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gle model. For optimization using this multidis-ciplinary model to be practical, the model shouldhave a modular design and derivatives must be com-puted e�ciently. Modularity is important becausethe multidisciplinary model may be created by sev-eral development teams and also because it simpli-�es the integration of new code when a better modelfor any of the disciplines becomes available. Thequasi-procedural method is a modular frameworkfor optimization that promotes e�ciency by avoid-ing redundant computations. Automatic di�erenti-ation improves performance through fast, accuratecomputation of derivatives and supports the inte-gration of new code by automatically creating mod-ules that compute derivatives with minimal user in-tervention.This paper describes how automatic di�erentia-tion and the quasi-procedural method were appliedto the optimization of an airplane design. Sections 2and 3 introduce the quasi-procedural method andautomatic di�erentiation, respectively. Section 4describes how these complementary techniques wereincorporated into a single environment and Sec-tion 5 presents our experimental results using thisenvironment. Section 6 concludes with an analy-sis of how the combined approach might facilitateMDO, and also an assessment of when this approachmight not be appropriate.2 The Quasi-Procedural MethodThe quasi-procedural method (QPM) is a formof non-procedural programming.6, 9 Unlike conven-tional procedural programs, in which computationproceeds from inputs to outputs according to a rigidstructure, non-procedural systems are free to reor-ganize computations as necessary to compute thedesired outputs. Thus, it is the outputs that drivethe computation, rather than the inputs. However,non-procedural programming is of limited value at�ne granularity, as programmers can often utilize1



knowledge of a computation to develop extremelye�cient small procedural subprograms.2.1 A Composite SystemThe quasi-procedural method attempts to exploitthe best of both methods by allowing the program-mer to develop e�cient subprograms and providinga system for linking these subprograms so that theycan be executed non-procedurally. This linkage sys-tem is demand-driven. When the value of a variableis requested, the executive system determines whichsubprogram is responsible for computing that valueand runs the appropriate subroutine. If that routinerequires inputs, it informs the executive; the exec-utive provides the desired inputs either by lookingthem up in a database or by executing additionalroutines.This type of request-driven execution is depictedin Figure 1. For example, if the value of I is de-sired, the executive invokes subprogram 5. Subpro-gram 5 requires values for G and H, which causesthe executive to invoke subprograms 3 and 4. Thissequence of requests continues until values for A,B, C, and D are provided, at which point executionof the subprograms commences, and a value for I isproduced. This approach is coupled with a databasethat stores intermediate values and maintains infor-mation about their validity, enabling the executiveto determine whether to use a previously computedvalue or to recompute the variable; this feature iscalled consistency maintenance.The impact of maintaining information about thevalidity of intermediate values can be seen by againconsidering the program in Figure 1. Suppose wecompute the value of I as before, then decide wewant to change the value of design parameter C andrecompute I. Since the values of E, F, and G donot depend on C, there is no need to recomputethese values by executing subprograms 1, 2, and 3.Instead, it is su�cient to recompute H and I byexecuting subprograms 4 and 5.An important characteristic of the quasi-proce-dural method in addition to its e�ciency is itsmodularity. Each of the subprograms representsa separate module, and it is easy to replace oneof these subprograms without a�ecting the rest ofthe computation. As an example of how the quasi-procedural method breaks the tight coupling be-tween subprograms in a procedural program, con-sider the procedural and quasi-procedural versionsof the PASS airplane model depicted in Figures 2and 3 (see Section 5 for a description of this model).The ability to incorporate new code without having

