
Solution of Dense Systems of Linear Equations Arising from IntegralEquation FormulationsKimmo Forsman,1 William Gropp,2 Lauri Kettunen,1 David Levine,2 and Jukka Salonen11Tampere University of Technology, Laboratory of Electricity and Magnetism, P.O. Box. 692, FIN-33101 Tampere, Finland2Argonne National Laboratory, Mathematics and Computer Science Division, 9700 South Cass Ave.,Argonne, IL 60439, U.S.A.Abstract|This paper discusses e�cient solution ofdense systems of linear equations arising from inte-gral equation formulations. Several preconditionersin connection with Krylov iterative solvers are exam-ined and compared with LU factorization. Results areshown demonstrating practical aspects and issues wehave encountered in implementing iterative solvers onboth parallel and sequential computers.I. IntroductionIn numerical solutions of Maxwell's equations, inte-gral formulations are attractive because they enable re-searchers to address problems without discretizing air re-gions. This property is especially useful for problems withmoving objects. However, integral equation formulationsinherently lead to dense systems of equations, and there-fore they are often thought to be computationally expen-sive.The main di�culties with integral formulations are theamount of memory needed to store the system matrix andthe solution time of the dense system of linear equations.In practice, the storage requirements may easily exceedthe computer's memory, and the solution time may alsobe unacceptable. To make integral methods more appeal-ing, e�ort must be devoted to solving large dense linearsystems e�ciently. In addition, since parallel computingis an obvious way to increase the computer's memory ca-pacity and computation speed, it is important to develope�cient linear equation solvers for both sequential andparallel computers.Several factors must be taken into account when con-sidering a solver: (1) the number of operations it needs,including its O-complexity, (2) its storage requirements,and (3) its computer implementation. In a parallel ma-chine one should also minimize the amount of data broad-cast between the processors to gain e�ciency.Our goal in this paper is to discuss various issues wehave encountered in trying to �nd and implement e�-cient sequential and parallel solvers for a magnetostaticvolume integral formulation. The corresponding code iscalled GFUNET [1], and the system matrices it generatesare asymmetric. We have tested both iterative Krylovmethods and LU factorization.The rest of this paper is organized as follows. The Basic

Linear Algebra Subprograms are discussed in Section II.The Krylov class of iterative methods are discussed inSection III. The preconditioners we implemented are de-scribed in Section IV. Our numerical experiments are dis-cussed in Section V. Finally, our conclusions are given inSection VI. II. BLASThe execution time of a computer program depends notonly on the number of operations it must execute, butalso on the location of the data in the memory hierarchyof the computer. The time the processor needs to accessdata varies within the memory hierarchy. For optimalperformance data movement within the memory hierarchyshould be minimized.Standard programming languages such as Fortran or C,do not have tools to explicitly control the data movementwithin the memory hierarchy. However, many computersprovide machine-optimized versions of the Basic LinearAlgebra Subprograms (BLAS) [2], low-level linear alge-bra routines that optimize the use of the memory hierar-chy. In the case of dense system of linear equations, useof the BLAS can signi�cantly decrease the total solutiontime. E�ciency is achieved by splitting a dense matrixinto blocks that are operated on in a manner that mini-mizes the number and cost of the memory accesses.The advantage of using the BLAS is shown in Table I.Systems of equations generated by GFUNET are solvedon a DEC 3000-700 AXP workstation using the LU solverfrom Numerical Recipes [3] and the LU solver from LA-PACK [4], where machine-optimized BLAS routines areused. The LAPACK solver is an order of magnitude fasterthan the Numerical Recipes LU solver.From a practical standpoint this result means that oneshould strive to use BLAS operations (matrix-vector andmatrix-matrix) for large sets of data (i.e., for \long" vec-TABLE ISOLUTION TIMES OBTAINED BY LU FACTORIZATIONNumber of Equations 250 500 1000 2500Numerical Recipes LU 1.02 9.32 89.4 1536LAPACK LU 0.14 0.79 6.0 108

