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GLOBAL SMOOTHING AND CONTINUATION FOR LARGE-SCALEMOLECULAR OPTIMIZATIONJorge J. Mor�e and Zhijun WuAbstractWe discuss the formulation of optimization problems that arise in the study ofdistance geometry, ionic systems, and molecular clusters. We show that continuationtechniques based on global smoothing are applicable to these molecular optimizationproblems, and we outline the issues that must be resolved in the solution of large-scalemolecular optimization problems.1 IntroductionWe are concerned, in particular, with molecular optimization problems that arise in thestudy of protein structures in biophysical chemistry. If we adopt the hypothesis that thenative protein structure corresponds to the global minimum of the protein energy [43, 48],then the protein structure is determined by minimizing a potential energy function in con-formational space. If the protein structure is determined from bounds on distances betweenpairs of atoms and other geometric constraints on the protein, then distance geometry[9, 20] techniques are required. Both approaches require the solution of global optimizationproblems.The problem of �nding the least energy structure for a given molecular system arisesnot only in biological studies, but also in the study of large, con�ned ionic systems inplasma physics [19, 39, 44]. Con�gurations of systems with up to 200,000 ions are ofspecial interest because phase transitions occur for systems of this size. Such con�gurationsrequire determining the global minimum of a function with up to 600,000 variables | acomputationally intensive problem, even for local minimization, because the problem isdense and each function evaluation requires order n2 oating-point operations (ops).Molecular optimization problems also arise in the study of clusters; for an introductionto the problems in this area, see the books edited by Reynolds [41] and Haberland [18].Much of the interest in clusters is due to unexpected theoretical and practical results, suchas the discovery of the stable carbon cluster C60. Theoretical properties of clusters usuallyare determined by molecular dynamics simulation or by potential energy minimization.Small argon clusters have received considerable attention in the past (see, for example, theclassical studies of Hoare [23] and Northby [37]), since they have simple potentials andstructure, but current interest centers on clusters with more involved potentials.This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, and by the Argonne Director's Individual Investigator Program.1



The molecular optimization problems that we have mentioned are di�cult because thepresence of a large number of local minimizers, even for systems with a small number ofatoms, creates numerous regions of attraction for local searches. We have been using globalsmoothing and continuation techniques for these problems. In this approach the Gaussiantransform is used to map the objective function into a smoother function with fewer localminimizers, and an optimization procedure is applied to the transformed function, tracingthe minimizers as the function is gradually changed back to the original function. A trans-formed function is a coarse approximation to the original function, with small and narrowminimizers being removed while the overall structure is maintained. This property allowsthe optimization procedure to skip less interesting local minimizers and to concentrate onregions with average low function values, where a global minimizer is most likely to belocated.Global smoothing was �rst proposed in the di�usion equation method for protein confor-mation by Scheraga and coworkers [38, 27, 28, 29, 43]. A similar approach was used in thepacket annealing algorithm of Shalloway [48, 47] and in the algorithms of Coleman, Shal-loway, and Wu [7, 8] for molecular conformation problems. Recent developments of globalsmoothing and continuation techniques from a mathematical and computational point ofview can be found in Wu [51] and Mor�e and Wu [35, 34], while Mor�e and Wu [36] haveextended the smoothing properties of the Gaussian transform to transformations with otherdensity functions.While global smoothing is a promising approach for the solution of molecular optimiza-tion problems, many theoretical and computational issues need additional attention. Inthis paper we review current work on distance geometry problems, and indicate how theseresults can be extended to ionic systems and molecular clusters.In Section 2 we discuss the formulation of molecular optimization problems that arisein distance geometry calculations, ionic systems, and molecular clusters. Section 3 is areview of the properties of the Gaussian transform. In particular, we outline the techniquesused to compute the Gaussian transform for molecular optimization problems. In Section 4we discuss computational experiments carried out with a simple continuation algorithm,and we show how problem formulation a�ects the choice of optimization procedure in thecontinuation algorithm. We conclude the paper in Section 5 with a critical review of issuesthat must be addressed in order to solve large-scale molecular optimization problems onhigh-performance architectures. We address, in particular, the evaluation of the functionby fast multipole methods.2 Molecular Optimization ProblemsA typical molecular optimization problem is to determine a structure with minimal potentialenergy. In some cases, the position of the atoms in the structure must also satisfy certain2



