
Image Compression Using the W-TransformWilliam D. Reynolds, Jr.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439ABSTRACTWe present the W-transform for a multiresolution signal decomposition. One of the di�erences between thewavelet transform and W-transform is that the W-transform leads to a nonorthogonal signal decomposition.Another di�erence between the two is the manner in which the W-transform handles the endpoints (boundaries)of the signal. This approach does not restrict the length of the signal to be a power of two. Furthermore, itdoes not call for the extension of the signal; thus, the W-transform is a convenient tool for image compression.We present the basic theory behind the W-transform and include experimental simulations to demonstrate itscapabilities.Keywords: W-transform, wavelet transform, multiresolution, image compression, �lter banks, subbands1 INTRODUCTIONThe concept of multiresolution signal decomposition has received considerable attention in the research com-munity over the past several years. This type of signal decomposition scheme has proved useful in a variety ofapplications, especially in signal compression and coding. One reason for its widespread use in signal compressionis that each resulting frequency band or subband of the decomposition can be quantized and encoded indepen-dently from all the other subbands. The corresponding quantization error in each subband is then constrainedto that particular band in the reconstruction of the signal.1 Another reason is that the frequency bands can bematched to some of the properties of the human visual system. Thus, each band can be quantized based on itsrelative importance to the visual system. Finally, such decompositions can be implemented e�ciently by using apyramidal algorithm.The traditional approach to multiresolution signal decomposition leads to an orthogonal wavelet representationof the signal.2 This wavelet representation has been related to an in�nitely iterated two-band �lter bank, wherethe low-pass version of the signal at each stage is split into two bands. Combined with additional work byDaubechies3 and Vetterli,4 this decomposition technique has evloved into an e�cient image compression scheme.5However, to ensure proper implementation of this scheme, certain assumptions and constraints must be enforced.First, the input image is assumed to be in�nite in length, which requires some method of signal extension (e.g.,symmetric or periodic). Second, the �lter coe�cients are assumed to form an orthonormal basis. Third, thelength of the input image is assumed to be a power of two. Finally, an additional regularity or smoothnessproperty is placed on the �lter coe�cients. This property ensures that in the limit, the �lter coe�cients leadto a continuous wavelet function. Although techniques have been developed to satisfy these assumptions,3 such
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~(b)Figure 1: Irregular (octave-band) tree structure �lter bank: (a) analysis section (b) synthesis section.techniques usually impose heavy constraints on the �lter design method.In this paper we describe the W-transform to obtain a multiresolution signal decomposition.6 This allows for abroader class of �nite impulse response (FIR) �lters possessing perfect reconstruction to be used in multiresolutionanalysis. Unlike the wavelet transform, no assumption is made on the orthogonality of the �lter coe�cients, andthe W-transform in general leads to a nonorthogonal multiresolution analysis. Also, this approach does not restrictthe length of the image to be a power of two, nor does it call for any signal extension. Thus, the W-transformbecomes a convenient tool for image compression. The regularity property is maintained in the W-transform toallow for smooth approximations to the original image.2 FILTER BANKS AND WAVELETSThis section is not intended to be an exposition on �lter banks and wavelets. For our analysis we are concernedwith their basic properties and structures. For a more detailed explanation, the works of other authors can beconsulted.7,8 In our analysis, the image is �ltered assuming separability, so we will present the results for the 1Dcase only.2.1 Filter StructureConsider the diagram in Figure 1a of an irregular tree structure �lter bank. In the diagram, h and g representlow- and high-pass analysis �lters, respectively. Only the low-pass output signal is further split into two bands,which is shown here for a three-level decomposition. In the frequency domain this tree structure leads to unequal-sized frequency bands and is sometimes referred to as an octave-band subband tree structure,9 where at eachlevel the low-pass signal represents a blurred version of the original signal and the high-pass signal represents thedetail (edge) information. We also note that the �lter bank is critically sampled, since the decimation factor (2)is equal to the number of subbands at each level.This octave-band tree structure is also used to perform an orthogonal wavelet decomposition.10 Observethat as we travel down the tree, the subband bandwidth at each stage decreases, while the corresponding timefunction width increases. That is, for a large number of decomposition levels we increase the frequency resolutionand decrease the time resolution, and vice versa. This fundamental time-frequency trade-o� is what the wavelettransform o�ers in a signal decomposition scheme. The property that sets the wavelet transform aside from thesubband coding techniques is the manner in which the �lter coe�cients are selected. Apart from this di�erence,the two techniques are essentially equivalent. In our analysis, the W-transform also uses this type of �lter bank



