
PASSION Runtime Library for the Intel Paragon�Alok Choudhary Rajesh Bordawekar Sachin More K. SivaramyDept. of Electrical and Computer EngineeringSyracuse University, Syracuse, NY 13244choudhar, rajesh, ssmore, sivaram @cat.syr.eduRajeev ThakurMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439thakur@mcs.anl.govAbstractWe are developing a runtime library which pro-vides a number of routines to perform the I/O re-quired in parallel applications in an e�cient and con-venient manner. This is part of a project called PAS-SION, which aims to provide software support forhigh-performance parallel I/O at the compiler, run-time and �le system levels. The PASSION RuntimeLibrary uses a high-level interface which makes it easyfor the user to specify the I/O required in the program.The user only needs to specify what portion of the datastructure needs to read from or written to the �le, andthe PASSION routines will perform all the necessaryI/O e�ciently. This paper gives an overview of thePASSION Runtime Library and describes in detail itshigh-level interface.1 IntroductionParallel computers are becoming increasingly pow-erful day by day. This has made possible the solutionof many problems which were previously consideredintractable. These include large scale applications inphysics, chemistry, biology, engineering, medicine andother sciences, as well as in other areas such as infor-mation technology. Many of these applications dealwith large data sets and hence have signi�cant I/O re-quirements. Improvements in the I/O performance of�This work was supported in part by a grant from Intel SSDand NSF Young Investigator Award CCR-9357840. This workwas performed in part using the Intel Paragon and TouchstoneDelta Systems operated by Caltech on behalf of the Concur-rent Supercomputing Consortium. Access to this facility wasprovided by CRPC.yDept. of Computer and Information Science, SyracuseUniversity

parallel computers have not kept pace with improve-ments in their computation and communication ca-pabilities. This results in the I/O system being thebottleneck in many cases.There are a number of reasons why I/O may beneeded in a parallel program [7]. In many applica-tions, all the data required by the program cannot �tin main memory and so has to be stored in �les ondisks. Such programs are called out-of-core programs.In out-of-core programs, I/O is needed to access theentire data set. I/O may also be required in in-coreprograms where all the data can �t in main memory.For example, it may be necessary to read input datafrom �les at the start of the computation and writeresults to �les at the end of the computation. Duringthe computation, it may be necessary to periodicallywrite data to �les to monitor the progress of the so-lution. In applications which run for a long time, itmay be necessary to checkpoint (stop) the computa-tion at some point and restart it later. This requiressaving the contents of the data structures in �les. I/Omay also be required for the purpose of debugging aparallel program.We are working on a project called PASSION (Par-allel and Scalable Software for Input-Output) whichaims to provide software support for high-performanceparallel I/O on distributed memory parallel comput-ers [1]. PASSION provides support at the compiler,runtime and �le system levels. The PASSION Run-time Library provides a number of optimized routinesto perform the I/O required in parallel applicationsin an e�cient manner. It uses a high-level interfacewhich makes it easy for the user to specify the I/O re-quired in the program. The interface also enables theuse of collective I/O in which processors cooperate to



