

(3.17)

j=MM=1,--- N. (3.18)

bl bl

j:N+1a"'aMa

(3.19)
where pg, ¢ are the original Daubechies coefficients.

The above algorithms are the Mallat pyramidal al-
gorithms ([17]).

It is important to note that the coefficients (ci , k €
Z), (&, k € Z), j = NN +1,---,M — 1, can be ob-
tained from (¢}! k € Z) in one shot. Let us denote by
(T;W’N’k,l € Z) and (S;W’j’k,l € Z) the coefficients of
onr and ¢;1, j=N,N+1,.-- M —1, respectively, in
the basis of Vjs. That is,

ON k= Z PR G (3.20)
!
Yikr =y s (3.21)
!
forkeZand j=N,N+1,---,M — 1. Then
= ZT;W’N’]CC{W (3.22)
!
& =N MikeM (3.23)

l

for k € Z and j = NN +1,---, M — 1. The formulas
(3.23) and (3.24) express the simultaneous projections
of fM on the spaces Vi, Wy, Wng1, -+, War—1. We can
write (3.22) and (3.23) in matrix form as

N PMN
ay M,N
dN+1 _ | sMNH M (3.24)
qM-1 .SM,M—l
where ' '
c' = [CHIEZ

& = [d{]leZ



M,N _ [ .M,Nk
r = [ ]l,keZ

M,j M.k
st =[5 ]l,keZ
fori=M,N,j=N,N+1,---, M — 1. If we denote the
left hand side of (3.24) by w™" and the matrix on the
right-hand side by WY we can write it as
w N = WALN M (3.25)

This is the key relation for the discrete wavelet trans-
form to be introduced in Section 4.

In the remaining part of this section, we shall briefly
describe transforms of the fractional Brownian motion
BH  The results given below can be extended to the
case of Wiener sheet by using the result of [2].

The scaling and wavelet coefficients of BY are ran-
dom sequences given by

aj,k:/RB (2)¢; x(x)dz, (3.26)

and

= [ B @ (3.27)
respectively, for j k € Z. Using the results of [1], we
can also define what we call random scaling and random
wavelet coefficients of BH . We have used stochastic in-
tegrals of scaling and wavelet functions with respect to
BM  That is, we define

a@j 1 :/bej,k(l‘)dB (2) (3.28)

and

for j,k € Z. Several properties of the random wavelet
coefficients of BM are demonstrated in [3]. The trans-
form in (3.29) is called the random wavelet transform.

The scaling and wavelet transforms of B can be

defined in terms of (3.29) and (3.30) as

(3.29)

/R é; w(z)B" (z)dx = ajy, (3.30)

/R v () B (x)de = b, (3.31)
for j,k € Z.

For d = 1, the models (1.1) and (1.1") can be written
as

R(t) = S(t) + B (1) (3.32)

or

R(t) = S(t) + B (t) (3.32))

for ¢ € R. This implies the following relations for the
respective scaling and wavelet coefficients,

afk = aﬁk + a%c (3.33)

b = b7 + bi% (3.34)
or

ajy = aj, +ah (3.33)

bt = b5, + b7 (3.34")

for j, k € Z. The above relations are used in the com-
pression and de-noising algorithms given in the next sec-
tion.

4. Discrete Wavelet Transform and Signal
De-Noising

Suppose that the I = 2M coefficients of the pro-
jection fM of f on Vi, M > 0, are known. Using
these I coefficients, we can compute approximations
toeS, dy, db, db, - -, déw_l, cee d%z__ll, the coefficients in-
troduced in the preceding section. We shall use a finite-
dimensional counterpart of (3.25). In other words, de-
noting by ¢y the vector of I known coefficients of f
and by Wy the appropriate finite dimensional part of
WHMO we define the vector wy of “discrete” wavelet
coefficients of f by

Wi = W[C[. (41)
The matrix transform in (4.1) is called the discrete
wavelet transform. The vector wi approximates the co-
: M—1 M—1
efficient vector [¢],d3, d}, d}, -+, d dI/Z—l]'
It is not difficult to see that Wy is an orthogonal
matrix. Therefore we have

RN

cr = W?W[, (4.2)
where T' denotes the transposition operation. The ma-
trix transform in (4.2) is called the inverse discrete
wavelet transform.

An important feature of (4.1) is that, typically, many
of the elements of w; are near zero and therefore can
be discarded for compression and estimation purposes
without significantly altering the outcome of the inverse
transformation (4.2). This property is the basis for the
idea of a simultaneous signal compression and de-noising
that we shall briefly discuss below.

Let ¢& ¢7 c¢f | and Efl denote the vectors of coef-
ficients obtained by convolving R(-),S(), B¥(-) and
BH(), respectively, with I elements of the basis of V.
Only the coefficients ¢ff are observed in practice, in other
words, the elements of ¢ are approximated by sampled
measurements of R(-) at I points.

