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1 IntroductionParallel computers are being used increasingly to solve large computationally intensive as well asdata-intensive applications, such as large-scale computations in physics, chemistry, biology, engi-neering, medicine, and other sciences. The data required by many of these applications must bestored in �les on disks, as it is too large to �t in main memory [8]. The program must performI/O to access data from disks. Examples of such applications are Hartree-Fock calculations inchemistry, very large Fast Fourier Transforms to detect faint radio pulsars, seismic data processing,weather and climate modeling, 3D turbulence simulations, scattering and radiation problems incomputational electromagnetics, and several others [1].Multidimensional arrays are widely used as data structures in scienti�c programs. Scienti�capplications with large out-of-core data sets may therefore have one or more out-of-core multidi-mensional arrays stored in �les. At run time, the program must fetch smaller sections of thesearrays from �les, perform computation, and, if necessary, store the results back to �les. Di�erentprocessors may need di�erent sections of the arrays depending on the data distribution, and thesections may have strides in each dimension.In this paper, we describe a method, called the extended two-phase method, for parallel pro-grams to access sections of out-of-core arrays e�ciently. In this method, the requesting processorscooperate in reading or writing data|a process known as collective I/O. Speci�cally, processorscooperate to combine several I/O requests into fewer larger granularity requests, reorder requestsso that the �le is accessed in proper sequence, and eliminate simultaneous I/O requests for the samedata. In addition, the extended two-phase method partitions the total I/O workload among pro-cessors dynamically, depending on the access requests. Compared to a static partitioning scheme,dynamic partitioning results in a more balanced distribution of I/O among processors and thereforeperforms considerably better.We present extensive performance results comparing the extended two-phase method with adirect (non-collective) method on the Intel Touchstone Delta. For this purpose, we use two real par-allel applications|out-of-core matrix multiplication and out-of-core Laplace's equation solver|aswell as several synthetic access patterns. We found that the extended two-phase method performedconsiderably better than the direct method for a wide range of access patterns, array sizes, andnumber of processors.The rest of this paper is organized as follows. In Section 2, we describe the I/O access patterns oftwo out-of-core parallel applications and thus motivate the need for the extended two-phase method.The method itself is explained in Section 3. In Section 4, we describe a simple static scheme forpartitioning I/O among processors and then show how the partitioning can be improved by using1



a dynamic scheme. Extensive performance and scalability results are presented in Section 5. Wedraw overall conclusions in Section 6.2 Two Out-of-Core Parallel ApplicationsHere we describe the I/O access patterns of two out-of-core parallel applications|matrix multipli-cation and a Laplace's equation solver.2.1 Out-of-Core Matrix MultiplicationWe consider an out-of-core GAXPY algorithm for matrix multiplication, described in [3]. Let A,B, and C be n � n matrices such that C = A � B. The matrices can be represented in terms oftheir individual columns as A = [a1; � � � ; an], aj 2 RnB = [b1; � � � ; bn], bj 2 RnC = [c1; � � � ; cn], cj 2 RnThe GAXPY algorithm for computing C = A� B iscj =Pnk=1 bkjak ; j = 1 : nIn other words, to compute the jth column of C, we need the jth column of B and all columnsof A. An out-of-core GAXPY algorithm for matrix multiplication can be implemented as follows.In the �rst step, processors read two-dimensional sub-blocks of matrix A into main memory suchthat the sub-blocks of all processors together span entire rows (see Figure 1). The processors alsoread two-dimensional sub-blocks of matrix B into memory such that the sub-blocks of all processorstogether span entire columns. The data now present in memory is su�cient to compute the �rsttwo-dimensional sub-block of matrix C. This computation requires a global sum operation. Theprocessors then write the newly computed sub-block of C to the �le. In the following step, processorsread the next set of sub-blocks of B (shown by dashed lines in Figure 1), reuse the sub-blocks of Afetched in the previous step, and calculate the second sub-block of C. This process is repeated untilall the sub-blocks in the �rst block of rows of C are computed. The above process is then repeatedwith the sub-blocks from the next set of rows of A, shown by dashed lines. The entire matrix C iscomputed in this fashion. Note that, at any time, each processor has only one sub-block of matricesA, B, and C in memory. 2
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Figure 1: I/O access pattern in out-of-core matrix multiplication2.2 Out-of-Core Laplace's Equation SolverWe consider a Laplace's equation solver that uses a Jacobi iteration method. This is a stencilcomputation where the value at each point is computed by using the values at its neighbors in eachof the four directions.do k = 1; niterA(i; j) = (B(i� 1; j) + B(i+ 1; j) +B(i; j � 1) +B(i; j + 1))=4; i; j = 1 : nExchange A and Bend doAn out-of-core Laplace's equation solver can be implemented as follows. Divide the out-of-corearray into two-dimensional sub-blocks such that two blocks (one for old values, one for new values)can �t at a time in the memory of each processor. Assign blocks to processors in a round-robinfashion as shown in Figure 2. Each processor reads one block at a time from the �le containingthe array. Processors can either communicate boundary rows and columns or read them directlyfrom the �le. After a processor computes new values, it writes the new block to a �le containingthe new array. This process is repeated on other sub-blocks of the array to complete one iteration.The algorithm is repeated for further iterations until it converges.2.3 Accessing Out-of-Core Array SectionsIn the above applications, processors access two-dimensional sub-blocks of out-of-core arrays. Thistype of access pattern also occurs in other applications, such as out-of-core LU solvers [10]. Since3
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Figure 2: I/O access pattern in an out-of-core Laplace's equation solverarrays are usually stored in a �le in either column-major order (as in Fortran) or row-major order(as in C), the data required by each processor is not located contiguously in the �le. In many cases,the requests of di�erent processors are interleaved in the �le. To read non-contiguous data withthe interfaces currently provided by parallel �le systems, each processor must explicitly seek to theappropriate location in the �le, read a small chunk of data, then seek to the next location, andso on. We call this the direct method. The Vesta and PIOFS �le systems on the IBM SP [5, 9]and the nCUBE �le system [6] do provide support for the user to specify a logical view of thedata to be read and use a single call to read data. Each processor's request, however, is servicedindependently, and the �le systems do not perform collective I/O.The drawback of the direct method is that the parallel �le system may receive a large numberof low-granularity requests from multiple processors in any order. As I/O latency is very high,such access requests perform poorly. For many access patterns, such as in the above applications,the I/O performance can be improved by using the collective knowledge of the access requests ofall processors. Processors can cooperate among themselves to perform I/O in large chunks andin the proper order, a process known as collective I/O. The extended two-phase method speci�esa procedure for performing collective I/O to access out-of-core array sections. Other examples ofcollective I/O are disk-directed I/O [11] and server-directed collective I/O [12].3 Extended Two-Phase MethodThe two-phase method, proposed in [7, 4], is a collective I/O technique for reading an entire in-corearray from a �le into a distributed array in main memory, and conversely, for writing a distributed4