physical constraints. In this section we review three molecular optimization problems andrelated work.2.1 Distance GeometryDistance geometry problems arise in the interpretation of nuclear magnetic resonance (NMR)data and in the determination of protein structures. For a general review of the distancegeometry problem and its relationship to macromolecular modeling, see Crippen and Havel[9], Havel [20], Kuntz, Thomason, and Oshiro [30], and Br�unger and Nilges [4].A distance geometry problem is speci�ed by a subset S of all atom pairs and by thedistances �i;j between atoms i and j for (i; j) 2 S. A solution to the distance geometryproblem is a set of positions x1; : : : ; xm in IR3 such thatkxi � xjk = �i;j ; (i; j) 2 S: (2:1)Usually, S is sparse; in other words, only a small subset of distances is known.In practice, lower and upper bounds on the distances are speci�ed instead of their exactvalues. The distance geometry problem with lower and upper bounds is to �nd positionsx1; : : : ; xm such that li;j � kxi � xjk � ui;j ; (i; j) 2 S; (2:2)where li;j and ui;j are lower and upper bounds on the distance constraints, respectively. Animportant case of this problem is to obtain an "-optimal solution to the distance geometryproblem, that is, positions x1; : : : ; xm such that���kxi � xjk � �i;j��� � "; (i; j) 2 S (2:3)for some " > 0. An "-optimal solution is useful when the exact solution to the problem (2.1)does not exist because of small errors in the data. This situation can happen, for example,when the triangle inequality �i;j � �i;k + �k;jis violated for atoms fi; j; kg because of possible inconsistencies in the experimental data.The distance geometry problem (2.1) is computationally intractable because the re-striction of the distance geometry problem to a one-dimensional space is equivalent to theset partition problem, which is known to be NP-complete [10]. Saxe [42] shows that k-dimensional distance geometry problems are strongly NP-hard for all k � 1. The followingresult of Mor�e and Wu [34] shows that obtaining an approximate solution to the distancegeometry problem is also NP-hard.Theorem 2.1 Determining an "-optimal solution to the distance geometry problem in IRis NP-hard. 3



The distance geometry problems that we have described can be formulated as globaloptimization problems for which the constraints are satis�ed at a global minimizer of theproblem. A simple formulation is in terms of �nding the global minimum of the functionf(x) = Xi;j2S pi;j(xi � xj); (2:4)where the pairwise potential pi;j : IRn 7! IR is de�ned for problem (2.1) bypi;j(x) = �kxk2 � �2i;j�2 ; (2:5)while Crippen and Havel [9] suggested that for problem (2.2)pi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) : (2:6)Clearly, x = fx1; : : : ; xmg solves the distance geometry problem if and only if x is a globalminimizer of f and f(x) = 0.Special optimization algorithms have been developed for solving the distance geometryproblem (2.1). For example, Hendrickson [21, 22] used a graph-theoretic viewpoint todevelop algorithms that test the uniqueness and rigidity of the distance graph. Thesealgorithms can be used to reduce the problem into smaller, easier subproblems. Glunt,Hayden, and Raydan [12, 13] have proposed a special gradient method for determining alocal minimizer of the problem de�ned by (2.4) withpi;j(x) = (kxk � �i;j)2 :Al-Homidan and Fletcher [1] have done related work on a hybrid algorithm that combinesan alternating projection method with a quasi-Newton method.If all pairwise distances are known and a solution exists, then the solution of the distancegeometry problem (2.1) can be determined (Blumenthal [3, Section 43], Crippen and Havel[9, Section 6.3]) by computing the largest three eigenvalues and eigenvectors of the rank-3positive semide�nite matrix A 2 IRm�m de�ned byai;j = 12 ��2i + �2j � �2i;j� ; i; j = 1; : : : ; m;where �i = kxi�x0k, and x0 2 IRn is a convex combination of x1; : : : ; xm. Note that if x0 isa convex combination of x1; : : : ; xm, then �i can be expressed in terms of �i;j . In practice,x0 is the centroid of x1; : : : ; xm. We can determine the coordinates x1; : : : ; xm by notingthat the identity2(xi � x0)T (xj � x0) = kxi � x0k2 + kxj � x0k2 � kxi � xjk24



