
I/O Characterization of a Portable Astrophysics Applicationon the IBM SP and Intel Paragon�Rajeev Thakur Ewing Lusk William GroppMathematics and Computer Science DivisionArgonne National Laboratory9700 S. Cass AvenueArgonne, IL 60439fthakur, lusk, groppg @mcs.anl.govPreprint MCS{P534{0895Revised October 1995AbstractMany large-scale applications on parallel machines are bottlenecked by the I/O performancerather than the CPU or communication performance of the system. To improve the I/O perfor-mance, it is �rst necessary for system designers to understand the I/O requirements of variousapplications. This paper presents the results of a study of the I/O characteristics and perfor-mance of a real, I/O-intensive, portable, parallel application in astrophysics, on two di�erentparallel machines|the IBM SP and the Intel Paragon. We instrumented the source code torecord all I/O activity, and analyzed the resulting trace �les. Our results show that, for thisapplication, the I/O consists of fairly large writes, and writing data to �les is faster on theParagon, whereas opening and closing �les are faster on the SP. We also discuss how the I/Operformance of this application could be improved; particularly, we believe that this applicationwould bene�t from using collective I/O.�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38;and by the Scalable I/O Initiative, a multiagency project funded by the Advanced Research Projects Agency (contractnumber DABT63-94-C-0049), the Department of Energy, the National Aeronautics and Space Administration, andthe National Science Foundation.

1 IntroductionParallel computers are being increasingly used for applications requiring a large amount of com-putational power. Many such applications also deal with large quantities of data, and hence havesigni�cant I/O requirements. The Applications Working Group of the Scalable I/O Initiative hascompiled a list of several data-intensive applications and their I/O requirements [1]. The I/Operformance of parallel computers has always been orders of magnitude lower than the CPU andcommunication performance because improvements in the I/O subsystem have not kept pace withimprovements in the CPU and communication subsystems. As a result, I/O is often the bottleneckfor large-scale applications on parallel computers.Improving the I/O performance of parallel computers is critical to realizing their full potential insolving problems which were previously considered intractable. This requires coordinated improve-ments at all levels|I/O hardware, parallel �le systems, operating systems, application programinterfaces, runtime libraries, compilers, and languages. However, it is �rst necessary to understandthe I/O characteristics of applications, so that we know what the common I/O requirements are,and what improvements can be made to better support these requirements.This paper presents the results of a study of the I/O characteristics of a real, large-scale, I/O-intensive, portable, parallel application in astrophysics [21], on two di�erent parallel computers|theIBM SP and the Intel Paragon. We instrumented the source code using the Pablo performanceanalysis environment [30] and collected trace �les on both systems. The traces were analyzed andvisualized using Upshot [16]. The objectives of this study were to understand the I/O behaviorof the application on each individual machine and to compare the I/O performance of the twomachines for the same application. Note that we instrumented the existing parallel code for theapplication. We did not parallelize the sequential version, nor did we modify any of the I/O alreadypresent in the code.In the next section, we describe some of the work done previously in the area of I/O charac-terization. Section 3 gives an overview of the astrophysics application used in this study. Detailsabout how the code was instrumented and analyzed, and the various experiments performed, areprovided in Section 4. The results of our study on the IBM SP and the Intel Paragon are pre-sented in Sections 5 and 6 respectively. In Section 7, we discuss how the I/O performance of thisapplication could be improved, and draw overall conclusions in Section 8.2 Related WorkThe �le access characteristics of applications on uniprocessor and vector machines have been studiedquite extensively. Ousterhout et al. [24] and Floyd and Ellis [12] studied �le access patterns on1