in-core array to a �le. I/O is done in two phases. In the �rst phase, processors always read dataassuming a conforming distribution. A conforming distribution is de�ned as a distribution of anarray among processors such that each processor's local array is stored contiguously in the �le,resulting in each processor reading a single large chunk of data. For an array stored in a �le incolumn-major order, a column-block distribution is the conforming distribution. In the secondphase, data is redistributed among processors to the desired distribution. Since I/O cost is ordersof magnitude more than communication cost, the cost incurred by the second phase is negligible.This two-phase approach is found to perform well for all array distributions [7, 4].We have extended the basic two-phase method to access sections of out-of-core arrays. Thisextended two-phase method performs I/O for out-of-core arrays e�ciently by:� dynamically partitioning the I/O workload among processors, dependingon the access requests,� combining several I/O requests into fewer larger granularity requests,� reordering requests so that the �le is accessed in proper sequence, and� eliminating simultaneous I/O requests for the same data.3.1 Reading Sections of Out-of-Core ArraysWe �rst describe the extended two-phase method for reading array sections. For the purpose ofexplanation, we consider the case where each processor must read a section (speci�ed in terms ofa lower-bound, upper-bound, and stride in each dimension) of a two-dimensional array stored in a�le in column-major order. In general, the extended two-phase method can be used for arrays withany number of dimensions, stored in any order in the �le, and accessed by a subset of the totalnumber of processors.The extended two-phase method divides the I/O workload among processors by assigning own-ership to portions of the �le. A processor can directly access only the portion of the �le it owns,called its �le domain. For a �le stored in column-major order, the �le domain of each processoris some set of columns of the array. Section 4 describes two ways of assigning �le domains toprocessors.Assume that each processor must read a section (l1 : u1 : s1; l2 : u2 : s2) of the out-of-core array,in global coordinates. The sections required by di�erent processors may be identical, overlapping,or distinct. In the �rst step of the extended two-phase method, processors exchange their ownaccess information (the indices l1; u1; s1; l2; u2; s2) with other processors, so that each processor5



0’s request

1’s request

2’s request

3’s request

A D

CB

File Domain of  processor 0Figure 3: Processor 0 must read the requested data from its �le domain. Section ABCD is thesmallest section containing all the requested data. Processor 0 reads this section by using anoptimization called data sieving.knows the access requests of other processors. This information is stored in a data structure calledthe �le access descriptor (FAD). The FAD contains exactly the same information on all processors.This exchange phase is not required if the collective I/O interface itself provides information aboutthe access requests of other processors.Since each processor knows its own �le domain and the access requests of other processors,it can determine what portion of the data in its �le domain is needed by other processors. Thisis done by computing the intersection of the requests of other processors from the FAD and itsown �le domain. This information is stored in a data structure called the �le domain access table(FDAT). The FDAT of a processor thus contains information indicating which portions of its �ledomain have been requested by other processors.Each processor must now read data from its �le domain as speci�ed by the FDAT. For example,Figure 3 shows the �le domain of processor 0 and, for some access pattern, the portions of this �ledomain that have been requested by other processors. A simple way of reading is to read all thedata needed by processor 0, followed by that needed by processor 1, and so on, in order of processornumber. This method, however, may result in too many small accesses that are not in sequence.For reading the data e�ciently, processors must analyze the FDAT and use a read strategy thataccesses the �le in sequence and contiguously.We use the following general method for this purpose. Each processor calculates the minimum ofthe lower-bounds and the maximum of the upper-bounds of all sections in its FDAT. This e�ectivelydetermines the smallest section containing all the data that must be read from the �le domain (for6



