Solution of Dense Systems of Linear Equations Arising from Integral
Equation Formulations

Kimmo Forsman,! William Gropp,? Lauri Kettunen,' David Levine,? and Jukka Salonen

1

!Tampere University of Technology, Laboratory of Electricity and Magnetism, P.O. Box. 692, FIN-33101 Tampere, Finland

2 Argonne National Laboratory, Mathematics and Computer Science Division, 9700 South Cass Ave.,
Argonne, 1L 60439, U.S.A.

Abstract—This paper discusses efficient solution of
dense systems of linear equations arising from inte-
gral equation formulations. Several preconditioners
in connection with Krylov iterative solvers are exam-
ined and compared with LU factorization. Results are
shown demonstrating practical aspects and issues we
have encountered in implementing iterative solvers on

both parallel and sequential computers.

I. INTRODUCTION

In numerical solutions of Maxwell’s equations, inte-
gral formulations are attractive because they enable re-
searchers to address problems without discretizing air re-
gions. This property is especially useful for problems with
moving objects. However, integral equation formulations
inherently lead to dense systems of equations, and there-
fore they are often thought to be computationally expen-
sive.

The main difficulties with integral formulations are the
amount of memory needed to store the system matrix and
the solution time of the dense system of linear equations.
In practice, the storage requirements may easily exceed
the computer’s memory, and the solution time may also
be unacceptable. To make integral methods more appeal-
ing, effort must be devoted to solving large dense linear
systems efficiently. In addition, since parallel computing
is an obvious way to increase the computer’s memory ca-
pacity and computation speed, it is important to develop
efficient linear equation solvers for both sequential and
parallel computers.

Several factors must be taken into account when con-
sidering a solver: (1) the number of operations it needs,
including its O-complexity, (2) its storage requirements,
and (3) its computer implementation. In a parallel ma-
chine one should also minimize the amount of data broad-
cast between the processors to gain efficiency.

Our goal in this paper i1s to discuss various issues we
have encountered in trying to find and implement effi-
cient sequential and parallel solvers for a magnetostatic
volume integral formulation. The corresponding code is
called GFUNET [1], and the system matrices it generates
are asymmetric. We have tested both iterative Krylov
methods and LU factorization.

The rest of this paper is organized as follows. The Basic

Linear Algebra Subprograms are discussed in Section II.
The Krylov class of iterative methods are discussed in
Section III. The preconditioners we implemented are de-
scribed in Section I'V. Our numerical experiments are dis-
cussed 1n Section V. Finally, our conclusions are given in
Section VI.

II. BLAS

The execution time of a computer program depends not
only on the number of operations 1t must execute, but
also on the location of the data in the memory hierarchy
of the computer. The time the processor needs to access
data varies within the memory hierarchy. For optimal
performance data movement within the memory hierarchy
should be minimized.

Standard programming languages such as Fortran or C,
do not have tools to explicitly control the data movement
within the memory hierarchy. However, many computers
provide machine-optimized versions of the Basic Linear
Algebra Subprograms (BLAS) [2], low-level linear alge-
bra routines that optimize the use of the memory hierar-
chy. In the case of dense system of linear equations, use
of the BLAS can significantly decrease the total solution
time. Efficiency is achieved by splitting a dense matrix
into blocks that are operated on in a manner that mini-
mizes the number and cost of the memory accesses.

The advantage of using the BLAS is shown in Table I.
Systems of equations generated by GFUNET are solved
on a DEC 3000-700 AXP workstation using the LU solver
from Numerical Recipes [3] and the LU solver from LA-
PACK [4], where machine-optimized BLAS routines are
used. The LAPACK solver is an order of magnitude faster
than the Numerical Recipes LU solver.

