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Recently, attention has focused increasingly on the dynamic states of a vortex system.Much of the interest concerns the type of motion of a vortex lattice under an applied cur-rent [1{3]. It has been observed that, in a signi�cant region of the phase diagram belowthe vortex lattice melting line, vortex motion is predominantly plastic motion. The ex-planation given in [1,2] relies heavily on the notion that the vortex interactions competewith a randomness in the driven vortex system [4,5]. In this Letter, we present the resultsof a numerical study of the motion of a vortex lattice in a clean �nite sample and �nd adi�erent mechanism for plastic vortex motion. Past considerations excluded the e�ects ofthe current-induced magnetic �eld. We show that a current increases the vortex spacing inthe direction of vortex motion and enforces the formation of fault lines to accomodate theresulting strains. The fault lines serve as a source of plastic deformations. The mechanism isthe result of the intrinsic behavior of the vortex lattice and is independent of bulk pinning.It may be responsible for plastic motion in very clean superconductors.The structure of a vortex lattice moving under the inuence of a transport current ina homogeneous superconducting sample depends on the relative strengths of the Lorentzforce and the barrier forces associated with the free surfaces [6]. Numerical solutions ofthe time-dependent Ginzburg-Landau (TDGL) equations [7] show that the barrier forcesdominate at weak currents. Vortex motion is con�ned to the interior of the sample, andthe vortex lattice is essentially static. Its close-packed rows align with the free surfaces.The lattice structure may have defects, whose origin can be traced to the transient phase,but these defects disappear gradually, and a more or less uniform structure with isolateddefects remains. When the Lorentz force dominates, vortices enter and leave through thefree surfaces, and the entire vortex lattice moves steadily. The lattice structure changes intwo ways. We see a change in the orientation of the lattice, where the close-packed rows alignwith the direction of the Lorentz force, and the development of a defect superstructure, whereone or several distinct \fault lines" separate regions of approximately uniform structure. Afault line consists of several aligned dislocations and �nite segments of a 30� boundary. Thefault lines remain more or less stationary as the lattice moves. They provide the principalmechanism supporting the vortex density gradient induced by the self-�eld of the currentand serve as a source of plastic deformations. Similar defect structures have been observedin decorations of static vortex lattices with density gradients [8,9].The computations, described in detail in [10,11], were done for a rectangular homoge-neous pin-free superconducting sample, in�nite in z, periodic in y, and bounded in x. Themagnetic �eld is in the positive z direction. A transport current J in the positive y directionis induced by a �eld di�erential between the free surfaces: Hl = H0 +�H, Hr = H0 ��H,where �H = 12J . The resulting Lorentz force acts in the positive x direction. Lengths aremeasured in units of the penetration depth �; time in units of �2=D (� the coherence length,D the normal di�usion coe�cient); �elds in units of Hcp2 (Hc the thermodynamic critical�eld); and current densities in units of (cHcp2)=(4��). Unless otherwise noted, all resultsrefer to a standard con�guration: cross section 32�48 in the (x; y) plane, Ginzburg-Landauparameter � = 4, and a magnetic �eld with H0 = 0:8 and �H = 0 (no current), 0:125(\weak" current), 0:250 (\intermediate" current), or 0:500 (\strong" current). The corre-sponding current densities are approximately 0, 2, 4, and 8% of the BCS depairing-currentdensity.Starting from the Meissner state, we increase the applied �eld to H0 = 0:8, apply the2



transport current as appropriate, and let the system evolve through the transient phasebefore we begin recording data. The average number of vortices in the steady state variesfrom 230 (no current) to 660 (strong current). The position of every vortex is determinedfrom the solution of the TDGL equations. The structure and evolution of the vortex latticeare analyzed by means of a Delauney triangulation [12], which is constructed at each recordedtime step. Each vortex in the bulk with fewer or more than six neighbors is identi�edwith a defect in the lattice. The computational results for the standard con�guration aresummarized in Figs. and .In the absence of a transport current, 230 vortices enter the sample to form a dilute vortexstructure with an average lattice spacing a0 = 2:58�. The average magnetic induction in thesample is B = 0:27, considerably less than the applied �eld H0 = 0:8. The lattice is static.Its structure remains defective; the major types of