example, section ABCD in Figure 3). This section may also contain some data that is not requiredby any processor. If the processor attempts to read only the useful data, it may result in a numberof small strided accesses. To avoid this, the processor uses an optimization we proposed previously,called data sieving [14, 13]. The processor reads a column (for column-major order) of the sectionat a time in a single operation into a temporary bu�er. This may include some unwanted data. Theuseful data is extracted from the temporary bu�er and placed in communication bu�ers, dependingon which processors need the data. The entire section is read from the �le domain in this fashion.The processor may read more than one column at a time, if su�cient memory is available to dosieving on the set of columns. This forms the �rst phase of the extended two-phase method.The second phase of the extended two-phase method consists of communicating the data readin the �rst phase to the respective processors. From the information in the FDAT, each processordetermines what data must be sent to which processor. In addition, since each processor knowsthe �le domains of other processors and its own access request, it can calculate how much data toreceive from other processors and where to store it in memory.The two phases of the extended two-phase method either can be done distinctly by performingall I/O �rst and then communication, or they can be overlapped (pipelined) by reading smallerportions of data and communicating it.3.2 Writing Sections of Out-of-Core ArraysThe algorithm for writing sections is essentially the reverse of the algorithm for reading sections.From the FAD, each processor determines what portions of its write request are located in the�le domains of other processors; those portions must be sent to the respective processors. Fromthe FDAT, each processor determines what portions of the write requests of other processors arelocated in its own �le domain; those portions must be received from the respective processors. Thiscommunication forms the �rst phase of the extended two-phase method for writing sections.Data is written to the �le in the second phase. The FDAT is analyzed in the same way as in theread algorithm. Each processor calculates the minimum and maximum of all indices in its FDAT,which determines the smallest section containing all the data to be written to the �le domain. Theprocessor uses data sieving [14, 13] to write the useful data in this section. Note that, since theremay be \holes" between the useful data to be written, an extra read operation is required beforewriting. This extra read is not required if the useful data is located contiguously in the �le.If the sections requested to be written by di�erent processors have some elements in common,there is a data-consistency problem. The result depends on the particular implementation of theextended two-phase method. In our implementation, if there are write requests from multiple7



processors to the same location, the data from the highest numbered processor is written to the�le.4 Partitioning the I/O WorkloadIn the extended two-phase method, processors cooperate to perform I/O. The exact partitioning ofthe I/O workload among processors depends on how �le domains are de�ned. In general, I/O canbe partitioned either statically or dynamically. Note that we are referring to a logical partitioningof the �le among processors; the �le is not physically repartitioned into separate �les.4.1 Static PartitioningOne way of partitioning I/O (for an array stored in column-major order) is to assign a block ofcolumns of the entire out-of-core array to each processor, as if the array were distributed amongprocessors in a column-block fashion. The �le domain of each processor is therefore a block ofcolumns of the array, stored contiguously in the �le. The size of each �le domain can be determinedfrom the size of the array and the number of processors and is independent of the access requests.This is called a static partitioning scheme. Figure 4(A) shows the �le domains of four processors,with static partitioning of I/O.4.2 Dynamic PartitioningThe main drawback of static partitioning is that the partitioning is independent of the accessrequests. For many access patterns, static partitioning may result in an imbalance of I/O amongprocessors; some processors may perform more I/O than others, some may not perform any I/Oat all. For example, consider the access pattern in Figure 4. With static partitioning, the accessrequests span the �le domains of only two processors (1 and 2); therefore, only two processorsperform all the I/O. In addition, if we increase the size of the out-of-core array, keeping the numberof processors �xed, the size of each �le domain also increases, and the access requests span the �ledomains of fewer processors, resulting in greater I/O imbalance.A dynamic partitioning scheme, based on access requests, can divide the I/O workload moreevenly and therefore improve I/O throughput. Figure 4(B) illustrates such a partitioning scheme.For a �le stored in column-major order, each processor calculates the �rst and last among thecolumns of the sections requested by all processors. The section formed by these columns and allthe rows of the out-of-core array is called the bounding section. The bounding section includesthe sections requested by all processors and is located contiguously in the �le. Figure 4(B) shows8
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Figure 4: Static versus dynamic partitioning; FD = �le domainthe bounding section for the given access requests. File domains are determined by dividing thebounding section among processors in a column-block fashion. The �le domain of each processoris thus a contiguous chunk of the bounding section.If the requested sections span all the columns of the out-of-core array, the dynamically selected�le domains are identical to those determined statically. If the requested sections span only a fewcolumns, however, dynamic partitioning provides a much better balance of I/O among processors(as Figure 4 shows). It also reduces the memory requirements of the extended two-phase method,because the �le domain of each processor is smaller. With static partitioning, if all requestedsections are located in a single processor's �le domain, all the requested data may not �t in thememory of that processor. Consequently, I/O and communication may need to be done in stages,several times. This situation is less likely to occur with dynamic partitioning, because the requesteddata is more evenly divided among processors.For an array stored in row-major order, �le domains are determined as follows. Each processorcalculates the �rst and last among the rows of the sections requested by all processors. Thebounding section is the section formed by these rows and all the columns of the out-of-core array.File domains are determined by dividing the bounding section among processors in a row-blockfashion.Figure 5 summarizes the extended two-phase method for reading sections of out-of-core arrays,with dynamic partitioning of I/O. 9