From a practical standpoint this result means that one
should strive to use BLAS operations (matrix-vector and
matrix-matrix) for large sets of data (i.e., for “long” vec-

TABLE I
SoLuTION TIMES OBTAINED BY LU FACTORIZATION
Number of Equations 250 500 1000 2500
Numerical Recipes LU~ 1.02 9.32 89.4 1536

LAPACK LU 0.14 0.79 6.0 108

tors) to code an efficient solver. For example, in many
cases 1t 1s reasonable to insert additional zeroes into the
numerical data in order to create large blocks of data for
the BLAS routines. This strategy often turns out to be
more efficient than executing several successive (Fortran
DO or C-language for) loops for small bits of data. For
this reason it is difficult without empirical testing to de-
termine which solver is the most efficient.

III. KRYLOV SUBSPACE METHODS

The iterative solution of the dense nonsymmetric linear
system

Ar=b (1)

is an mO(n?) process, where m is the number of itera-
tions. If m is much less than n, iterative solvers can be
significantly faster than direct methods.

Krylov methods are one class of iterative methods. At
iteration s a Krylov method produces an approximation
zs for (1) of the form z; € vy + K;(rg, B). Here, 2y is
any initial guess for (1), ro = b — Azg, and K,(rg, B) =
span{rg, Brg, ..., B*"'rq} is the s Krylov subspace gen-
erated by rg and B. The idea is to find an approximation
zs such that (b— Axz;) is perpendicular to Ly, where L; is
another subspace of dimension s. Different Krylov meth-
ods arise from different choices of the subspaces K, and L
and from the ways in which the system is preconditioned.

We have written Fortran code based on the TEM-
PLATES book [5] for the following Krylov methods: gen-
eralized minimal residual (GMRES) [6], conjugate gradi-
ent squared (CGS) [7], and bi-conjugate gradient stabi-
lized (Bi-CGSTAB) [8]. In our implementation, we have
strived to use BLAS routines whenever possible.

A. GMRES

GMRES uses a Gram-Schmidt process to compute an
ls-orthonormal basis Vi = {v1,vs,...,vs} of the Krylov
subspace K;(rg, A). The approximate solution at itera-
tion s is given by z; = xy 4+ V,ys, where y, 1s chosen so
that the residual b — Az, is minimized. GMRES requires
that all vectors in V, be stored. For this reason it 1s of-
ten considered to be too expensive in both computation
time and storage requirements. To alleviate the storage
problem, restarting has been suggested: the user chooses
N, such that every N, iterations the set of stored vectors
i1s emptied. In our tests, however, GMRES generally con-
verged quite rapidly so that restarting was not necessary.

B. BiCG-like Methods

The conjugate gradient method (CG) minimizes f(z) =
%l‘TAl‘ —bTe+ %bTA_lb. The x that minimizes f is the
solution of Az = b. In each iteration a new search direc-
tion d is selected such that dsTAdj =0,0<y<s—1,

and ¢ is found such that f(xs; + td;) is minimized. The

new approximation is £;41 = x5 + tds. CG is an effective
method, but unfortunately it is suitable only for symmet-
ric and positive definite systems. The Biconjugate gradi-
ent (BiCG) method is a modification of CG. Instead of
forcing search directions to be mutually conjugate, BiICG
constructs two mutually A-orthogonal search directions d;
and d; such that cZiTAdj =0, ¢ # j. The selection of d; is
based on an auxiliary system ATE = b. This means that
zs € 2o+ K,(rg, A) and is orthogonal to K (7o, AT). Here
b and 7 are arbitrary vectors. CGS and Bi-CGSTAB are
variants of BiCG that do not require the computation of
ATz, Tt has been shown [7] that CGS is faster than
BiCG but often has quite irregular convergence behavior.
Bi-CGSTAB was developed to have the same convergence
rate as CGS at its best, without having the same difficul-
ties. The advantage of BiCG-like methods over GMRES
is that they have limited computation and storage require-
ments in each iteration step.

IV. PRECONDITIONING

The efficiency of an iterative solver depends strongly
on the preconditioner. Finding a “good” preconditioner
is often difficult. It should be easy to form, i1t should be
a good approximation of A, and the solution u of

Mu = v, (2)

should be easy to compute. (Vector v in (2) depends on
the iterative solver in use.)

