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show that, in general, short-length �lters produce better results than do longerlengths which perform very well for still images.I IntroductionSeveral recent results have indicated that subband/wavelet-based approaches haveoutperformed DCT-based techniques for still images. Examples such as vector sub-band coder (VSC) [9], embedded zero-tree wavelets (EZW) [15], and trellis-codedwavelet compression [16] have shown superior performance to the JPEG baselinecoding standard. However, when applied to full-motion video sequence, wavelet-based techniques have not shown clear advantages compared with DCT-based tech-niques such as MPEG 2 [11]. The reason is that block-based motion searching andcompensation match well to the block-based DCT structure, while for wavelet-basedcoding, block-based motion structure is in fundamental conict with the global-based wavelet decomposition. In addition, it is di�cult to employ the adaptivestructure of intra/inter-compensation decision present at the macro-block level forwavelet because of its global decomposition.Several attempts have been made to solve this problem. In [24, 25], and [23] weintroduced a video codec based on multiresolution motion compensation (MRMC)for a hierarchically decomposed video using wavelet decomposition, where motionestimation is performed in the wavelet domain rather than in the original imagedomain. The four MRMC schemes we proposed can be used for any hierarchicalrepresentation and are not particularly limited to wavelet decomposition. Since ourmultiresolution motion estimation scheme utilizes the correlation of motion at di�er-ent levels of the hierarchy, it gives better results in terms of overall complexity andperformance than do traditional approaches. In addition, intra/inter-compensationdecisions can be adaptively made according to local motion activities, since mo-tion prediction is performed after the wavelet decomposition. Based on the conceptof wavelet-domain multiresolution motion prediction, several coding schemes havebeen developed for di�erent applications [3, 7, 8, 12, 13]. Other original work onmultiresolution coding can be found in [2, 6, 10, 18].In most motion prediction schemes, the motion vectors of a particular frame arepredicted from the previous frame. In MPEG terminology these are referred to asP-frames. If the progressive transmission is compromised and frames are reordered,and if more bu�ers are added to hold a following and preceeding frame, predictionresults can be improved. These types of frame are referred to as B-frames. Thispaper reports our study in applying the B-frame structure to wavelet-decomposedpictures. The results show signi�cant improvement over previous approaches interms of both peak signal-to-noise ratio (PSNR) and subjective observation for a



set of testing sequences.Considerable research e�ort has been expended in the area of �lter design forwavelets. Many researchers have introduced wavelets and scaling functions havingdi�erent properties, such as orientation of the �lters, FIR implementation, andenergy distribution. We have considered a number of di�erent wavelet �lter-banksand have tested their performance in a multiresolution video coding environment.Section II gives a brief introduction to hierarchical representation of video, mul-tiresolution motion compensation, and bidirectional motion compensation. Inter-ested readers are referred to [25] and [23] for more details. Section III outlines ourclassi�cation algorithm, and Section IV presents the simulation results.II Wavelet-Domain Motion Estimation and Com-pensationA Wavelet Decomposition and Variable Block-sized Mul-tiresolution Motion EstimationIn the multiresolution motion estimation (MRME) scheme [25], the motion vectorsare �rst calculated for the lowest resolution subband on the top of the pyramid.Then for all the subimages in lower layers of the pyramid, they are re�ned by usingthe information obtained for higher layers.A variable block-sized MRME scheme signi�cantly reduces the searching andmatching time and provides a smooth motion vector �eld. In our study, a videoframe is decomposed up to three levels, resulting in a total of ten subbands, withthree subbands at each of the �rst two levels and four in the top level, including thesubband S8 , which represents the lowest frequency band (Figure 1).S8 contains a major percentage of the total energy present in the original frame,although it is only 1=64 of the original frame in size. Variable-sized blocks exploitthe fact that human vision can perceive errors more easily in lower frequencies thanin higher bands and tends to be selective in spatial orientation and positioning;therefore, more emphasis is given to the lower frequency bands by making the blocksat higher resolutions bigger than those at lower resolutions. In addition, errorsgenerated by motion estimation at the lowest-resolution subbands are propagatedand expanded to all subsequent lower-layer subbands.All ten subbands have a highly correlated motion activity. Using a variable-sizedblock of p2M�m by q2M�m for the m-th level ensures that the motion estimator tracks
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2WFigure 1: The Wavelet Decomposition and its Pyramid Structurethe same object/block regardless of the resolution or frequency band, where p by qis the blocksize of the highest layer at level M. With this structure, the number ofmotion blocks for all the subimages is constant, because a block at one resolutioncorresponds to the same position and the same object at all the other resolutions.In other words, all scaled subimages have the same number of motion blocks thatcharacterize the global motion structure in di�erent grids and frequency ranges.Variable-sized blocks thus tend to appropriately weigh the importance of di�erentlayers to match the human visual perception. This scheme can detect motionsfor small objects in the highest level of the pyramid. Constant block-size MRMEapproaches tend to ignore the motion activities for small objects in higher levels ofthe pyramid because a block size of p�q actually corresponds to p2M�m�q2M�m inthe m-th layer.Our variable-sized MRMC approach requires much fewer computations than doesits �xed-size counterpart, since no interpolation is needed as the grid is re�ned [18].However, in our variable block-sized MRME approach, an accurate characterizationof motion information at the highest-layer subband produces very low energy inthe displaced residual subbands and results in much \cleaner" copies of displacedresidual wavelets (DRW) or subimages for lower-layer subbands. In contrast, inter-polation is often required to obtain similar results when using schemes that have�xed-sized blocks at all resolutions.



B Bidirectional Motion SearchIn most motion prediction schemes, the motion vectors of a particular frame arepredicted from the previous frame. This implementation requires only one framebu�er in the memory of the receiver. A frame can be reconstructed immediately asit is received because the previous frame has already been constructed.Prediction from the past frame can track a moving object very well, but theareas uncovered as a result of this movement have no correspondence to the previousframe. On the other hand, these freshly uncovered areas do have association withthe frame following it. A similar situation arises when there is a change in scene. Aframe in question does not have any relation to the past frame but is related to thefuture frame. In these cases, prediction from the past frame does not bene�t frommotion compensation. But if the future frame was somehow available, the currentframe could be predicted from it. It is important to note here that a future frameshould not be dependent on the current frame and be available beforehand. Thissituation in turn means that the frames are not transmitted in progressive order,and more bu�ering is required at the receiver to hold more than one frame bu�er.This also induces a delay in reconstruction of a frame because the reconstructionprocess has to wait until all the depending frames have been reconstructed, whichmight have their own dependencies. In MPEG terminology, such frames are termedB-frames.Figure 2 shows the motion search procedure for a B-frame as described by MPEGspeci�cations. The motion vector Vi(x; y), for a block is given byVi(x; y) = arg minx;y2
n 1XY X=2Xp=�X=2 Y=2Xq=�Y=2��Ii(xm + p; yn + q)� 1=2�Ii�1(xm + p + x; yn + q + y) + Ii+1(xm + p� x; yn + q � y)���o: (1)Equation (1) is the same as that for minimum absolute di�erence (MAD) exceptthat the second term is an average of the pixel in the previous and the future frames.Note that the sign of the motion vectors (x,y) is opposite for the future frame term.This implies that if the block has moved a distance Vi(x; y) between the previousand current frame, it is expected to move the same distance between the currentand the following frame. This symmetric search [18] has an advantage that only oneset of motion vectors is needed for each block. The disadvantage is that if framesare not symmetrically located in time, the search performs rather poorly.