1. Exchange access information with other processors and �ll in the �le access descriptor (FAD).2. Calculate the smallest section, called the bounding section, that includes the sectionsrequested by all processors.3. Determine the �le domain of each processor by dividing this bounding sectionamong processors in a column-block manner for arrays stored in column-major orderor row-block manner for arrays stored in row-major order.4. Compute the intersection of the FAD and this processor's �le domain,and �ll in the�le domain access table (FDAT).5. Calculate the minimum of the lower bounds and the maximum of the upper boundsof all sections in the FDAT to determine the smallest section containing all the dataneeded from the �le domain.6. Read this section by using data sieving, and communicate the data to the requestingprocessors.Figure 5: Extended two-phase method for reading sections of out-of-core arrays with dynamicpartitioning of I/O5 PerformanceWe used the Intel Touchstone Delta for an experimental study of the performance of the extendedtwo-phase method. The Touchstone Delta has 512 compute nodes (each an Intel i860/XR micro-processor) and 32 I/O nodes (each an Intel 80386 microprocessor). Each I/O node is connected totwo disks, resulting in a total of 64 disks. Intel's Concurrent File System (CFS) provides parallelaccess to �les. By default, CFS stripes �les across all 64 disks in 4-Kbyte blocks. See [2] for adetailed discussion of the performance of CFS.We studied the performance of the extended two-phase method versus the direct method exten-sively for several synthetic access patterns as well as for two real out-of-core parallel applications|matrix multiplication and a Laplace's equation solver. We report the results of these experimentsbelow. 10



5.1 Synthetic Access PatternsWe used three basic types of synthetic access patterns:1. Common sections: All processors access the same section of the array.2. Overlapping sections: Parts of the section requested by a processor may overlap with partsof the sections requested by other processors.3. Distinct sections: The section requested by each processor does not have any data in commonwith the section requested by any other processor.5.1.1 Reading Common SectionsTable 1 shows the performance of the direct and extended two-phase methods for reading commonsections (4K � 4K array, 16 processors). Figure 6 illustrates the approximate location of eachof these sections in the array. We measured the performance of the extended two-phase methodwith both static and dynamic partitioning. In all cases, the extended two-phase method performedconsiderably better than the direct method, because it read the common section only once andbroadcast it to other processors. In the direct method, on the other hand, all processors read thesame section from the �le simultaneously, resulting in extra I/O overhead.In all cases, the extended two-phase method took much less time with dynamic partitioning.With static partitioning, each processor's �le domain was of size 4K � 256. Therefore, all sections,except those in case V, were located in the �le domains of only a few processors. With dynamicpartitioning, on the other hand, the I/O requests were evenly divided among all available processors,resulting in higher I/O throughput. Since the section in case V spanned all 4096 columns, thestatically and dynamically selected �le domains were identical, and so was the performance. Forcase V, the extended two-phase method performed considerably better than the direct method,because the direct method resulted in a large number of small requests spread across the entire �le.5.1.2 Reading Overlapping SectionsTable 2 shows the time taken for reading various overlapping sections. Figure 7 illustrates theapproximate location of each of these sections in the array. To represent these overlapping sectionsfor all processors concisely, we use the following notation. Each processor's request is denoted by(l1 + ov1� p : u1 + ov1� p : s1; l2 + ov2� p : u2 + ov2� p : s2), where p is the processor numberand ov1, ov2 are some constants. The amount of overlap can be changed by varying ov1 and ov2.For example, the notation (1:100:1, 1+10p:100+10p:1) in case I of Table 2 represents a group of11



Table 1: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for reading common sections. Array size 4K � 4K real numbers (single precision), 16processors, time in seconds.No. Array Section Direct Extended Two-PhaseRead Static DynamicI (1:100:1, 1:100:1) 1.632 1.027 0.431II (200:300:1, 200:300:1) 1.867 0.883 0.363III (400:800:1, 400:800:1) 6.265 3.692 1.056IV (32:64:1, 128:1024:1) 9.995 2.780 1.318V (1:16:1, 1:4096:1) 52.06 3.241 3.241VI (1:4096:1, 1:16:1) 1.216 2.024 0.420
(III)(I) (II)