Since integral equation formulations typically lead to
diagonally dominant matrices, the first choices for the
preconditioner are the diagonal of A, diagonal blocks,
and a band. However, in our case there are rather large
off-diagonal elements in the system matrix due to the
spanning tree extraction technique [1], [9] we use. These
large elements, far from the diagonal, make it more dif-
ficult to find an appropriate preconditioner. Therefore,
we have also tested the standard incomplete LU factor-
ization (SILU), and developed a “sparse preconditioner”
based on picking the elements of the system matrix that
have the largest absolute value compared with the cor-
responding diagonal elements. The list below contains a
brief description of these five preconditioners.

1. Diagonal: M = diag(A).

2. Block Diagonal: M is formed by taking ¢ equal-sized
diagonal blocks from A. We solve (2) by using com-
plete LU factorization for each block, M;u; = v,

(i=1,2...9).

3. Band: M is formed by taking directly from A a band
whose bandwidth is bw.

4. Standard Incomplete LU: The SILU preconditioner
[10]is M = (Ls + D)D=Y(D + Uy), where Ly and Uj

TABLE II
ADDITIONAL STORAGE NEEDED FOR PRECONDITIONERS

Preconditioner Additional g=4, bw =n/4

Storage and nz = 0.05n°
Diagonal 0 0
Block Diagonal nz/q 0.25n2
Band bw-n 0.25n2
SILU n n
Sparse Tnz 0.35n>

are the strictly lower and upper triangular parts of

A. D is found by requiring diag(M) = diag(A).

5. Sparse: A sparse preconditioner 1s formed by letting
the nonzeros of M be those elements of A satisfying
la;;| > 7min(|ai;l, |a;;|), where 7 is the dropping co-
efficient. The number of nonzeros in M is nz. Equa-
tion (2) is solved using UMFPACK [11] developed for
unsymmetric sparse matrices.

Using the block diagonal, band, and sparse precondi-
tioners, one must decide how large a portion of the system
matrix A to include in the preconditioner M. In our case
the choice was based on numerical experiments.

Since the system matrix is dense and requires signifi-
cant memory to store, the additional storage needed for
the preconditioner must be considered when comparing
efficiency. The additional memory requirements are given
in Table II.

V. NUMERICAL EXPERIMENTS

In this section we discuss sequential and parallel experi-
ments we have carried out using the different linear system
solvers. The linear systems arise during GFUNET’s solu-
tion of three-dimensional nonlinear magnetostatics prob-
lem, where a related sequence of linear systems is solved.
Details of the nonlinear solution method are given in [1].

The first test problem is the international electromag-
netic force benchmark TEAM (Testing Electromagnetic
Analysis Methods) problem 20 [12]. Because there are
small air gaps in the problem, and because of the span-
ning tree extraction technique we employ, there are large

TABLE III
TIMING OF SOLVERS

Equations 153 1011 2867
LUNym Ree. 0.233 95.4 2488
LUpapack 0.037 6.2 133
GMRES 0.044 (16) 2.5 (14) 26 (14)
Bi-CGSTAB 0.065 (14) 3.9 (12) 38 (13)
cas 0.063 (15) 4.1(13) 38 (13)

O <0.1% O 01%-1.0% M 1.0%-10% W >10.0%

Fig. 1. Absolute values of the system matrix A of TEAM Problem
20 in percents of the maximum absolute value, first nonlinear cycle,
n = 153.

elements far from the diagonal, as shown in Figure 1. This
uneven distribution of large elements makes the problem
challenging for iterative solvers.