C Multiresolution Motion-Compensation AlgorithmsMotion compensation applied to decomposed wavelets has led to better results thanapplying wavelet decomposition to the frame di�erence after motion compensationat the original input scale [25]. Some novel techniques for hierarchical motion esti-mation were proposed in [23] and are reiterated here for reference.The original video source is �rst decomposed into a set of ten wavelets, or sub-bands, fSM ;W km(x) ; m = 1; : : : ;M ; k = 1; 2; 3g with M = 3, by going to threelevels of decomposition on the lowpass sub-image. After using variable block-sizedmultiresolution motion estimation and compensation, the set of displaced residualwavelets (DRW) frames fRM ; Rkm(x) ; m = 1; : : : ;M ; k = 1; 2; 3g are quantized,coded, and transmitted.The four variations in the implementation of the predictive search algorithm formultiresolution motion estimation can be described as follows:C{I Motion vectors are calculated for S8 , and no further re�nement iscarried out. The values are scaled according to the resolution andare used for all the other subbands.C{II The motion vectors are calculated for all four lowest-resolution fre-
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quency bands, i.e., S8 and fW i8 i = 1; 2; 3g. These values are ap-propriately scaled and used as the motion vectors for all the corre-sponding higher-resolution subbands.C{III The motion vectors for S8 are calculated and used as an initial biasfor re�ning the motion vectors of all the other frequency bands andresolutions.C{IV The motion vectors are calculated for all frequency bands at thehighest level, i.e., fS8;W i8 : i = 1; 2; 3g, and these are used as aninitial bias for re�ning the motion vectors of all lower-level corre-sponding bands.Algorithms C{I and C{II use the simplest prediction model, where all the predic-tion coe�cients are zero except one that corresponds to S8 , which is set to 2M�m.Thus, the motion vectors at the resolution m are given by:V(m)i;j (x; y) = V(M)i;0 (x; y) 2M�m +�(m)(x; y) (2)for fj = 1; 2; 3g. Since no re�nement is done for C{I, �(m)(x; y) is set to zero.Similar equations apply to algorithms C{II through C{IV. The four algorithms aresummarized in Table 1.Table 1: Description of MRMC Algorithms.C{I S8 OnlyC{II fS8;W i8 : i = 1; 2; 3g OnlyC{III S8 + Re�neC{IV fS8;W i8 : i = 1; 2; 3g + Re�neIII Block-Classi�ed Bidirectional Motion SearchA Block Classi�cationIn a symmetric bidirectional scheme a block is compensated with the average of theprevious and future frame as described by Equation (1). This process is based on theunderlying assumption that the displacement of the block is the same between the



past and the current frame and between the current and the future frame, a conditionthat may not always be true. Therefore, in the block-classi�ed bidirectional schemeproposed here, a block can be classi�ed as uncompensated, motion compensatedeither from the previous frame or from the future frame, or symmetric bidirectionallycompensated depending on which type yields the minimum energy. The matchingcriterion is assumed to be MAD. Therefore, a block in current frame i has motionvector Vi(x; y) given byVi(x; y) = arg minnV(1)i ;V(2)i (x; y);V(3)i (x; y);V(4)i (x; y)o; (3)where V(1)i = X=2Xp=�X=2 Y=2Xq=�Y=2��Ii(xm + p; yn + q)�� (4)V(2)i (x; y) = arg minx;y2
n X=2Xp=�X=2 Y=2Xq=�Y=2��Ii(xm + p; yn + q)�Ii�1(xm + p+ x; yn + q + y)��o (5)V(3)i (x; y) = arg minx;y2
n X=2Xp=�X=2 Y=2Xq=�Y=2��Ii(xm + p; yn + q)�Ii+1(xm + p� x; yn + q � y)��o (6)V(4)i (x; y) = arg minx;y2
n X=2Xp=�X=2 Y=2Xq=�Y=2��Ii(xm + p; yn + q)�1=2�Ii�1(xm + p + x; yn + q + y)+Ii+1(xm + p � x; yn + q � y)���o: (7)Equation (4) is just the energy of the block itself without any compensation, Equa-tions (5) and (6) represent motion prediction with only the previous and futureframes, respectively. Equation (7) is the same symmetric bidirectional motion pre-diction equation as in (1).A block is thus classi�ed into one of the four classes depending on whichV(�)i (x; y)is minimum. Therefore, the type of the motion block, Ti, is given byTi = 8>>><>>>:1 if V(1)i � V(2)i ;V(3)i ;V(4)i ;2 if V(2)i < V(1)i ;V(3)i ;V(4)i ;3 if V(3)i < V(1)i ;V(2)i ;V(4)i ;4 if V(4)i < V(1)i ;V(2)i ;V(3)i : (8)