Now, we can obviously write

cF=cy +c¥ (4.3)
or
ct=cy +cM. (4.3")
Applying (4.1) to (4.3) or (4.3") we get
wl =w; +wH (4.4)



or
WF = WIS + VV}W. (4.4

As we indicated earlier, many elements of wi will be
near zero. Using appropriate thresholding, we first set to
zero those elements of WF that are appropriately small.
In other words, we compress WF. After that, we es-
timate elements of w7 by using whatever information
is left in the compressed version of w¥. There are, of
course, numerous estimation procedures possible. The
one that we used in our simulations was based on appro-
priate shrinkage of the elements of the compressed WF.
Actually, we have achieved a simultaneous compression
and estimation (de-noising) in one shrinkage operation.
Let us denote by w7 the estimate of w7. Applying
(4.2) to w7, we obtain the estimate of ¢7, as
¢] = Wiwyj. (4.5)
Note that (4.5) represents a simultaneous decompression
and estimation of the original, unobserved signal S(-).
If we denote by *¢J, 538, scié, scﬁ, e sciéw_l, e 53%2__11
the elements of ¢7, then the estimate 5’() is obtained
by

S(t) = *edbo,0(t)+* dovbo,o(t)+ dbipr o(t)+ di o1 1 (8)+- -

+ 2 dM Y o)+ -+ 53%2__111/)M—1,1/2—1(t)
(4.6)
for t € R.

5. Digital Communication

The methodology of Sections 1 through 4 produces
a vector of data W that one may wish to store and/or
to transmit. In this and the next section, we present
some basic principles of algebraic geometric coding that
we 1ntend to use to code the data wy and transmit them
via digital communication channels.

Digital communication offers various advantages and
has become increasingly important. Some of its ad-
vantages are its flexibility, reliability, and availability of
wide-band channels such as optical fibers and satellite.
A typical (memoryless) digital communication system
has these channels:

digital source — source encoder
— channel encoder — modulator
= Noisy Channel =
detector — channel decoder

— source decoder — digital sink

where the effect of the detector is a “demodulator.”
Source coding (here a form of lossless data compression)
is a means to remove redundancy. It maps the digital
source into some code, where full recovery is possible,

seeking to represent the source efficiently in the sense
that the average length (bit per symbol) is minimal.
Such average length is bounded below by the entropy,
the information that the source carries (known as the
source coding theorem; see [10]). Low average length
can generally be made close to the entropy for the price
of decoding complexity.

In the approach presented in this paper, random
wavelet representation is the main tool we use in signal
compression/de-noising. This compression procedure,
accomplished with various thresholding techniques; is
an entropy-reduction transformation. It actually ap-
pears before the steps depicted in the above diagram,
and produces the “digital source.” Understanding the
statistics of the source (which in our case is the sta-
tistical distribution of the wavelet representation of the
signals) or the statistics of the wavelet coefficients can
lead to significant entropy reduction, thus increasing the
compression ratio. This feature reinforces the impor-
tance of the noise modeling. The actual source coding
involves encoding the coefficients in the random wavelet
representation of the signal.

6. Algebraic Geometric Codes
1. Channel Coding.

The objective of channel coding (error control) is to
achieve reliability of transmitting information through a
noisy channel. Channel coding introduces redundancy
in order to control the error as a result of channel noise
during transmission. It seems to be the only practical
way to achieve reliability and efficiency.

A channel is described by the conditional probability
of correct reception The term channel capacity, C', is in-
troduced as the maximal mutual information to measure
the capacity of the channel ([10]). A classical theorem
of Shannon (the channel coding theorem; compare the
source coding theorem in the preceding section) states
that if

HS) ¢
< ik
T, — 1T,
where, T is the source rate measured in symbol per T
seconds, T, 1s the channel rate in symbol per T, seconds,
and H(S) is the entropy, then there exists some code
with arbitrary small error probability.

Two parameters are apparent to the designer: trans-
mitted signal power and bandwidth. These parameters
in turn, through a modulation scheme, determine the
ratio of the signal energy per bit £} to the noise power
density Ny. The reduction of this ratio Ey/Ny can
mean lower transmitted power requirement and hard-
ware cost, and thus serves as some measure of perfor-
mance. Coding is the only practical way to achieve a
small error probability Furthermore, careful design and
choice of coding scheme can lead to the reduction of
Ey/Ng, known as the code gain. This is one factor that
prompts us to consider algebraic geometric codes.