Table III summarizes the results for TEAM problem
20 using three different computational meshes with cor-
responding systems of 153, 1,011, and 2,867 linear equa-
tions, respectively. The problems were run on a DEC
Alpha 3000-600 AXP workstation. Two LU and three
iterative solvers are compared. For the iterative meth-
ods the band preconditioner with bw = n/4 was used.
The times shown are the average time in CPU-seconds
for the first four nonlinear iterations. The average num-
ber of iterative solver iterations each nonlinear iteration
is given in brackets. On each nonlinear cycle the solution
of Mzy = b was used as an initial guess for the iterative
solvers. The stopping criterion for the iterative solvers
was ||b — Az||2/||b]]2 < «, where « is the convergence tol-
erance (we used o = 1078). The results show that all of
the iterative solvers are more efficient than the LAPACK
LU solver.

Table IV compares the LAPACK LU solver with GM-
RES using five different preconditioners. Here, three dif-
ferent test problems, TEAM problem 13 [13], TEAM
problem 20, and a positron accumulator ring dipole mag-
net [1], were used. The timings, parameters, and starting
guess are the same as those used in Table III. The block
diagonal and sparse preconditioners both provide consis-
tently good results which are better than LAPACK’s LU
solver.

Because sequential computers are limited in their stor-
age capacity and computation speed, parallel computers
are an attractive platform for the solution of larger prob-
lems. However, programming an efficient solver for a par-
allel computer 1s more complex than for a workstation.
Algorithms that work well on a sequential machine may
not be suitable for parallel implementation. For example,

TABLE IV
TimiNG oF GMRES wWITH VARIOUS PRECONDITIONERS

Problem TEAM 13 TEAM 20 PAR-dipole
Equations 1444 1011 1556
LUpapacxk 18 6.2 22
Diagonal 42.6 (195) 3.5 (35) 18 (77)
Block Diag.q=4 7.2(23) 2.7(16) 15 (47)
Bandyy /s 115 (34) 25 (14) 27 (72)
SILU 66.4 (158) 3.5 (16) 34 (70)
Sparse,,_¢ osenz 11.1 (35) 2.1 (11) 13 (35)

on a parallel computer the implementation of a sparse pre-
conditioner can be a complex procedure. A block diagonal
preconditioner based on a parallel LU solver, however, is
easier to develop. It 1s also easier to make efficient use of
the BLAS routines on a parallel computer if a diagonal,
band, or block diagonal preconditioner is employed.

The parallel results we present were computed on an
IBM SP parallel computer with 128 RS/6000 model 370
processors, each with 128 Mbytes of memory and a one
Gbyte local disk. The parallel solvers are from PETSc
(Portable and Extensible Tools for Scientific Computing)
[14], a large toolkit of software for portable, parallel scien-
tific computation. The PETSc solvers are written to make
efficient use of the BLAS.

Table V shows the performance of the parallel LU solver
in PETSc as a function of the number of processors on
a version of the PAR-dipole magnet problem with 7,536
equations. As expected, the results show good speedup
can be achieved with LU factorization with an increasing
number of processors.

In Table VI we compare the solution times of the paral-
lel LU solver with a parallel implementation of GMRES.
The number of blocks used in the block diagonal precon-
ditioner is fixed at four, independent of the number of
processors. (With four blocks, all the problems we have
tested have converged.) The test problem is the PAR-
dipole magnet with 3,241 linear equations. As can be
seen, the GMRES solutions are more than twice as fast
as the LU solutions.

It should be emphasized that the competitive edge of an
iterative solver can be lost, especially on a parallel com-
puter, if the solver does not convergence quickly enough.
A good preconditioner and initial guess are vital for the
iterative solver. For instance, on the test problems we
have tried, the block diagonal preconditioner with ¢ > 5
was not a good approximate of the system matrix. As a
result, GMRES became slower than LU factorization.

VI. CONCLUSIONS

We have shown that iterative solvers are efficient in
solving dense and asymmetric systems of linear equations

TABLE V
TIMING of PARALLEL LU-SOLVER, 7536 EQUATIONS

Processors 16 32 64
Solution time 948.2 533.0 308.1
TABLE VI
TiMING 0F PARALLEL LU and GMRES, 3241 EQUATIONS
Processors 4 8 16 32 64
LU 2757 143.1 76.7 40.2 24.82
GMRES (147iter.) 109.9 57.8 29.7 17.0 10.9

arising from integral equation formulations. The use of
machine-optimized versions of the BLAS is essential for
optimal performance.