structure; here, the focus will be on the properties of the �lter coe�cients.2.2 Filter PropertiesIn this section we discuss some properties of the �lter coe�cients used in the implementation of the wavelettransform. Note that these coe�cients could also be used in subband coding systems. One property the �ltercoe�cients can possess is that of perfect reconstruction (PR). This ensures that after the synthesis operations(assuming no quantization), we can reconstruct the original signal without any aliasing or distortion. PR is astandard property in most subband coding systems, although there are some cases for which this property doesnot hold.11Another property is orthogonality. In this context, orthogonality means that the analysis and synthesis �ltersare the same. From Figure 1, this means implies that h = ~h and g = ~g. In most subband coding systems,orthogonality is not critical to the operation of the system, although in the �lter design method only one set of�lters needs to be determined. This type of �lter bank is sometimes referred to as a paraunitary �lter bank.10Linear phase is another desired property. Although both linear phase and orthogonality cannot be realizedsimultaneously, having linear phase �lters ensures that the decomposition does not result in any nonlinear phasedistortions of the signal.Finally, we consider the property of regularity.3 Previously, the concept of regularity was not an explicit designcriterion for subband systems; however, it is an important criterion for the design of wavelet �lters. Regularityhas been shown to be related to the number of zeros located at z = �1 on the unit circle. In the next section,we show how the �lter bank in Figure 1a leads to an orthogonal wavelet decomposition. This will be followed bythe description of the W-transform. 3 W-TRANSFORM3.1 Analysis of Filter BankBefore we present the theory behind the W-transfrom, we follow the the procedure as described by Vetterliand Herley4 for the analysis of the �lter bank in Figure 1a. Assuming the input x is in�nite and h and g are FIR�lters, we can write the �lter matrices H and G asH = 26666666664 . . . hN�1 hN�2 : : : h1 h0hN�1 hN�2 : : : h1 h0. . .hN�1 hN�2 : : : h1 h0 . . . 37777777775 (1)



and G = 26666666664 . . . gN�1 gN�2 : : : g1 g0gN�1 gN�2 : : : g1 g0. . .gN�1 gN�2 : : : g1 g0 . . . 37777777775 ; (2)where H and G are in�nite in length. The rows of H and G are shifted over by two because of the decimationoperation. If h and g are assumed to form an orthonormal set, thenHHT = I (3)and GGT = I; (4)where I is the identity matrix and the superscript T represents transposition. Also, we have thatGHT = 0: (5)Therefore, H and G are orthogonal to each other; and thus they span two disjoint signal spaces. Furthermore,the inverses of H and G are H�1 = HT and G�1 = GT . The projection of x onto the subspace spanned by Hand G is given by Hx and Gx, respectively. Since the projections of x are onto two orthogonal subspaces, wehave that V�1 = V0 �W0; (6)where V�1 is the original signal space, V0 is the subspace spanned by H, and W0 is the subspace spanned by G.This is equivalent to �ltering x at the �rst level of the �lter bank. By iterating this procedure for subsequentlevels, we obtain Vj�1 = Vj �Wj ; j = 0; 1; : : :, (7)Vj � Vj�1; j = 0; 1; : : :, (8)and V�1 = W0 �W1 � : : : ; (9)where j is the number of decomposition levels. This particular type of decomposition of the signal space V�1 hasbeen shown to be an orthogonal multiresolution signal decomposition for discrete sequences.4 Moreover, it leadsto an orthogonal wavelet decomposition.2 Reconstruction of the signal, x, is performed by the synthesis sectionof the �lter bank in Figure 1b.3.2 W-matrixIn the above discussion, we made certain assumptions about the input signal and �lter coe�cients. Speci�cally,we assumed the input to be in�nite in length. In practical applications this assumption results in extending theinput either periodically or symmetrically. Although the assumption of periodicity for the entire image is notunreasonable, assuming that all local features of an image are periodic can be an unreasonable assumption.15Another assumption that was made concerned the orthogonality of the �lter coe�cients. As a result, the �ltermatrices were orthogonal to each other, thereby leading to an orthogonal decomposition. Also, traditional wavelettheory assumes that the input image is a power of two (i.e, 2N � 2M ).