2. Algebraic Geometric Codes.

There are two types of code in common practice,
block codes and convolutional codes. Among block
codes, linear code 1s the most common for its easy ma-
nipulation (because of the extra structure it carries).
In this paper, we will not be concerned with convolu-
tional codes. The economics of a linear code is mea-
sured by the parameters [n, k, d] (sometimes [n, k, d],
to signify the presence of the underlying finite field) of
length n, dimension &k, and minimal distance d. It is a
k-dimensional vector subspace sitting inside some stan-
dard n-dimensional vector space over a given finite field,
say F,, through an encoding process. Various ingenious
techniques (such as concatenation) can improve code
performance. Classical constructions (typically cyclic
codes) usually depend in some way on the parameters
n and k (and d). Tt has been the case that, as the
codeword length n increases, either k£ or d gains poorly
[15]; that is, dnumber or knumber will tend to 0. In
other words, the code cannot compensate satisfactorily
for both error-correcting ability and information rate.

Algebraic geometric (AG) codes come to the rescue.
They were constructed about fifteen years ago, an in-
terdisciplinary fruit of coding theory and algebraic ge-
ometry, and were soon proven to be of theoretic im-
portance. They are the first examples to exceed the
Gilbert-Varshamov bound; both dnumber and knumber
are bounded away from 0 when n becomes large (indeed,
far better bounds). Such measures are important so that
we can check taht the code rate and error-correcting ca-
pability do not diminish miserably. The complexity in-
curred from aspects such as the increase of codeword
length (hence bandwidth requirement) can now be ana-
lyzed.

3. Construction of Algebraic Geometric Code*.

An AG code is constructed ([16,23]) from a smooth
projective curve over a finite field Fy. In one way it is
the image of the evaluation map from a certain space
of sections L(D) at some n rational points P;. Here
D 1s a divisor with support disjoint from the divisor
P = P, + ..+ P,. In most practical situations these
sections are represented by polynomials, and the eval-
uation is done at specific points (e.g., on the projec-
tive plane). By Weil’s conjecture ([9]) for curves there
are approximately the scale of 2¢ (rational) points avail-
able on the curve. Clearly, such construction provides
us with numerous choices to construct linear codes. Al-
though the actual minimal distance is hard to determine
because the theorem of Riemann-Roch does not tell us
how to compute the dimension of the space of sections
assoclated to a special divisor, we can obtain a compa-
rable quantity d* = deg(G) — 2g + 2 which plays a role
in measuring the code’s error-correcting ability, where

*We treat this topic informally.

g 1s the genus of the curve. This is called the designed
minimal distance.

To spell out some detail, let the above defined code
have parameters [n, k,d]. If we assume that 29 — 2 <
deg(G) < n, then k = deg(G)—g+1, and d > d* ([17]).
So for choice of deg((G) at the scale of n, it is clear that
both k and d will be of the same scale.

4. Decoding Algorithms.

Decoding algorithms are one of the most important
factors in channel coding. The study in this area be-
gan late last decade; the efforts are summarized in [23].
The basic algorithm is similar to the idea of decoding
cyclic codes: (1) write down a parity check matrix; (2)
determine an error locator; (3) solve a system of linear
equations to determine the error location; and (4) fi-
nally evaluate the correct value. But the error locator
does not consist exactly of error locations; extra places
may be introduced. The point has always been how to
solve a system of linear equations (not an arbitrary one)
effectively.

Three recent results in the area of decoding AG codes
are worth attention. They have close error-correcting
capacity (by which we mean the number of errors the
code is capable of correcting) and similar complexity, as
illustrated below, and are given respectively in Justesen

et. al. [11], Feng and Rao [7], and Ehrhard [6].

Ref. | Curve Capacity Complexity
[11] | pl i mt om0 o
planar | —- — — + 173 (n%)
[7] any (d*—1)/2 O(n?)
6] | any @ - | oy

In the above, m is the degree of the plane curve; d*
should be considered as proportional to n. They each
were able to make use of an algorithm generalizing some
standard ones to the cyclic codes (cases of [11] and [7]),
thanks to the underlying algebraic structure. An equiv-
alent description using differentials was the presentation
in [7] and [6]. They all have the appeal of implementabil-

ity.
5. Perspective.

AG codes are easy to construct, have rates and error-
correcting capacity, and algorithms for decoding are
fast. In [24] the authors constructed a code, for channels
with or without memory, with a rate arbitrarily close
to the channel capacity, and with the remarkable prop-
erty (an example of the identification coding theorem of



Ahlswede and Dueck) that the transmission can achieve
double exponential rate. Two constructions were given.
One was a triple-layered concatenated code; the other
used algebraic geometric codes that were equipped with
extraordinary bounds. Tt is also known [21] that alge-
braic geometric codes could be used to rewrite a nonlin-
ear code into a linear code.

We conclude that AG codes can be used to provide
optimal performance. We have performed some com-
puter simulations of the decoding algorithms we men-
tioned above and compared their performance to other
existing ones. The results will be reported in the future.
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