The block-type information, which is an added overhead, is transmitted by using alossless coding scheme. Note that if the block is classi�ed as type 1, then it has nomotion vectors because it is transmitted as is, without any compensation.B Frame Classi�cationThe MPEG standard identi�es three types of frame in its speci�cations, namely, I-,P-, and B-frames. I-frames are refresh frames that do not have any dependencies andcan be reconstructed on their own. These frames are required for synchronizationand reference purposes. P-frames are motion-compensated frames predicted from analready reconstructed I- or P-frame. B-frames are symmetric bidirectional framespredicted from the most recent I- or P-frame and the �rst available I- or P-frame tofollow.Simulations have shown that the SNR slowly deteriorates with time when inter-frame prediction of any kind is used as a result of error accumulation. The refreshframes (which are sent periodically or by demand) help refresh this error buildup,which will otherwise not only increase the bit rate but also decrease the SNR. Thebu�ering requirement in a simple interframe predicted scheme is one frame bu�er.With bidirectional prediction, this requirement increases to two bu�ers in the MPEGspeci�cations. Further increase in bu�ers is an economic constraint rather than apractical or implementation issue. With the rapid decrease in cost per byte ofmemory, this issue may soon be alleviated. Therefore, provided su�cient bu�eringcapacity, the SNR can be increased.
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Besides the I-, P-, and B-frames, another type of frame, referred to as the F-frame, is proposed. An F-frame is a frame predicted only in the forward directionfrom a following frame. The receiver is assumed to have enough bu�er to hold allthe frames between and including the two refresh I-frames. An F-frame is thus justlike a P-frame but predicted by a frame following it. If the order of the frames werereversed between the two I-frames, then an F-frame would behave exactly like aP-frame and a P-frame like an F-frame. The behavior of the SNR of the F-frames inthe reversed case would be the same as that of the P-frames in the normal ordering,that is, decreasing with time (or with time reversal, progressively increasing). Thisprocess is illustrated in Figure 3. Therefore, by introducing F-frames during thelatter half of time (between the two I-frames), as opposed to P-frames, which aretransmitted during the �rst half, the overall SNR for the frames transmitted betweenthe two I-frames is improved. B-frames can be introduced between the P-frames andbetween the F-frames, with their dependency on either or both.A typical classi�cation of frames is shown in Figure 4 for a sequence of framesbetween the two refresh frames. The refresh rate in this example is 10 frames.Frames 3 and 5 are P-frames, whereas 7 and 9 are F-frames. The rest of the frames,(2, 4, 6, and 8) are B-frames. The dependency of each frame is also shown in the�gure. Frame 2, which is a B-frame, depends on 1 and 3. Frame 3 depends only on1, and frame 9 depends only on 10. Therefore, the transmission sequence is 1, 10,3, 2, 5, 4, 9, 7, 6, 8, and then 20 and so on for the next refresh cycle, or in otherwords, : : : IPBPBFBFBI : : : and so on.
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PP FF BB B B

1 2 3 4 5 6 7 8 9 10

FramesFigure 4: Frame Classi�cation in a Typical Sequence



C Characterization of the Motion FieldMotion compensation at higher levels of the multiresolution pyramid may not resultin all-zero displaced residual wavelets, even when the displacement at full resolutionof the video is a pure translation. It has been shown in [10] that for two consecutiveframes S0i�1 and S0i which are related by pure translation displacement of (x; y), thatis, S0i (xm; yn) = S0i�1(xm + x; yn + y), the following holds:S1i (!1; !2) = 14H00(!12 ; !22 )S0i�1(!12 ; !22 ):e�jx(!1=2)e�jy(!2=2)+ 14 X(k;l)2f(0;1);(1;0);(1;1)gH00(!12 + k�; !22 + l�):S0i�1(!12 + k�; !22 + l�):e�jx(!1=2+k�)e�jy(!2=2+l�);whereH00(!12 ; !22 ) and S0i�1(!12 ; !22 ) are the Fourier transform of the 2-D lowpass �lterand the original image of the previous frame, respectively. It can be seen that thedirect components are related through translation, whereas the aliased componentsare not, unless the subsampling is Nyquist or the translation is an integral multipleof subsampling factor. Thus, in general, the images at any level are not relatedthrough simple translation even though the original full resolutions are.Therefore, it is expected that the motion compensation on a hierarchically rep-resented video will be less e�ective than that of the full-resolution image. Thisstatement should be taken literally as to what it says. It does not mean that the\overall" performance of a multiresolution motion compensated codec will not bebetter than the performance of the video codec which �rst applies motion compen-sation to the original image and then performs the decomposition on the displacedframe di�erence. It just states that the motion compensation on a hierarchicallyrepresented video be less e�ective as compared to motion compensation of the fullresolution image. Such a comparison is given in [22], where it has been shown thatoverall a multiresolution motion compensation performs better than motion com-pensation at the original scale, considering all the factors like the bit rate, SNR, andcomputational and search complexity.IV Simulation ResultsThe \car" test sequence was used in most of the simulations and is a full-motioninterlaced color video sequence in CCIR 601 4:2:2 format with 240�720 pixels per�eld in the Y component, and 240�360 each in the U and V components, all with



Table 2: Energies in a typical Displaced Residual Wavelets for Algorithms C{Ithrough C{IV.Energy S8 W 18 W 28 W 38 W 14 W 24 W 34 W 12 W 22 W 32Original Image 49587.23 7361.20 452.91 148.47 1391.86 65.89 18.46 203.53 7.48 3.31C{I 330.89 843.38 152.59 193.18 421.56 56.24 42.68 117.07 7.86 4.98C{II 330.89 190.41 42.98 27.98 430.56 46.99 25.57 103.97 7.42 4.26C{III 330.89 181.34 43.54 28.69 136.24 15.00 7.15 46.30 3.51 2.76C{IV 330.89 190.41 42.98 27.98 142.56 16.60 9.92 45.87 3.31 2.898 bits/pixel. It is a fast panning sequence and thus ideal for testing various motioncompensation schemes. Experimental results are also obtained for other sequencesincluding the \cheer leaders" and \football" used for MPEG testing. All the resultsand parameters follow the same pattern, although actual numbers may turn out tobe di�erent. The results obtained for these sequences will be explicitly speci�ed, butthe default is the \car" sequence. In all the results, the video signal was decomposedto three levels using the Daubechies' 4-tap �lter unless speci�ed.Table 2 show the energy distribution in the displaced residual wavelets of theY component of a P-frame, after applying the algorithms C{I through C{IV, incomparison with the uncompensated or original image. The motion block size forS8 was 2�2. The table shows that after motion compensation, the energies in allsubbands are considerably reduced. The reduction is an order of magnitude for thehighest-layer subbands fW i8 i = 1; 2; 3g and more than two orders of magnitude forS8 . This signi�cant decrease of energy in the perceptually most signi�cant subbandis a result of the motion estimation.A comparison of algorithms C{I through C{IV reveals that although the energydrops dramatically for S8 , it may increase for other subbands if the motion vectorsare not re�ned, as in case of Algorithms C{I and C{II. However, even when themotion vectors are re�ned, as in C{III and C{IV, some anomalies may still arisebecause of the reduced search area. In general, however, algorithms C{III and C{IVproduce less energies than C{I and C{II.A slight increase in the energy at the lower layer results in a much higher contri-bution in overall bit rate than a relatively large increase at the top layer, because ofthe di�erence in the number of samples at these levels. It should be emphasized herethat the values for the variance (or energy) in the displaced residual wavelets withdi�erent scenarios shown in Table 2 are for unquantized coe�cients and thereforedo not necessarily correspond directly to each subband's contribution to the overallbit rate. Speci�cally, the table shows the relative performance of each of the four