to rewrite, or even recompile, modules correspond-ing to other parts of the computation is very impor-tant to MDO. Thus, support for modular program-ming and large reductions in computational cost arethe two main bene�ts of using the quasi-proceduralmethod.2.2 GENIEGENIE is a generic framework for engineeringcomputations.6, 9 GENIE provides a set of routinesfor linking analysis routines through the centraldatabase, which is updated under the control of thequasi-procedural method. This interface is providedvia Get and Put routines, and the computationproceeds in the following manner:1. The optimizer issues a Get operation, signal-ing a request for a valid value for the speci�edobjective or constraint.2. If no valid value is currently available, the Getroutine calls the appropriate analysis routine tocompute one.3. The analysis routine issues one or more calls toGet to load the required input variables. Inthe event that the values of these variables arenot known or are invalid, the GENIE executivecalls the appropriate analysis routine, and theprocess repeats.Thus, Get is called recursively until the values ofall required input variables are known. This methodenables quantities to be computed only as neededand without a �xed execution path. An example ofa simple analysis routine is provided in Figure 4.A major function of the GENIE framework ismaintaining information about the validity of thevalues of variables. Whenever one of the input pa-rameters for a routine is modi�ed this parameteris marked `invalid.' The quasi-procedural executivethen marks all outputs of that routine, as well asvariables directly or indirectly dependent on theseoutputs, as `invalid.'3 Automatic Di�erentiation and ADIFORIn general, multidisciplinary design optimization re-quires the derivatives of an objective function andseveral constraints with respect to many design pa-rameters. Since the function is typically describedby a complicated computer program, using a sym-bolic manipulator, such as Maple,5 is usually notan option. Similarly, developing derivative code by2
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GFigure 1: Execution outline for the quasi-procedural methodhand is unattractive, because it is complicated, te-dious, and prone to errors. This approach is also ill-suited for rapid prototyping, where parts of the sys-tem model may change several times, requiring ad-ditional code development for each new part. Con-sequently, optimization often relies on divided dif-ference approximations to the desired derivatives.However, if an inappropriate step size is used, theseapproximations can be grossly inaccurate. This hin-ders rapid prototyping, because �nding a good stepsize can be di�cult and time-consuming, and a newstep size must be determined each time the systemmodel changes. Divided di�erence approximationsmay also take a long time to compute.An alternative to all of these techniques is auto-matic di�erentiation. Automatic di�erentiation is atechnique for computing the derivatives of a func-tion expressed in the form of a computer program.8The execution of a computer program consists of thecomposition of many elementary functions (such asmultiplication, square root, and hyperbolic cosine),for each of which an analytic expression for deriva-tives is well known. So, by simply applying thechain rule@@tf(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@t g(t)���t=t0�repeatedly, it is possible to compute the derivativesof the function. For example, the code segment:y = 2*x*x + 3*x + 7z = 4 * sin(x)f = sqrt(y*y + z*z)

may be converted into:y = 2.0*x*x + 3.0*x + 7.0g_y = 4.0*x*g_x + 3.0*g_xz = 4.0 * sin(x)g_z = 4.0*g_x*cos(x)f = sqrt(y*y + z*z)g_f = -0.5 * (2.0*y*g_y + 2.0*z*g_z)/ fHere, g var represents the derivatives of var withrespect to the independent variable(s), in this casex. Thus, if g x is initialized to 1.0 (since @ x@ x = 1:0),upon exit the value of g f will be @ f@ x . If x,y,z, andf were vectors, then the appropriate initial valuefor g x would be an identity matrix and g f wouldstill represent @ f@ x . For this problem, the value ofg x is propagated through the derivative computa-tion; hence, g x is termed the seed matrix for thiscomputation.4While symbolic di�erentiation uses the rules ofcalculus in a more or less mechanical way, automaticdi�erentiation is intimately related to the programfor the computation of the function to be di�eren-tiated. By applying the chain-rule step by step tothe elementary operations executed in the courseof computing the \function," automatic di�erenti-ation computes exact derivatives (within the limitsof �nite precision arithmetic) and avoids the poten-tial pitfalls of divided di�erences. The techniqueof automatic di�erentiation is directly applicable tocomplicated functions with branches and loops.Automatic di�erentiation is amenable to modu-lar program design. The ability to control which3
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C---------------------------------------------------------------subroutine QpsfC Profile:C---------------------C This routine computes the dynamic pressure for a givenC density and velocity.C Declarations:C---------------------implicit nonereal Vknots, rho, Vfps, DynamicPresslogical AbortC Required inputs:C---------------------call GET(Vknots,'Speed' )call GET(rho ,'Density')if(Abort()) returnC Calculations:C---------------------Vfps = Vknots*1.69DynamicPress = .5 * rho * Vfps*VfpsC Repack database:C---------------------call PUT(DynamicPress,'DynamicPress')returnend Figure 4: A simple analysis routine
5