perform I/O e�ciently. The user is freed from the bur-den of explicitly manipulating�le pointers, calculating�le o�sets, managing bu�ers and other tedious tasksassociated with using the low-level interface providedby parallel �le systems. This paper gives an overviewof the PASSION Runtime Library and describes indetail its high-level interface.The rest of this paper is organized as follows. Sec-tion 2 gives a brief overview of the PASSION RuntimeLibrary. The need for providing high-level interfacesfor parallel I/O is explained in Section 3. Section 4 de-scribes the various data structures used by the PAS-SION library. The interface used by several of thePASSION routines is described in Section 5, followedby Conclusions in Section 6.2 Overview of the PASSION RuntimeLibraryThe PASSION Runtime Library provides routinesto e�ciently perform the I/O required in parallel ap-plications, both in-core as well as out-of-core. It sup-ports a loosely synchronous Single Program MultipleData (SPMD) programming model. The PASSION li-brary uses a simple high-level interface, which is a levelhigher than any of the existing parallel �le system in-terfaces, as shown in Figure 1. For example, the useronly needs to specify what section of the array needs tobe read in terms of its lower-bound, upper-bound andstride in each dimension, and the PASSION RuntimeLibrary will fetch it in an e�cient manner. PASSIONthus provides a simple and portable level of abstrac-tion above the native parallel �le system provided onthe machine. The PASSION library is designed to ei-ther be directly used by application programmers, or acompiler could translate out-of-core programs writtenin a high-level data-parallel language like High Per-formance Fortran (HPF) to node programs with callsto the library for I/O. A number of optimizations,such as two-phase I/O, data sieving, data prefetch-ing and data reuse, have been incorporated in the li-brary [11, 12, 10].2.1 Architectural ModelThe architectural model assumed by PASSION isthat of any general distributed memory computer inwhich the processors are connected together in somefashion. The system is assumed to be provided with aset of disks and I/O nodes. The I/O nodes can eitherbe dedicated processors or some of the compute nodesmay also serve as I/O nodes. Each processor may ei-ther have its own local disk or all processors may sharethe set of disks. The I/O subsystem may have a sepa-rate interconnection network or it can share the samenetwork which connects the processors together. Thusthe architectural model of PASSION conforms to thatof any of the commercially available parallel comput-ers. The PASSION library was originally implemented

on the Intel Paragon and Touchstone Delta systems.It is currently being ported to other machines.2.2 Data Storage and Access ModelsIn out-of-core programs, all the data required bythe program cannot �t in main memory, and so hasto stored in �les on disks in some fashion. PASSIONsupports two basic models for storing and accessingdata, called the Local Placement Model (LPM) andthe Global Placement Model (GPM).2.2.1 Local Placement Model (LPM)In this model, the global array is divided into localarrays belonging to each processor. Since the local ar-rays are out-of-core, they have to be stored in �les ondisks. The local array of each processor is stored in aseparate �le called the Local Array File (LAF) of thatprocessor. The node program explicitly reads fromand writes to the �le when required. The simplest wayto view this model is to think of each processor as hav-ing another level of memorywhich is much slower thanmain memory. If the I/O architecture of the system issuch that each processor has its own disk, the LAF ofeach processor will be stored on the disk attached tothat processor. If there is a common set of disks for allprocessors, the LAF will be distributed across one ormore of these disks. In other words, we assume thateach processor has its own logical disk with the LAFstored on that disk. The mapping of the logical disk tothe physical disks depends on how much control theparallel �le system provides the user. At any time,only a portion of the local array is fetched and storedin main memory. The size of this portion depends onthe amount of memory available. The portion of thelocal array which is in main memory is called the In-Core Local Array (ICLA). All computations are per-formed on the data in the ICLA. Thus, during thecourse of the program, parts of the LAF are fetchedinto the ICLA, the new values are computed and theICLA is stored back into appropriate locations in theLAF.2.2.2 Global Placement Model (GPM)In this model, the global array is stored in a single �lecalled the Global Array File (GAF), and no local ar-ray �les are created. The global array is only logicallydivided into local arrays in keeping with the SPMDprogramming model. But, there is a single global ar-ray on disk. The PASSION runtime system fetchesthe appropriate portion of each processor's local arrayfrom the global array �le, as requested by the user.The advantage of the Global Placement Model is thatit saves the initial local array �le creation phase inthe Local Placement Model. In addition, if the dis-tribution of the array among processors needs to be



Node + MP

InterfaceInterface

PASSION RUNTIME SYSTEM

Parallel File System

Message Passing System

HPC++HPF/

Figure 1: Software Architecturechanged during program execution, an explicit redis-tribution of the out-of-core data is not required. Thedisadvantage is that each processor's data may not bestored contiguously in the GAF, resulting in multipleread requests and higher I/O latency time. However,this drawback can be overcome to a large extent byusing the Two-Phase Method for I/O [6, 12]. Also,in the Global Placement Model, explicit synchroniza-tion is required when a processor needs to access datathat may have been previously modi�ed by anotherprocessor.2.3 OptimizationsA number of optimizations have been incorporatedin the PASSION Runtime Library. We brie
y describesome of them below. Further details and performanceresults are given in [11, 12, 10].2.3.1 Collective I/O Using a Two-PhaseMethodIn data parallel programs, all processors perform sim-ilar operations but on di�erent data sets. Hence ifone processor needs to read data from disks, it is verylikely that a group of processors or maybe all proces-sors need to read data from disks at about the sametime. This makes it possible for the requesting pro-cessors to cooperate in reading or writing data in ane�cient manner, which is known as collective I/O. Ifprocessors perform I/O independently, it may result ina large number of low granularity requests which may