tors) to code an e�cient solver. For example, in manycases it is reasonable to insert additional zeroes into thenumerical data in order to create large blocks of data forthe BLAS routines. This strategy often turns out to bemore e�cient than executing several successive (FortranDO or C-language for) loops for small bits of data. Forthis reason it is di�cult without empirical testing to de-termine which solver is the most e�cient.III. Krylov Subspace MethodsThe iterative solution of the dense nonsymmetric linearsystem Ax = b (1)is an mO(n2) process, where m is the number of itera-tions. If m is much less than n, iterative solvers can besigni�cantly faster than direct methods.Krylov methods are one class of iterative methods. Atiteration s a Krylov method produces an approximationxs for (1) of the form xs 2 x0 + Ks(r0; B). Here, x0 isany initial guess for (1), r0 = b � Ax0, and Ks(r0; B) =spanfr0; Br0; : : : ; Bs�1r0g is the sth Krylov subspace gen-erated by r0 and B. The idea is to �nd an approximationxs such that (b�Axs) is perpendicular to Ls, where Ls isanother subspace of dimension s. Di�erent Krylov meth-ods arise from di�erent choices of the subspaces Ks and Lsand from the ways in which the system is preconditioned.We have written Fortran code based on the TEM-PLATES book [5] for the following Krylov methods: gen-eralized minimal residual (GMRES) [6], conjugate gradi-ent squared (CGS) [7], and bi-conjugate gradient stabi-lized (Bi-CGSTAB) [8]. In our implementation, we havestrived to use BLAS routines whenever possible.A. GMRESGMRES uses a Gram-Schmidt process to compute anl2-orthonormal basis Vs = fv1; v2; : : : ; vsg of the Krylovsubspace Ks(r0; A). The approximate solution at itera-tion s is given by xs = x0 + Vsys, where ys is chosen sothat the residual b�Axs is minimized. GMRES requiresthat all vectors in Vs be stored. For this reason it is of-ten considered to be too expensive in both computationtime and storage requirements. To alleviate the storageproblem, restarting has been suggested: the user choosesNr such that every Nr iterations the set of stored vectorsis emptied. In our tests, however, GMRES generally con-verged quite rapidly so that restarting was not necessary.B. BiCG-like MethodsThe conjugate gradient method (CG) minimizes f(x) =12xTAx� bTx+ 12bTA�1b. The x that minimizes f is thesolution of Ax = b. In each iteration a new search direc-tion ds is selected such that dTs Adj = 0; 0 � j � s � 1,and t is found such that f(xs + tds) is minimized. The

new approximation is xs+1 = xs+ tds. CG is an e�ectivemethod, but unfortunately it is suitable only for symmet-ric and positive de�nite systems. The Biconjugate gradi-ent (BiCG) method is a modi�cation of CG. Instead offorcing search directions to be mutually conjugate, BiCGconstructs two mutuallyA-orthogonal search directions diand ~di such that ~diTAdj = 0; i 6= j. The selection of ~di isbased on an auxiliary system AT ~x = ~b. This means thatxs 2 x0+Ks(r0; A) and is orthogonal toKs(~r0; AT). Here~b and ~r0 are arbitrary vectors. CGS and Bi-CGSTAB arevariants of BiCG that do not require the computation ofATxs. It has been shown [7] that CGS is faster thanBiCG but often has quite irregular convergence behavior.Bi-CGSTAB was developed to have the same convergencerate as CGS at its best, without having the same di�cul-ties. The advantage of BiCG-like methods over GMRESis that they have limited computation and storage require-ments in each iteration step.IV. PreconditioningThe e�ciency of an iterative solver depends stronglyon the preconditioner. Finding a \good" preconditioneris often di�cult. It should be easy to form, it should bea good approximation of A, and the solution u ofMu = v; (2)should be easy to compute. (Vector v in (2) depends onthe iterative solver in use.)Since integral equation formulations typically lead todiagonally dominant matrices, the �rst choices for thepreconditioner are the diagonal of A, diagonal blocks,and a band. However, in our case there are rather largeo�-diagonal elements in the system matrix due to thespanning tree extraction technique [1], [9] we use. Theselarge elements, far from the diagonal, make it more dif-�cult to �nd an appropriate preconditioner. Therefore,we have also tested the standard incomplete LU factor-ization (SILU), and developed a \sparse preconditioner"based on picking the elements of the system matrix thathave the largest absolute value compared with the cor-responding diagonal elements. The list below contains abrief description of these �ve preconditioners.1. Diagonal: M = diag(A).2. Block Diagonal: M is formed by taking q equal-sizeddiagonal blocks from A. We solve (2) by using com-plete LU factorization for each block, Miui = vi,(i = 1; 2; : : : ; q).3. Band: M is formed by taking directly from A a bandwhose bandwidth is bw.4. Standard Incomplete LU: The SILU preconditioner[10] is M = (Ls + ~D) ~D�1(~D+Us), where Ls and Us