Unix workstations. Baker et al. [4] analyzed the user-level �le access patterns and caching behaviorof the Sprite distributed �le system. Smith [32] studied the �le access patterns on IBM mainframesat the Stanford Linear Accelerator Center. Ramakrishnan et al. [28] performed a study of theI/O access patterns in a commercial computing environment on a VAX/VMS system. Jensen andReed [17] studied the patterns of access to the �le archive of the National Center for SupercomputingApplications. Miller and Katz [22] traced certain I/O-intensive applications on the Cray Y-MP atNASA Ames Research Center. Pasquale and Polyzos [25, 26] studied the �le access characteristicsof scienti�c applications on the Cray Y-MP and Cray C90 at San Diego Supercomputer Center.Only recently have there been any e�orts to characterize the �le access patterns on parallelmachines. Kotz and Nieuwejaar [19] present the results of a three-week tracing study in which all�le-related activity on the Intel iPSC/860 at NASA Ames Research Center was recorded. Theydid not instrument individual applications; instead, they instrumented the Concurrent File Sys-tem (CFS) library routines called by all applications, and studied the �le-related activity of allapplications together. A similar study on the CM-5 at the National Center for SupercomputingApplications was performed by Purakayastha et al. [27]. The results of these two studies are com-pared and contrasted in [23]. They found that �le sizes were large, request sizes were fairly small,data was accessed in sequence but with strides, and I/O was dominated by writes.Crandall et al. [8] instrumented and analyzed the I/O characteristics of three parallel applica-tions on the Intel Paragon at Caltech. They found a wide variety of access patterns, including bothread-intensive and write-intensive phases, large as well as small request sizes, and both sequentialand irregular access patterns. Baylor and Wu [5] performed a study of the I/O characteristics offour parallel applications on an IBM SP using the Vesta parallel �le system. They found I/O re-quest rates on the order of hundreds of requests per second, mainly small request sizes, and strongtemporal and spatial locality. Reddy and Banerjee [29] studied the I/O activity of �ve applicationsfrom the Perfect benchmark suite on an Alliant multiprocessor, and found only sequential accesses.Del Rosario and Choudhary [11] provide an informal summary of the I/O requirements of sev-eral grand-challenge applications. Cypher et al. [9] discuss the I/O requirements of eight parallelscienti�c applications.Our work di�ers from previous e�orts in that we have performed a comparative study of theI/O characteristics and performance of one portable parallel application on two di�erent parallelmachines. To the best of our knowledge, there has been no other study of the I/O characteristicsof any application on di�erent machines. 2

3 Application OverviewThe application we benchmarked is an astrophysics code developed at the University of Chicagoas part of a NASA/ESS-funded grand-challenge project on convective turbulence and mixing inastrophysics [21]. This application focuses on the study of the highly turbulent convective layers oflate-type stars, like the sun, in which turbulent mixing plays a fundamental role in the redistribu-tion of many physical ingredients of the star, such as angular momentum, chemical contaminants,and magnetic �elds. The code solves the equations of compressible hydrodynamics for a gas inwhich the thermal conductivity changes as a function of temperature. The computational algo-rithm consists mainly of two independent components|a �nite di�erence higher-order Godunovmethod for compressible hydrodynamics, and a Crank-Nicholson-based multigrid scheme. The twoalgorithms are combined by using a time-splitting technique. Further details about the applicationare given in [21, 6, 7].The code has been implemented in Fortran 77 and C. The Chameleon library is used for bothmessage passing and I/O [15]. Chameleon provides a uniform interface to whatever native message-passing library is available on a given machine, and also provides a portable high-level interface forI/O. As a result, the code is directly portable across a wide range of parallel machines.The version of the code we instrumented solves a two-dimensional problem, with the size of thedomain speci�ed as an input parameter. The main data structures in the code are two-dimensionalarrays of double-precision oating-point numbers. The application performs a signi�cant amountof I/O and is bottlenecked by its I/O requirements [20]. The authors would like to solve three-dimensional problems, but are constrained by the I/O performance [20]. To reduce the amount ofdata transfer, I/O is performed in single-precision though computation is done in double-precision.All arrays �t in main memory, so the application is essentially in-core. The solution algorithmis iterative: a typical run may require 20,000 iterations and take as long as 24 hours even on aparallel machine. Hence, the code has been provided with a checkpoint/restart facility. All relevantarrays are periodically written to �les so that in the event of a system crash, the program can berestarted from the previous checkpoint. Certain arrays are also written to �les periodically for thepurpose of visualizing the progress of the computation in the form of a movie. Some arrays arealso written periodically for data analysis. In summary, distributed arrays are written to �les forthree reasons|restart, movie, and data analysis. The number of times each type of write is to beperformed can be speci�ed as input parameters to the program. All I/O that takes place is forwrites; there are no reads except when the program is restarted from a checkpoint. In this case,distributed arrays are read from previously stored �les.All I/O is performed using the Chameleon I/O library, which provides a portable set of routinesfor high-performance I/O that hide the details of the actual implementation from the user [13]. The3