arrive from di�erent processors in any order. On theother hand, if processors use collective I/O, they cancooperate among themselves to perform I/O e�cientlyin large chunks and in the right order.The PASSION library performs collective I/O us-ing a Two-Phase Method [6, 12]. This can be usedto read/write either entire arrays or sections of ar-rays with/without strides in each dimension. In theTwo-Phase Method, I/O is done in two phases. Inthe �rst phase, processors cooperate to read data inlarge contiguous chunks. A dynamic scheme is usedto partition the I/O workload among processors, de-pending on the access requests [12, 10]. In the secondphase, data is redistributed among processors usinginterprocessor communication, so that each processorgets the data it requested. The main advantages ofthe Two-Phase Method are:-� It results in high granularity data transfer be-tween processors and disks.� It makes use of the higher bandwidth of the pro-cessor interconnection network.2.3.2 Data SievingAll PASSION routines for reading or writing datafrom/to disks support the reading/writing of regu-lar sections of arrays with strides. For example, aprocessor may want to read a section of an out-of-core two-dimensional array given by its lower-bound,



upper-bound and stride in each dimension (l1 : u1 :s1; l2 : u2 : s2). The interfaces provided by most of theparallel �le systems at present do not support stridedaccesses. Hence the only way of reading this array sec-tion using a direct method is to explicitly move the �lepointer to each element and read it individually. Thisrequires as many reads as the number of elements inthe section. The major disadvantage of this methodis the large number of I/O calls and low granularityof data transfer. Since I/O latency is very high, thismethod proves to be very expensive [11].An optimization called data sieving is used in PAS-SION to read/write strided data e�ciently. For read-ing a strided section, instead of reading only the re-quested elements, large contiguous chunks of data areread at a time into a temporary bu�er in main mem-ory. This includes unwanted data. The useful data isextracted from the bu�er and passed on to the call-ing program. The amount of data read in each readoperation depends on the amount of temporary spaceavailable. A similar method is used for writing reg-ular sections, except that this requires an extra readbefore the write, to avoid overwriting any data alreadypresent in the �le. The advantage of data sievingis that it results in higher granularity data transfer,though extra data is also transferred in the process.We found that data sieving provides considerable per-formance improvement [11, 10].2.3.3 Data PrefetchingIn both the Local and Global Placement Models, pro-gram execution proceeds by fetching data from a �le,performing the computation on the data and writingthe results back to a �le. This is repeated on otherdata sets till the end of the program. Thus I/O andcomputation form distinct phases in the program. Aprocessor has to wait while each data set is being reador written as there is no overlap between computa-tion and I/O. The time taken by the program can bereduced if it is possible to overlap computation withI/O in some fashion. A simple way of achieving thisis to issue an asynchronous I/O read request for thenext data set immediately after the current data sethas been read. This is called data prefetching. Sincethe read request is asynchronous, the reading of thenext data set can be overlapped with the computationbeing performed on the current data set. If the com-putation time is comparable to the I/O time, this canresult in signi�cant performance improvement [11, 10].2.3.4 Data ReuseIn many applications, a portion of the current data setfetched from the �le is also needed for computation onthe next data set. To reduce the amount of I/O, thedata already fetched into main memory can be reused

(l1,l2)