TABLE IIADDITIONAL STORAGE NEEDED FOR PRECONDITIONERSPreconditioner Additional q = 4; bw = n=4Storage and nz = 0:05n2Diagonal 0 0Block Diagonal n2=q 0:25n2Band bw � n 0:25n2SILU n nSparse 7nz 0:35n2are the strictly lower and upper triangular parts ofA. ~D is found by requiring diag(M) = diag(A).5. Sparse: A sparse preconditioner is formed by lettingthe nonzeros of M be those elements of A satisfyingjaijj � � min(jaiij; jajjj), where � is the dropping co-e�cient. The number of nonzeros in M is nz. Equa-tion (2) is solved using UMFPACK [11] developed forunsymmetric sparse matrices.Using the block diagonal, band, and sparse precondi-tioners, one must decide how large a portion of the systemmatrix A to include in the preconditioner M . In our casethe choice was based on numerical experiments.Since the system matrix is dense and requires signi�-cant memory to store, the additional storage needed forthe preconditioner must be considered when comparinge�ciency. The additional memory requirements are givenin Table II. V. Numerical experimentsIn this section we discuss sequential and parallel experi-ments we have carried out using the di�erent linear systemsolvers. The linear systems arise during GFUNET's solu-tion of three-dimensional nonlinear magnetostatics prob-lem, where a related sequence of linear systems is solved.Details of the nonlinear solution method are given in [1].The �rst test problem is the international electromag-netic force benchmark TEAM (Testing ElectromagneticAnalysis Methods) problem 20 [12]. Because there aresmall air gaps in the problem, and because of the span-ning tree extraction technique we employ, there are largeTABLE IIITIMING OF SOLVERSEquations 153 1011 2867LUNum:Rec: 0.233 95.4 2488LULAPACK 0.037 6.2 133GMRES 0.044 (16) 2.5 (14) 26 (14)Bi-CGSTAB 0.065 (14) 3.9 (12) 38 (13)CGS 0.063 (15) 4.1 (13) 38 (13)

