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Abstract

As computers have become increasingly powerful,
the field of design optimization has moved toward
higher fidelity models in the early stages of design.
One way in which this movement is manifested is in
the increasing popularity of multidisciplinary design
optimization (MDO). Because the models used in
MDO are large and complicated, a modular design
is desirable. There are many design parameters to
optimize, and the robustness of the method requires
that derivatives be computed accurately and effi-
ciently. This paper describes how the quasi-proce-
dural program architecture developed by Takai and
Kroo and the technique of automatic differentiation
can be combined to address these needs effectively.
The two techniques are explained, the manner in
which they were integrated into a single framework
is described, and the result of using this framework
for an optimization problem in airplane design is
presented.

1 Introduction

Over the past several years, there has been a move-
ment in the field of optimization toward multidis-
ciplinary design optimization (MDO), moving away
from the traditional method of iteratively execut-
ing local optimizations of disciplinary components.
For example, an airplane designer may incorporate
fluid dynamics and structural analysis into a sin-
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gle model. For optimization using this multidis-
ciplinary model to be practical, the model should
have a modular design and derivatives must be com-
puted efficiently. Modularity is important because
the multidisciplinary model may be created by sev-
eral development teams and also because it simpli-
fies the integration of new code when a better model
for any of the disciplines becomes available. The
quasi-procedural method is a modular framework
for optimization that promotes efficiency by avoid-
ing redundant computations. Automatic differenti-
ation improves performance through fast, accurate
computation of derivatives and supports the inte-
gration of new code by automatically creating mod-
ules that compute derivatives with minimal user in-
tervention.

This paper describes how automatic differentia-
tion and the quasi-procedural method were applied
to the optimization of an airplane design. Sections 2
and 3 introduce the quasi-procedural method and
automatic differentiation, respectively. Section 4
describes how these complementary techniques were
incorporated into a single environment and Sec-
tion 5 presents our experimental results using this
environment. Section 6 concludes with an analy-
sis of how the combined approach might facilitate
MDO, and also an assessment of when this approach
might not be appropriate.

2 The Quasi-Procedural Method

The quasi-procedural method (QPM) is a form
of non-procedural programming.% ° Unlike conven-
tional procedural programs, in which computation
proceeds from inputs to outputs according to a rigid
structure, non-procedural systems are free to reor-
ganize computations as necessary to compute the
desired outputs. Thus, i1t is the outputs that drive
the computation, rather than the inputs. However,
non-procedural programming is of limited value at
fine granularity, as programmers can often utilize



knowledge of a computation to develop extremely
efficient small procedural subprograms.

2.1 A Composite System

The quasi-procedural method attempts to exploit
the best of both methods by allowing the program-
mer to develop efficient subprograms and providing
a system for linking these subprograms so that they
can be executed non-procedurally. This linkage sys-
tem is demand-driven. When the value of a variable
1s requested, the executive system determines which
subprogram is responsible for computing that value
and runs the appropriate subroutine. If that routine
requires inputs, it informs the executive; the exec-
utive provides the desired inputs either by looking
them up in a database or by executing additional
routines.

This type of request-driven execution is depicted
in Figure 1. For example, if the value of I is de-
sired, the executive invokes subprogram 5. Subpro-
gram b requires values for G and H, which causes
the executive to invoke subprograms 3 and 4. This
sequence of requests continues until values for A,
B, C, and D are provided, at which point execution
of the subprograms commences, and a value for I is
produced. This approach is coupled with a database
that stores intermediate values and maintains infor-
mation about their validity, enabling the executive
to determine whether to use a previously computed
value or to recompute the variable; this feature is
called consistency maintenance.

The impact of maintaining information about the
validity of intermediate values can be seen by again
considering the program in Figure 1. Suppose we
compute the value of I as before, then decide we
want to change the value of design parameter C and
recompute I. Since the values of E, F, and G do
not depend on C, there is no need to recompute
these values by executing subprograms 1, 2, and 3.
Instead, it is sufficient to recompute H and I by
executing subprograms 4 and 5.

An important characteristic of the quasi-proce-
dural method in addition to its efficiency is its
modularity. Each of the subprograms represents
a separate module, and it is easy to replace one
of these subprograms without affecting the rest of
the computation. As an example of how the quasi-
procedural method breaks the tight coupling be-
tween subprograms in a procedural program, con-
sider the procedural and quasi-procedural versions
of the PASS airplane model depicted in Figures 2
and 3 (see Section b for a description of this model).
The ability to incorporate new code without having

to rewrite, or even recompile, modules correspond-
ing to other parts of the computation is very impor-
tant to MDO. Thus, support for modular program-
ming and large reductions in computational cost are
the two main benefits of using the quasi-procedural
method.