Table 3: Entropy (in Bits/Sample) of DRWs of Y component for Algorithm C{Ibefore and after Adaptive Truncation.Entropy S8 W 18 W 28 W 38 W 14 W 24 W 34 W 12 W 22 W 32 AverageUn-quantized 5.35 5.47 4.29 3.98 5.00 3.50 3.40 4.58 2.38 2.41 3.38QM = 8:0 2.55 2.86 1.73 1.46 1.53 0.47 0.36 0.50 0.05 0.02 0.42QM = 12:0 1.99 2.31 1.24 1.05 1.13 0.27 0.21 0.28 0.02 0.00 0.28multiresolution motion estimation algorithms C{I through C{IV. The table alsoreects the energy compaction of the wavelet �lter used and thus gives a generalidea of the contents of the original signal. Since each level is treated according toits visual importance, the �nal quantized �gures look much di�erent.Quantization is the most important part of any compression algorithm becauseit is quantization that determines the amount of compression or the �nal bit rate.Scale adaptive truncation [25] was used to quantize the wavelet coe�cients. The�rst-order entropies of the ten subbands in the luminance signal before and afterquantization for algorithm C{I are shown in Table 3. The values of QM , as describedin [25] are 8:0 and 12:0. The table clearly reveals the adaptive truncation process,which gives less and less importance to the subbands as we go down the hierarchy.The reduction in entropy is more signi�cant for the lower-layer wavelets, since theseare quantized with the fewest number of bits. Each column represents the entropyin bits per sample/pixel for that band, while the average, shown in the last column,is the average over all the subbands and thus represents a number for the originalresolution of the input video.The contribution to the bit rate from the top layer is the most signi�cant despitethe smaller size as compared with the subbands in the other layers. A particular�gure of entropy for a frame depends on QM and the amount of motion in thatframe. Subbands in the same layer exhibit di�erent behavior in terms of energycontents and entropy, depending on the motion present in the direction to whichthe �lters are sensitive. Some of the subbands show a value of zero (e.g. W 32 withQM = 12:0), which means that the coe�cients after quantizing are insigni�cantand thus truncated to zero. This particular subband will not play any part in thereconstruction. After adaptive truncation, the energy does not drop much, but theentropy drops signi�cantly as a direct result of quantization. In fact, in some cases,the variance might even increase.The two most important performance measures in video compression or imagecompression in general are the output bit rate and the corresponding reconstructedpeak SNR. The total instantaneous bit rate of any frame is the sum of the bits



generated by encoding of the actual frames plus the motion information, which mustbe sent losslessly in order to reconstruct the frames at the decoder. Figures 5(a) and5(b) show the total instantaneous bit rate (Mbits per second) and the correspondingSNR when using P-frames only.Notice that the I-frames are treated in a special way. Since these synchronizingrefresh frames will form the base for all the following interpolated frames, they arequantized with more levels than are the interpolated frames, in order to get a goodstarting SNR. This quantization results in a sudden increase in the output bit rate,appearing as spikes in Figure 5(a). In order to reduce this sudden increase, whichjumps to more than twice the average bit rate, the value of the normalizing factorQM can be increased for these I-frames only. The resulting bit rate of algorithm C{Iis shown in Figure 6(a) for values of QM ranging from 2:0 to 10:0 while keeping thevalue for the P-frames at 8:0.Figure 6, as expected, reveals that the number of bits generated by the I-framesdrops monotonically with the increasing value of QM . Observe that there is amarginal increase in the bit rate of the P-frames when QM is increased from 2:0to 4:0. This increase results from the fact that the refresh frame used for motioncompensation is not that clean, or, in other words, the SNR is comparatively poorbecause of coarser quantization. Thus, the displaced residual frame, based on thispoor quality frame, will have more energy. Observe that a frame after quantiza-tion is reconstructed back at the encoder. It is this frame that is used in motion
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compensation, rather than the clean unquantized frame. Therefore, the resultantdisplaced residual di�erence for an incoming frame will have a higher energy if sub-tracted from this quantized frame bu�er than if compensated from an unquantizedone. The interesting result is that for all other higher values of QM , the bit rate isalmost the same (even lower than that for QM = 2:0), which can be attributed tothe adaptive truncation process that does a good job at keeping an almost constantbit rate. Regardless of small variations in the bit rates, the maximum di�erencedoes not exceed 500 Kbps for the P-frames.The most interesting result is observed for the SNR curves shown in Figure 6(b).The SNR for I-frames decreases as QM is increased, as expected, but note thatthe values for the P-frames start to increase and then level o� with those of theI-frames when the normalizing factor for both types of frames is identical (i.e., 8:0).At this point, even though the scaling factors are the same (which makes the SNRalmost identical), the bit rate for the I-frames is still signi�cantly higher. Thisanomaly is a result of the internal feedback loop. Since the quality of the I-frameis dropping, the predictor that uses the quantized frame as reference, instead of theclean unquantized version, compensates very e�ectively. It can be observed that again of almost 2:0 dB can be achieved along with a decrease in time average bit rateover an entire refresh period. If this feedback loop is eliminated and a clean framebu�er is used for motion compensation, this gain in the SNR is not achieved andthe curves for values of QM > 2:0 are identical to those of QM = 2:0 but shifteddown. Observe that for QM = 10:0, the SNR of the P-frames is higher than that of
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(b) SNRFigure 6: Bit Rate and Reconstructed Signal-to-Noise Ratio for Algorithm C{I withVariation of QM for I-frames Only
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(b) SNRFigure 7: Bit Rate and Reconstructed Signal-to-Noise Ratio for Algorithm C{IVwith Variation of QM for I-frames Onlythe I-frames.The output bit rate curves obtained by varying quantization on I-frames forAlgorithm C{IV are shown in Figure 7(a). These reveal the same pattern obtainedfor Algorithm C{I in Figure 6(a). Notice a steady decrease in bit rate for increasingQM until it is the same as that of the P-frames at a value of 8:0. Further increase inQM for the I-frames slightly increases the bit rate for the P-frames because of theless clean frame bu�er.The SNR curves for varying the quantization on only the I-frames for algo-rithm C{IV are shown in Figure 7(b). In contrast to the results obtained for Al-gorithm C{I, the SNR for Algorithm C{IV does not show the same improvement.The reason is that in Algorithm C{IV, motion vectors for all the subbands are re-�ned and are already generating the minimum energy in all the bands; thus, thereis no improvement in the SNR for the P-frames. Notice that the average SNR forthe P-frames is governed only by the quantization factor for the P-frames and notby that of the I-frames. Also notice that Algorithms C{I and C{IV behave almostidentically at values of QM � 6:0.As we have noticed, the SNR for any algorithm depends basically on the QMvalues for both I-frames and P-frames. We have also observed in the previousresults that if QM = 8:0 for both types of frame, we get an almost constant picturequality with varying bit rate regardless of the refresh rate. To investigate further,we selected a refresh cycle of 40 frames with values for QM = 8:0 and QM = 12:0 for
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(b) Signal-to-Noise RatioFigure 8: Performance of C{I with a Refresh Cycle of 40 Framesboth the I-frames and the P-frames. The results are given in Figures 8(a) and 8(b),which show the output rate and SNR, respectively, for Algorithm C{I. The �guresreveal that the instantaneous rate peaks after every 40 frames when an I-frame istransmitted. The average for the predicted frames is below 2:7 Mbps in the case ofQM = 8:0 and below 2:0 Mbps for QM = 12:0. The SNR for the entire length ofthe sequence is fairly constant between 38:0 and 38:5 dB with QM = 8:0 and about36:5 dB for QM = 12:0.In the Bidirectional motion search algorithm described in Section III, the current,previous and forward frames were searched for the minimumenergy (minimumabso-lute di�erence) to �nd the motion vectors for the B-frames. The concept of F-frameswas also introduced in that section. Figure 9(a) shows the SNR for Algorithms C{Ithrough C{IV using a frame sequence of IBPBPBFBFBI for one GOP, whereevery other frame is a B-frame and the second half of the refresh cycle containsF-frames rather than P-frames. All the other parameters are kept the same as fornonbidirectional case (results for which are shown in Figure 5(b)). The scaling factorQM for P-frames, F-frames, and B-frames is kept at 8:0 for comparison purposes. Asexpected, the curves follow the general shape of Figure 3. Note that the F-framesincrease the SNR for the frames in the latter half of the refresh cycle because of theextra bu�ering.In this case too, Algorithms C{I and C{II have almost similar SNR values. More-over, the SNR values for Algorithms C{III and C{IV are very close to each other,as in the case of nonbidirectional motion compensation. The relative performanceof the four algorithms is independent of the type of motion compensation involved.
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Instantaneous Bit Rate for Bi-directional Motion Search