(IV) (V) (VI)Figure 6: The common sections listed in Table 1 (not to scale)12



overlapping sections with processor 0 requesting section (1:100:1, 1:100:1), processor 1 requestingsection (1:100:1, 11:110:1), processor 2 requesting section (1:100:1, 21:120:1), and so on.The extended two-phase method with dynamic partitioning performed the best in all cases.The sections in cases I and II were of the same size, but they di�ered in the amount of overlap;the sections in case I had more overlap than those in case II. Since the total number of columns ofthe out-of-core array spanned by the sections in case I was less than that by the sections in caseII, it took less time to read the sections in case I. The sections in cases IV, V, and VI spannedonly a few columns. For these cases, the direct method performed better than the extended two-phase method with static partitioning, because static partitioning resulted in only a few processorsperforming I/O. The extended two-phase method with dynamic partitioning, however, performedbetter than the direct method, since the I/O workload was better distributed. The worst case forthe direct method was case VII, which spanned all columns of the array. The sections in case VIIIwere overlapping in both dimensions, and again the extended two-phase method with dynamicpartitioning took the least time.5.1.3 Reading Distinct SectionsTable 3 shows the time taken for reading distinct sections. Figure 8 illustrates the approximatelocation of these sections in the array. We use the same notation as above, (l1+ov1�p : u1+ov1�p :s1; l2 + ov2� p : u2 + ov2� p : s2), for representing distinct sections. The overlap factors ov1 andov2 must be large enough to ensure that the sections are distinct.In case I, the requests of di�erent processors were situated in separate locations in the �le,because the sections requested were located along rows. As a result, I/O in the extended two-phasemethod with dynamic partitioning was identical to that in the direct method, and they took thesame time. The extended two-phase method with static partitioning took longer than the directmethod, because only a few processors performed I/O. The sections in cases II|IV were locatedalong columns, and the requests of di�erent processors were interleaved in the �le. The extendedtwo-phase method therefore performed considerably better for these cases. Static partitioning didnot perform well for the sections in case II, because they spanned only a few columns. The bestcase for the extended two-phase method was case IV, since the sections spanned all columns. Thesections in cases V and VI were partly interleaved in the �le, and even for these cases, the extendedtwo-phase method performed the best. 13



Table 2: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for reading overlapping sections. Array size 4K � 4K real numbers (single precision), 16processors, time in seconds.No. Array Section Direct Extended Two-Phase(p = processor number) Read Static DynamicI (1:100:1, 1+10p:100+10p:1) 2.000 1.830 0.693II (1:100:1, 1+50p:100+50p:1) 4.627 1.859 0.875III (400:800:1, 400+100p:800+100p:1) 8.097 3.348 2.477IV (1:4096:1, 1+8p:16+8p:1) 1.152 3.374 0.826V (1+50p:100+50p:1, 1:100:1) 1.579 1.994 0.524VI (400+100p:800+100p:1, 400:800:1) 7.442 11.84 1.361VII (1+8p:16+8p:1, 1:4096:1) 50.32 2.992 2.992VIII (200+100p:400+100p:1, 200+100p:400+100p:1) 3.104 2.986 1.739
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overlapFigure 7: The overlapping sections listed in Table 2 (not to scale)14



Table 3: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for reading distinct sections. Array size 4K � 4K real numbers (single precision), 16processors, time in seconds.No. Array Section Direct Extended Two-Phase(p = processor number) Read Static DynamicI (1:100:1, 1+100p:100+100p:1) 1.976 2.254 1.976II (1+100p:100+100p:1, 1:100:1) 1.633 2.182 0.548III (200+200p:400+200p:1, 512:1024:1) 8.016 5.680 1.725IV (1+32p:16+32p:1, 1:4096:1) 51.63 4.823 4.823V (200+200p:400+200p:1, 1+200p:512+200p:1) 5.466 4.524 3.912VI (1+32p:32+32p:1, 1+100p:1024+100p:1) 12.02 2.991 2.371
(III)(I) (II)

(IV) (V) (VI)Figure 8: The distinct sections listed in Table 3 (not to scale)15



Table 4: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for writing distinct sections. Array size 4K � 4K real numbers (single precision), 16processors, time in seconds.No. Array Section Direct Extended Two-Phase(p = processor number) Write Static DynamicI (1:100:1, 1+100p:100+100p:1) 1.944 2.166 1.944II (1+100p:100+100p:1, 1:100:1) 1.182 2.034 0.494III (200+200p:400+200p:1, 512:1024:1) 4.202 5.445 1.669IV (1+32p:16+32p:1, 1:4096:1) 24.85 10.25 10.25V (200+200p:400+200p:1, 1+200p:512+200p:1) 5.155 5.461 4.401VI (1+32p:32+32p:1, 1+100p:1024+100p:1) 8.233 4.994 4.2745.1.4 Writing Distinct SectionsWe considered only the case where each processor writes a distinct section to the �le, because othercases, such as writing overlapping or common sections, are unlikely to occur. Table 4 shows thetime taken for writing distinct sections. The sections chosen were the same as those for reading(Table 3, Figure 8). As for reading distinct sections, the direct method and the extended two-phase method with dynamic partitioning took the same time for writing the sections in case I,whereas the extended two-phase method with static partitioning took longer. In the other cases,the extended two-phase method with dynamic partitioning performed considerably better than thedirect method.5.1.5 Accessing Sections with Non-Unit StridesWe also tested the performance for accessing sections with non-unit strides. When an array sectionhas a non-unit stride, each element requested is strided in the �le. The only way of reading sucharray sections using a direct method is to seek explicitly to each individual element and read onlythat element. This results in very low granularity of data transfer, which is very expensive. Theextended two-phase method overcomes this drawback of the direct method by reordering requestsand using data sieving for larger granularity accesses.Table 5 shows the performance for reading sections with non-unit strides. The sections incase I spanned almost the entire array, with stride equal to the number of processors. As a result,static and dynamic partitioning took the same time. The sections in cases II and III were locateddiagonally across the out-of-core array. The sections in case IV were located along columns, andthe sections in case V were located along rows. In all cases, the extended two-phase method wasmore than 20 times faster than the direct method. Table 6 shows the performance of the extended16



