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Abstract

Numerical solutions of the time-dependent Ginzburg-Landau equations show
a new mechanism for plastic motion of a driven vortex lattice in a clean
superconductor. The mechanism, which involves the creation of a defect su-
perstructure, is intrinsic to the moving vortex lattice and is independent of
bulk pinning. Other structural features found in the solutions include a re-
orientation of the vortex lattice and a gradual healing of lattice defects under

the influence of a transport current.
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Recently, attention has focused increasingly on the dynamic states of a vortex system.
Much of the interest concerns the type of motion of a vortex lattice under an applied cur-
rent [1-3]. It has been observed that, in a significant region of the phase diagram below
the vortex lattice melting line, vortex motion is predominantly plastic motion. The ex-
planation given in [1,2] relies heavily on the notion that the vortex interactions compete
with a randomness in the driven vortex system [4,5]. In this Letter, we present the results
of a numerical study of the motion of a vortex lattice in a clean finite sample and find a
different mechanism for plastic vortex motion. Past considerations excluded the effects of
the current-induced magnetic field. We show that a current increases the vortex spacing in
the direction of vortex motion and enforces the formation of fault lines to accomodate the
resulting strains. The fault lines serve as a source of plastic deformations. The mechanism is
the result of the intrinsic behavior of the vortex lattice and is independent of bulk pinning.
It may be responsible for plastic motion in very clean superconductors.

The structure of a vortex lattice moving under the influence of a transport current in
a homogeneous superconducting sample depends on the relative strengths of the Lorentz
force and the barrier forces associated with the free surfaces [6]. Numerical solutions of
the time-dependent Ginzburg-Landau (TDGL) equations [7] show that the barrier forces
dominate at weak currents. Vortex motion is confined to the interior of the sample, and
the vortex lattice is essentially static. Its close-packed rows align with the free surfaces.
The lattice structure may have defects, whose origin can be traced to the transient phase,
but these defects disappear gradually, and a more or less uniform structure with isolated
defects remains. When the Lorentz force dominates, vortices enter and leave through the
free surfaces, and the entire vortex lattice moves steadily. The lattice structure changes in
two ways. We see a change in the orientation of the lattice, where the close-packed rows align
with the direction of the Lorentz force, and the development of a defect superstructure, where
one or several distinct “fault lines” separate regions of approximately uniform structure. A
fault line consists of several aligned dislocations and finite segments of a 30° boundary. The
fault lines remain more or less stationary as the lattice moves. They provide the principal
mechanism supporting the vortex density gradient induced by the self-field of the current
and serve as a source of plastic deformations. Similar defect structures have been observed
in decorations of static vortex lattices with density gradients [8,9].

The computations, described in detail in [10,11], were done for a rectangular homoge-
neous pin-free superconducting sample, infinite in z, periodic in y, and bounded in z. The
magnetic field is in the positive z direction. A transport current .J in the positive y direction
is induced by a field differential between the free surfaces: H; = Hy+ AH, H, = Hy — AH,
where AH = £J. The resulting Lorentz force acts in the positive x direction. Lengths are
measured in units of the penetration depth A; time in units of £2/D (£ the coherence length,
D the normal diffusion coefficient); fields in units of H./2 (H. the thermodynamic critical
field); and current densities in units of (¢H./2)/(47A). Unless otherwise noted, all results
refer to a standard configuration: cross section 32 x 48 in the (z,y) plane, Ginzburg-Landau
parameter £ = 4, and a magnetic field with Hy = 0.8 and AH = 0 (no current), 0.125
(“weak” current), 0.250 (“intermediate” current), or 0.500 (“strong” current). The corre-
sponding current densities are approximately 0, 2, 4, and 8% of the BCS depairing-current
density.