0 0.5 1
0

0.5

1

<0.1% 0.1%−1.0% 1.0%−10% >10.0%Fig. 1. Absolute values of the system matrix A of TEAM Problem20 in percents of the maximum absolute value, �rst nonlinear cycle,n = 153.elements far from the diagonal, as shown in Figure 1. Thisuneven distribution of large elements makes the problemchallenging for iterative solvers.Table III summarizes the results for TEAM problem20 using three di�erent computational meshes with cor-responding systems of 153, 1,011, and 2,867 linear equa-tions, respectively. The problems were run on a DECAlpha 3000-600 AXP workstation. Two LU and threeiterative solvers are compared. For the iterative meth-ods the band preconditioner with bw = n=4 was used.The times shown are the average time in CPU-secondsfor the �rst four nonlinear iterations. The average num-ber of iterative solver iterations each nonlinear iterationis given in brackets. On each nonlinear cycle the solutionof Mx0 = b was used as an initial guess for the iterativesolvers. The stopping criterion for the iterative solverswas kb�Axk2=kbk2 < �, where � is the convergence tol-erance (we used � = 10�8). The results show that all ofthe iterative solvers are more e�cient than the LAPACKLU solver.Table IV compares the LAPACK LU solver with GM-RES using �ve di�erent preconditioners. Here, three dif-ferent test problems, TEAM problem 13 [13], TEAMproblem 20, and a positron accumulator ring dipole mag-net [1], were used. The timings, parameters, and startingguess are the same as those used in Table III. The blockdiagonal and sparse preconditioners both provide consis-tently good results which are better than LAPACK's LUsolver.Because sequential computers are limited in their stor-age capacity and computation speed, parallel computersare an attractive platform for the solution of larger prob-lems. However, programming an e�cient solver for a par-allel computer is more complex than for a workstation.Algorithms that work well on a sequential machine maynot be suitable for parallel implementation. For example,

TABLE IVTIMING OF GMRES WITH VARIOUS PRECONDITIONERSProblem TEAM 13 TEAM 20 PAR-dipoleEquations 1444 1011 1556LULAPACK 18 6.2 22Diagonal 42.6 (195) 3.5 (35) 18 (77)Block Diag.q=4 7.2 (23) 2.7 (16) 15 (47)Bandbw=n=4 11.5 (34) 2.5 (14) 27 (72)SILU 66.4 (158) 3.5 (16) 34 (70)Sparsenz=0:05�n2 11.1 (35) 2.1 (11) 13 (35)on a parallel computer the implementationof a sparse pre-conditioner can be a complex procedure. A block diagonalpreconditioner based on a parallel LU solver, however, iseasier to develop. It is also easier to make e�cient use ofthe BLAS routines on a parallel computer if a diagonal,band, or block diagonal preconditioner is employed.The parallel results we present were computed on anIBM SP parallel computer with 128 RS/6000 model 370processors, each with 128 Mbytes of memory and a oneGbyte local disk. The parallel solvers are from PETSc(Portable and Extensible Tools for Scienti�c Computing)[14], a large toolkit of software for portable, parallel scien-ti�c computation. The PETSc solvers are written to makee�cient use of the BLAS.Table V shows the performance of the parallel LU solverin PETSc as a function of the number of processors ona version of the PAR-dipole magnet problem with 7,536equations. As expected, the results show good speedupcan be achieved with LU factorization with an increasingnumber of processors.In Table VI we compare the solution times of the paral-lel LU solver with a parallel implementation of GMRES.The number of blocks used in the block diagonal precon-ditioner is �xed at four, independent of the number ofprocessors. (With four blocks, all the problems we havetested have converged.) The test problem is the PAR-dipole magnet with 3,241 linear equations. As can beseen, the GMRES solutions are more than twice as fastas the LU solutions.It should be emphasized that the competitive edge of aniterative solver can be lost, especially on a parallel com-puter, if the solver does not convergence quickly enough.A good preconditioner and initial guess are vital for theiterative solver. For instance, on the test problems wehave tried, the block diagonal preconditioner with q � 5was not a good approximate of the system matrix. As aresult, GMRES became slower than LU factorization.VI. ConclusionsWe have shown that iterative solvers are e�cient insolving dense and asymmetric systems of linear equations