implies that A = BTB is a positive semide�nite rank-3 matrix withB = (x1 � x0; : : : ; xm � x0) :Hence, the vectors x1; : : : ; xm can be determined by computing the largest three eigenval-ues and eigenvectors of the rank-3 matrix A. Alternatively, we could use the Choleskydecomposition with diagonal pivoting.In practice, only a small subset of the distances is known, and there are experimentalerrors in the data, so the above procedure cannot be used. However, an extension of thisprocedure is employed by the embed algorithm (see Crippen and Havel [9], and Havel [20])in practical distance geometry calculations. In the �rst phase of the embed algorithm, thesparse set of distance constraints is extended by using the relationshipsui;j = min (ui;j ; ui;k + uk;j) ; li;j = max (li;j ; li;k � uk;j ; lj;k � uk;i) :Given a full set of bounds, distances �i;j 2 [li;j ; ui;j] are chosen, and an attempt is made tocompute coordinates x1; : : : ; xm as in the above procedure. This attempt usually fails, butit can be used to generate a rank-3 approximation to A, which leads to an approximation tothe solution of problem (2.1). This approximation can be re�ned by minimizing a functionof the form (2.4,2.5).The embed algorithm, as described above, may require many trial choices of �i;j in[li;j ; ui;j] before a solution to problem (2.2) is found. Current implementations of the embedalgorithm use a local minimizer of the problem de�ned by (2.4) and (2.5) as a startingpoint for a simulated annealing procedure. In Section 4 we will outline the proposal ofMor�e and Wu [34] for �nding a solution of the distance geometry problem (2.2) by directlydetermining a global minimizer of the function de�ned by (2.4) and (2.6).2.2 Ionic SystemsThe potential energy for a con�ned ionic system of m ions located at x1; : : : ; xm in R3 canbe modeled, for example, by a function of the formf(x) =Xi 6=j pi;j(xi � xj) + mXi=1 kxik2; (2:7)where pi;j : IR3 7! IR is de�ned bypi;j(x) = v(kxk); v(r) = r�1: (2:8)Hasse and Schi�er [19], Rafac, Schi�er, Hangst, Dubin, and Wales [39], and Schi�er [44]studied con�gurations of con�ned ionic systems via molecular dynamics simulation. Theresults for small systems showed that ionic systems have a layered shell structures, with the5



Figure 2.1: Con�ned ionic system with 60 ions (left) and 61 atoms (right).number of shells increasing as the number of atoms in the system increases. The distributionof the ions over the shells also varies with di�erent systems. For example, Figure 2.1 showsthat the system of 60 ions has two shells with 12 ions in the inner shell and 48 ions in theouter shell, while the system of 61 ions has three shells with a single ion (at the center ofthe system) as the innermost shell.Experiments indicate that as the number of atoms increases, the boundaries betweenthe shells become blurred, and eventually the system achieves a crystal form. Therefore,there must be a phase transition from a system of layered shells to a body-centered cubiclattice, a standard crystal structure. This phase transition is of special physical interest, butin order to locate the transition, con�gurations for very large systems (say 200,000 ions)must be determined. This calculation would be prohibitively expensive for a moleculardynamics simulation, but may be possible by minimizing the potential energy function. Wehave found in our preliminary studies that con�gurations for most systems with up to 100ions can be determined by a single local minimization. Of course, for large systems, globaloptimization algorithms are required to obtain the most stable con�gurations.2.3 Molecular ClustersA cluster is a group of identical molecules with speci�c geometrical and chemical proper-ties. Clusters of chemical importance include, for example, argon and carbon clusters. Afundamental problem in cluster science is to determine the geometrical structure of clustersin their lowest energy states. Related problems include structure changes from clusters to6



bulk matters and low energy paths between stable states. For a general review of thesetopics, see Haberland [18].Clusters of argon molecules were �rst studied by Hoare and coworkers [25, 24, 23].Northby [37] obtained the structures for clusters with up to 147 molecules using a latticesearch algorithm, which later was improved and used for even larger clusters by Xue [52].Results for small argon clusters have also been obtained by general-purpose algorithms suchas the di�usion equation method [28], the packet annealing algorithm [48], the stochasticsearch method [6, 5], and the e�ective energy simulated annealing algorithm [7].Argon clusters have been heavily studied because the potentials and structure of theseclusters are relatively simple. Argon clusters usually are modeled by the Lennard-Jonespotential f(x) =Xi 6=j pi;j(xi � xj);where pi;j : IR3 7! IR is de�ned bypi;j(x) = v(kxk); v(r) = r�12 � 2r�6;or by the Morse potential v(r) = (1� exp [�(1� r)])2 � 1;for some positive constant �. For example, Hoare [23] used � = 3.Potentials for other clusters can be more involved. For example, in the study of metalclusters [41, 18, 26] it is common to use potentials of the formf(x) =Xi 6=j pi;j(xi � xj)� nXj=10@Xi 6=j qi;j(xi � xj)1A1=2 ;where pi;j : IR3 7! IR and qi;j : IR3 7! IR are of the form v(kxk) withv(r) = � exp [��(r � 1)] ;for positive constants � and �. Note that these potentials are functions of the pairwisedistance between atoms, and that they decay rapidly as r approaches in�nity. The potentialfor ionic systems, on the other hand, decays slowly as r approaches in�nity.Cluster problems are di�cult for most global optimization strategies because they tendto have a large number of local minimizers that act as points of attraction for any localminimizer. For argon clusters, Hoare [23] found that systems with 6 � m � 13 atoms had2; 4; 8; 18; 57; 145; 366; 989di�erent minima, respectively, and on the basis of this observation conjectured that thenumber of minima grew like exp(m2). We are usually interested in global minimizers, butlocal minimizers with low function values are also of interest because they represent themost stable structures. For a discussion of these issues see, for example, Jellinek [26].7