Starting from the Meissner state, we increase the applied field to Hy = 0.8, apply the



transport current as appropriate, and let the system evolve through the transient phase
before we begin recording data. The average number of vortices in the steady state varies
from 230 (no current) to 660 (strong current). The position of every vortex is determined
from the solution of the TDGL equations. The structure and evolution of the vortex lattice
are analyzed by means of a Delauney triangulation [12], which is constructed at each recorded
time step. Each vortex in the bulk with fewer or more than six neighbors is identified
with a defect in the lattice. The computational results for the standard configuration are
summarized in Figs. and .

In the absence of a transport current, 230 vortices enter the sample to form a dilute vortex
structure with an average lattice spacing ag = 2.58X. The average magnetic induction in the
sample is B = 0.27, considerably less than the applied field Hy = 0.8. The lattice is static.
[ts structure remains defective; the major types of defects are isolated dislocations (pairs of
defects—one with five, the other with seven neighbors) and finite segments of 30° boundaries
(strings of three or more contiguous dislocations). The vortex region is separated from the
free surfaces by a vortex-free region, 2.1\ wide. The Meissner current flows entirely within
these vortex-free regions.

A weak current (AH = 0.125) almost doubles the average number of vortices to 459.
The vortices form an almost ideal crystal structure, with ag = 1.88X. The lattice is again
static, but slightly displaced to the right edge. The supercurrent density at the left edge of
the sample is approximately equal to the BCS depairing-current density. The close-packed
direction of the lattice is again aligned with the free surfaces. The remaining defects are the
remnants of a misoriented grain in the center of the sample, whose origin goes back to the
transient phase and which gradually heals during the recording period.

At the intermediate current (AH = 0.250), the surface barrier at the right edge is broken,
and the lattice moves steadily in the positive x direction. At the left edge, vortices penetrate
into the sample in a highly organized manner: A penetrating vortex triggers successive
nucleations, which propagate along the surface of the sample in the direction of the current
(“zipper” penetration). Vortices exit through the right surface, where the vortex-free region
has disappeared completely. The average number of vortices in the sample increases to
approximately 565; this number oscillates in time, but the amplitude of the oscillation is
always less than 1%. The close-packed direction of the moving lattice is oriented along
the direction of motion. A reorientation of a moving vortex lattice was observed in early
experiments [13] and, more recently, in YBCO [14]. A mechanism for the reorientation in
the presence of bulk pinning was proposed in the context of collective pinning theory in [15].
Our investigation indicates that the reorientation also can be caused by the free surfaces
of the sample. Approximately one third of the transport current now flows in the interior
the sample, supporting the steady motion of the lattice. The resulting small gradient in the
vortex density leads to an expansion of the lattice as x increases.

The critical current, at which the vortex lattice first moves, can be estimated. As long
as Hy > Hpax(B) (H, < Hpmin(B)), vortices will break through the free surface at the
left (right) edge and enter (leave) the sample, thus increasing (decreasing) the magnetic
induction just inside the sample until it reaches the value B; (B,) for which H; = Hpax(Bi)
(H, = Huin(B;)); see [16-18]. Approximate (dimensionless) expressions for Hyax(B) and
Hiin(B) in the range H.qy < B < H.y are



Hyax(B) ~ (B + H2)""? | Hyin( B) ~ B — By, (1)

where By = (27/3)/(48k) [17]. Usually, it is assumed that H, = H..

Figure (left inset) shows the computed values of (H,, B;) and (H,, B,) for various cur-
rents. A best fit of a curve H = Hyax(B) through the data (H;, B;) for no current, weak
current, and intermediate current yields H, ~ 0.78; hence, our computations suggest that the
penetration field in the Meissner state is H, ~ 1.1H.. The dashed line is the graph of H,.x
with H, = 0.78. It represents the stability boundary for the left surface. The data (H;, B;)
for a strong current (discussed below) lie very close to the critical curve H = Hpyax(B)—an
indication that the expression for Hpax(B) remains a good approximation when the lattice
moves faster. The solid line is the graph of Hp;, for K = 4. It represents the stability
boundary for the right surface. The data (H,, B,) for no current and weak current lie below
the graph—an indication that the surface barrier at the right edge has not been broken and
the lattice is stationary. The data (H,, B,) for the intermediate and strong current lie on
the line B = H. The surface barrier at the right edge of the sample has been broken, and
the barrier force has no effect on the moving lattice.