user can select at run-time whether a �le is stored as a simple Unix �le (for compatibility with othertools) or as a parallel �le readable only with the Chameleon I/O library routines (for maximumperformance). In the astrophysics application, all data is stored in simple Unix �les for portabilityreasons. The Chameleon I/O library uses a portable, high-level application program interface(API). For example, an entire distributed array can be written to a �le with a call to a singleroutine called PIWriteDistributedArray. This routine is used extensively in the astrophysicsapplication. For improved I/O performance, the Chameleon I/O library performs caching of data.All data to be written is �rst stored in a cache, and only when the cache gets full is data actuallywritten to disks. This results in larger granularity data transfer between main memory and disks,and reduces the e�ect of high I/O latency. The user can either specify the cache size, or the librarywill use a default value.4 Details of ExperimentsWe describe how the application code was instrumented and analyzed, and the various experimentsthat were performed.4.1 Instrumentation and AnalysisWe instrumented the source code using Pablo [30], a comprehensive performance analysis envi-ronment developed at the University of Illinois at Urbana-Champaign. The Pablo environmentincludes instrumentation libraries that can record timestamped event traces, a performance datameta-format called Self-De�ning Data Format (SDDF) [2] and associated library, a parser for gen-erating instrumented SPMD source code, and tools for analyzing and graphically displaying thetraces.Pablo also includes a special set of tools for capturing and analyzing I/O performance data [3].The I/O extension to the Pablo trace library provides the user with a set of high-level routinesthat generate trace events corresponding to the I/O operations taking place in a program. A set ofmachine-independent I/O trace routines and events are provided for all platforms supported by theI/O trace extension. In addition, machine-dependent I/O trace routines and events are providedfor some platforms such as the Intel Paragon. Both C and Fortran programs can be instrumentedfor generating traces of I/O events.When an instrumented program is run, each processor creates its own trace �le. Pablo providesa tool called SDDFmerge to merge the separate trace �les into a single �le. Other Pablo tools,such as IOStats and IOtotalsByPE, can be used to analyze the trace �le, and provide detailedinformation about the I/O operations recorded. 4

We visualized and analyzed the trace �les using Upshot [16], a tool for studying parallel programbehavior developed at Argonne National Laboratory. Upshot takes as input a log�le, which isbasically a list of the events of interest in a parallel program, in the order in which they occurredduring the execution of the program. Upshot provides a view of the log�le, with events aligned onthe parallel time lines of individual processors. Di�erent events can be assigned di�erent colors.Upshot displays all events in the log�le against time, and it is possible to zoom-in to any particulartime location for a more detailed view. Upshot thus provides a global view of the trace data acrossall processors, which can often reveal interesting patterns and peculiarities in the performance ofthe code.Upshot expects the log�les to be in a speci�c format described in [16]. The traces created byPablo are in a di�erent format called Self-De�ning Data Format (SDDF) [2]. Hence, we had to�rst convert Pablo trace �les to the format required by Upshot. This conversion was trivial to dousing Perl.4.2 Machine Speci�cationsThe instrumented code was run on the IBM SP at Argonne National Laboratory and the IntelParagon at Caltech, which are the two testbeds for the Scalable I/O Initiative.4.2.1 IBM SPThe IBM SP at Argonne National Laboratory has 128 compute nodes. Eight of these nodes alsoperform the function of I/O servers for the parallel I/O system. Each of these eight nodes is anRS/6000 Model 970 with 256 Mbytes of main memory; each of the other 120 nodes is an RS/6000Model 370 with 128 Mbytes of main memory. Each node is provided with a 1 Gbyte local disk,of which 400 Mbytes are available to users, the rest is for paging and other operating system use.The operating system on each node is IBM AIX 3.2.5. The nodes are interconnected by a high-performance omega switch with approximately 63 �sec latency and 35 Mbytes/sec bandwidth [14].The peak performance of each node is 125 Mops/sec [14]. The parallel I/O system on the SPconsists of four RAID-5 disk arrays, each of 50 GBytes. In addition to the regular Unix (AIX) �lesystem on each node, the SP supports two other �le systems|NSL Unitree and IBM's parallel �lesystem PIOFS. Two of the four RAIDs are used for Unitree and the other two for PIOFS. Thereare four ways in which a program can access �les on the SP:1. From the user's home directory via NFS. This is expected to be the slowest.2. From the local disk on each processor (/tmp directory). This results in independent parallelI/O, but data cannot be stored in one common �le.5