3 Smoothing TransformationsThe global continuation approach to �nding the global minimizer is to transform the func-tion into a smoother function with fewer local minimizers, apply an optimization algorithmto the transformed function, and trace the minimizers back to the original function. This ap-proach is well suited for problems with many local minimizers. As already noted, molecularoptimization problems tend to have a large number of local minimizers.A transformed function is a coarse approximation to the original function, with small andnarrow minimizers being removed, while the overall structure of the function is maintained.This property allows the optimization algorithm to skip less interesting local minimizersand to concentrate on regions with average low function values, where a global minimizeris most likely to be located.The smoothing transform, called the Gaussian transform, depends on a parameter �that controls the degree of smoothing. The original function is obtained if � = 0, whilesmoother functions are obtained as � increases.De�nition 3.1 The Gaussian transform hfi� of a function f : IRn 7! IR ishfi�(x) = 1�n=2�n ZIRn f(y) exp �ky � xk2�2 ! dy: (3:1)The value hfi�(x) is an average of f in a neighborhood of x, with the relative size of thisneighborhood controlled by the parameter �. The size of the neighborhood decreases as �decreases so that when � = 0, the neighborhood is the center x. The Gaussian transformhfi� can also be viewed as the expected value of f with respect to the Gaussian densityfunction ��(y) = 1�n=2�n exp �kyk2�2 ! :For the mathematical properties of the Gaussian transform, readers are referred to Wu [51]and Mor�e and Wu [35]. We also note that other density functions may be considered; ananalysis of these generalized transformations can be found in Mor�e and Wu [36].Motivation for the Gaussian transform can be obtained by showing that the Gaussiantransform of the two-dimensional version of the Griewank functionf(x) = 1 + nXi=1 x2i200!� nYi=1 cos� xipi� (3:2)removes local minimizers. This function was constructed by Griewank [16] to test globaloptimization algorithms on problems with a large number of local minimizers. Figure 3.1shows plots of the Griewank function and the Gaussian transformhfi�(x) = 1 + nXi=1  x2i200 + �2400!� nYi=1 exp ��24i! cos� xipi� (3:3)8



of the Griewank function; justi�cation for (3.3) as the Gaussian transform of the Griewankfunction will be provided shortly.
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Figure 3.1: The Gaussian transform for the Griewank function. The original function(� = 0) is in the top left corner, with � = 1 in the top right corner, � = 2 in the bottomleft corner, and � = 4 in the bottom right corner.Figure 3.1 shows that the Gaussian transform reduces the number of minimizers as �increases, and that the global minimizer of the original function can be found by applying alocal minimization algorithm to the transformed functions and tracing the minimizers backto the original function. Although these plots are suggestive, it is important to keep inmind that the global smoothing approach is not guaranteed to succeed in all cases.The following result of Wu [51] explains why the Gaussian transform reduces the high-frequency components of the function and eliminates local minimizers as � increases.Theorem 3.2 If bf : IRn 7! jC is the Fourier transform of f : IRn 7! IR, then��� dhfi�(!)��� = exp ��14�2kwjj2� ��� bf(!)��� :Theorem 3.2 shows that dhfi�(!), the component of hfi� for frequency !, can be made9