B

D

C

A

(u1,u2)Figure 2: Processor 0 needs to access section (l1 :u1; l2 : u2) of the out-of-core array ABCD, stored in a�le in column-major order.instead of reading it again from disk. The amount ofdata reuse depends on the intersection of the sets ofdata needed for computation on the portion of datacurrently fetched into memory and the portion thatwill be fetched next.3 High-Level InterfacesMost parallel �le systems provide a one-dimensionalview of data, i.e. the �le is viewed as a linear sequenceof records. The user needs to know how the data struc-ture in the program is mapped to this one-dimensionalsequence of records. For example, a two-dimensionalarray may be stored in the �le in row-major or column-major order. To read/write a portion of the data, theuser has to explicitly calculate where the data is lo-cated in the �le, move the �le pointer to that locationand then read/write data. Also, the interface providedby most parallel �le systems does not support stridedaccesses. If the required data lies strided in the �le,the user has to explicitly seek to each contiguous por-tion and read/write that contiguous portion. We callsuch an interface a low-level interface.For example, consider Figure 2. ABCD is a largeout-of-core array stored in a �le in column-major or-der. Processor 0 needs to read a section of this arraygiven by the indices (l1 : u1; l2 : u2). This sectiondoes not lie contiguously in the �le. Each column ofthe section is located contiguously, but the individualcolumns are separated by some other data. The onlyway to read this section using the traditional low-levelinterface provided by a parallel �le system is to ex-plicitly seek to the �rst element of each column, readall elements in the column, then seek to the �rst ele-ment of the next column and so on. There are severaldrawbacks to directly using the low-level interface:-� Calculating o�sets and manipulating �le pointersis tedious to the user.



� Since the I/O latency is very high, the larger thenumber of requests required to access data, loweris the performance.� The �le system cannot perform optimizationsbased on the access requests of all processors,since in general, there is no support for proces-sors to make collective requests.We believe that high-level interfaces that facilitatethe use of semantic knowledge about the accesses fromparallel application programs are necessary for simple,portable and e�cient programming. For example, inthe case of Figure 2, the user should be able to spec-ify in a simple way and in a single call, that the sec-tion (l1 : u1; l2 : u2) of the array needs to be read.A library of optimized routines can be developed toread the necessary data using the low-level interfaceprovided by the �le system. PASSION provides sucha high-level interface for the convenience of the user,and a library of routines which support this interfacee�ciently.Recently, some �le systems have been developed,such as the Vesta �le system [4] and the nCUBE �lesystem [5], which provide some limited support forthe user to specify a logical view of the data to beaccessed. There have also been some proposals for�le system interfaces which allow the user to specifystrided requests in a single read/write call [3, 8]. Spe-cialized interfaces are also provided by other runtimelibraries such as [7, 9]. The PASSION Runtime Li-brary provides a very general high-level interface. Forexample, the user can access arbitrary array sectionswith strides in each dimension. The array elementscan be of any type, even user-de�ned records. The ar-ray can be stored in the �le in any storage order andthe �le can have a header containing some additionalinformation. PASSION also supports a collective in-terface, so that optimizations can be performed basedon the knowledge of the access requests of all proces-sors. Sections 4 and 5 describe the PASSION interfacein detail.4 PASSION Data StructuresThe PASSION library provides support for read-ing/writing entire arrays as well as sections of arraysstored in �les. It uses the following data structures forthis purpose.4.1 Out-of-Core Array Descriptor(OCAD)Each out-of-core array has a descriptor associ-ated with it called the Out-of-Core Array Descriptor(OCAD). The OCAD contains the following informa-tion about the array� Number of dimensions� Size of the global array

� Size of each element of the array in bytes : Eachelement of the array could potentially be a struc-ture or record. This enables the PASSION libraryto support arrays of any data type.� Number of processors in each dimension� Distribution of the array in each dimension� Size of the In-Core Local Array (ICLA)� Size of the overlap area� Size of the Out-of-Core Local Array (OCLA)4.2 Parallel File Pointer (PFILE)The parallel �le pointer is the parallel equivalentof the �le pointer associated with a sequential �le. Itis allocated by the PASSION open routine. It needsto be passed as a parameter to all PASSION routinesthat access �les. The parallel �le pointer contains thefollowing information about the parallel �le :� System �le descriptor� Header size4.3 Prefetch DescriptorThe prefetch descriptor is used to store informa-tion about prefetch read operations in progress. It isallocated by the routine PASSION prefetch read. Itis used by the PASSION prefetch wait routine whichwaits for a previously initiated prefetch operation tocomplete.4.4 Reuse DescriptorThis data structure is used to implement thedata reuse operation. It is allocated by thePASSION reuse init routine, which initiates a reuseoperation. It is updated on the subsequent calls to thePASSION read reuse routine which actually does thereuse.4.5 Access DescriptorThis data structure is used to specify which sectionof the array needs to be read or written. It is a twodimensional array; row i speci�es the lower bound,upper bound and stride in dimension i of the sectionto be accessed.5 PASSION InterfaceWe describe the interface used by several of thePASSION routines. Further details can be found inthe PASSION User's Guide [2].