(b) Output RateFigure 9: Signal-to-Noise Ratio and Output Rate of C{I through C{IV Using Bidi-rectional Motion SearchWe again notice a 2 dB di�erence in the SNR between the two algorithms that re�nethe motion vectors, namely, C{III and C{IV, and the two that do not re�ne but usethe motion vectors of the lowest resolution layer, namely, C{I and C{II.The corresponding bit rates for the bidirectional motion search are shown inFigure 9(b). The equivalent non-bidirectional motion search curves are shown in�gure 5(a). It can be seen that the bit rate for P-frames is much higher than thatfor the B-frames, which is to be expected. The B-frames have the least possibleenergy, and since the quantization factor for the two types of frame is the same,the bit rate for B-frames is lower. Notice that the output rate for the P-frames ishigher than the corresponding frame in the nonbidirectional search case. The reasonis that as far as the P-frames (or the F-frames) are concerned, they are separatedfurther apart in time from their reference frame bu�er (in the above case there isnow one B-frame between two consecutive P-frames or F-frames). As a result of thisseparation, the P-frames will experience a higher motion activity, since the searcharea is not increased. There will now be more blocks that will not be trackable,and thus there will be an overall higher residual energy for the frame as comparedwith the case when motion prediction is performed using the immediately adjacentframe. Also observe from Figure 9(b) that the bits generated by P-frames for allthe algorithms are considerably close to each other, while that is not true of theB-frames. The reason is due to di�erent statistical characteristics of the coe�cientsin the B-frames as compared with those of the P-frames or the F-frames, in spite ofthe normalizing factor QM = 8:0 for all the three types.
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(b) Signal-to-Noise RatioFigure 10: Performance Comparison of C{I with and without Bidirectional MotionSearchConcentrating on Algorithm C{I only and comparing the bidirectional motionsearch with previous frame prediction, we notice that the SNR in the bidirectionalcase is always higher. For comparison purposes, the instantaneous output rate andSNR for Algorithm C{I are reproduced in Figures 10(a) and 10(b), respectively.Also shown in Figure 10(a) is the average bit rate (average over time) comparisonfor the two scenarios, we see that, despite the higher bits for P-frames and F-frames,the overall bit rate (time average) for the bidirectional case is lower than that forthe nonbidirectional case.The �rst-order entropy comparison for Algorithm C{I is given in Table 4 whichshows the entropy for a frame encoded as a P-frame vs the entropy encoded as a B-frame, both quantized with QM = 8:0. Though the table shows quantized entropy,the unquantized energies have the same pattern. Notice that the bidirectional searchresults in 43% reduction in the entropy of S8 and almost 30% reduction in theaverage bit rate (which drops from 2:51 Mbps to 1:73 Mbps) and still increases theSNR by 0:5 dB.For a better comparison between the traditional search scheme and a bidirec-tional search scheme, another set of simulations were run in which the quantizationparameters were chosen so that the SNR was almost the same for the two cases(where the output rate is more di�cult to control). Speci�cally, the quantizationfactor used was QM = 8:0 for I-frames and P-frames for both bidirectional searchand previous frame search and QM = 9:0 for B-frames of the bidirectional searchcase. Note that these sets of parameters produced the best results [22] for the non-
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(b) Output RateFigure 11: Signal-to-Noise Ratio and Output Rate of Algorithm C{I with and with-out Bidirectional Motion Search Quantized with Di�erent QM for B-framesbidirectional scheme. Parameters for the bidirectional case were adjusted to matchthis SNR. The results are shown in Figure 11(a). The corresponding instantaneousand average output rates are shown in Figure 11(b).A signi�cant di�erence is apparent in the average output rates for the two cases.The bidirectional search produces an average rate at least 0:4 Mbps less than that ofthe traditional previous-frame search, although the instantaneous rate of P-framesis higher. B-frames have an average rate of approximately 1:6 Mbps, which is themain reason for the lower time average.Figures 12(a) and 12(b) show the results with a group of picture sequenceof IBPBPBPBPBPBPBPBPBPBI, that is, having a refresh rate of 40 framesfor the entire \car" sequence of 320 frames. Observe that once again, because ofthe selection of the normalizing factors, this long refresh cycle does not degrade theTable 4: Entropy comparison of DRWs of the Y component for Algorithm C{I withand without Bidirectional Motion Search.Entropy S8 W 18 W 28 W 38 W 14 W 24 W 34 W 12 W 22 W 32 AveragePrevious Frame 2.55 2.86 1.73 1.46 1.53 0.47 0.36 0.50 0.05 0.02 0.42Bidirectional 1.46 1.86 1.26 1.11 0.97 0.37 0.30 0.33 0.04 0.01 0.29
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Signal-to-Noise Ratio of Bi-directional compensated C-I with refresh rate of 40 frames