3. From Unitree. Unitree is a hierarchical �le system that allows the user to access data fromdisk as well as tape. A single hierarchy consists of one disk server and one tape server. TheArgonne SP has 8 hierarchies (corresponding to the 8 I/O servers). A Unitree �le is storedon a single hierarchy and is not striped across di�erent hierarchies. But di�erent �les can bestored on di�erent hierarchies, and thus may be accessed in parallel.4. From PIOFS. PIOFS is a parallel �le system in which a �le is striped across the I/O servers,allowing di�erent portions of the �le to be accessed concurrently.4.2.2 Intel ParagonThe Intel Paragon at Caltech has 512 compute nodes, each of which is an Intel i860/XP micro-processor. Each compute node has a peak performance of 75 Mops/sec and is provided with32 Mbytes of main memory. The nodes are connected to each other by a two-dimensional meshinterconnection network. The parallel I/O system on the Paragon consists of 21 I/O nodes, eachconnected to a 4.8 Gbyte RAID-3 disk array. The I/O nodes are dedicated nodes and do not runany compute jobs. The I/O nodes also have 32 Mbytes of main memory. The Paragon runs theOSF/1 operating system. Intel's Parallel File System (PFS) provides parallel access to �les. PFSstripes �les across the I/O nodes, the default stripe factor being 64 Kbytes. Files can also beaccessed from the user's home directory via NFS, or from the OSF/1 Unix File System (UFS), butthese accesses are expected to be slow.4.3 ExperimentsSince we were interested mainly in studying the I/O characteristics of the application, we instru-mented only the portion of the code that performs I/O. One complication that arises is the factthat the application does not perform I/O by directly using the routines provided by the �le sys-tem. All I/O is done via calls to the Chameleon I/O library, and Pablo does not directly supportinstrumentation of code written using Chameleon. However, Pablo does provide generic routinesto trace any kind of event. We used these generic routines to trace the calls to the Chameleon I/Olibrary. This tracing provided us with information about the time taken for the Chameleon I/Oroutines to complete, but no detailed information about the actual I/O activity going on in theprogram.To understand the I/O characteristics better, we instrumented the Chameleon I/O library codeitself, so that I/O events occurring within the library were recorded. The astrophysics applicationuses the PIO AS SEQUENTIAL mode of Chameleon I/O in which all data is written to simple Unix�les. The way this is implemented in Chameleon I/O is that all processors send data to one master6

processor using interprocessor communication, and the master processor writes the entire �le. Asa result, all I/O is done by one processor. When this mode is instrumented for I/O, only the I/Oactivity of the master processor is recorded. The other processors are shown to perform no I/O,although in fact they do perform communication for this I/O event. Hence, we also instrumentedthe communication portion of this I/O activity, to record the work being done by other processors.In summary, we performed three di�erent \levels" of instrumentation of this application:� app-level: Instrumentation was done across calls to the Chameleon I/O library, using thegeneric Pablo routines StartTimeEvent and EndTimeEvent.� libio-level: The Chameleon I/O library itself was instrumented to record all I/O activity.� libio-comm-level: In the Chameleon I/O library, the I/O activity of the master processor, aswell as the communication performed by other processors to send their data to the masterprocessor, were instrumented.Note that the application code was run on both machines without any change. We did notperform any machine-speci�c optimizations. The application uses the Unitree �le system on theSP because the Chameleon I/O library does not currently support PIOFS. On the Paragon, theapplication uses PFS.4.4 Parameter SettingsThe astrophysics application is iterative, and the number of iterations can be speci�ed as an inputparameter. The I/O is done every few iterations, which are also speci�ed as parameters. For theresults given in this paper, the parameters were chosen as follows:� problem size = 512� 256� total number of iterations = 20� movie arrays written every 5 iterations� horizontal averages written every 5 iterations� restart arrays written every 10 iterations� arrays for data analysis written every 10 iterationsThese parameters reect the relative frequency of the di�erent types of output required in thisapplication: horizontal averages and movie arrays are written more frequently than restart anddata arrays. 7

2.6 7.8 12.9 18.1 23.3 28.5 33.6

Chameleon I/O write calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Figure 1: Upshot view with app-level instrumentation on the SP (32 processors)We also ran the code for larger numbers of iterations, but we found that the results are moreor less similar. The same observations as in the �rst 20 iterations are repeated for the remainingiterations. Hence, in this paper, we report only the I/O activity in the �rst 20 iterations.5 I/O Characteristics on the SPWe ran the code and collected traces for all three levels of instrumentation on the SP. We selectedtwo cases for the number of processors|32 and 128 (all available processors). Let us �rst considerthe results for the 32-processor case.Figure 1 shows the Upshot view of the log�le with app-level instrumentation on 32 processors.Upshot always shows time in seconds on the x-axis, and processors on the y-axis. The bands in the�gure correspond to calls to Chameleon I/O library routines. The narrow bands every 5 iterationscorrespond to the writing of horizontal averages and movie arrays. The larger bands every 10iterations are due to the writing of arrays for data analysis and restart. Table 1 summarizes theI/O activity. We observe that calls to Chameleon I/O routines take an average of 26.61% of the totalprogram time. The total amount of data transferred is not available at this level of instrumentation.Figure 2 shows a zoomed-in view of a portion of Figure 1. The bands in the �gures are very regularbecause the Chameleon I/O routines are synchronous and blocking.8

Table 1: I/O operations with app-level instrumentation on the SP (32 processors).Total program time = 43.59 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeChameleon I/O routines 1816 11.60 26.61
14.97 15.60 16.24 16.88 17.52 18.16 18.80