arbitrarily small if �k!k is su�ciently large. In particular, the high-frequency componentsare removed when � is large.Computing the Gaussian transform usually requires the evaluation of n-dimensionalintegrals, but for many functions that arise in practice, it is possible to compute the Gaussiantransform explicitly in terms of one-dimensional transforms. In particular, if the functionis decomposable, that is, if the function f : IRn 7! IR can be written in the formf(x) = mXk=10@ nYj=1 fk;j(xj)1A ;for some set of functions ffk;jg, where fk;j : IR 7! IR, then a simple computation shows thathfi�(x) = mXk=10@ nYj=1 hfk;ji�(xj)1A :Thus, computing hfi� for a decomposable function requires the computation of only one-dimensional transforms hfk;ji�.The Gaussian transform of polynomials and other analytic functions have been deter-mined by Kostrowicki and Piela [27] by using an alternative de�nition of the Gaussiantransform. For a derivation that uses de�nition (3.1), see Mor�e and Wu [35]. These resultsshow, in particular, thatt 7! t2 + 12�2; t 7! cos(�t) exp��14�2�2� ;are the Gaussian transforms of the functions t 7! t2 and t 7! cos(�t), respectively. Since(3.2) is decomposable, the Gaussian transform of the Griewank function is given by (3.3).For distance geometry problems, as well as for many other molecular problems, we areinterested in transforming a class of functions de�ned in terms of the distances betweenpairs of atoms. Given functions pi;j : IRp 7! IR of the distances between atoms i and j, weconsider a general function f(x) = Xi;j2S pi;j(xi � xj); (3:4)where S is some subset of all pairs of atoms, and xi 2 IRp is the position of the i-th atom.We are concerned with three-dimensional problems where p = 3.The following result of Mor�e and Wu [35] shows that computing the Gaussian transformof (3.4) requires only the Gaussian transform of pi;j .Theorem 3.3 If f : IRn 7! IR and h : IRp 7! IR are related byf(x) = h(PTx);for some matrix P 2 IRn�p such that PTP = �2I, thenhfi�(x) = hhi��(PTx):10



Theorem 3.3 reduces the computation of the Gaussian transform of f , which is de�nedon IRn, to the computation of the Gaussian transform of h, which is de�ned on IRp. As anapplication of this result, note thathfi�(x) = Xi;j2Shpi;jip2�(xi � xj)is the Gaussian transform for the function de�ned by (3.4). In this case f is de�ned onIRpn, but pi;j is de�ned on IRp.In some applications we can compute the Gaussian transform hpi;ji� explicitly. Forexample, in the distance geometry problem (2.1), the function pi;j : IRp 7! IR is de�ned bypi;j(x) = �kxk2 � �2i;j�2 : (3:5)This function is decomposable. Moreover, the Gaussian transform is explicitly given byhpi;ji�(x) = pi;j(x) + [3 + (p� 1)]�2kxk2 + 14p(p+ 2)�4� p�2i;j�2: (3:6)For a derivation of this result, see Mor�e and Wu [35].As we have noted in Section 2, most of the potentials used in molecular optimizationproblems are sums of functions of the form f(x) = h(kxk) for some mapping h : IR 7! IR.The following result of Mor�e and Wu [34] shows that the Gaussian transform of f can beexpressed in terms of one-dimensional integrals.Theorem 3.4 If f : IR3 7! IR is of the form f(x) = h(kxk) for some function h : IR 7! IR,then hfi�(x) = 1�p�r Z 10 sh(s) "exp �(r � s)2�2 !� exp �(r + s)2�2 !#ds;where r = kxk. If the mapping h is an even function, thenhfi�(x) = 1�p�r Z +1�1 sh(s) exp �(r � s)2�2 ! ds:Theorem 3.4 can be used to compute the Gaussian transform for molecular optimizationproblems. As an example, note that the potential function (2.7) used for the con�ned ionicsystem has h(r) = r�1, and thus the Gaussian transform ishhi�(x) = 1�p�r Z 10 "exp �(r � s)2�2 !� exp �(r + s)2�2 !#ds= 1p�r "Z r=��1 exp(�t2)dt� Z +1r=� exp(�t2)dt#= 1p�r Z +r=��r=� exp(�t2)dt = 2p�rerf(r=�);11