defects are isolated dislocations (pairs ofdefects|one with �ve, the other with seven neighbors) and �nite segments of 30� boundaries(strings of three or more contiguous dislocations). The vortex region is separated from thefree surfaces by a vortex-free region, 2:1� wide. The Meissner current ows entirely withinthese vortex-free regions.A weak current (�H = 0:125) almost doubles the average number of vortices to 459.The vortices form an almost ideal crystal structure, with a0 = 1:88�. The lattice is againstatic, but slightly displaced to the right edge. The supercurrent density at the left edge ofthe sample is approximately equal to the BCS depairing-current density. The close-packeddirection of the lattice is again aligned with the free surfaces. The remaining defects are theremnants of a misoriented grain in the center of the sample, whose origin goes back to thetransient phase and which gradually heals during the recording period.At the intermediate current (�H = 0:250), the surface barrier at the right edge is broken,and the lattice moves steadily in the positive x direction. At the left edge, vortices penetrateinto the sample in a highly organized manner: A penetrating vortex triggers successivenucleations, which propagate along the surface of the sample in the direction of the current(\zipper" penetration). Vortices exit through the right surface, where the vortex-free regionhas disappeared completely. The average number of vortices in the sample increases toapproximately 565; this number oscillates in time, but the amplitude of the oscillation isalways less than 1%. The close-packed direction of the moving lattice is oriented alongthe direction of motion. A reorientation of a moving vortex lattice was observed in earlyexperiments [13] and, more recently, in YBCO [14]. A mechanism for the reorientation inthe presence of bulk pinning was proposed in the context of collective pinning theory in [15].Our investigation indicates that the reorientation also can be caused by the free surfacesof the sample. Approximately one third of the transport current now ows in the interiorthe sample, supporting the steady motion of the lattice. The resulting small gradient in thevortex density leads to an expansion of the lattice as x increases.The critical current, at which the vortex lattice �rst moves, can be estimated. As longas Hl > Hmax(B) (Hr < Hmin(B)), vortices will break through the free surface at theleft (right) edge and enter (leave) the sample, thus increasing (decreasing) the magneticinduction just inside the sample until it reaches the value Bl (Br) for which Hl = Hmax(Bl)(Hr = Hmin(Br)); see [16{18]. Approximate (dimensionless) expressions for Hmax(B) andHmin(B) in the range Hc1 < B < Hc2 are 3



Hmax(B) � �B2 +H2p�1=2 ; Hmin(B) � B �B0; (1)where B0 = (2�p3)=(48�) [17]. Usually, it is assumed that Hp = Hc.Figure (left inset) shows the computed values of (Hl; Bl) and (Hr; Br) for various cur-rents. A best �t of a curve H = Hmax(B) through the data (Hl; Bl) for no current, weakcurrent, and intermediate current yieldsHp � 0:78; hence, our computations suggest that thepenetration �eld in the Meissner state is Hp � 1:1Hc. The dashed line is the graph of Hmaxwith Hp = 0:78. It represents the stability boundary for the left surface. The data (Hl; Bl)for a strong current (discussed below) lie very close to the critical curve H = Hmax(B)|anindication that the expression for Hmax(B) remains a good approximation when the latticemoves faster. The solid line is the graph of Hmin for � = 4. It represents the stabilityboundary for the right surface. The data (Hr; Br) for no current and weak current lie belowthe graph|an indication that the surface barrier at the right edge has not been broken andthe lattice is stationary. The data (Hr; Br) for the intermediate and strong current lie onthe line B = H. The surface barrier at the right edge of the sample has been broken, andthe barrier force has no e�ect on the moving lattice.The critical current Jcr, at which the surface barrier is �rst broken, can be estimatedfrom Eq. (1), Jcr = 2(�H)cr = H2p2H0 +B0 +B0: (2)For H0 = 0:8, we �nd Jcr � 0:42. Computations with �H = 0:175; 0:195; 0:200 show thatvortices �rst break through the surface barrier when �H = 0:200. The magnetic inductionpro�le and the data (Hl; Bl), (Hr; Br) for the critical current are included in Fig. . Alsoincluded in Fig. (right inset) is a blow-up of the �eld pro�le for the critical current near theright edge of the sample. As predicted by Eq. 1, the value of Br exceeds Hr by the smallpositive quantity B0. This result resolves the discrepancy about the sign of the correctionin [17,18].When the lattice moves steadily across the sample, the total current J splits into a surfacecontribution, Js, and a bulk contribution, Jb. The self-�eld of the bulk current induces agradient of the magnetic induction and, therefore, a gradient of the vortex