5.1 Setting up the OCADAll PASSION routines which access arrays requirea pointer to the OCAD. The OCAD can be createdand initialized as follows :� The OCAD has to �rst be allocated using the rou-tine PASSION malloc OCAD.OCAD *PASSION malloc OCAD(int dimensions);The parameter to this routine is the number ofdimensions of the out-of-core array.� After the OCAD has been allocated, it can be ini-tialized using the routine PASSION fill OCAD.int PASSION fill OCAD(OCAD* OCADptr,int *size, int distribution[][2],int *nprocs, int *ocla size,int icla size[][2], int overlap[][2],int elemsize, int storage);The parameters to this routine are a pointer tothe OCAD, size of the array, distribution of thearray, number of processors, size of the OCLA,size of the ICLA, overlap information, size of eachelement of the array, and the storage order of thearray in the �le (ROW MAJOR or COLUMN MAJOR).Once the OCAD is initialized, it can be used to ac-cess the out-of-core array. After all the accesses havebeen performed, the OCAD is no longer necessary andshould be deallocated. This can be done using the rou-tine PASSION free OCAD.void PASSION free OCAD(OCAD *OCADptr);5.2 Opening and Closing FilesFiles should only be opened and closed with theroutines PASSION open and PASSION close.PFILE *PASSION open(char *FileName,unsigned int HeaderSize);int PASSION close(PFILE *PFilePtr);The parameters to PASSION open are the name of the�le and size of the header at the start of the �le. Itreturns a parallel �le pointer. Note that in the LocalPlacement Model, each processor opens its own sepa-rate local array �le, whereas in the Global PlacementModel, all processors open a common �le.5.3 Accessing the File HeaderPASSION provides support for �les containingsome other information, in addition to the array, inthe form of a header at the start of the �le. The headercan be read using the routine PASSION read header.

int PASSION read header(PFILE *PFilePtr,char *HBuf);The parameters are a parallel �le pointer and a pointerto a bu�er in memory to store the header. This rou-tine can be called immediately after the �le is opened,even before calling PASSION fill OCAD. This allowsthe application program to store information aboutthe array in the �le header and use that informationto �ll in the OCAD.Information can be written to the �le headerusing the routine PASSION write header.int PASSION write header(PFILE *PFilePtr,char *HBuf);5.4 Reading the ArrayA number of routines are provided to read the ar-ray from the �le. If each processor's local array can�t in its main memory, then the entire local array canbe read using the routine PASSION read.int PASSION read(PFILE *PFilePtr,OCAD *OCADptr, char *Array);The parameters are a parallel �le pointer, pointer tothe OCAD, and a pointer to a bu�er in main memoryto store the array. This routine is only for the LocalPlacement Model. In the Global Placement Model,even if the entire local array �ts in memory, it has tobe read by specifying its lower bound, upper boundand stride in the global array.5.4.1 Reading Array SectionsIf the array cannot �t in memory, sections of the arrayneed to be read at a time. PASSION provides rou-tines to read sections of the array with strides in eachdimension. Separate routines are provided for read-ing array sections in the Local and Global PlacementModels.1. Local Placement Model: The routinePASSION read section is used to read array sec-tions in the Local Placement Model.int PASSION read section(PFILE *PFilePtr,OCAD *OCADptr, char *Array, int *Index,int AccessArray[][3]);The parameters are a parallel �le pointer, pointerto the OCAD, bu�er in memory to store the sec-tion, coordinates of the location in the bu�er fromwhere the section is to be stored, and the sec-tion to be read speci�ed by an access descriptor