where erf is the standard error function.Theorem 3.4 reduces the computation of the Gaussian transform to the computationof one-dimensional integrals. We can compute these integrals with standard techniquesfor numerical integration (for example, an adaptive quadrature), but these techniques usu-ally require a large number of function evaluations. An alternative approach is to use aGauss-Hermite approximation, as suggested by Mor�e and Wu [34]. The Gauss-Hermiteapproximation to the one-dimensional transformhfi�(x) = 1p� Z +1�1 f(x+ �s) exp(�s2) dsis obtained by using Gaussian quadratures on the integral. Hence,hfi�;q(x) = 1p� qXi=1wif(x+ �si) (3:7)is the Gauss-Hermite transform, where wi and si are, respectively, the standard weightsand nodes for Gaussian quadratures. The weights and nodes can be found in the tables ofStroud and Secrest [50] or computed with the gauss subroutine in ORTHOPOL [11] if thefunction h is even. For general h we should use a Gaussian quadrature for the semi-in�niteinterval [0;+1), as advocated by Steen, Byrne, and Gelbard [49].The Gauss-Hermite transform (3.7) can be viewed as a discrete transform, with carefullychosen sample points. The computation of the Gauss-Hermite transform requires q functionevaluations, but even for modest values of q we obtain a good approximation to the Gaussiantransform.Theorem 3.5 Let hfi�;q be the transformation of f : IR 7! IR de�ned in (3.7). If f (l) ispiecewise continuous on IR for some l � 2q, there is a constant �l, independent of f , suchthat jhfi�(x)� hfi�;q(x)j � �l�l�(x);where �(x) = �Z +1�1 exp(�s2) ���f (l)(x+ �s)���2 ds�1=2 :Theorem 3.5 is due to Mor�e and Wu [34]. This result shows that (3.7) is a goodapproximation to hfi� provided � < 1, but that the accuracy is likely to deteriorate if� > 1. This is not a serious di�culty because for large � we use (3.7) only to guide analgorithm to a global minimizer, but for small � we work with the original function f .4 Computational ExperimentsGiven the Gaussian transform hfi�, we can use a continuation algorithm to trace a minimizerof hfi�. In this section we provide an overview of computational experiments carried out12



with a simple continuation algorithm that uses a sequence of continuation parameters�0 > �1 > � � � > �p = 0:An optimization algorithm is used to determine a minimizer xk+1 of hfi�k . For �0 we canuse any starting point, but for �k with k > 0, it is reasonable to use xk as the startingpoint. Algorithm gmin provides an outline of our continuation algorithm:Algorithm gminChoose a random vector x0 2 IRm�3.for k = 0; 1; : : : ; pDetermine xk+1 = locmin (hfi�k ; xk).end doThe vector xp+1 is a candidate for the global minimizer. In most cases we use gmin witha set of randomly generated starting points with p > 0. Setting p = 0 in gmin reducesto the use of locmin on the original function f from a random starting point. A standardmultistart method is obtained if gmin is used from a set of randomly generated startingpoints with p = 0.Algorithm gmin depends on the optimization procedure locmin(�; �) and on the choice ofthe continuation parameters �k. We will discuss the choice of optimization procedure later;in our computational experiments the continuation parameters are determined by setting�k = �1� kp��0:More sophisticated choices that make use of the behavior of hfi� along the path are clearlypossible.The molecular optimization problems that we are considering can be modeled in termsof the potential function f(x) = Xi;j2S pi;j(xi � xj); (4:1)where pi;j : IR3 7! IR is the pairwise potential. Algorithm gmin can be used to determinethe global minimizer of f once we determine the Gaussian transform hfi�. We have alreadynoted that Theorem 3.3 implies thathfi�(x) = Xi;j2Shpi;jip2�(xi � xj): (4:2)Hence, we need to determine the Gaussian transform of pi;j .For the distance geometry problem (2.1), the pairwise potential pi;j is de�ned by (3.5).This potential is decomposable, and the Gaussian transform of pi;j is given by (3.6). Hence,13



(4.2) shows that the Gaussian transform for the distance geometry problem (2.1) ishfi�(x) = X(i;j)2S h(kxi � xjk2 � �2i;j)2 + 10�2kxi � xjk2i+ ; (4:3)where  = X(i;j)2S �15�4 � 6�2i;j�2� :For the distance geometry problem (2.2), the pairwise potential ispi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) :In this case, the potential pi;j is not decomposable, but pi;j(x) = hi;j (kxk), wherehi;j(r) = min2(r2 � l2i;jl2i;j ; 0)+max2(r2 � u2i;ju2i;j ; 0) : (4:4)Since hi;j is an even function, Theorem 3.4 shows thathpi;ji�(x) = 1�p� r Z +1�1 shi;j(s) exp �(r� s)2�2 ! ds= 1p� r Z +1�1 (r+ �s)hi;j(r+ �s) exp��s2� ds;where r = kxk, and thus (4.2) yields that the Gaussian transform for the distance geometryproblem (2.2) ishfi�(x) = Xi;j2S 1p� ri;j Z +1�1 (ri;j +p2�s)hi;j(ri;j +p2�s) exp��s2� ds;where ri;j = kxi � xjk. In our computational experiments we use the Gauss-Hermiteapproximationhfi�;q(x) = Xi;j2S 1p� ri;j qXk=1wk(ri;j +p2�sk)hi;j(ri;j +p2�sk); (4:5)where wk and sk are the weights and nodes for the Gaussian quadrature, respectivelyThe functions de�ned by (4.3) and (4.5) are partially separable because hfi� and hfi�;qare the sum of jSj functions that depend on six variables. We note that the number ofops required to compute the function, gradient, or Hessian matrix of hfi� and hfi�;q is oforder jSj because the function and derivatives of each element function can be evaluatedwith a constant number of ops. An important di�erence between (4.3) and (4.5), withhi;j de�ned by (4.4), is that hfi� is in�nitely di�erentiable for any � � 0, while hfi�;q is14