Table 5: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for reading sections with non-unit strides. Array size 4K � 4K real numbers (singleprecision), 16 processors, time in seconds.No. Array Section Direct Extended Two-Phase(p = processor number) Read Static DynamicI (p+1:4096:nprocs, p+1:4096:nprocs) 210.8 9.330 9.330II (1+250p:250+250p:2, 1+250p:250+250p:2) 53.13 3.610 2.842III (1+200p:500+200p:3, 1+200p:500+200p:3) 87.19 4.394 4.387IV (1+64p:64+64p:2, 500:2500:3) 96.20 4.759 3.848V (500:2500:3, 1+64p:64+64p:2) 130.7 4.574 2.340Table 6: Comparison of direct method and extended two-phase method (static and dynamic par-titioning) for writing sections with non-unit strides. Array size 4K � 4K real numbers (singleprecision), 16 processors, time in seconds.No. Array Section Direct Extended Two-Phase(p = processor number) Write Static DynamicI (p+1:4096:nprocs, p+1:4096:nprocs) 53.28 22.77 22.77II (1+250p:250+250p:2, 1+250p:250+250p:2) 25.22 6.438 3.775III (1+200p:500+200p:3, 1+200p:500+200p:3) 44.64 8.696 7.516IV (1+64p:64+64p:2, 500:2500:3) 71.35 8.858 7.279V (500:2500:3, 1+64p:64+64p:2) 79.24 7.724 4.405two-phase method for writing sections with non-unit strides. The sections chosen were the same asin Table 5. Even for writing sections, the extended two-phase method improved I/O performanceconsiderably.5.1.6 ScalabilityWe also studied the scalability of the extended two-phase method for large number of processors,large array sections, and large out-of-core arrays. Since dynamic partitioning always performedbetter than, or at least as well as static partitioning, we considered only dynamic partitioningfor the scalability experiments. Table 7 shows the timings obtained by varying the number ofprocessors requesting array sections from 4 to 128, for both reading and writing. We selected a fewsections in each category|common, overlapping, distinct, and non-unit strides. Note that, as thenumber of processors was increased, the total amount of I/O performed also increased.The extended two-phase method scaled well with the number of processors. In many cases,17



Table 7: Scalability of the extended two-phase method. The number of processors accessing sectionswas varied from 4 to 128. Array size 4K � 4K real numbers (single precision), time in seconds.DR = Direct Read, ETP = extended two-phase method with dynamic partitioning, DW = directwrite. I = (400:800:1, 400:800:1), Figure 6(III)II = (1:16:1, 1:4096:1), Figure 6(V)III = (400:800:1, 400+25p:800+25p:1), Figure 7(III)IV = (1+8p:16+8p:1, 1:4096:1), Figure 7(VII)V = (1+25p:16+25p:1, 1:4096:1), Figure 8(IV)VI = (1+32p:32+32p:1, 1+24p:1024+24p:1), Figure 8(VI)VII = (p+1:4096:nprocs, p+1:4096:nprocs)VIII = (500:2500:3, 1+32p:32+32p:2)READING COMMON SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETPI 2.620 1.282 3.184 1.040 4.421 1.056 8.734 1.169 16.28 1.436 32.64 2.130II 12.16 4.315 13.95 3.099 19.65 3.241 32.96 2.647 60.11 3.432 116.7 3.219READING OVERLAPPING SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETPIII 3.079 1.748 5.208 1.699 6.850 1.991 13.61 2.798 24.98 3.801 47.95 4.602IV 13.75 4.450 13.77 3.391 19.63 2.992 32.70 3.696 60.58 4.791 115.9 7.401READING DISTINCT SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETPV 12.37 4.791 13.57 3.929 19.76 4.149 32.38 6.109 46.12 7.276 54.82 8.161VI 3.704 1.893 2.396 1.585 4.125 1.638 7.806 2.418 19.77 2.970 26.23 4.110WRITING DISTINCT SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETPV 3.129 7.900 6.971 6.861 12.45 8.554 27.52 12.74 37.70 18.52 52.41 24.74VI 0.982 1.937 1.803 2.218 3.954 3.058 6.436 5.028 7.139 6.234 21.20 9.403READING SECTIONS WITH NON-UNIT STRIDESSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETPVII 799.2 22.82 216.6 15.83 210.8 9.331 103.1 10.89 54.94 8.307 50.60 9.657VIII 56.44 1.342 77.78 1.440 83.87 1.870 163.1 3.123 331.5 5.062 867.4 7.711WRITING SECTIONS WITH NON-UNIT STRIDESSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETPVII 668.7 42.75 147.3 39.11 84.54 31.40 64.53 26.42 35.35 28.40 51.38 31.16VIII 9.041 1.612 18.83 1.603 35.17 2.972 75.95 4.812 163.6 7.915 341.8 21.7518