(b) Signal-to-Noise RatioFigure 12: Performance of Bidirectional Motion-Compensated Algorithm C{I withRefresh Rate of 40 Frames using the \Car" Sequenceperformance. We do notice an increase in bit rate starting around frame 150 andthen peaking to as high as 5:5 Mbps around frame 250. At the same time the SNRdrops from 38 dB to 36 dB. The reason is extremely high motion in the backgroundduring this period as the car, which the camera is following, comes nearer to thecamera and passes by. Notice that the performance improves, both in terms of rateand SNR, after the car has passed by (which is around frame 280). The subjectivequality at this point is still quite good because of a very high degree of motion blur,which conceals the drop in SNR. Even with such a high bit rate during the highmotion activity, the average over the entire length of the sequence is still less than3 Mbps.The performance of Algorithm C{I at subpixel accuracies was compared withinteger pixel results. Figure 13(a) shows the bit rate comparison at di�erent pixelaccuracies in the bidirectional case and with a refresh rate of 40 frames. The nor-malization factors and other parameters are the same in all three cases. The �gurereveal that even for this set of parameters, as in the case of previous simulations [23],subpixel accuracy does not achieve any improvement, contrary to what was antic-ipated. The main reason is not that there is no reduction in the entropy of thedisplaced residual wavelets, especially in case of Algorithms C{III and C{IV, butthat there is a signi�cant increase in motion overhead, which leads to a higher bitrate for the entire frame. In the case of Algorithms C{I and C{II the higher bit rateis generally due to higher bit contributions from some of the subbands in the lowerlevels. In other words, since the spatial orientation of the �lters is di�erent, di�er-



ent shifts result. Therefore, nonre�nement of motion vectors may result in higherenergy as compared with the 1-pixel accuracy case. It can be seen that the aver-age bit rate generated by integer pixel accuracy is lower than the rates generatedby subpixel accuracies. The corresponding SNR is shown in Figure 13(b), whichreveals no improvement in the SNR.The same encoder parameters used to encode the \car" sequence were also usedto encode the \football" sequence. The bit rates and SNR are shown in Figures 14(a)and 14(b), respectively. The high average bit rate of about 3:8 Mbps is because ofthe high motion in a football game, which this sequence shows. Also notice thatthe overall SNR is about 35:3 dB during the entire segment of the sequence. Onereason for such a low quality is that the original sequence itself has a lower qualitythan does the \car" sequence.The introduction of B-frames is responsible for the reduction in the average bitrate in the bidirectional motion searching scheme. In all the above simulation resultsshowing the bidirectional case, the frame sequence used was : : : IBPBPB : : : ; thatis, every other frame is a B-frame. Note that in the case of a B-frame, its previousreference frame contains any reconstructed frame regardless of its type. It canbe an I-frame, a P-frame, an F-frame, or even a B-frame which has already beenreconstructed. This selection of already reconstructed B-frame as a candidate forreference of a future frame is di�erent from what MPEG identi�es as the framedependencies for a B-frame. The argument for using such a scheme is that sincethe B-frame has already been constructed in the past, it is available as a reference.
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(b) Signal-to-Noise RatioFigure 13: Average Bit Rate and SNR of Bidirectional Motion-Compensated Algo-rithm C{I at 1-, 1/2-pixel 1/4-pixel Accuracy



Note that this scheme is still free of any deadlocks because the frame used as theforward reference in the motion estimation can only be an I-frame, a P-frame, or anF-frame and never a B-frame.Therefore, in the proposed bidirectional motion searching scheme, if two consec-utive B-frames are encoded, as for example, in a sequence : : : IBBPBPBFBBI : : : ,the �rst B-frame (frame 2) backward dependency is the I-frame (frame 1), and theforward dependency is frame 4, which is encoded as a P-frame. But for the secondB-frame (frame 3), the backward dependent frame is frame 2, a B-frame, and isforward dependent on frame 4, which is a P-frame. The �rst B-frame cannot beforward dependent on frame 3 because a deadlock would result at the decoder (bothframes interdepending on each other). Note that in the case of the �rst B-frame,its two dependent frames are not symmetrically distributed in time. Frame (i� 1),as described in the de�nition of a bidirectional motion-compensated block (Equa-tion 6), is adjacent to the current frame, while frame (i + 1) is two frames apart.Therefore, there will be a small number of blocks that will be classi�ed as type 4as compared with the case where both the dependent frames are symmetrically lo-cated. This asymmetric location of the frames degrades the performance, since thewhole purpose of bidirectional search is defeated.Figure 15(a) compares the bit rates generated by the framingsequence (1) : : : IBPBPBFBFBI : : : and (2) : : : IBBPBPBFBBI : : : for onetypical refresh cycle. Note that the �rst B-frame (frame 2) in the case of the lattersequence (2) has a higher instantaneous bit rate than the same frame in sequence (1).
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(b) Signal-to-Noise RatioFigure 14: Performance of Bidirectional Motion-Compensated Algorithm C{I withRefresh Rate of 40 Frames using \Football" Sequence
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(b) Signal-to-Noise RatioFigure 15: Rate and Signal-to-Noise Ratio Comparison of Bidirectional Motion-Compensated Algorithm C{I with One and Two Consecutive B-framesThe reference previous and forward frames are symmetrically separated in time inthe case of (1), while they are asymmetric for (2). Now note that since frame 3in the sequence (2) has symmetric dependency when using the proposed scheme, ithas a bit rate that is of the same order as any B-frame in sequence (1). Also notethat the P-frames immediately following two B-frames have a higher bit rate thanthe ones in sequence (1) because they are separated farther apart from its referenceprevious frame. Not only is the energy in the displaced residual wavelets high, butthe amount of occluded and freshly revealed areas resulting from moving objects ismuch higher. These areas do not normally have any relevant blocks in the previousframes and thus cannot be motion compensated.The SNR reveals the same picture as depicted by the rate comparison. Theresults, shown in Figure 15(b), reveal that the quality of the asymmetrically com-pensated B-frame is also lower that that of the symmetrically compensated one.This degradation of quality is in addition to a slight increase in the average bitrate. Therefore, we conclude that it is always better not to have two consecutiveB-frames, because such a con�guration not only degrades the quality but increasesthe average bit rate.