only continuously di�erentiable with a piecewise continuous Hessian matrix r2hfi�;q. Thisdi�erence a�ects the choice of the procedure locmin.In discussing the choice of locmin, we assume that we are dealing with distance geometryproblems, or more generally, with a problem where jSj is bounded by a small multiple of n.In this case hfi� and hfi�;q have sparse Hessian matrices, so it makes sense to take advantageof this structure. Problems where jSj is essentially n2 (for example, cluster problems) arediscussed in the next section.A Newton method that takes into account the sparsity of the problem is probably thebest choice for locmin if the function is de�ned by (4.3) because for these problems the costof function, gradient, and Hessian matrix evaluation is of order n, and the cost per iterationis also of order n. Mor�e and Wu [35] used a trust region version because these algorithmsare able to escape regions of negative curvature that are present in these problems.The choice of procedure locmin has to be done with some care for the function de�nedby (4.5) because hfi�;q is not twice continuously di�erentiable. The Hessian matrix isdiscontinuous at points where the argument of hi;j coincides with either li;j or ui;j . Wecannot expect to avoid these discontinuities, in particular, if li;j or ui;j are close. Mor�e andWu [34] used the variable-metric limited-memory code vmlm in MINPACK-2, which is animplementation of the Liu and Nocedal [33] algorithm.The formulation of the distance geometry problem (2.2) in terms of pi;j(x) = hi;j (kxk)where hi;j is de�ned by (4.4) is typical, but other formulations have been used. Crippenand Havel [9] used hi;j(r) = min2(r2 � l2i;jr2 ; 0)+max2(r2 � u2i;ju2i;j ; 0) ;because they felt that this formulation lead to a problem with fewer minimizers, but Havel[20] advocates the use ofhi;j(r) = min2 (r2 � l2i;jr2 + l2i;j ; 0)+ max2(r2 � u2i;ju2i;j ; 0)because this formulation avoids the barrier created at r = 0. In both formulations pi;j hasa discontinuous second derivative. If we usehi;j(r) = 8>>>>>>>><>>>>>>>>:  l2i;j � r2l2i;j !3 if r < li;j ;0 if r 2 [li;j ; ui;j]; r2 � u2i;ju2i;j !3 if r > ui;j ; (4:6)then pi;j is twice continuously di�erentiable. Moreover, if f is de�ned by (4.1), then f(x) � 0with f(x) = 0 if and only if x solves the distance geometry problem (2.2). From an15



optimization point of view, formulation (4.6) is preferable because it allows the use of aNewton method in locmin.The computational experiments performed by Mor�e and Wu [35, 34] on various distancegeometry problems show that algorithm gmin is able to �nd global minimizers reliably ande�ciently. An interesting aspect of these results is that algorithm gmin with p > 0 requiresless than twice the e�ort (measured in terms of function and gradient evaluations) thanp = 0. At �rst sight this is surprising because gmin with p > 0 requires the solution of pminimization problems. However, for reasonable choices of �0, �nding a minimizer of hfi�with � = �0 is found quickly because hfi� is a smooth, well-behaved function. A minimizerof hfi� with � = �k is also found quickly because xk is a good starting point. On the otherhand, gmin with p = 0 must �nd a local minimizer of f , which is not necessarily smoothor well-behaved, from a starting point that is not guaranteed to be near a minimizer. Weexpect that future work will improve the continuation procedure and further reduce thecost of the continuation procedure.5 Future DirectionsGlobal smoothing and continuation have proved to be e�ective tools for the solution ofmolecular optimization problems with a moderate number of atoms, but improvements inthese techniques will be needed to address problems with a large number of atoms. In thissection we outline possible extensions to the work that we have presented.5.1 Continuation AlgorithmsAlgorithm gmin is a relatively simple algorithm for tracing a curve x(�), where x(�) is aminimizer of hfi�. For problems with a large number of atoms we need to improve gmin bycomputing x(�) more e�ciently. If we de�ne function h : IRn � IR 7! IR byh(x; �) = hfi�(x);and di�erentiate twice with respect to the variable x, we obtain@xxh[x(�); �]x0(�) + @�xh[x(�); �] = 0:This di�erential equation, together with the initial value x(0) = x0, de�nes a trajectoryx(�) under suitable nondegeneracy assumptions. We can use continuation algorithms (see,for example, Allgower and Georg [2]), but these algorithms are designed to trace stationarypoints of h, that is, solutions to @xh[x(�); �] = 0:Our situation is somewhat di�erent because we need to trace minimizers of h. However,in general it is not possible to de�ne a continuous trajectory of minimizers, and thus we16