(see Section 4.5). Data sieving is used to readstrided sections [11, 10]. This routine reads thearray section from the local array �le to the spec-i�ed location in memory. The shape of the sec-tion is retained. To save memory, the section isstored without stride in memory, even if there wasa stride in the OCLA.2. Global Placement Model: The routinePASSION global read can be used to readarray sections in the Global Placement Model.Each processor can access any arbitrary sectionof the array. The sections requested by di�erentprocessors could be distinct, overlapping or evenidentical.int PASSION global read(PFILE *PFilePtr,OCAD *OCADptr, char *Array, int *Index,int AccessArray[][3], int nprocs);The parameters are the same asfor PASSION read section with the addition ofthe number of processors since this is a collectiveread operation. This routine uses the ExtendedTwo-Phase Method described in [12, 10].5.4.2 Data PrefetchingThe PASSION library provides routines for prefetch-ing data before it is needed. Prefetching is basicallya non-blocking read operation. This can be used tooverlap computation with I/O and thus reduce thetime spent in waiting for I/O.PREFETCH *PASSION read prefetch(PFILE *PFilePtr,OCAD *OCADptr, char *Array, int *Index,int AccessArray[][3]);This routine is used to start a prefetch oper-ation. The parameters are the same as forPASSION read section. It returns a pointer to aprefetch descriptor (see Section 4.3).The routine PASSION prefetch wait can be usedto wait for a previously initiated prefetch operation tocomplete.int PASSION prefetch wait(PREFETCH *PREFETCHptr);5.4.3 Data ReuseData reuse can be performed using the routinesPASSION reuse init and PASSION read reuse.REUSE *PASSION read reuse(PFILE *PFilePtr,OCAD *OCADptr, int start);PASSION reuse init initializes the reuse descriptor

(see Section 4.4). The parameters are a parallel �lepointer, pointer to the OCAD and the position in theOCLA from where the read operation is to start. Itreturns a pointer to the reuse descriptor.PASSION read reuse is used to read data withreuse.int PASSION read reuse(REUSE *REUSEptr,char *Array);The parameters are a pointer to the reuse descrip-tor and a pointer to a bu�er in memory to store data.The return value indicates when end of �le is reached.Figure 3 illustrates how reuse works.5.5 Writing the ArrayA number of routines are provided to write arraysto �les. If each processor's local array can �t in itsmain memory, then the entire local array can be writ-ten using the routine PASSION write.int PASSION write(PFILE *PFilePtr,OCAD *OCADptr, char *Array);The parameters are a parallel �le pointer, pointer tothe OCAD, and a pointer to a bu�er in main memorycontaining the array. This routine is only for the Lo-cal Placement Model. In the Global Placement Model,even if the entire local array �ts in memory, it has tobe written by specifying its lower bound, upper boundand stride in the global array.5.5.1 Writing Array SectionsIf the array cannot �t in memory, sections of the arrayneed to be written at a time. PASSION provides rou-tines to write sections of the array with strides in eachdimension. Separate routines are provided for writ-ing array sections in the Local and Global PlacementModels.1. Local Placement Model: The routinePASSION write section is used to write arraysections in the Local Placement Model.int PASSION write section(PFILE *PFilePtr,OCAD *OCADptr, char *Array, int *Index,int AccessArray[][3]);The parameters are a parallel �le pointer, pointerto the OCAD, bu�er in memory containing thesection, coordinates of the starting location ofthe section in the bu�er, and the section to bewritten speci�ed by an access descriptor (see Sec-tion 4.5). Data sieving is used to write stridedsections [11, 10]. This routine writes the arraysection from the speci�ed location in the bu�er