V Choice of Wavelet Filter-BankThe choice of wavelet �lter-bank in image compression has been an active researchtopic during the past few years. It a�ects not only the image quality but also theoverall system design. Regularity of the wavelet has been used traditionally as thecriterion for predicting the performance [14], but its relevance to signal processinghas not yet been strongly established [20]. The correlation between the reconstructedSNR and the regularity of the �lter is not very strong either. Some researchers haveemphasized orthogonality as a selection criterion [4, 17], but this might conict withother desirable characteristics. Others have characterized wavelet �lter-banks interms of their associated continuous scaling functions and wavelets derived underiteration [21].Daubechies' 4-tap �lter was the choice for all the simulation results discussed pre-viously in this paper because of its smaller length to reduce the overall complexity.Di�erent �lter-banks used for wavelet decomposition, appearing in the literature,have di�erent properties as regards to their spatial orientation and energy com-paction, or, in other words, distribution of energy among di�erent bands, linearityof phase, and so on. To investigate the performance of the proposed hierarchicalmotion estimation scheme, we have tested other wavelet basis. Some of the �ltersdescribed by Daubechies in [5], for example, the 6-tap, and 8-tap, and the coiets,were used in the simulations. Some biorthogonal �lter-banks discussed in [1] werealso tested.Table 5 shows a comparison of the distribution of energy and the resulting�rst-order entropy, after the application of adaptive truncation, among the sub-bands of some of the di�erent wavelets for the multiresolution motion scheme C{I.The �rst three rows show Daubechies' 4-, 6- and 8-coe�cient wavelets followed bythe 8-tap least asymmetric �lter (denoted by \Daubechies' 8-tap Sym."). Onlythe 6-coe�cient �lter-bank from the family termed \Coiets", described both byDaubechies [5] and Antonini [1] et al., was used in this work for comparison pur-poses. Also compared are the \Burt", `Spline", and a variant of \Spline" denotedby \Vspline," which are discussed in more detail in [1].The table shows the variance of the coe�cients in each of the ten wavelets for anI-frame, which is not motion compensated, and the resulting entropy after quanti-zation. The normalizing factor for all the di�erent cases is the same for a fair com-parison. The �gure therefore reveals the energy compaction of the wavelet �ltersthemselves rather than the performance of the multiresolution motion estimation.The �rst column for each subband shows the energy or variance, while the secondcolumn has the entropy after quantization for that particular band. The last columnof the table has the average entropy �gures, in bits per sample, for the entire frame.The lowest values of entropy for each subband are highlighted (boxed). It can be



Table 5: Comparison of Energy and Entropy of an I-frame with Di�erent Wavelet Filters for Algorithm C{I.Energy/Entropy S8 W18 W28 W38 W14 W24 W34 W12 W22 W32 AverageDaubechies' 4-tap 49796.00 6.41 7379.50 4.79 430.27 2.14 170.94 1.55 1379.65 2.59 63.61 0.43 16.83 0.24 219.59 0.79 5.61 0.05 0.57 0.01 0.65Daubechies' 6-tap 51408.81 6.51 6155.21 4.82 351.36 2.02 126.12 1.49 1343.76 2.64 42.81 0.39 16.28 0.22 219.62 0.79 6.73 0.05 0.45 0.01 0.65Daubechies' 8-tap 51205.25 6.45 7301.54 5.01 405.87 2.08 135.47 1.53 1126.68 2.57 27.42 0.33 14.74 0.20 211.96 0.79 6.82 0.04 0.36 0.00 0.64Daubechies' 8-tap Sym. 51094.48 6.51 7273.53 4.84 316.36 2.01 126.24 1.43 1210.46 2.58 35.93 0.32 15.36 0.21 201.67 0.77 4.19 0.04 0.28 0.00 0.63Burt 49343.71 6.41 6455.46 4.81 360.18 2.02 121.05 1.49 1298.80 2.56 43.97 0.37 17.09 0.23 225.92 0.79 6.25 0.05 0.66 0.01 0.64Haar 49188.73 6.29 7605.26 4.64 590.44 2.33 244.67 1.88 1198.32 2.32 78.77 0.50 29.86 0.32 249.91 0.73 8.00 0.07 2.13 0.02 0.64Spline 66077.40 6.70 9905.69 5.07 521.30 2.25 215.41 1.79 1418.51 2.66 54.27 0.42 19.98 0.26 148.93 0.64 4.12 0.04 0.07 0.00 0.63Vspline 48696.79 6.41 5875.04 4.77 260.96 1.79 95.50 1.33 1179.19 2.57 34.26 0.33 14.41 0.20 184.90 0.74 4.10 0.04 0.21 0.00 0.61Coiet 6-tap 50095.65 6.42 7974.90 4.83 403.39 2.10 163.40 1.51 1206.47 2.53 43.74 0.35 16.83 0.23 206.58 0.76 4.12 0.04 0.78 0.01 0.63Vetterli 43115.87 6.33 8675.46 5.02 461.78 2.39 209.02 1.79 1433.79 2.68 57.02 0.49 30.93 0.32 371.27 1.01 9.93 0.07 3.51 0.03 0.74



seen from the table that the variant of the Spline �lter, which has less dissimilar-length �lters, has the lowest overall entropy. Also notice that this particular �lterhas the lowest or very close to the lowest energy in almost all the subbands ratherthan just the top layer. In fact, the values at the lower layers are more importantin the sense that they contribute to the bit rate more, because of the larger numberof samples in these layers as compared with the top layer.All the �lter-banks have almost identical behavior, although individual valuesare very di�erent from each other. The Spline �lter has the highest energy in S8 ,while Haar has the lowest. In contrast, the Spline �lter has the lowest energy in theall subbands of the bottom layer. Therefore, as far as the I-frames are concerned,the Spline �lter is a good choice. The best overall performing �lter-bank is theVspline, since it gives the least average entropy. Note that Daubechies' 8-tap leastasymmetric �lter also has comparable results. The worst-performing wavelet �lter-bank is that presented by Vetterli [19], because of the high variance of the coe�cientsin the lower bands. Since the size of the lower-level subimages is much higher, thecontribution to the bit rate is higher, too.In an interframe coding scheme, I-frames are transmitted periodically for refreshand synchronization purposes only. They constitute less than 5% of the total frames,obviously depending on the refresh rate. The majority of the frames in a sequence arethe predicted frames, in this case, the P-frames and the B-frames. The performanceTable 6: Comparison of Entropy of a P-frame with Di�erent Wavelet Filters forAlgorithm C{I.Entropy S8 W 18 W 28 W 38 W 14 W 24 W 34 W 12 W 22 W 32 Av.Daub-4 2.84 3.63 1.97 1.73 2.18 0.39 0.31 0.75 0.04 0.01 0.54Daub-6 2.95 3.73 2.02 1.72 2.27 0.43 0.31 0.83 0.04 0.01 0.57Daub-8 2.93 4.08 2.13 1.86 2.51 0.42 0.32 0.91 0.03 0.01 0.61Daub-8S 2.90 3.61 1.94 1.60 2.30 0.37 0.30 0.81 0.04 0.00 0.55Burt 2.83 3.46 1.93 1.61 2.20 0.40 0.28 0.80 0.05 0.01 0.55Haar 2.74 3.42 2.10 1.90 1.94 0.55 0.38 0.64 0.06 0.03 0.52Spline 3.34 4.39 2.53 2.20 2.35 0.49 0.33 0.67 0.04 0.00 0.57Vspline 2.83 3.61 1.82 1.49 2.22 0.34 0.27 0.76 0.03 0.00 0.53Coiet-6 2.84 3.55 1.98 1.65 2.20 0.41 0.31 0.79 0.04 0.01 0.55Vetterli 2.56 3.54 2.13 1.86 2.10 0.49 0.40 0.97 0.07 0.05 0.62