The critical current J.., at which the surface barrier is first broken, can be estimated

from Eq. (1),

H,

Joo = 2(AH )y = 3o+ Bo + Bo. (2)
For Hy = 0.8, we find J. ~ 0.42. Computations with AH = 0.175,0.195,0.200 show that
vortices first break through the surface barrier when AH = 0.200. The magnetic induction
profile and the data (H;, B;), (H,, B,) for the critical current are included in Fig. . Also
included in Fig. (right inset) is a blow-up of the field profile for the critical current near the
right edge of the sample. As predicted by Eq. 1, the value of B, exceeds H, by the small
positive quantity By. This result resolves the discrepancy about the sign of the correction
in [17,18].

When the lattice moves steadily across the sample, the total current .J splits into a surface
contribution, J;, and a bulk contribution, J,. The self-field of the bulk current induces a
gradient of the magnetic induction and, therefore, a gradient of the vortex density, and this
gradient leads in turn to a deformation of the lattice.

The field profile in the bulk can be found from the force balance equation for the over-
damped steadily moving elastic vortex lattice. In the case of uniaxial compression in the z
direction, this equation reduces to —Cy1(1/B)(dB/dx) = +/(87), where v is a constant and
C1y is the bulk modulus, Cy(B) ~ (B*/(47))(1 — 1/(4kB)). The differential equation can
be integrated, for example, from the right edge, where B = B, into the bulk. The constant
~ is then determined by the condition that the field at the left edge of the bulk is B = B;.
Identifying the width of the bulk with the width of the sample, d, we find the following
expression for the magnetic field in the bulk:

o= e (- ) +o0(-5) ‘



where vd = (B;— B, )(B;+ B, —1/(2k)). Substitution of the expressions B, = H, = Hy— %J
and By = H, — J, = Hy + %J — J, gives B(«) in terms of Hy, J, and J,. The dashed lines
in Fig. show the excellent agreement with the field profiles found in the computations.

We proceed to the case of the strong transport current, AH = 0.500. The self-field of the
current inside the sample induces a significant density gradient: The density near the left
edge is approximately three times the density near the right edge. The lattice experiences a
significant strain in the left part of the sample. Slightly beyond the center, it can no longer
bear the strain, and plastic deformation occurs. A defect boundary (“fault line”) appears,
which consists of several aligned dislocations and finite segments of a 30° boundary. The
fault line remains more or less stationary as the lattice moves across the sample. The critical
strain e, at which the lattice yields, can be estimated from the stretch in the horizontal
bonds from the left edge to the fault line, e, ~ 0.35.

The current at which the lattice first shows plastic deformation, Jy;, can be estimated.
As long as the strain near the right edge of the sample, ¢,, = (B; — B,)/By, is less than
the plastic limit for uniaxial stretching, ¢, the lattice is deformed elastically throughout
the bulk. The fault line first appears at the right edge when B; — B, = ¢, 5;. With
B — B, =Jy—Js and By = Hy + %Jpl — J,s, we find

(1 - a":pl)t]s + 5le0

J=
vl 1 —ep/2

(4)

At stronger currents, plastic deformations appear at a finite distance z from the left edge.
This distance can be estimated from the relation B; — B(xp1) = ¢ Bi. Using Eq. (3) for the
field, we find

(2 — gpl)Bl — 1/(253) (5)
(B = B,)(Bi+ B, — 1/(2r))

l’p]

d

= ey

Here, B, — B, = J — J, and Bl:HO—I—%J—JS.

The development of a stationary defect superstructure in a moving vortex lattice is one
of the main findings of our computations. Further computations have shown that, in a wider
sample, this superstructure is even more developed. The lattice structure at the final time
step in a sample whose cross section in the (x,y) plane measured 48 x 32 in a strong current,
(Ho = 1.05, AH = 0.75) is shown in Fig. . Several fault lines are necessary to support
the large density differential across the sample. Note that the close-packed direction rotates
each time a fault line is encountered.

