
Fleckinger{Pell�e, Jacqueline; Kaper, Hans G.Gauges for the Ginzburg-Landau Equations of SuperconductivityThis note discusses some gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity.The equations model the state of a superconducting sample in a magnetic �eld near the critical temperature. Anytwo solutions related through a \gauge transformation" describe the same state and are physically indistinguishable.This \gauge invariance" can be exploited for analytical and numerical purposes.1. The Ginzburg-Landau Model of SuperconductivityIn the Ginzburg-Landau theory of phase transitions [1], the state of a superconducting material near the criticaltemperature is described by a complex-valued order parameter  , a real-valued vector potential A, and, when thestate changes with time, a real-valued scalar potential �. The role of � di�ers from that of  and A: the latterare predictive variables, whose evolution is governed by di�ferential equations; the former is more like a Lagrangemultiplier. After suitable nondimensionalization, the equations and boundary conditions satis�ed by  and A are�� @@t + i��� = �� i�r+A�2 + �1� j j2� in 
� (0;1); (1)@A@t +r� = �r�r�A + Js +r�H in 
� (0;1); (2)� i�r+A� �n = � i�
 on @
� (0;1); (3)(r�A �H) � n = 0 on @
 � (0;1): (4)Here, Js = 12i� ( �r �  r �)� j j2A = �Re � �� i�r+A� � : (5)The domain 
 corresponds to the region occupied by the superconducting material. We assume that it is bounded,
 � IRD with D = 2 or D = 3, and that its boundary @
 is su�ciently regular; n denotes the outer unit normal to@
. As usual, r � grad, r� � curl, r� � div, and r2 = r � r � �. Furthermore, i is the imaginary unit, and asuperscript � denotes complex conjugation.The parameters of the model are �, a (dimensionless) friction coe�cient; �, the (dimensionless) Ginzburg-Landauparameter; and 
, a nonnegative parameter, which is zero if the superconducting material is surrounded by vacuum.The vector �eld H is a given applied magnetic �eld ; in practice, H is either time-independent or time-periodic.The quantity Js is the so-called supercurrent or, more correctly, supercurrent density. The supercurrent is a phe-nomenological quantity, which is thought of as a 
ux of moving \superelectrons." The superelectrons (or Cooperpairs), whose density is ns = j j2, are responsible for the superconducting properties of the material. For example,the supercurrent prevents a magnetic �eld from penetrating a superconducting region.Note that E = �@A=@t �r� is the electric �eld and B = r�A the magnetic induction. Therefore, Eq. (2) maybe viewed as Amp�ere's law, r � B = J, where the total current J is the sum of a \normal" current Jn = E,the supercurrent Js, and the transport current Jt = r�H. The normal current obeys Ohm's law; the \normalconductivity" coe�cient is equal to one in the chosen system of units.The system of Eqs. (1){(5), with appropriate initial conditions, constitutes the time-dependent Ginzburg-Landau(TDGL) model of superconductivity. It was �rst proposed by Schmid [2] and subsequently obtained as an asymp-totic limit of the microscopic Bardeen-Cooper-Schrieffer (BCS) model of superconductivity by Gor'kov andEliashberg [3]. Details can be found in the physics literature; standard references are Abrikosov [4], De-Gennes [5], and Tinkham [6]. The time-independent trivial solution ( = 0, r�A = H, � constant) representsthe superconductor in the normal state, where the magnetic �eld penetrates the sample uniformly and the materialhas lost all superconducting properties.



2. Gauge InvarianceEquations (1) and (2) require initial conditions for the order parameter and the vector potential. Here, the conceptof gauge invariance enters. Because the physical state of the system at t = 0 is completely determined by themagnetic induction B, the superelectron density ns, and the supercurrent Js, there is a signi�cant degree of freedomin the choice of initial data for  and A. In fact, if the pair ( 0;A0) properly speci�es the physical initial state,then so does any other pair ( 00;A00) that is related to ( 0;A0) by a transformationG�0 : ( 0;A0) 7! ( 00;A00) = � 0ei��0 ;A0 +r�0� : (6)Here, �0 can be any (su�ciently smooth) real-valued function of position. Equation (6) is the gauge transformationfor the stationary Ginzburg-Landau model.There is a similar, though more complicated, gauge transformation for the time-dependent Ginzburg-Landaumodel, G�: ( ;A; �) 7! ( 0;A0; �0) = � ei��;A+r�; �� @�@t � : (7)Here, � can be any (su�ciently smooth) real-valued function of position and time. Mathematically, gauge invariancere
ects a lack of uniqueness. The TDGL model de�nes only an equivalence class of solutions, and by choosing a par-ticular gauge � we select a representative from this class. The physical relevance of gauge invariance is the following.At each instant, the macroscopic state of the superconductor is entirely speci�ed in terms of the electromagneticvariables E and B, the superelectron density ns, and the supercurrent Js. These quantities are invariant under thegauge transformation (7), so the states ( ;A; �) and ( 0;A0; �0) are macroscopically indistinguishable. The choiceof a particular gauge � does not a�ect the speci�cation of the physical state of the system.3. Gauge ChoicesThe simplest gauge is the \zero-electric potential gauge," where the scalar potential is eliminated altogether. (Thescalar � is also known as the electric potential.) Given the solution ( ;A; �) of the TDGL model at any time t > 0,one obtains the appropriate gauge � at t by integrating the initial-value problem@�@t = � in 
� (0;1); �jt=0 = �0 in 
; (8)from 0 to t, starting from arbitrary initial data �0. Then one changes to the image ( 0;A0; �0) of ( ;A; �) underthe gauge transformation G�. As a result, �0 = 0. In the zero-electric potential gauge, Eqs. (1) and (2) reduce to�@ @t = �� i�r+A�2 + �1� j j2� in 
� (0;1); (9)@A@t = �r�r�A + Js +r�H in 
� (0;1); (10)The boundary conditions (3) and (4) remain the same. The zero-electric potential gauge was used by Du [7] to provethe existence and uniqueness of strong solutions of the TDGL model for bounded initial data. It is also the gaugeadopted in the kernel of the TDGL code used at Argonne [8, 9] for the numerical simulation of vortex dynamicsin type-II superconductors.Another gauge, popular for analytical purposes, is the \Coulomb gauge," where the vector potential is divergence-free at all times. If ( 0;A0) are the initial data given with Eqs. (1) and (2), one determines the initial gauge �0 bysolving the boundary value problem��0 = �r �A0 in 
; r�0 � n = �A0 � n on @
; (11)and changes to the image ( 00;A00) of ( 0;A0) under the gauge transformation G�0. At any subsequent time t > 0,one takes the solution ( ;A; �) of the TDGL model, solves the boundary value problem�� = �r �A in 
; r� � n = �A �n on @
; (12)and changes to the image ( 0;A0; �0) of ( ;A; �) under the gauge transformation G�. As a result, A00 and A0 aredivergence-free. The procedure amounts e�ectively to integrating Eqs. (1) and (2), together with the boundary value