the time taken increased only slightly as the number of processors was increased, indicating thatwe obtained higher I/O throughput by increasing the number of processors. For example, for thesections in case I, the time taken increased from 1.282 sec. to only 2.130 sec. when the number ofprocessors was increased from 4 to 128. In some cases, such as case II, the time taken even decreased.The direct method performed quite poorly when the number of processors was increased, especiallyfor cases II, IV, and VIII. The extended two-phase method also scaled well for writing sections.For small number of processors, the extended two-phase method took longer for writing, becauseof the extra read before each write. For large number of processors (� 16), however, the extendedtwo-phase method performed better than the direct method in spite of the extra read. For sectionswith non-unit strides, the extended two-phase method performed considerably better than thedirect method.Table 8 shows the performance for accessing large sections of a large out-of-core array of size16K � 16K single precision real numbers (�le size 1Gbyte). Figure 9 shows the approximatelocation of these sections in the array. We considered common, overlapping, and distinct sectionsfor reading and distinct sections for writing. The trend in the results was the same as for a4K � 4K array (Table 7). The direct method performed much worse for accessing large sectionsthan for small sections, whereas the extended two-phase method performed consistently well forsections of any size. Figures 10 and 11 compare the relative performance of the two methods forreading and writing the sections in case VI of Table 8.5.2 Real ApplicationsWe also studied the performance of the extended two-phase method with dynamic partitioningversus the direct method, for two real out-of-core parallel applications|matrix multiplication anda Laplace's equation solver.5.2.1 Matrix MultiplicationTable 9 shows the I/O time for out-of-core matrix multiplication for di�erent array sizes and numberof processors. The I/O time was calculated as the maximum of the time taken by all processors, forall I/O (reading and writing) required in the out-of-core matrix multiplication algorithm describedin Section 2. Note that in the extended two-phase method, the I/O time includes the time for datacommunication. In all cases, the extended two-phase method performed better than the directmethod. Figure 12 shows that the percentage improvement in I/O time provided by the extendedtwo-phase method over the direct method varied from 22% to 75%.19



Table 8: Scalability of the extended two-phase method for large requests. Array size 16K � 16Kreal numbers (single precision), 1 Gbyte �le. The number of processors accessing sections was variedfrom 4 to 128. DR = direct read, ETP = extended two-phase method with dynamic partitioning,DW = direct write. Time in seconds.I = (5000:6000:1,5000:6000:1)II = (1+100p:300+100p:1,4000:8000:1)III = (1+100p:400+100p:1,2000+20p:2800+20p:1)IV = (4000:8000:1,1+4p:8+4p:1)V = (1+100p:100+100p:1, 1+100p:1024+100p:1)VI = (1+20p:16+20p:1,4000:12000:1)READING SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DR ETP DR ETP DR ETP DR ETP DR ETP DR ETPI 23.65 7.880 43.43 7.795 78.99 7.935 151.3 9.085 302.7 9.368 605.1 11.86II 53.30 26.51 103.3 28.10 132.3 28.50 157.6 32.49 162.3 40.03 182.4 52.08III 13.31 5.061 24.11 6.489 31.49 7.400 39.81 9.253 41.28 10.12 44.29 13.23IV 0.683 0.699 0.841 0.939 1.343 1.173 2.189 1.663 4.149 2.850 8.486 4.994V 10.97 5.380 19.31 8.475 26.52 10.58 35.06 12.69 52.81 14.10 124.2 22.06VI 57.29 21.94 74.05 23.05 127.3 32.88 240.8 51.26 500.2 112.2 799.7 98.68WRITING SECTIONSSec- Procs=4 Procs=8 Procs=16 Procs=32 Procs=64 Procs=128tion DW ETP DW ETP DW ETP DW ETP DW ETP DW ETPV 7.108 12.01 15.21 18.98 32.20 23.37 35.99 30.17 53.10 35.76 98.90 32.54VI 48.35 44.18 71.85 52.07 151.4 73.34 272.8 122.3 548.1 174.1 746.6 164.2
(I) (II) (III)

(VI)(V)(IV)

overlap

overlap overlap

Figure 9: The sections listed in Table 8 (not to scale)20
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Figure 10: Scalability results, 16K � 16K array, time for reading sections in case VI of Table 8
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Table 9: I/O time in seconds for out-of-core matrix multiplication using direct method and extendedtwo-phase method with dynamic partitioning (ETP)1K � 1K array 2K � 2K array 4K � 4K arrayProcs. Direct ETP Direct ETP Direct ETP8 44.65 34.77 103.4 80.43 589.0 416.816 39.88 24.78 94.37 69.87 465.9 326.832 37.80 18.88 108.6 76.36 536.4 354.564 50.65 17.66 168.8 122.8 814.2 501.1128 161.0 24.76 377.1 218.1 1562 909.3
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Figure 12: Percentage improvement in I/O time of out-of-core matrix multiplication by usingextended two-phase method versus direct method22