Summarizing, we have shown a new mechanism for plastic motion of a driven vortex
lattice in a clean superconductor. The mechanism involves the creation of a superstructure
of lattice defects, which supports the gradient in the vortex density induced by the selt-
field of the current. Although the lattice moves across the sample, the defect superstructure
remains static. We have also shown a dynamic reorientation of the lattice. When the current
is weak, the lattice is essentially static, and its close-packed direction is aligned with the free
surfaces. When the current exceeds a critical value, the lattice moves, and its close-packed
direction is aligned with the direction of motion. Finally, we have shown a gradual healing
of the lattice defects under the influence of a transport current.
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Fig. 1. Magnetic induction profiles (averaged over y) obtained from computations (solid lines)
and theory (dashed lines); (a) no current, (b) weak current, (c) critical current, (d) intermediate
current, (e) strong current. Left inset: Stability boundaries (see text) and computed values of
(H;, By) and (H,, B;); Dashed (solid) line: Stability boundary for left (right) free surface. Right
inset: Magnetic induction profile near the right edge of the sample for critical current.



(
A
%V

<
X
X/
N

A
\
é‘

A
N
%

N
VAVAVAY,
avan
P
A
QAA
Yavav,
v
AV,
VAN

INONINININININA

/K

INNNININININNIN

A
v
VA

AVAVAVAVAVAVAVAVAVAY

VA

\/

o
\/

AL
-
A‘V
-
\/

VAVAVAWAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

INININISZSINININININIONONONINONONINONON/NDY

NN

VAVAVA

VAVAVAVAVAVA

XINONINONININININ/NINININ

<]
R
o
N
AV
KK
\VAVA
NNANININNNININNNSNNNN

INININ/N
AVAVAVAVAVAVAVAVAVAVAVAVAVA

\VA
7

UEVAVAYA
\N\/
VAV
%
X

’AVAVAV#\

K]

o
N
A
AV
VAVA
\Vi

I\

JAVAVAVAVAVAVAV/
\/\

AN

N/
AVAYAY

VAN

\VAV/
Vi

N/
\/
VA

\/
\VAVAVAVAVAVAVAVAVAVAV,

INONINES
\ N\ NNNNNINININNININININININININININININ

\VAN

</
A

V

VA

2

b
A A O <YAVAVAVAVAVAVAVAVAVAVAVAVA/

‘3
7

JAVAVAVA
AVAVAVAN
NAVAVAN
SRR
SRR
AN e‘
'aVAVA!
DavaY,
)\
5

VA
N
V)

&
&
gd

Y,

b
\/\AXT

\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY/

NNSNININ
\ANANNNNN
JAVAVAVAVAVAVAVAVAVAN
NONININININT

NN
\VAVAV/

VAV

\
a

X

INAKTN
=S
AVAVAN

Y

DN
SYAVAVa

L.v;,,,

AVAVAVAAVAVAVAVAVAVAN S AV
VAYAVAVAVAVAVAVAVAVAVASLIIAYY
TAVAVAVAVAVANAVAVAVAVAS Alm“

Z
WAV AN
AVAVAVAVAVAVAVAVAgﬁ\VA““"AVA
VAVAVAVAVAVAVAVAV/A'VVIAVAVAVA‘
b= Vs

VAV
XK

YA

ha
ved)
X

&

0
K

AVAVAVAVAVAVAVAVAWAN . \7

SIS ISR
>

RO

\Y)

Fig. 2. Lattice structure in 32 x 48 sample (bulk only); Ho = 0.8; lattice defects are marked.
Top left: no current, top right: weak current, bottom left: intermediate current, bottom right:

strong current.
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Fig. 3. Lattic structure in 48 x 32 sample (bulk only); Ho = 1.05, AH = 0.75; lattice defects
are marked.
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