2.2 GENIE

GENIE is a generic framework for engineering
computations.® ® GENIE provides a set of routines
for linking analysis routines through the central
database, which is updated under the control of the
quasi-procedural method. This interface is provided
via GET and PUT routines, and the computation
proceeds in the following manner:

1. The optimizer issues a GET operation, signal-
ing a request for a valid value for the specified
objective or constraint.

2. If no valid value is currently available, the GET
routine calls the appropriate analysis routine to
compute one.

3. The analysis routine issues one or more calls to
GET to load the required input variables. In
the event that the values of these variables are
not known or are invalid, the GENIE executive
calls the appropriate analysis routine, and the
process repeats.

Thus, GET is called recursively until the values of
all required input variables are known. This method
enables quantities to be computed only as needed
and without a fixed execution path. An example of
a simple analysis routine 1s provided in Figure 4.

A major function of the GENIE framework is
maintaining information about the validity of the
values of variables. Whenever one of the input pa-
rameters for a routine is modified this parameter
1s marked ‘invalid.” The quasi-procedural executive
then marks all outputs of that routine, as well as
variables directly or indirectly dependent on these
outputs, as ‘invalid.’

3 Automatic Differentiation and ADIFOR

In general, multidisciplinary design optimization re-
quires the derivatives of an objective function and
several constraints with respect to many design pa-
rameters. Since the function is typically described
by a complicated computer program, using a sym-
bolic manipulator, such as Maple,® is usually not
an option. Similarly, developing derivative code by
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Figure 1: Execution outline for the quasi-procedural method

hand is unattractive, because it is complicated, te-
dious, and prone to errors. This approach is also 1ll-
suited for rapid prototyping, where parts of the sys-
tem model may change several times, requiring ad-
ditional code development for each new part. Con-
sequently, optimization often relies on divided dif-
ference approximations to the desired derivatives.
However, if an inappropriate step size is used, these
approximations can be grossly inaccurate. This hin-
ders rapid prototyping, because finding a good step
size can be difficult and time-consuming, and a new
step size must be determined each time the system
model changes. Divided difference approximations
may also take a long time to compute.

An alternative to all of these techniques is auto-
matic differentiation. Automatic differentiation is a
technique for computing the derivatives of a func-
tion expressed in the form of a computer program.®
The execution of a computer program consists of the
composition of many elementary functions (such as
multiplication, square root, and hyperbolic cosine),
for each of which an analytic expression for deriva-
tives is well known. So, by simply applying the

chain rule
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repeatedly, it is possible to compute the derivatives
of the function. For example, the code segment:

y = 2%xkx + 3%x + 7
z = 4 * sin(x)
T = sqrt(y*y + z*z)

may be converted into:

= 2.0*%x*x + 3.0%x + 7.0

4.0%x*g_x + 3.0%g_x

.0 * sin(x)

z = 4.0%g_x*cos(x)

= sqrt(y*y + z*z)

f = -0.5 % (2.0%xy*g_y + 2.0%zxg_z)/ f
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Here, g_var represents the derivatives of wvar with
respect to the independent variable(s), in this case
x. Thus, if g_x is initialized to 1.0 (since g—z = 1.0),
upon exit the value of g_f will be %. If x,y,z, and
f were vectors, then the appropriate initial value
for g_x would be an identity matrix and g_£ would
still represent %. For this problem, the value of
g-x is propagated through the derivative computa-
tion; hence, g_x is termed the seed matriz for this
computation.?

While symbolic differentiation uses the rules of
calculus in a more or less mechanical way, automatic
differentiation is intimately related to the program
for the computation of the function to be differen-
tiated. By applying the chain-rule step by step to
the elementary operations executed in the course
of computing the “function,” automatic differenti-
ation computes exact derivatives (within the limits
of finite precision arithmetic) and avoids the poten-
tial pitfalls of divided differences. The technique
of automatic differentiation is directly applicable to
complicated functions with branches and loops.

Automatic differentiation is amenable to modu-

lar program design. The ability to control which
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Figure 2: Procedural version of the PASS airplane model
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Figure 3: Quasi-procedural version of the PASS airplane model




subroutine Qpsf

Profile:

This routine computes the dynamic pressure for a given
density and velocity.