Chameleon I/O write calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Figure 2: A zoomed-in view of a portion of Figure 1Figure 3 shows the Upshot view with libio-level instrumentation on 32 processors. In this case,all I/O activity within the Chameleon I/O library routines was instrumented. Since the applicationuses the PIO AS SEQUENTIAL mode of Chameleon I/O, all I/O is performed only by processor 0.Other processors only send data to processor 0 using interprocessor communication, and do notperform I/O directly. Hence, in Figure 3, no I/O activity is seen for processors 1{31.Figure 4 shows a zoomed-in Upshot view with libio-comm-level instrumentation on 32 pro-cessors. In this case, both I/O and communication occurring within the Chameleon I/O libraryare instrumented. Note that the application also performs communication explicitly to fetch o�-processor data, but that was not recorded. The I/O activity is summarized in Table 2. It can beobserved that 8.89% of program time is spent on pure I/O activity (open, close, write), whereas9

2.8 8.5 14.1 19.8 25.4 31.0 36.7

close open write

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Figure 3: Upshot view with libio-level instrumentation on the SP (32 processors)communication for I/O takes 21.21% of program time. This communication time includes the idletime other processors spend waiting while processor 0 performs I/O. Hence, the percentage of pro-gram time spent on communication for I/O is slightly exaggerated in Table 2. Even so, a signi�cantamount of time is spent on communication. This is because the communication involves processors1{31 simultaneously sending data to processor 0, resulting in a bottleneck. The communication isperformed in units of a certain bu�er size prede�ned within the Chameleon I/O library. As a result,in Figure 4, we see several bands corresponding to communication. Comparing Tables 1 and 2, weobserve a di�erence in the total program time as well as in the percentage of program time spenton I/O activities. This di�erence can be attributed to the fact that the two experiments were runat di�erent times and we did not have exclusive access to the system. Also, the instrumentationoverheads, though small, are di�erent in the two cases.Table 3 gives details about the write operations in the code. There were a total of 27 writeoperations, all performed by processor 0. A total of 10.67 Mbytes were written during 20 iterationsof the program. The writes were of fairly large size, up to 1 Mbyte; there were only two smallwrites of 24 bytes. The large writes are mainly due to the fact that the Chameleon I/O libraryperforms caching, and the write cache size was set at 1 Mbyte. The aggregate throughput of allwrite operations was 4.063 Mbytes/sec. 10

15.97 16.79 17.62 18.45 19.28 20.11 20.93

close communication open write

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31Figure 4: Zoomed-in Upshot view with libio-comm-level instrumentation on the SP (32 processors)Table 2: I/O operations with libio-comm-level instrumentation on the SP (32 processors). Open,close, and write take place only on processor 0. The communication time includes the idle timeother processors spend waiting while processor 0 performs I/O.Total program time = 44.97 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeOpen 11 1.121 2.493Close 10 0.249 0.554Write 27 2.627 5.842Communication 5640 9.538 21.21(for I/O)Table 3: Details of write operations with libio-comm-level instrumentation on the SP (32 processors)Total Size distribution (bytes) Total data Total time Throughputcount 24 10K 64K 1M written (Mbytes) (sec) (Mbytes/sec)27 2 5 10 10 10.67 2.627 4.06311

Table 4: I/O operations with app-level instrumentation on the SP (128 processors).Total program time = 59.35 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeChameleon I/O routines 6704 20.88 35.18Table 5: I/O operations with libio-comm-level instrumentation on the SP (128 processors). Open,close, and write take place only on processor 0. The communication time includes the idle timeother processors spend waiting while processor 0 performs I/O.Total program time = 63.95 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeOpen 11 0.816 1.276Close 10 0.267 0.417Write 27 3.635 5.684Communication 22160 16.34 25.55(for I/O)We also ran all three cases on all 128 processors on the SP. We do not show the Upshot views ofthese because the general patterns are similar to the corresponding 32-processor cases. The resultsare summarized in Tables 4 and 5. The total program time is higher than in the 32-processor case.The average time spent on Chameleon I/O routines is also higher, which in turn means that alarger amount time was required for communication within the Chameleon I/O routines.The distribution of time spent on di�erent operations is clearer with libio-comm-level instru-mentation (Table 5). The time taken by I/O operations is slightly di�erent from the 32-processorcase (Table 2), though in theory it should be identical because only processor 0 performs I/O.The di�erence is because the two cases were run at di�erent times and we did not have exclusiveaccess to the system. The communication time, however, is signi�cantly higher in the 128-processorcase because there are 127 processors simultaneously sending data to processor 0. Table 6 showsthat the distribution of write sizes is the same as in the 32-processor case, but the aggregate writethroughput obtained is lower. 12