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DFigure 2: Vector diagram of the W-transformIn the case of the W-transform, we do not make any of the above assumptions. The W-transform treats thesignals as �nite and does not constrain the length to be a power of two. Note that, although we do not restrictthe �lter coe�cients to form an orthogonal basis, we do not disregard the possibility. Hence, the W-transformleads to a nonorthogonal multiresolution signal decomposition.6 Feauveau12 also considers a nonorthogonalmultiresolution decomposition. However, we avoid the rigorous mathematical analysis and provide a simpleprocedure for such a decomposition. This idea can be explained by considering the diagram in Figure 2. Inthe �gure, S represents the signal vector, and the vector � (scaling function) represents an approximation tothe signal vector S. The orthogonal component to � is the vector  , which represents the traditional waveletdecomposition. The nonorthogonal component to � is the vector  W , which corresponds to the wavelet used inthe W-transform. The component  D represents the di�erence or the amount of information lost in using thenonorthogonal component. Although we have not obtained a quantitative measure for the loss in information,this diagram was meant to convey the concept of the W-transform.Now let us reconsider the �lter matrix in (1) and (2). For illustration purposes, let the length of the �lters hand g be N = 4 and let the signal, x, be an even �nite length signal. Then we have thatH = h3 266666664 h2 h1 h0h3 h2 h1 h0h3 h2 h1 h0. . .h3 h2 h1 h0h3 h2 h1 377777775 h0 ; (10)where the coe�cients h0 and h3 represent the coe�cients that are excluded from the matrix because of the �niteextension of the input. To include this coe�cients in the matrix, we add them back to the nearest neighborhoodthat is retained. Thus, we obtain the following matrixH = 266666664 h3 + h2 h1 h0h3 h2 h1 h0h3 h2 h1 h0. . .h3 h2 h1 h0h3 h2 h1 + h0 377777775 : (11)The G matrix is constructed in a similar fashion. Next, we interleave the rows of the H and G matrices to obtain



the W-matrix6 W = 2666666666666666664 h3 + h2 h1 h0g3 + g2 g1 g0h3 h2 h1 h0g3 g2 g1 g0h3 h2 h1 h0g3 g2 g1 g0. . .h3 h2 h1 h0g3 g2 g1 g0h3 h2 h1 + h0g3 g2 g1 + g0
3777777777777777775 : (12)This is considered as the even-sized W-matrix. For odd-length signals the odd-sized W-matrix is given byW = 266666666666666666664

h3 + h2 h1 h0g3 + g2 g1 g0h3 h2 h1 h0g3 g2 g1 g0h3 h2 h1 h0g3 g2 g1 g0. . .h3 h2 h1 h0g3 g2 g1 g0h3 h2 h1 h0g3 g2 g1 g0h3 h2 + h1 + h0
377777777777777777775 : (13)The W-transform of the signal is given by y =Wx: (14)Observe that for an odd-sized W-matrix, the resulting low-pass signal will contain one more sample than thehigh-pass signal. For either case, the length of the output is always equal to the length of the input. For othertechniques dealing with arbitrary-sized signals, refer to Barnard.11 In general,W�1 6=WT and the decompositionis not orthogonal. However, for image compression purposes, only the inverse of the transform is necessary.13Note that for nonorthogonal matrices, if the condition number of the matrix is large, then small data impuritiesmay be present in the transformed signal. It turns out that the W-matrices have moderate condition numbers.6In the 2D case, we assume separability and apply the 1D W-transform to the rows and then to the columns ofthe image. An example of a single-level decomposed image using the W-transform is depicted in Figure 3. Thedecomposition results in four subbands. The subbands represent low-pass (upper-left), horizontal (upper-right),vertical (lower-left), and diagonal (lower-right) frequency information. In the analysis