derivatives are computed through an appropriateinitialization of the seed matrix means that we donot need to know which design parameters are beingoptimized at the time the derivative module is cre-ated. Furthermore, we can process individual mod-ules separately, then connect the derivative modulesusing seed matrices. For example, suppose moduleA computes y(x) and module B computes z(y), andthat we process these modules to yield derivativemodules g A and g B. Then, if we initialize g x (theseed matrix for module g A) to an identity matrix,module g A will compute g y = @ y@ x . If we then passg y to module g B as a seed matrix, this module willcompute g z = @ z@ y � g y = @ z@ y � @ y@ x = @ z@ x directly,exactly as if z(x) were computed in a single module.Many tools have been developed to support au-tomatic di�erentiation. We used ADIFOR for ourapplication. ADIFOR is a tool that provides au-tomatic di�erentiation for programs written in For-tran 77.1, 2, 3 Given a Fortran subroutine (or collec-tion of subroutines) for a function f , ADIFOR pro-duces Fortran 77 subroutines for the computationof the derivatives of this function. Additional infor-mation on the ADIFOR system can be found on theWWW at http://www.mcs.anl.gov/adifor andhttp://www.cs.rice.edu/~adifor.4 Adding Automatic Di�erentiation to theQPM FrameworkIn order to allow GENIE to work together withADIFOR-generated code, several enhancementswere made to the GENIE framework. First, addi-tional storage in the database was allocated, so thatthe database manager would have additional spaceto store gradients. This storage is provided by an ar-ray that is parallel to the array in which the regularvariables are stored. This enables lookup, validitychecking, and other database maintenance opera-tions to be performed for both a variable and theassociated gradient at the same time. Second, theexecutive was modi�ed by adding two new routines,G Get andG Put, which return and store the val-ues of a variable and the associated gradient. Fi-nally, one of the GENIE initialization routines wasmodi�ed to perform the seed matrix initializationrequired by ADIFOR-generated code. By zeroingall elements of the array containing gradients, thensetting the Ith element of the gradient associatedwith the Ith design variable equal to 1.0, an iden-tity seed matrix is created automatically.Making these changes to the GENIE frameworkhas two important bene�ts. First, the user does nothave to deal with derivative object allocation, seed

matrix initialization, or interfaces between modules.All of these tasks are done automatically in theexecutive. Once an analysis routine has been runthrough ADIFOR, the user does not even need to beaware that automatic di�erentiation is being used.Second, creating a direct association between vari-ables and their derivative objects in the databasemeans that consistency maintenance for the deriva-tive objects can be done with no additional over-head. 5 Experimental ResultsTo examine the suitability of the QPM-AD com-bination for multidisciplinary optimization, we ap-plied the techniques to a complete aircraft model.The problem being studied is the synthesis of a twin-engined, 100-passenger, medium-range commercialtransport. The objective is to minimize direct oper-ating costs, subject to certain constraints in perfor-mance measures such as range and maximum �eldlengths. The design variables are weights, wing andtail size and shape parameters, engine size, cruisealtitudes, and takeo� ap deection.The multidisciplinary analysis routines for thePASS aircraft model were processed using ADI-FOR, which automatically replaced calls to Getand Put with calls to G Get and G Put, respec-tively. These routines were compiled and linkedwith the enhanced GENIE framework and theNPSOL optimizer.7The times required for the optimizer to �nd aminimum for various problems are reported in Ta-bles 5 and 5. Problem PASS1 involves the optimiza-tion of 14 design parameters. This problem was dif-�cult to optimize, and the observation that one de-sign variable was not critical to the design led to itsremoval, yielding problem PASS2. Problems PASS2and PASS3 involve the optimization of 13 designparameters, from di�erent starting points. Prob-lem PASS4 is the same as PASS3, but the optimal-ity tolerance is relaxed from 10�8 to 10�5. Resultsare reported for the quasi-procedural method us-ing divided di�erence approximation, abbreviatedQPM-DD, and for the augmented quasi-proceduralmethod, using derivative code generated by ADI-FOR, abbreviated QPM-AD. The ratio of QPM-DDto QPM-AD is also reported.Design optimization using the quasi-proceduralmethod is typically faster than design optimiza-tion without the quasi-procedural method.6 Be-cause the quasi-procedural method employs con-sistency maintenance and does not recompute val-ues unless necessary, a great deal of computational6