problem �� = r � Js in 
� (0;1); r� � n = 0 on @
 � (0;1); (13)always subject to the constraint r �A = 0 in 
 and the boundary conditionsr � n = �
 ; A � n = 0; (r�A�H) � n = 0; (14)on @
. Of course, the initial data ( 0;A0) must satisfy the constraint r �A0 = 0.The equations of the TDGL model in the Coulomb gauge are formally similar to the Navier-Stokes equationsfor an incompressible 
uid. This similarity was exploited in recent work by Tang and Wang [10], who proved theexistence of strong solutions in two- and three-dimensional domains (D = 2; 3) and weak solutions in two-dimensionaldomains (D = 2), as well as the existence of a global attractor. Because the Coulomb gauge requires the solutionof the elliptic boundary value problem (13) for the scalar potential at each time step, it is less suitable for numericalpurposes.It is not possible to have both the zero-electric potential gauge and the Coulomb gauge satis�ed at all times. Evenwhen the initial data are divergence-free, the solution obtained in the zero-electric potential gauge does not remainon the divergence-free manifold. To see this, take the divergence of Eq. (10): if div A is zero, it must be the casethat div Js = 0. But from Eq. (5) we obtain the expression div Js = (2i�)�1( �@t �  @t �), which is zero if andonly if  = 0 or the phase of  is constant in time.It is, however, possible to couple � to div A, in such a way that, if one vanishes, then so does the other. Thestandard gauge for this purpose is the \� = �div A gauge," which maintains the identity � + div A = 0 at alltimes. More generally, one can choose a gauge in which a linear identity of the type � + ! div A = 0 is maintainedfor some suitable constant !, not necessarily equal to one. Such a gauge is obtained by taking for � the solution ofthe boundary value problem@�@t � !�� = �+ ! div A in 
� (0;1); r� �n = �A � n on @
 � (0;1): (15)The initial condition �jt=0 = �0 can be chosen arbitrarily. Usually, �0 is taken so the initial data are divergence-free(cf. Du [7]), but this choice is in no way necessary. In fact, there is a distinct advantage in leaving �0 undetermined.The extra degree of freedom can be used, for example, to ensure that the vector potential becomes divergence freein the limit as t!1.In the � = �! div A gauge, Eqs. (1) and (2) reduce to�@ @t = �� i�r+A�2 + i!�� (div A) + �1� j j2� in 
� (0;1); (16)@A@t = �r�r�A+ !r(div A) + Js +r�H in 
� (0;1): (17)The boundary conditions are the same as in the Coulomb gauge, cf. Eq. (14). The choice of ! a�ects the way thedivergence of A is accounted for. The e�ect is more readily appreciated if one writes Eqs. (16) and (17) in a slightlydi�erent form. Because of the identities�� i�r+A�2 = 1�2�� 2i�A � r � i� (div A) � jAj2; �r�r�A = �A�r(div A); (18)Eqs. (16) and (17) are the same as�@ @t � 1�2� = �2i�A � r + i� (!��2 � 1)(div A) � jAj2 + (1 � j j2) in 
� (0;1); (19)@A@t ��A = (! � 1)r(div A) + Js +r�H in 
 � (0;1): (20)These equations show two obvious choices for !: ! = 1 and ! = 1=(��2). In the former case, div A contributes onlyto the evolution of the order parameter; in the latter, only to the evolution of the vector potential. But as Eqs. (19)and (20) show, mixed arrangements are also possible. Tak�a�c [11] used the standard � = �div A gauge (! = 1) toshow that the TDGL model generates a dynamical process in a Cartesian product of fractional Sobolev spaces. Aswe will show in a forthcoming article [12], the same methods apply in the more general setting proposed here.The equations (16) and (17), combined withy the boundary conditions (14), are related to the gradient 
ow of an



energy functional. In fact, let the Ginzburg-Landau free energy be de�ned by the integralE[ ;A] =Z
"����� i�r+A� ����2 + 12(1 � j j2)2 + ! (div A)2 + jr�A�Hj2# dx+Z@

 ���� i� ����2 d� (x):(21)The �rst variations of E with respect to  � and A are�E� � = � i�r+A�2  � �1� j j2� ; �E�A = 2 (r�r�A � !r(div A) � Js �r�H) : (22)Furthermore, if the constraint A � n = 0 is imposed on @
, the natural boundary conditions associated with E arer � n = �
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