density, and thisgradient leads in turn to a deformation of the lattice.The �eld pro�le in the bulk can be found from the force balance equation for the over-damped steadily moving elastic vortex lattice. In the case of uniaxial compression in the xdirection, this equation reduces to �C11(1=B)(dB=dx) = =(8�), where  is a constant andC11 is the bulk modulus, C11(B) � (B2=(4�))(1 � 1=(4�B)). The di�erential equation canbe integrated, for example, from the right edge, where B = Br, into the bulk. The constant is then determined by the condition that the �eld at the left edge of the bulk is B = Bl.Identifying the width of the bulk with the width of the sample, d, we �nd the followingexpression for the magnetic �eld in the bulk:B(x) = 14� +  �Br � 14��2 + d�1� xd�!1=2 ; (3)4



where d = (Bl�Br)(Bl+Br�1=(2�)). Substitution of the expressions Br = Hr = H0� 12Jand Bl = Hl � Js = H0 + 12J � Js gives B(x) in terms of H0, J , and Js. The dashed linesin Fig. show the excellent agreement with the �eld pro�les found in the computations.We proceed to the case of the strong transport current, �H = 0:500. The self-�eld of thecurrent inside the sample induces a signi�cant density gradient: The density near the leftedge is approximately three times the density near the right edge. The lattice experiences asigni�cant strain in the left part of the sample. Slightly beyond the center, it can no longerbear the strain, and plastic deformation occurs. A defect boundary (\fault line") appears,which consists of several aligned dislocations and �nite segments of a 30� boundary. Thefault line remains more or less stationary as the lattice moves across the sample. The criticalstrain "pl, at which the lattice yields, can be estimated from the stretch in the horizontalbonds from the left edge to the fault line, "pl � 0:35.The current at which the lattice �rst shows plastic deformation, Jpl, can be estimated.As long as the strain near the right edge of the sample, "xx = (Bl � Br)=Bl, is less thanthe plastic limit for uniaxial stretching, "pl, the lattice is deformed elastically throughoutthe bulk. The fault line �rst appears at the right edge when Bl � Br = "plBl. WithBl �Br = Jpl � Js and Bl = H0 + 12Jpl � Js, we �ndJpl = (1� "pl)Js + "plH01 � "pl=2 : (4)At stronger currents, plastic deformations appear at a �nite distance xpl from the left edge.This distance can be estimated from the relation Bl�B(xpl) = "plBl. Using Eq. (3) for the�eld, we �nd xpld = "plBl (2 � "pl)Bl � 1=(2�)(Bl �Br)(Bl +Br � 1=(2�)) : (5)Here, Bl �Br = J � Js and Bl = H0 + 12J � Js.The development of a stationary defect superstructure in a moving vortex lattice is oneof the main �ndings of our computations. Further computations have shown that, in a widersample, this superstructure is even more developed. The lattice structure at the �nal timestep in a sample whose cross section in the (x; y) plane measured 48�32 in a strong current,(H0 = 1:05, �H = 0:75) is shown in Fig. . Several fault lines are necessary to supportthe large density di�erential across the sample. Note that the close-packed direction rotateseach time a fault line is encountered.Summarizing, we have shown a new mechanism for plastic motion of a driven vortexlattice in a clean superconductor. The mechanism involves the creation of a superstructureof lattice defects, which supports the gradient in the vortex density induced by the self-�eld of the current. Although the lattice moves across the sample, the defect superstructureremains static. We have also shown a dynamic reorientation of the lattice. When the currentis weak, the lattice is essentially static, and its close-packed direction is aligned with the freesurfaces. When the current exceeds a critical value, the lattice moves, and its close-packeddirection is aligned with the direction of motion. Finally, we have shown a gradual healingof the lattice defects under the inuence of a transport current.5
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Fig. 1. Magnetic induction pro�les (averaged over y) obtained from computations (solid lines)and theory (dashed lines); (a) no current, (b) weak current, (c) critical current, (d) intermediatecurrent, (e) strong current. Left inset: Stability boundaries (see text) and computed values of(Hl; Bl) and (Hr; Br); Dashed (solid) line: Stability boundary for left (right) free surface. Rightinset: Magnetic induction pro�le near the right edge of the sample for critical current.
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Fig. 2. Lattice structure in 32 � 48 sample (bulk only); H0 = 0:8; lattice defects are marked.Top left: no current, top right: weak current, bottom left: intermediate current, bottom right:strong current.
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Fig. 3. Lattic structure in 48� 32 sample (bulk only); H0 = 1:05, �H = 0:75; lattice defectsare marked.
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