Iterative methods for Ax = b are attractive in particular
when one does not demand accuracy from the solution.
This is precisely our situation. The solution of Az = b 1s
needed as part of the iterative solution of a nonlinear set
of equations f(x) = 0. An accurate solution of Az = b is
needed only when we approach the solution of f(x) = 0.

For large problems we have found GMRES to be more
efficient than direct methods if a good preconditioner is
used. It is faster and more reliable than Bi-CGSTAB and
CGS methods. However, as expected, iterative solvers are
strongly dependent on the choice of the preconditioner.
The efficiency of a preconditioner depends on the prob-
lem at hand. In a sequential computing environment, the
sparse preconditioner with nz = 0.05n? worked well on all
test problems. The number of iterations depends very lit-
tle on the problem dimension (provided that the “element
density distribution” remains about the same).

On a parallel machine the development of an iterative
solver is a more demanding process. However, the results
show that GMRES is still superior to LU factorization, if
the parallel preconditioner is carefully designed.

ACKNOWLEDGMENT

The use of the Argonne High-Performance Comput-
ing Research Facility is gratefully acknowledged. The
HPCRF is funded principally by the U.S. Department of
Energy Office of Scientific Computing. The work of the
second and fourth authors was supported by the Math-
ematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

REFERENCES

[1] L. Kettunen, K. Forsman, D. Levine, and W. Gropp, “Integral
equations and nonlinear 3D magnetostatics,” Int. J. Numer.
Methods Eng., vol. 38, pp. 2655—-2675, 1995.

[2] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic lin-
ear algebra subprograms for fortran usage,” ACM Transac-
trons on Mathematical Software, vol. 5, pp. 308-323, 1979.

(3]

10]

(11]

(12]

(13]

(14]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling, Numerical Recipes, The Art of Scientific Computing.
Cambridge University Press, 1992.

E. Anderson et al., LAPACK Users’s Guide. STAM, 1992.

R. Barret et al., Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, 1994.

Y. Saad and M. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM J. Sci. Statist. Comput., vol. 6, pp. 865-881, 1985.

P. Sonneveld, “CGS: a fast Lanczos-type solver for nonsym-
metric linear systems,” SIAM J. Sci. Statist. Comput., vol. 10,
Pp. 36-52, 1989.

H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly con-
verging variant of Bi-CG for the solution of nonsymmetric lin-
ear systems,” STAM J. Sci. Statist. Comput., vol. 13, pp. 631—
644, 1992.

K. Forsman and L. Kettunen, “Tetrahedral mesh generation in
convex primitives by maximizing solid angles,” IEEFE Trans.
Magn., vol. 30, pp. 3535—-3538, September 1994.

H. A. van der Vorst, “High performance preconditioning,”
SIAM J. Sci. Statist. Comput., vol. 10, pp. 1174-1185, 1989.
T. A. Davis, “Users’ guide for the unsymmetric-pattern mul-
tifrontal package (UMFPACK),” Tech. Rep. TR-93-020, CIS
Dept., Univ. of Florida, Gainesville, FL., 1993.

N. Takahashi, T. Nakata, and H. Morishige, “Summary of re-
sults for problem 20 (3-d static force problem),” in Proc. of
the Fourth Int. TEAM Workshop, (Florida International Uni-
versity, Miami, U.S.A.), pp. 85-91, 1994.

T. Nakata, N. Takahashi, and K. Fujiwara, “Summary of re-
sults for team workshop problem 13 (3-d nonlinear magneto-
static model),” in Proc. of the Fourth Int. TEAM Workshop,
(Florida International University, Miami, U.S.A.), pp. 33-39,
1994.

W. D. Gropp and B. F. Smith, “Scalable, extensible, and
portable numerical libraries,” in Proceedings of Scalable Par-
allel Libraries Conference, pp. 87-93, IEEE, 1994.