Table 10: I/O time in seconds for an out-of-core Laplace's equation solver using direct method andextended two-phase method with dynamic partitioning (ETP).1K � 1K array 2K � 2K array 4K � 4K arrayProcs. Direct ETP Direct ETP Direct ETP8 27.15 25.03 72.34 68.00 387.1 356.716 17.06 15.27 61.96 54.65 434.0 294.332 18.59 13.29 50.27 43.63 448.3 273.364 19.20 14.80 49.15 42.06 383.6 280.0128 31.40 18.16 64.67 53.10 508.5 334.45.2.2 Laplace's Equation SolverTable 10 shows the I/O time for an out-of-core Laplace's equation solver for di�erent array sizesand number of processors. The I/O time is the maximum of the time taken by all processors for allI/O (reading and writing) required in the out-of-core Laplace's equation solver algorithm describedin Section 2. As in the case of matrix multiplication, the extended two-phase method performedbetter than the direct method. The percentage improvement in I/O time provided by the extendedtwo-phase method over the direct method is shown in Figure 13. The percentage improvementwas lower than in the case of matrix multiplication, possibly because of the di�erence in the I/Oaccess patterns of the two applications. Recall that in out-of-core matrix multiplication, matrixB is accessed in blocks along columns. The results with synthetic access patterns in Section 5.1indicate that the extended two-phase method performs very well for such accesses.6 ConclusionsThe extended two-phase method is clearly superior to a direct method for accessing sections ofout-of-core arrays. In our experiments with real applications as well as several synthetic accesspatterns, the extended two-phase method outperformed the direct method signi�cantly.The extended two-phase method also provides much exibility in partitioning the I/O workloadamong processors. We have described one dynamic partitioning scheme that performed signi�cantlybetter than a static partitioning scheme, but it may be possible to do even better. For example,instead of dividing the bounding section among processors in a column-block fashion, it could bedivided in a block-cyclic fashion, so that if the bounding section includes some unwanted columns,they are evenly distributed. Another approach is to divide I/O among processors in such a waythat the I/O requests from di�erent processors go to di�erent disks or I/O nodes. Furthermore,23
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Figure 13: Percentage improvement in I/O time of out-of-core Laplace's equation solver by usingextended two-phase method versus direct methodif the ratio of processors to disks on the machine is very high, it is possible to have only a fewprocessors perform I/O, thereby reducing contention for the I/O system.The extended two-phase method can be used for accessing arrays with any number of dimensionsand any storage order. For the dynamic partitioning scheme we have proposed, the �le domainsfor an n-dimensional array can be obtained by �rst calculating the n-dimensional bounding sectionof all requests, and then dividing it among processors such that the �le domain of each processoris located contiguously in the �le.Array sections other than those that can be represented by a lower-bound, upper bound, andstride in each dimension, for example, sections with non-uniform strides, can also be accessed byusing the extended two-phase method. This requires a more general notation for representing suchsections. The data structures, such as FAD and FDAT, must be modi�ed to handle such requests,but the basic idea remains the same.It is not necessary that all processors running the application must call the extended two-phase read/write routine. Even a subset of processors may call the routine and participate in thetwo-phase process. The I/O workload can be divided among the processors in this subset.The extended two-phase method is not speci�c to any particular machine, �le system, or ar-chitecture; it can be easily implemented by using any �le-system interface, or by using portableinterfaces, such as MPI-IO [16], resulting in portable implementations. It can also be easily modi-�ed and tuned for any particular system|by de�ning �le domains appropriately and possibly using24



a di�erent algorithm for interprocessor communication.The best way to use the extended two-phase method is to implement it as a library routine thatcan be called from an application program. We have implemented it in the PASSION runtime li-brary [15], which is available on the World-Wide Web at http://www.cat.syr.edu/passion.html.References[1] Applications Working Group of the Scalable I/O Initiative. Preliminary Survey of I/O IntensiveApplications. Scalable I/O Initiative Working Paper Number 1. On the World-Wide Web athttp://www.ccsf.caltech.edu/SIO/SIO apps.ps, 1994.[2] R. Bordawekar, A. Choudhary, and J. del Rosario. An Experimental Performance Evaluationof Touchstone Delta Concurrent File System. In Proceedings of the 7th ACM InternationalConference on Supercomputing, pages 367{376, July 1993.[3] R. Bordawekar, A. Choudhary, and R. Thakur. Data Access Reorganizations in Compil-ing Out-of-Core Data Parallel Programs on Distributed Memory Machines. Technical Re-port SCCS{622, NPAC, Syracuse University, September 1994. On the World-Wide Web atftp://erc.cat.syr.edu/ece/choudhary/PASSION/access reorg.ps.Z.[4] R. Bordawekar, J. del Rosario, and A. Choudhary. Design and Evaluation of Primitives forParallel I/O. In Proceedings of Supercomputing '93, pages 452{461, November 1993.[5] P. Corbett, D. Feitelson, J. Prost, and S. Baylor. Parallel Access to Files in the Vesta FileSystem. In Proceedings of Supercomputing '93, pages 472{481, November 1993.[6] E. DeBenedictis and J. del Rosario. nCUBE Parallel I/O Software. In Proceedings of 11thInternational Phoenix Conference on Computers and Communications, pages 117{124, April1992.[7] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-PhaseRuntime Access Strategy. In Proceedings of the Workshop on I/O in Parallel Computer Sys-tems at IPPS '93, pages 56{70, April 1993.[8] J. del Rosario and A. Choudhary. High Performance I/O for Parallel Computers: Problemsand Prospects. IEEE Computer, pages 59{68, March 1994.[9] IBM Corp. IBM AIX Parallel I/O File System: Installation, Administration, and Use. Docu-ment Number SH34-6065-01, August 1995.25
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