Table 1: Runtime (in seconds) for the PASSproblem on an IBM RS6000QPM-DD QPM-AD ratioPASS1 46.8 5.0 9.36PASS2 14.9 4.2 3.55PASS3 19.9 5.6 3.55PASS4 19.9 5.5 3.62Table 2: Runtime (in seconds) for the PASSproblem on a node of an IBM SP1 parallelcomputer QPM/DD QPM/AD ratioPASS1 11.7 1.2 9.75PASS2 3.7 1.0 3.70PASS3 4.9 1.3 3.77PASS4 5.0 1.2 4.17cost can be eliminated. Furthermore, the quasi-procedural method with automatic di�erentiationoften performs much better than the quasi-proce-dural method using divided di�erence approxima-tions. There are several reasons for the improve-ment:1. The hybrid mode of automatic di�erentiationimplemented by ADIFOR is often more e�-cient than divided di�erences. This is espe-cially true of programs with many assignmentstatements with complicated arithmetic expres-sions on the right hand side. The derivatives ofthese expressions are computed using the re-verse mode of automatic di�erentiation, whichrequires a constant multiple of the time re-quired to evaluate the expression. Divided dif-ferences and the forwardmode of automatic dif-ferentiation require time linear in the number ofdesign variables. This improvement in perfor-mance relative to divided di�erences has beenseen in many applications of ADIFOR to engi-neering codes, and is not speci�c to the quasi-procedural method (see [1, 2] for details).2. The perturbing of design variables needed tocompute approximate derivatives using divideddi�erences destroys the validity of the values ofvariables depending on those design variables.Thus, much of the e�ciency of the quasi-proce-dural method is lost. GENIE compensates

for this ine�ciency by employing a specializedtechnique6 to avoid recomputation as much aspossible. However, this advanced technique isinferior to the ability to compute derivativeswithout a�ecting the validity of any values, asis provided by automatic di�erentiation.3. The gradient objects used in the automatic dif-ferentiation method are vectors. Hence, AD-generated code performs mostly vector updatesthroughout the computation. Modern super-scalar computer architectures can take advan-tage of the regularity and data locality of thesevector updates. The variable perturbationsnecessary for divided di�erence approximationsmust be done one at a time and there is there-fore no way to introduce vector operations.6 ConclusionsMultidisciplinary optimization has three distin-guishing features: the system is often modelled bya large, complicated program developed by manydi�erent teams; there may be many changes to thesystem model, due either to rapid prototyping ormodel re�nement; and there is a need for deriva-tives with respect to many di�erent design parame-ters, but not necessarily the same set of parametersfrom iteration to iteration. The quasi-proceduralmethod and automatic di�erentiation can togetherprovide a framework that is well-suited for optimiza-tion problems of this nature.Large, complicated programs with multiple au-thors are most easily expressed in a modularfashion. Both quasi-procedural programming andautomatic di�erentiation support this paradigm.Changes to the system model also create a needfor modularity, as well as a mechanism for develop-ing derivative code for new modules as quickly andeasily as possible. Automatic di�erentiation is ca-pable of automatically creating derivative code fromfunction code, with minimal user intervention. Dif-ferentiating with respect to many design parame-ters creates a need for e�cient derivative computa-tion. The combination of automatic di�erentiationand the quasi-procedural method provides deriva-tive code that is much faster than standard divideddi�erence approximations. This speedup can be at-tributed to the e�ciency of the hybrid mode of auto-matic di�erentiation, the capability of quasi-proce-dural programming to avoid redundant computa-tion, the vectorizability of gradient object updates,and the synergistic e�ects of using the two meth-ods together. Furthermore, derivatives computedusing automatic di�erentiation are more accurate7