Table 6: Details of write operations with libio-comm-level instrumentation on the SP (128 proces-sors) Total Size distribution (bytes) Total data Total time Throughputcount 24 10K 64K 1M written (Mbytes) (sec) (Mbytes/sec)27 2 5 10 10 10.67 3.635 2.9356 I/O Characteristics on the ParagonWe repeated all the above experiments on the Paragon to obtain a comparison of the performanceon the two machines. We selected the same number of processors|32 and 128. Let us �rst considerthe results for the 32-processor case.Figure 5 shows the Upshot view of the log�le with app-level instrumentation on 32 processorson the Paragon. The general pattern is similar to that for the SP in Figure 1, but we �nd thatthe total time taken on the Paragon in higher. A zoomed-in Upshot view for a portion of the traceis given in Figure 6. This pattern is also similar to that for the SP in Figure 2, but we observethat corresponding events on di�erent processors are better synchronized on the SP, whereas theyare slightly skewed on the Paragon (this is even more evident in Figure 7). Since Pablo uses theglobal clock to record timestamps, the skew may indicate that the global clock on the Paragon isnot as well synchronized as that on the SP. Table 7 summarizes the I/O activity. A comparison ofTables 1 and 7 reveals that the total program time on the SP is about 55% of that on the Paragon.Calls to Chameleon I/O library routines also take less time on the SP.Table 7: I/O operations with app-level instrumentation on the Paragon (32 processors).Total program time = 79.26 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeChameleon I/O routines 1816 14.25 17.98Since libio-level is a subset of libio-comm-level instrumentation, we only show results for libio-comm-level instrumentation on the Paragon. Figure 7 shows a zoomed-in Upshot view with libio-comm-level instrumentation on 32 processors. Unlike on the SP, we observe a distinct skew inthe occurrence of corresponding events on di�erent processors. The I/O activity is summarized inTable 8. A comparison of Tables 2 and 8 shows that the time for opening �les on the Paragonis 2.87 times that on the SP. The time for closing �les is only slightly higher on the Paragon.13

4.3 13.0 21.7 30.4 39.1 47.8 56.5

Chameleon I/O write calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Figure 5: Upshot view with app-level instrumentation on the Paragon (32 processors)

26.86 27.93 29.00 30.07 31.15 32.22 33.29

Chameleon I/O write calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Figure 6: A zoomed-in view of a portion of Figure 514

31.51 32.35 33.18 34.02 34.85 35.69 36.52

close communication open write

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31Figure 7: Zoomed-in Upshot view with libio-comm-level instrumentation on the Paragon (32 pro-cessors)However, the time for writing data on the Paragon is 37.42% of that on the SP. The time spenton communication for I/O is higher on the Paragon. In summary, writing data is faster on theParagon, whereas opening �les, closing �les, and communication are faster on the SP. The sizesof di�erent write operations are the same as on the SP (Table 3) because the code run on bothmachines was identical.The di�erence in write bandwidths on the SP and Paragon may be due to the fact that theapplication uses Intel's Parallel File System (PFS) on the Paragon, and the Unitree �le system onthe SP. PFS stripes �les across multiple disks, which enables data be written to di�erent disks inparallel. Unitree, on the other hand, is a hierarchical �le system. It allows users to directly access�les from tapes, but it stores each �le on a single disk-tape hierarchy. Hence, there is no parallelismof access within a �le. IBM's parallel �le system PIOFS could not be used on the SP because theChameleon I/O library does not currently support PIOFS.We also took traces on 128 processors on the Paragon for all three levels of instrumentation.The I/O activity is described in Tables 9 and 10. The total program time as well as the time forChameleon I/O routines is higher than in the 32-processor case. The time for I/O operations wasexpected to be the same, but turned out to be slightly di�erent because the two cases were run at15

Table 8: I/O operations with libio-comm-level instrumentation on the Paragon (32 processors).Open, close, and write take place only on processor 0. The communication time includes the idletime spent by other processors waiting while processor 0 performs I/O.Total program time = 84.59 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeOpen 11 3.216 3.801Close 10 0.298 0.352Write 27 0.983 1.162Communication 5640 10.34 12.22(for I/O)Aggregate write throughput = 10.85 Mbytes/sec.Table 9: I/O operations with app-level instrumentation on the Paragon (128 processors).Total program time = 106.4 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeChameleon I/O routines 6704 21.96 20.65di�erent times. The time spent on communication for I/O is considerably higher on 128 processors.These results are consistent with corresponding results on the SP.A comparison of Tables 4 and 9 reveals that, with 128 processors, the total program time onthe SP is 55.78% of that on the Paragon. Calls to Chameleon I/O library routines also take lesstime on the SP. From Tables 5 and 10 we observe that the time for opening �les on the Paragon is5.77 times that on the SP. The time for closing �les is only slightly more on the Paragon. However,writing data on the SP takes 3.05 times that on the Paragon. Communication for I/O is faster onthe SP. Thus, the relative performance on the two machines for the 128-processor case is similar tothat for the 32-processor case.7 Improving the I/O PerformanceThe above results show that the I/O performance of this application is limited by the use of thePIO AS SEQUENTIAL mode of Chameleon I/O. This mode does not make good use of the availableI/O bandwidth since all I/O is performed only by processor 0. It also results in a communication16