Declarations:

implicit none
real Vknots, rho, Vips, DynamicPress
logical Abort

Required inputs:

call GET(Vknots, ’Speed’ )
call GET(rho ,’Density’)

if (Abort()) return

Calculations:

Vips = Vknots*1.69
DynamicPress = .5 * rho * Vips*Vips

Repack database:

call PUT(DynamicPress,’DynamicPress’)

return
end

Figure 4: A simple analysis routine



derivatives are computed through an appropriate
initialization of the seed matrix means that we do
not need to know which design parameters are being
optimized at the time the derivative module is cre-
ated. Furthermore, we can process individual mod-
ules separately, then connect the derivative modules
using seed matrices. For example, suppose module
A computes y(x) and module B computes z(y), and
that we process these modules to yield derivative
modules g A and g B. Then, if we initialize g_x (the
seed matrix for module g_4) to an identity matrix,
module g_A will compute g_y = %%. If we then pass
¢-y to module g_B as a seed matrix, this module will
compute g_z = g—; X gy = g—z X g—i = g—i directly,
exactly as if z(#) were computed in a single module.
Many tools have been developed to support au-
tomatic differentiation. We used ADIFOR, for our
application. ADIFOR is a tool that provides au-
tomatic differentiation for programs written in For-
tran 77.1 % 3 Given a Fortran subroutine (or collec-
tion of subroutines) for a function f, ADIFOR pro-
duces Fortran 77 subroutines for the computation
of the derivatives of this function. Additional infor-
mation on the ADIFOR system can be found on the
WWW at http://wuw.mcs.anl.gov/adifor and
http://www.cs.rice.edu/"adifor.

4 Adding Automatic Differentiation to the
QPM Framework

In order to allow GENIE to work together with
ADIFOR-generated code, several enhancements
were made to the GENIE framework. First, addi-
tional storage in the database was allocated, so that
the database manager would have additional space
to store gradients. This storage is provided by an ar-
ray that is parallel to the array in which the regular
variables are stored. This enables lookup, validity
checking, and other database maintenance opera-
tions to be performed for both a variable and the
associated gradient at the same time. Second, the
executive was modified by adding two new routines,
G_GET and G_PuT, which return and store the val-
ues of a variable and the associated gradient. Fi-
nally, one of the GENIE initialization routines was
modified to perform the seed matrix initialization
required by ADIFOR-generated code. By zeroing
all elements of the array containing gradients, then
setting the I'" element of the gradient associated
with the 7" design variable equal to 1.0, an iden-
tity seed matrix is created automatically.

Making these changes to the GENIE framework
has two important benefits. First, the user does not
have to deal with derivative object allocation, seed

matrix initialization, or interfaces between modules.
All of these tasks are done automatically in the
executive. Once an analysis routine has been run
through ADIFOR, the user does not even need to be
aware that automatic differentiation is being used.
Second, creating a direct association between vari-
ables and their derivative objects in the database
means that consistency maintenance for the deriva-
tive objects can be done with no additional over-

head.

5 Experimental Results

To examine the suitability of the QPM-AD com-
bination for multidisciplinary optimization, we ap-
plied the techniques to a complete aircraft model.
The problem being studied is the synthesis of a twin-
engined, 100-passenger, medium-range commercial
transport. The objective 1s to minimize direct oper-
ating costs, subject to certain constraints in perfor-
mance measures such as range and maximum field
lengths. The design variables are weights, wing and
tail size and shape parameters, engine size, cruise
altitudes, and takeoff flap deflection.

The multidisciplinary analysis routines for the
PASS aircraft model were processed using ADI-
FOR, which automatically replaced calls to GET
and PuT with calls to G_GET and G_PUT, respec-
tively. These routines were compiled and linked
with the enhanced GENIE framework and the
NPSOL optimizer.”

The times required for the optimizer to find a
minimum for various problems are reported in Ta-
bles 5 and 5. Problem PASS1 involves the optimiza-
tion of 14 design parameters. This problem was dif-
ficult to optimize, and the observation that one de-
sign variable was not critical to the design led to its
removal, yielding problem PASS2. Problems PASS2
and PASS3 involve the optimization of 13 design
parameters, from different starting points. Prob-
lem PASS4 is the same as PASS3, but the optimal-
ity tolerance is relaxed from 107® to 107°. Results
are reported for the quasi-procedural method us-
ing divided difference approximation, abbreviated
QPM-DD, and for the augmented quasi-procedural
method, using derivative code generated by ADI-
FOR, abbreviated QPM-AD. The ratio of QPM-DD
to QPM-AD is also reported.