Table 7: Comparison of Entropy of a B-frame with Di�erent Wavelet Filters forAlgorithm C{I.Entropy S8 W 18 W 28 W 38 W 14 W 24 W 34 W 12 W 22 W 32 Av.Daub-4 1.35 1.82 1.18 1.01 0.93 0.31 0.22 0.29 0.03 0.01 0.26Daub-6 1.37 2.02 1.29 1.06 1.14 0.36 0.22 0.37 0.03 0.01 0.30Daub-8 1.42 2.18 1.37 1.17 1.25 0.30 0.22 0.41 0.02 0.00 0.31Daub-8S 1.40 2.01 1.20 1.05 1.14 0.30 0.22 0.37 0.03 0.00 0.29Burt 1.30 1.76 1.22 1.00 1.07 0.31 0.23 0.37 0.05 0.01 0.29Haar 1.30 1.66 1.12 1.03 0.78 0.30 0.26 0.24 0.04 0.02 0.24Spline 1.90 2.72 1.77 1.54 1.22 0.36 0.23 0.31 0.02 0.00 0.32Vspline 1.33 2.03 1.14 0.95 1.12 0.27 0.21 0.35 0.02 0.00 0.28Coiet-6 1.39 1.72 1.17 0.97 1.01 0.28 0.22 0.32 0.03 0.01 0.27Vetterli 1.09 1.69 1.12 0.98 0.95 0.31 0.25 0.43 0.05 0.03 0.30of the predicted frames is thus more important in terms of overall performance.Table 6 shows the average �rst-order entropy of the ten displaced residual waveletsof a P-frame for the di�erent wavelet �lter-banks discussed above for a frame fromthe \car" sequence. The results shown are for Algorithm C{I, which estimates themotion for the top layer only and uses the same values for all the other bands afterproper scaling. We observe that Vetterli's �lter has the lowest energy in S8 , but itsenergy in all other subbands is signi�cantly higher. Vspline and Haar have the lowestof the energies in almost all the bands, followed closely by Daubechies' 4-coe�cient�lter.In this set of simulation results, the frame ordering is : : : BPBPBPB : : : ; that is,every P-frame or a B-frame is followed by a B-frame or a P-frame, respectively, witha refresh cycle of 40 frames. Given such a framing sequence, there are as many B-frames as there are P-frames. It is therefore necessary to analyze the entropy of theB-frames along with that of the P-frames. Table 7 shows average entropy of DRWsfor a typical B-frame. It can be seen that the same two �lters Harr and Spline, withalmost equal-length �lters, are the winners closely followed by Daubechies' 4-tap�lter. Once again notice that, in this case also, Vetterli's �lter has the lowest energyin S8 and W 28 , but the values in other subbands, especially in the lowest layer, aretoo high, making it overall one of the worst-performing �lters.The results of the simulations show that the energy compaction, which is the
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Figure 16: Rate Comparison of Di�erent Waveletsmost desired property of a wavelet �lter-bank in case of still images, is not the onlyattribute required for good overall performance of a codec based on multiresolutioncompensation. The correlation among the di�erent subband seems to be an im-portant aspect as well, explaining why Haar wavelets have such a performance. Inorder to make the multiresolution compensation perform well, there should be morecorrelation between S8 and other bands.Figure 16 shows the average bit rate for the \car" sequence over 120 frames. Thecurves show the time average of the total instantaneous bit rate from each frame,which includes the motion overhead also. The Harr wavelet has the least average bitrate of 2:16 Mbps followed by Daubechies' 4-coe�cient and Vspline, both of whichhave almost the same rate at about 2:28 Mbps. The highest rates are generated bySpline at 2:57 Mbps, followed by Daubechies' 8-tap and Vetterli's, both generatingan average rate above 2:5 Mbps. The bit rate generated by all the other wavelet
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Figure 17: Signal-to-Noise Ratio Comparison of Di�erent Wavelets�lters fall between Harr and Spline. The di�erence between these two extremes isalmost 0:4 Mbps which is quite signi�cant when the corresponding reconstructedSNR is considered.Figure 17 shows a comparison of the reconstructed SNR for the di�erent wavelets.Except for Vetterli's �lter, which has signi�cantly lower value of less than 37 dB, allthe other �lters have almost the same quality. The average SNR is approximately38:2 dB varying within �0:2 dB. It is impossible to set an exact �gure for eitherthe bit rate or the SNR over the entire length of the sequence because it dependsalmost completely on the contents of the scene. The higher the motion activity, thehigher is the amount of information needed to transmit and thus the higher is therate. But note that a higher rate does not necessarily mean a higher SNR because itdepends on the amount of information that is associated with that particular frame.



Therefore, the SNR will be high if a small amount of information is sent out withmore detail, as compared with more information and less detail.It can therefore be inferred from the results that, in general, a �lter that compactsless energy to the lowpass subband performs better (as in the case of Harr wavelet).A more important criterion, especially in case of Algorithm C{I, is the correlationof motion activity among di�erent bands, since the lower layers, being larger insize, have more impact on the bit rate. But by far the most important criterion isthe overall variance of the coe�cients, not in any particular wavelet but in all thesubbands. The Spline �lter with least dissimilar length �lter is a very clear exampleof the overall low variance. But Daubechies' 4-coe�cient �lter can be taken as agood candidate because of its small �lter length (Higher length �lters such as theDaubechies' 6-tap or the 8-tap tend to perform worse than the 4-coe�cient �lter).VI Concluding RemarksBidirectional motion compensation combined with block classi�cation has been ap-plied to the wavelet-based video codec we previously developed. The multiresolutionmotion compensation techniques introduced in [24, 25] capitalize on the correlationpresent among the di�erent layers of the pyramid structure of the hierarchicallyrepresented video. Although the multiresolution motion estimation scheme doesn'tnecessarily provide more accurate motion vectors than motion estimation done infull resolution, it matches well to the nature of global wavelet decompostion. As aresult, the overall performance of the proposed scheme provides better performancewith much reduced computation and search complexity.The frame classi�cation and the mode decision process is similar to that de-scribed in the MPEG 2 TM5. The concept of F-frames and the introduction of theblock classi�cation algorithm both enhance the performance of the multiresolutionmotion-compensated video codec. The classi�cation method is especially suited forbidirectional motion compensated frames to minimize the amount of information tobe transmitted; the algorithm selects the minimum energy block from the current,previous, and future frame to reduce the bit rate and improve the SNR at the sametime.Di�erent wavelet �lterbanks are tested on the proposed schemes to identify theproperties and relative performance of these �lters. It has been shown that wavelet�lterbanks which have more correlation among the di�erent subbands perform muchbetter than those which concentrate more of the energy to the top layer. It has alsobeen observed that �lters with dissimilar-lengths perform worse than �lters withless dissimilar-length �lters for the analysis and synthesis.
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