than divided di�erence approximations, which maylead to more rapid convergence for some applica-tions. The seed matrix interface of automatic dif-ferentiation also provides a convenient mechanismfor handling variation in the set of parameters withrespect to which we wish to di�erentiate.4Automatic di�erentiation and the quasi-proce-dural method are not without their limitations. Inparticular, automatic di�erentiation produces codethat computes accurate local derivatives. However,if the function being di�erentiated exhibits high fre-quency oscillations, this information might not beuseful for optimization. Derivative-free optimiza-tion techniques such as simulated annealing and ge-netic algorithms used in combinationwith the quasi-procedural method have proven e�ective in handlingsuch functions.10 However, for problems amenableto classical optimization approaches, the combina-tion of the quasi-procedural method and automaticdi�erentiation promises to be an e�ective tool formultidisciplinary optimization.AcknowledgmentsThis work was supported by the Mathematical,Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38, by the NationalAerospace Agency under Purchase Order L25935D,by the U.S. Department of Defense through an ND-SEG fellowship, and by the National Science Foun-dation, through the Center for Research on Paral-lel Computation, under Cooperative Agreement No.CCR-9120008. We thank Peter Gage for his manycontributions to the development of the combinedQPM-AD framework and for his assistance in the re-�nement of this paper. We also thank HippokratesHadjiilias for his assistance in the early stages ofthis research. References[1] C. Bischof, A. Carle, G. Corliss, A. Griewank,and P. Hovland. ADIFOR: Generating deriva-tive codes from Fortran programs. Scienti�cProgramming, 1(1):11{29, 1992.[2] C. Bischof, A. Carle, P. Khademi, andA. Mauer. The ADIFOR 2.0 system for the au-tomatic di�erentiation of Fortran 77 programs,1994. Preprint MCS-P481-1194, Mathematicsand Computer Science Division, Argonne Na-tional Laboratory, and CRPC-TR94491, Cen-

ter for Research on Parallel Computation, RiceUniversity.[3] C. Bischof, A. Carle, P. Khademi, A. Mauer,and P. Hovland. ADIFOR 2.0 user's guide.Technical Memorandum ANL/MCS-TM-192,Mathematics and Computer Science Division,Argonne National Laboratory, 1994. CRPCTechnical Report CRPC-95516-S.[4] C. Bischof and P. Hovland. Using ADIFOR tocompute dense and sparse Jacobians. TechnicalReport ANL/MCS-TM-158, Mathematics andComputer Science Division, Argonne NationalLaboratory, 1991.[5] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L.Leong, M. B. Monagan, and S. M. Watt. MapleV Language Reference Manual. Springer Ver-lag, New York, 1991.[6] P. Gage and I. Kroo. Development of the quasi-procedural method for use in aircraft con�gura-tion optimization. Technical Report AIAA-92-4693, Fourth AIAA/USAF/NASA/OAI Sym-posium on Multidisciplinary Analysis and Op-timizations, September 1992.[7] P. E. Gill, W. Murray, M. A. Saunders, andM. H. Wright. User's guide for NPSOL (version4.0): A Fortran package for nonlinear program-ming. Technical Report SOL 86-2, Departmentof Operations Research, Stanford University,Stanford, CA, 1986.[8] A. Griewank. On automatic di�erentiation. InMathematical Programming: Recent Develop-ments and Applications, pages 83{108, Ams-terdam, 1989. Kluwer Academic Publishers.[9] I. Kroo. An interactive system for aircraftdesign and optimization. Technical ReportAIAA-92-1190, AIAA Aircraft Design Confer-ence, February 1992.[10] I. Kroo, S. Altus, R. Braun, P. Gage,and I. Sobieski. Multidisciplinary optimiza-tion methods for aircraft preliminary de-sign. Technical Report AIAA-94-2543, FifthAIAA/NASA/USAF/ISSMO Symposium onMultidisciplinary Analysis and Optimization,September 1994.8