Table 10: I/O operations with libio-comm-level instrumentation on the Paragon (128 processors).Open, close, and write take place only on processor 0. The communication time includes the idletime other processors spend waiting while processor 0 performs I/O.Total program time = 114.2 sec.Total count Average time Percentage ofOperation (all procs.) per proc. (sec) program timeOpen 11 4.707 4.122Close 10 0.298 0.261Write 27 1.191 1.043Communication 22160 16.87 14.77(for I/O)Aggregate write throughput = 8.959 Mbytes/sec.bottleneck when all processors simultaneously send data to processor 0.The I/O performance of the application could be improved by using the PIO AS PARALLELmodeof Chameleon I/O. In this mode, each processor independently writes its local array to a separate�le. However, the authors of the application prefer the PIO AS SEQUENTIAL mode because it writesa distributed array into a single Unix-compatible �le. This makes it easier to postprocess theoutput data using sequential Unix tools and also to restart the program on a di�erent number ofprocessors. We did not run the instrumented code using the PIO AS PARALLEL mode because theauthors of the application never run it in that mode [20].Clearly, the I/O performance could be improved by having several processors write to a common�le in parallel. This would make better use of the available I/O bandwidth and also eliminate thecommunication bottleneck. The I/O access pattern of this application suggests that it would bene�tfrom using collective I/O, in the form of either two-phase I/O [10], disk-directed I/O [18], or server-directed collective I/O [31]. In this application, arrays are distributed in a block fashion in twodimensions, resulting in each processor getting a sub-block of the array. The sub-block from eachprocessor needs to written to the �le containing the entire array. It has been shown in [10, 18, 31]that this can be done e�ciently using collective I/O.To study the bene�ts of using collective I/O for this application, we have implemented theChameleon I/O routines PIWriteDistributedArray and PIReadDistributedArray using two-phase I/O. We are currently in the process of characterizing the performance of the applicationwith these new routines. Results from these experiments will be included in the �nal version ofthis paper. 17

8 ConclusionsOur tracing study provides some interesting results. We �nd that all I/O in this astrophysicsapplication is for writes only, except when restarting from a checkpoint. Most of the writes arefairly large, up to 1 Mbyte each, mainly because of caching performed by the Chameleon I/Olibrary. The total program time on the SP is about 55% of that on the Paragon. Writing data to�les takes less time on the Paragon, but opening and closing �les take less time on the SP. The I/Oaccess pattern of the application suggests that the I/O performance could be improved by usingcollective I/O. We are currently studying the performance bene�ts of using two-phase I/O for thisapplication.We note that some of the results in this paper may be speci�c to this particular applicationand the Chameleon I/O library. To reach a more de�nite conclusion, we plan to study the I/Ocharacteristics of several other parallel applications. We also plan to instrument and characterizethe three-dimensional version of this application being developed [20], which is much more I/O-intensive than the present two-dimensional version.AcknowledgmentsWe thank Andrea Malagoli for giving us the source code of the application and helping us under-stand it. We also thank Ruth Aydt for helping us understand how to use Pablo.References[1] Applications Working Group of the Scalable I/O Initiative. Preliminary Survey of I/O IntensiveApplications. Scalable I/O Initiative Working Paper Number 1. On World-Wide Web athttp://www.ccsf.caltech.edu/SIO/SIO apps.ps, 1994.[2] R. Aydt. The Pablo Self-De�ning Data Format. Technical report, Dept. of Computer Science,University of Illinois at Urbana-Champaign, March 1992.[3] R. Aydt. A User's Guide to Pablo I/O Instrumentation. Technical report, Dept. of ComputerScience, University of Illinois at Urbana-Champaign, December 1994.[4] M. Baker, J. Hartman, M. Kupfer, K. Shirri�, and J. Ousterhout. Measurements of a Dis-tributed File System. In Proceedings of the Thirteenth ACM Symposium on Operating SystemsPrinciples, pages 198{212, October 1991.[5] S. Baylor and C. Wu. Parallel I/O Workload Characteristics Using Vesta. In IPPS '95Workshop on Input/Output in Parallel and Distributed Systems, pages 16{29, April 1995.[6] T. Bogdan, F. Cattaneo, and A. Malagoli. On the Generation of Sound by Turbulent Convec-tion: I. A Numerical Experiment. The Astrophysical Journal, 407:316{329, 1993.[7] F. Cattaneo, N. Brummel, J. Toomre, A. Malagoli, and N. Hurlburt. Turbulent CompressibleConvection. The Astrophysical Journal, 370:282{294, 1991.18