Fifth call to PASSION_read_reuse returns -1

Call PASSION_reuse_init

First call to PASSION_read_reuse

Second call to PASSION_read_reuse

Third call to PASSION_read_reuse

Fourth call to PASSION_read_reuse

Upper Overlap

Lower Overlap

Lower Overlap

Lower Overlap

Lower Overlap

Upper Overlap

Upper Overlap

Upper Overlap

Data Used Data Read

OCLA

Figure 3: Data Reuse



to the local array �le. The shape of the sectionis retained. The section is assumed to be storedwith unit stride in memory, but is written to the�le with the speci�ed stride.2. Global Placement Model: The routinePASSION global write can be used to write ar-ray sections in the Global Placement Model.If the sections requested to be written by dif-ferent processors have some elements in com-mon, there is a potential data consistency prob-lem. PASSION global write has been imple-mented such that if there are write requests frommultiple processors to the same location, the datafrom the highest numbered processor is written tothe �le.int PASSION global write(PFILE *PFilePtr,OCAD *OCADptr, char *Array, int *Index,int AccessArray[][3], int nprocs);The parameters are the same as forPASSION write section with the addition ofthe number of processors since this is a collec-tive write operation. The Extended Two-PhaseMethod is used for writing sections [12, 10].6 ConclusionsPortable high-level interfaces, such as the PAS-SION interface, make it easier for the user to specifythe I/O required in parallel applications. There is nostandard high-level I/O interface at present, but webelieve that the ideas used in PASSION and the ex-perience gained in its development would help in thede�nition of such a standard.The development of the PASSION library is anongoing process. Version 1.0 has been availablesince February 1995 and Version 1.1 will be re-leased soon. We are also in the process of us-ing the PASSION library for I/O in several realparallel applications and studying the performancebene�ts. Further information about PASSION, in-cluding the code, can be obtained from the URLhttp://www.cat.syr.edu/passion.html.References[1] A. Choudhary, R. Bordawekar, M. Harry,R. Krishnaiyer, R. Ponnusamy, T. Singh, andR. Thakur. PASSION: Parallel and ScalableSoftware for Input-Output. Technical ReportSCCS{636, NPAC, Syracuse University, Septem-ber 1994. Also available as CRPC Technical Re-port CRPC{TR94483{S.[2] A. Choudhary, R. Bordawekar, S. More,K. Sivaram, and R. Thakur. A User's Guidefor the PASSION Runtime Library Version 1.0.

Technical Report SCCS{702, NPAC, SyracuseUniversity, February 1995.[3] P. Corbett, D. Feitelson, Y. Hsu, J. Prost,M. Snir, S. Fineberg, B. Nitzberg, B. Traversat,and P. Wong. MPI-IO: A Parallel I/O Interfacefor MPI, Version 0.3. Technical Report NAS-95-002, NASA Ames Research Center, January 1995.[4] P. Corbett, D. Feitelson, J. Prost, and S. Baylor.Parallel Access to Files in the Vesta File System.In Proceedings of Supercomputing '93, pages 472{481, November 1993.[5] E. DeBenedictis and J. del Rosario. nCUBE Par-allel I/O Software. In Proceedings of 11th Inter-national Phoenix Conference on Computers andCommunications, pages 117{124, April 1992.[6] J. del Rosario, R. Bordawekar, and A. Choud-hary. Improved Parallel I/O via a Two-PhaseRuntime Access Strategy. In Proceedings of theWorkshop on I/O in Parallel Computer Systemsat IPPS '93, pages 56{70, April 1993.[7] N. Galbreath, W. Gropp, and D. Levine.Applications-Driven Parallel I/O. In Proceedingsof Supercomputing '93, pages 462{471, November1993.[8] N. Nieuwejaar and D. Kotz. Low-level Interfacesfor High-level Parallel I/O. In Proceedings of theThird Annual Workshop on I/O in Parallel andDistributed Systems, pages 47{62, April 1995.[9] K. Seamons and M. Winslett. An E�cient Ab-stract Interface for Multidimensional Array I/O.In Proceedings of Supercomputing '94, pages 650{659, November 1994.[10] R. Thakur. Runtime Support for In-Core andOut-of-Core Data-Parallel Programs. PhD the-sis, Dept. of Electrical and Computer Engineer-ing, Syracuse University, May 1995.[11] R. Thakur, R. Bordawekar, A. Choudhary,R. Ponnusamy, and T. Singh. PASSION Run-time Library for Parallel I/O. In Proceedings ofthe Scalable Parallel Libraries Conference, pages119{128, October 1994.[12] R. Thakur and A. Choudhary. Collective I/OUsing an Extended Two-Phase Method with Dy-namic Partitioning. Technical Report SCCS{704,NPAC, Syracuse University, March 1995.