TABLE VTIMING of PARALLEL LU-SOLVER, 7536 EQUATIONSProcessors 16 32 64Solution time 948.2 533.0 308.1TABLE VITIMING OF PARALLEL LU and GMRES, 3241 EQUATIONSProcessors 4 8 16 32 64LU 275.7 143.1 76.7 40.2 24.82GMRES (147 iter.) 109.9 57.8 29.7 17.0 10.9arising from integral equation formulations. The use ofmachine-optimized versions of the BLAS is essential foroptimal performance.Iterative methods forAx = b are attractive in particularwhen one does not demand accuracy from the solution.This is precisely our situation. The solution of Ax = b isneeded as part of the iterative solution of a nonlinear setof equations f(x) = 0. An accurate solution of Ax = b isneeded only when we approach the solution of f(x) = 0.For large problems we have found GMRES to be moree�cient than direct methods if a good preconditioner isused. It is faster and more reliable than Bi-CGSTAB andCGS methods. However, as expected, iterative solvers arestrongly dependent on the choice of the preconditioner.The e�ciency of a preconditioner depends on the prob-lem at hand. In a sequential computing environment, thesparse preconditioner with nz = 0:05n2 worked well on alltest problems. The number of iterations depends very lit-tle on the problem dimension (provided that the \elementdensity distribution" remains about the same).On a parallel machine the development of an iterativesolver is a more demanding process. However, the resultsshow that GMRES is still superior to LU factorization, ifthe parallel preconditioner is carefully designed.ACKNOWLEDGMENTThe use of the Argonne High-Performance Comput-ing Research Facility is gratefully acknowledged. TheHPCRF is funded principally by the U.S. Department ofEnergy O�ce of Scienti�c Computing. The work of thesecond and fourth authors was supported by the Math-ematical, Information, and Computational Sciences Di-vision subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.References[1] L. Kettunen, K. Forsman, D. Levine, andW. Gropp, \Integralequations and nonlinear 3D magnetostatics," Int. J. Numer.Methods Eng., vol. 38, pp. 2655{2675, 1995.[2] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, \Basic lin-ear algebra subprograms for fortran usage," ACM Transac-tions on Mathematical Software, vol. 5, pp. 308{323, 1979.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-terling, Numerical Recipes, The Art of Scienti�c Computing.Cambridge University Press, 1992.[4] E. Anderson et al., LAPACK Users's Guide. SIAM, 1992.[5] R. Barret et al., Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods. SIAM, 1994.[6] Y. Saad and M. Schultz, \GMRES: A generalized minimalresidual algorithm for solving nonsymmetric linear systems,"SIAM J. Sci. Statist. Comput., vol. 6, pp. 865{881, 1985.[7] P. Sonneveld, \CGS: a fast Lanczos-type solver for nonsym-metric linear systems," SIAM J. Sci. Statist. Comput., vol. 10,pp. 36{52, 1989.[8] H. A. van der Vorst, \Bi-CGSTAB: A fast and smoothly con-verging variant of Bi-CG for the solution of nonsymmetric lin-ear systems," SIAM J. Sci. Statist. Comput., vol. 13, pp. 631{644, 1992.[9] K. Forsman and L. Kettunen, \Tetrahedralmesh generation inconvex primitives by maximizing solid angles," IEEE Trans.Magn., vol. 30, pp. 3535{3538, September 1994.[10] H. A. van der Vorst, \High performance preconditioning,"SIAM J. Sci. Statist. Comput., vol. 10, pp. 1174{1185, 1989.[11] T. A. Davis, \Users' guide for the unsymmetric-pattern mul-tifrontal package (UMFPACK)," Tech. Rep. TR-93-020, CISDept., Univ. of Florida, Gainesville, FL, 1993.[12] N. Takahashi, T. Nakata, and H. Morishige, \Summary of re-sults for problem 20 (3-d static force problem)," in Proc. ofthe Fourth Int. TEAM Workshop, (Florida International Uni-versity, Miami, U.S.A.), pp. 85{91, 1994.[13] T. Nakata, N. Takahashi, and K. Fujiwara, \Summary of re-sults for team workshop problem 13 (3-d nonlinear magneto-static model)," in Proc. of the Fourth Int. TEAM Workshop,(Florida International University, Miami, U.S.A.), pp. 33{39,1994.[14] W. D. Gropp and B. F. Smith, \Scalable, extensible, andportable numerical libraries," in Proceedings of Scalable Par-allel Libraries Conference, pp. 87{93, IEEE, 1994.