must be prepared to jump curves. For additional information on issues related to tracingminimizers, see Gudat, Guerra Vazquez, and Jongen [17].5.2 SmoothingThe Gaussian transform is isotropic because if we view the function f in a di�erent coordi-nate system via the function h : IRn 7! IR de�ned byh(x) = f(PTx);then hhi�(Px) = hfi�(x) for any orthogonal matrix P 2 IRn�n. If we wish to emphasizesome directions, then Wu [51] suggested the use of the anisotropic Gaussian transformde�ned by hfi�(x) = 1�n=2j det�j ZIRn f(y) exp��k��1(y � x)k2� dyfor any nonsingular matrix �. For this transformation hhi�(Px) = hfi�(x) if P� is or-thogonal, so that the scaling in � controls the smoothing. Wu [51] showed that if � isa diagonal matrix, then this transformation can be used for decomposable functions andpotential functions in molecular optimization problems.The Gaussian transform can be extended to a general density function � : IRn 7! IR byde�ning the generalized transform byhhfii�(x) = 1�n ZIRn f(y) ��x� y� � dy:The analysis of Mor�e and Wu [36] shows that the smoothing properties of the Gaussiantransform can be extended to this class of transformation. By admitting a larger class oftransformations, we should be able to extend the range of functions that can be transformed.5.3 Optimization AlgorithmsNewton methods are appropriate for distance geometry problems where jSj is of order nbecause for these problems the cost of function, gradient, and Hessian matrix evaluationis of order n, and the cost per iteration is also of order n. A standard Newton method isnot appropriate for large cluster problems where jSj is of order n2 because the storage is oforder n2 and the cost per iteration is of order n3.The limited-memory variable-metric method [33] is suitable for systems with a largenumber of atoms because the memory requirements and cost per iteration is of order n. Un-fortunately, the number of iterations required for convergence on these problems increasesrapidly with the number of atoms. Preliminary experiments with a standard truncatedNewton method showed that this method required a large number of inner conjugate gra-dient iterations. Since each conjugate gradient iteration requires order n operations, it is17



not surprising that the standard truncated Newton method required more computing timethan the limited-memory variable-metric method.We expect that a truncated Newton method with a suitable preconditioner will reducethe computing time required to solve cluster problems. Schlick and Fogelson [45, 46] devel-oped such an algorithm for molecular dynamics simulation and structure re�nement, witha preconditioner constructed from an approximate Hessian matrix. Similar ideas shouldapply to cluster problems.5.4 Function EvaluationsWe have already noted that the number of ops required to compute the function andderivatives in a distance geometry problem is of order jSj. In distance geometry problemsjSj is of order n, and thus we can evaluate these functions in order n. In cluster problems,however, all pairwise potentials are included, and then the cost of evaluating the function,gradient, and Hessian matrix is of order n2. This represents a major hurdle to the solutionof large cluster problems, since in a typical problem we need multiple runs and hundreds offunction evaluations per run to determine the global minimizer.We can reduce the cost of the function evaluation by computing an approximation tothe function. The fast multipole method (Greengard and Rokhlin [15], and Greengard [14]),in particular, has attracted considerable attention because the running time is proportionalto n. However, implementation of the fast multipole method requires considerable careand analysis, so only sophisticated implementations are able to achieve the order n runningtime.Board and coworkers [32, 31, 40] have developed several sequential and parallel pack-ages for computing electrostatic force �elds and potentials using fast multipole algorithms.These implementations have been done with considerable care but are geared to moleculardynamics simulations where it is reasonable to assume a uniform distribution of atoms. Theperformance of these algorithms degrades considerably in an optimization setting becausethe distribution of the atoms is not uniform, unless we are in the �nal stages of convergence.In our opinion the only currently e�ective method for reducing the computing time of thefunction evaluation in large cluster problems is to evaluate the function in parallel.5.5 High-Performance ArchitecturesMacromolecular systems usually have 1,000 to 10,000 atoms, and the ionic systems of phys-ical interest contain up to 200,000 ions. Determining the global solutions for these problemswill not be feasible without the use of parallel high-performance architectures, even withthe most e�cient optimization algorithm.The global continuation algorithm can be parallelized easily at a coarse level, with eachprocessor assigned the computation of a solution trajectory. This strategy requires little18
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