that follows, only the low-pass subband is decomposed further, which is equivalent to the decomposition performed by the �lter bank inFigure 1. Thus, the W-transform can also be thought of as a subband coding scheme.Kwong and Tang6 provide a theorem for generating the coe�cients of the W-matrix. It is shown that thecoe�cients exhibit compact support of length 4 and symmetry and that the associated scaling function is relativelysmooth. Also the corresponding wavelet has vanishing moments up to order 2. However, Kwong and Tang makeno reference to whether or not the coe�cients satisfy conditions for PR. Therefore, our goal here is to showthat FIR �lters having PR, but not necessarily orthogonality, can be used in the W-matrix, which will lead toa nonorthogonal multiresolution analysis. An advantage of relaxing the orthogonality constraint is that linearphase �lters can be used in the analysis, thereby ensuring no nonlinear phase distortions.



(a) (b)Figure 3: Plane: (a) original; (b) decomposed at one level using the W-transform, which results in 4 subbands. Theupper left subband represents a low-pass version of the original, the upper-right represents horizontal frequencycomponents, the lower-left represents vertical frequency components, and the lower-right represents diagonalfrequency components. 4 EXPERIMENTSThe W-transform was tested on several di�erent monochrome images using di�erent �lter lengths and levelsof decompositions. The subbands of the transformed image then quantized to yield a desired bit rate. Naturally,this process introduces quantization errors in each subband. However, by properly allocating the number ofquantization levels (or bits), these errors can be made almost imperceivable to the human viewer. The numberof bits per subband were allocated based on the bit allocation scheme given by Akansu and Liu.14 Once thebits have been allocated, the subbands are quantized by using di�erential pulse code modulation (DPCM) withuniform quantization.16 By using DPCM, the overall bit rate can be achieved while allowing the quality of thereconstructed image to be maintained.The design of the �lter coe�cients was based on the spectral factorization method.7,10 This method involvesdesigning a half-band low-pass prototype �lter and then factoring the prototype �lter into two spectral factors.That is, let T (z) represent a half-band low-pass �lter and then factor T (z) asT (z) = H0(z)H1(�z); (15)where H0(z) and H1(z) represent low- and high-pass �lters, respectively. If T (z) has linear phase, the spectralfactors H0(z) and H1(z) also have linear phase. Observe that because of the numerous ways to factor T (z), H0(z)and H1(z) must be chosen with care to produce desirable frequency responses.7 We considered two methods forthe design of the prototype T (z). The �rst method used the Lagrange interpolation formula, and the secondused the Parks-McClellan algorithm.10 Both design methods yield linear phase �lters having some degree ofregularity. The spectral factors H0(z) and H1(z) from the Lagrange method resulted in even-length �lters, whilethe Parks-McClellan method resulted in odd-length �lters. Also, H0(z) and H1(z) satisfy the conditions forperfect reconstruction and in general do not satisfy the orthogonality condition.10 In order to keep the spectralfactors to a reasonable amount, the length of the �lters used were N = 8; 10 for the Lagrange method andN = 9; 11 for the Parks-McClellan method. 5 RESULTSThe results from the experiments are shown in Figures 4, 5, and 6. The size of each of the original images are256� 256 at 8 bits per pixel (bpp). The bit rate, number of decomposition levels, and the peak signal-to-noise