[8] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output Characteristics of Scalable ParallelApplications. In Proceedings of Supercomputing '95, December 1995. To appear.[9] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural Requirements of Paral-lel Scienti�c Applications with Explicit Communication. In Proceedings of the 20th AnnualInternational Symposium on Computer Architecture, pages 2{13, 1993.[10] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-PhaseRuntime Access Strategy. In Proceedings of the Workshop on I/O in Parallel Computer Sys-tems at IPPS '93, pages 56{70, April 1993.[11] J. del Rosario and A. Choudhary. High Performance I/O for Parallel Computers: Problemsand Prospects. IEEE Computer, pages 59{68, March 1994.[12] R. Floyd and C. Ellis. Directory Reference Patterns in Hierarchical File Systems. IEEETransactions on Knowledge and Data Engineering, 1(2):238{247, June 1989.[13] N. Galbreath, W. Gropp, and D. Levine. Applications-Driven Parallel I/O. In Proceedings ofSupercomputing '93, pages 462{471, November 1993.[14] W. Gropp and E. Lusk. User's Guide for the ANL IBM SPx. On World-Wide Web atftp://info.mcs.anl.gov/pub/ibm sp1/guide-r2.ps.Z, March 1995.[15] W. Gropp and B. Smith. Chameleon Parallel Programming Tools User's Manual. TechnicalReport ANL{93/23, Mathematics and Computer Science Division, Argonne National Labora-tory, March 1993.[16] V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Upshot. Technical Re-port ANL{91/15, Mathematics and Computer Science Division, Argonne National Laboratory,August 1991.[17] D. Jensen and D. Reed. File Archive Activity in a Supercomputing Environment. In Proceed-ings of the 7th ACM International Conference on Supercomputing, July 1993.[18] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In Proceedings of the 1994 Symposiumon Operating Systems Design and Implementation, pages 61{74, November 1994. Updated asTechnical Report PCS{TR94{226, Dept. of Computer Science, Dartmouth College.[19] D. Kotz and N. Nieuwejaar. File-System Workload on a Scienti�c Multiprocessor. IEEEParallel and Distributed Technology, pages 51{60, Spring 1995.[20] A. Malagoli. Personal communication, 1995.[21] A. Malagoli, A. Dubey, F. Cattaneo, and D. Levine. A Portable and E�cient Parallel Algo-rithm for Astrophysical Fluid Dynamics. In Proceedings of Parallel CFD '95, June 1995.[22] E. Miller and R. Katz. Input/Output Behavior of Supercomputer Applications. In Proceedingsof Supercomputing '91, pages 567{576, November 1991.[23] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File-Access Characteristics ofParallel Scienti�c Workloads. Technical Report PCS{TR95{263, Dept. of Computer Science,Dartmouth College, August 1995. 19

[24] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson. A TraceDriven Analysis of the UNIX 4.2 BSD File System. In Proceedings of the Tenth ACM Sympo-sium on Operating Systems Principles, pages 15{24, December 1985.[25] B. Pasquale and G. Polyzos. A Static Analysis of I/O Characteristics of Scienti�c Applicationsin a Production Workload. In Proceedings of Supercomputing '93, pages 388{397, November1993.[26] B. Pasquale and G. Polyzos. Dynamic I/O Characterization of I/O Intensive Scienti�c Appli-cations. In Proceedings of Supercomputing '94, pages 660{669, November 1994.[27] A. Purakayastha, C. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing Parallel File-Access Patterns on a Large-Scale Multiprocessor. In Proceedings of the Ninth InternationalParallel Processing Symposium, pages 165{172, April 1995.[28] K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of File I/O Traces in CommercialComputing Environments. In Proceedings of ACM SIGMETRICS and PERFORMANCE,pages 78{90, 1992.[29] A. L. N. Reddy and P. Banerjee. A Study of I/O Behavior of Perfect Benchmarks on aMultiprocessor. In Proceedings of the 17th Annual International Symposium on ComputerArchitecture, pages 312{321, 1990.[30] D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L. Tavera. Scalable Perfor-mance Analysis: The Pablo Performance Analysis Environment. In Proceedings of the ScalableParallel Libraries Conference, pages 104{113, October 1993.[31] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-Directed Collective I/Oin Panda. In Proceedings of Supercomputing '95, December 1995. To appear.[32] A. Smith. Analysis of Long Term File Reference Patterns for Application to File MigrationAlgorithms. IEEE Transactions on Software Engineering, SE-7(4):403{417, July 1981.
20