Design optimization using the quasi-procedural
method is typically faster than design optimiza-
tion without the quasi-procedural method.® Be-
cause the quasi-procedural method employs con-
sistency maintenance and does not recompute val-
ues unless necessary, a great deal of computational



Table 1: Runtime (in seconds) for the PASS
problem on an IBM RS6000

QPM-DD | QPM-AD | ratio
PASS1 46.8 5.0 | 9.36
PASS2 14.9 4.2 | 3.55
PASS3 19.9 5.6 | 3.5
PASS4 19.9 5.5 | 3.62

Table 2: Runtime (in seconds) for the PASS
problem on a node of an IBM SP1 parallel
computer

QPM/DD | QPM/AD | ratio
PASS1 11.7 1.2 | 9.75
PASS2 3.7 1.0 | 3.70
PASS3 4.9 1.3 | 3.77
PASS4 5.0 1.2 | 4.17

cost can be eliminated. Furthermore, the quasi-
procedural method with automatic differentiation
often performs much better than the quasi-proce-
dural method using divided difference approxima-
tions. There are several reasons for the improve-
ment:

1. The hybrid mode of automatic differentiation
implemented by ADIFOR is often more effi-
cient than divided differences. This is espe-
cially true of programs with many assignment
statements with complicated arithmetic expres-
sions on the right hand side. The derivatives of
these expressions are computed using the re-
verse mode of automatic differentiation, which
requires a constant multiple of the time re-
quired to evaluate the expression. Divided dif-
ferences and the forward mode of automatic dif-
ferentiation require time linear in the number of
design variables. This improvement in perfor-
mance relative to divided differences has been
seen in many applications of ADIFOR to engi-
neering codes, and is not specific to the quasi-
procedural method (see [1, 2] for details).

2. The perturbing of design variables needed to
compute approximate derivatives using divided
differences destroys the validity of the values of
variables depending on those design variables.
Thus, much of the efficiency of the quasi-proce-
dural method is lost. GENIE compensates

for this inefficiency by employing a specialized
technique® to avoid recomputation as much as
possible. However, this advanced technique is
inferior to the ability to compute derivatives
without affecting the validity of any values, as
is provided by automatic differentiation.

3. The gradient objects used in the automatic dif-
ferentiation method are vectors. Hence, AD-
generated code performs mostly vector updates
throughout the computation. Modern super-
scalar computer architectures can take advan-
tage of the regularity and data locality of these
vector updates. The variable perturbations
necessary for divided difference approximations
must be done one at a time and there is there-
fore no way to introduce vector operations.

6 Conclusions

Multidisciplinary optimization has three distin-
guishing features: the system is often modelled by
a large, complicated program developed by many
different teams; there may be many changes to the
system model, due either to rapid prototyping or
model refinement; and there is a need for deriva-
tives with respect to many different design parame-
ters, but not necessarily the same set of parameters
from iteration to iteration. The quasi-procedural
method and automatic differentiation can together
provide a framework that is well-suited for optimiza-
tion problems of this nature.

Large, complicated programs with multiple au-
thors are most easily expressed in a modular
fashion. Both quasi-procedural programming and
automatic differentiation support this paradigm.
Changes to the system model also create a need
for modularity, as well as a mechanism for develop-
ing derivative code for new modules as quickly and
easily as possible. Automatic differentiation is ca-
pable of automatically creating derivative code from
function code, with minimal user intervention. Dif-
ferentiating with respect to many design parame-
ters creates a need for efficient derivative computa-
tion. The combination of automatic differentiation
and the quasi-procedural method provides deriva-
tive code that 1s much faster than standard divided
difference approximations. This speedup can be at-
tributed to the efficiency of the hybrid mode of auto-
matic differentiation, the capability of quasi-proce-
dural programming to avoid redundant computa-
tion, the vectorizability of gradient object updates,
and the synergistic effects of using the two meth-
ods together. Furthermore, derivatives computed
using automatic differentiation are more accurate



than divided difference approximations, which may
lead to more rapid convergence for some applica-
tions. The seed matrix interface of automatic dif-
ferentiation also provides a convenient mechanism
for handling variation in the set of parameters with
respect to which we wish to differentiate.?

Automatic differentiation and the quasi-proce-
dural method are not without their limitations. In
particular, automatic differentiation produces code
that computes accurate local derivatives. However,
if the function being differentiated exhibits high fre-
quency oscillations, this information might not be
useful for optimization. Derivative-free optimiza-
tion techniques such as simulated annealing and ge-
netic algorithms used in combination with the quasi-
procedural method have proven effective in handling
such functions.'® However, for problems amenable
to classical optimization approaches, the combina-
tion of the quasi-procedural method and automatic
differentiation promises to be an effective tool for
multidisciplinary optimization.
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