ratio (PSNR) are given along with the reconstructed image. The PSNR is determined byPSNR (dB) = 10 log10 (255)212562 P256i=1P256j=1 [x(i; j)� x̂(i; j)]2 ; (16)where x is the original image and x̂ is the reconstructed image. Figure 4 shows the reconstructed image of atwo-level multiresolution decomposition. The �lters used were determined from the Lagrange method and are oflength N = 8; 10. Figure 5 shows the reconstructed image of a three-level multiresolution decomposition usingthe �lters derived from the Parks-McClellan method. The �lter lengths in this case are N = 9; 11. Figure 6 showsthe reconstructed image for a three-level decomposition using the �lters of length N = 8, N = 10, and N = 11.The bit rate for all three decompositions is 1:062 bpp. All simulations were implemented using MATLAB.176 DISCUSSIONS AND CONCLUSIONSWe have presented the W-transform for a multiresolution signal decomposition. The W-transform resultedin a nonorthogonal decomposition of the input as compared with the orthogonal decomposition of the wavelettransform. The W-transform was also shown to be equivalent to an irregular tree �lter bank where the inputimage is assumed to be �nite and the endpoints of the image are handled as described in Section (3.2). Eventhough only even-sized images where presented in the results, a method for handling odd-sized images was alsodescribed in Section (3.2). Furthermore, we demonstrated that FIR �lters possessing PR, which in general do notform an orthonormal basis, can be used as �lter coe�cients in the W-transform. Two methods for determiningthe �lter coe�cients were also given.The reconstructed images for bit rates in the range of 1:5 � 1:3 bpp are visually indistinguishable from theoriginal images. For bit rates in the range of 1:3� 0:75 bpp some visible distortions are noticeable. Mainly, thereis the presence of granular noise, which is inherent in using DPCM. However, this type of visual distortion ismuch less annoying to the visual system than the blocky e�ects that result from conventional DCT compressionschemes. For bit rates below 0:75 bpp, the edges of the reconstructed image start to become blurred. This isevident from Figure 5d. Overall, the reconstructed images using the W-transform are subjectively acceptable.7 ACKNOWLEDGMENTSThe author thanks Man Kam Kwong for his helpful discussions on wavelet theory, multiresolution analysis andfor the diagram in Figure 2. This work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.8 REFERENCES[1] Hamid Gharavi and Ali Tabatabai, \Sub-Band Coding of Monochrome and Color Images", IEEE Trans. onCircuits and Systems, Vol. 35, No. 2, pp. 207{214, February 1988.[2] Stephane G. Mallat, \A Theory for Multiresolution Signal Decomposition: The Wavelet Representation",IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674{693, July 1989.
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(a) (b)
(c) (d)Figure 4: Clock: (a) original 8-bit image; (b) 1.5 bpp, PSNR = 38:66; (c) 1.125 bpp, PSNR = 37:77; and (d)0.75 bpp, PSNR = 32:76. The �lters used were designed using the Lagrange formula with (b), (c) of lengthN = 8, and (d) of length N = 10. The number of decomposition levels is L = 2.



(a) (b)
(c) (d)Figure 5: Plane: (a) original 8-bit image; (b) 1.312 bpp, PSNR = 36:68; (c) 1.078 bpp, PSNR = 35:18; and (d)0.5625 bpp, PSNR = 26:73. The �lters were designed using the Parks-McClellan method with (b), (c) of lengthN = 9 and (d) of length N = 11. The number of decomposition levels is L = 3.



(a) (b)
(c) (d)Figure 6: Car: (a) original 8-bit image; (b) N = 8; (c) N = 10; (d) N = 11. The bit rate, PSNR, and number ofdecomposition levels for (b), (c), and (d) are 1.062 bpp, PSNR = 33:03, and L = 3.


