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Jorge J. Moré and Zhijun Wu

Abstract

We discuss the formulation of optimization problems that arise in the study of
distance geometry, 1onic systems, and molecular clusters. We show that continuation
techniques based on global smoothing are applicable to these molecular optimization
problems, and we outline the issues that must be resolved in the solution of large-scale
molecular optimization problems.

1 Introduction

We are concerned, in particular, with molecular optimization problems that arise in the
study of protein structures in biophysical chemistry. If we adopt the hypothesis that the
native protein structure corresponds to the global minimum of the protein energy [43, 48],
then the protein structure is determined by minimizing a potential energy function in con-
formational space. If the protein structure is determined from bounds on distances between
pairs of atoms and other geometric constraints on the protein, then distance geometry
[9, 20] techniques are required. Both approaches require the solution of global optimization
problems.

The problem of finding the least energy structure for a given molecular system arises
not only in biological studies, but also in the study of large, confined ionic systems in
plasma physics [19, 39, 44]. Configurations of systems with up to 200,000 ions are of
special interest because phase transitions occur for systems of this size. Such configurations
require determining the global minimum of a function with up to 600,000 variables — a
computationally intensive problem, even for local minimization, because the problem is
dense and each function evaluation requires order n? floating-point operations (flops).

Molecular optimization problems also arise in the study of clusters; for an introduction
to the problems in this area, see the books edited by Reynolds [41] and Haberland [18].
Much of the interest in clusters is due to unexpected theoretical and practical results, such
as the discovery of the stable carbon cluster Cgg. Theoretical properties of clusters usually
are determined by molecular dynamics simulation or by potential energy minimization.
Small argon clusters have received considerable attention in the past (see, for example, the
classical studies of Hoare [23] and Northby [37]), since they have simple potentials and

structure, but current interest centers on clusters with more involved potentials.

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38, and by the Argonne Director’s Individual Investigator Program.



The molecular optimization problems that we have mentioned are difficult because the
presence of a large number of local minimizers, even for systems with a small number of
atoms, creates numerous regions of attraction for local searches. We have been using global
smoothing and continuation techniques for these problems. In this approach the Gaussian
transform is used to map the objective function into a smoother function with fewer local
minimizers, and an optimization procedure is applied to the transformed function, tracing
the minimizers as the function is gradually changed back to the original function. A trans-
formed function is a coarse approximation to the original function, with small and narrow
minimizers being removed while the overall structure is maintained. This property allows
the optimization procedure to skip less interesting local minimizers and to concentrate on
regions with average low function values, where a global minimizer is most likely to be
located.

Global smoothing was first proposed in the diffusion equation method for protein confor-
mation by Scheraga and coworkers [38, 27, 28, 29, 43]. A similar approach was used in the
packet annealing algorithm of Shalloway [48, 47] and in the algorithms of Coleman, Shal-
loway, and Wu [7, 8] for molecular conformation problems. Recent developments of global
smoothing and continuation techniques from a mathematical and computational point of
view can be found in Wu [51] and Moré and Wu [35, 34], while Moré and Wu [36] have
extended the smoothing properties of the Gaussian transform to transformations with other
density functions.

While global smoothing is a promising approach for the solution of molecular optimiza-
tion problems, many theoretical and computational issues need additional attention. In
this paper we review current work on distance geometry problems, and indicate how these
results can be extended to ionic systems and molecular clusters.

In Section 2 we discuss the formulation of molecular optimization problems that arise
in distance geometry calculations, ionic systems, and molecular clusters. Section 3 is a
review of the properties of the Gaussian transform. In particular, we outline the techniques
used to compute the Gaussian transform for molecular optimization problems. In Section 4
we discuss computational experiments carried out with a simple continuation algorithm,
and we show how problem formulation affects the choice of optimization procedure in the
continuation algorithm. We conclude the paper in Section 5 with a critical review of issues
that must be addressed in order to solve large-scale molecular optimization problems on
high-performance architectures. We address, in particular, the evaluation of the function

by fast multipole methods.

2 Molecular Optimization Problems

A typical molecular optimization problem is to determine a structure with minimal potential

energy. In some cases, the position of the atoms in the structure must also satisfy certain



physical constraints. In this section we review three molecular optimization problems and

related work.

2.1 Distance Geometry

Distance geometry problems arise in the interpretation of nuclear magnetic resonance (NMR)
data and in the determination of protein structures. For a general review of the distance
geometry problem and its relationship to macromolecular modeling, see Crippen and Havel
[9], Havel [20], Kuntz, Thomason, and Oshiro [30], and Briinger and Nilges [4].

A distance geometry problem is specified by a subset § of all atom pairs and by the
distances §; ; between atoms 7 and j for (i,7) € S. A solution to the distance geometry

problem is a set of positions #1,...,z,, in R> such that
i = wjll = 6:5,  (5,4) €. (2.1)

Usually, § is sparse; in other words, only a small subset of distances is known.

In practice, lower and upper bounds on the distances are specified instead of their exact
values. The distance geometry problem with lower and upper bounds is to find positions
T1,..., Ly, such that

lig <llwi— gl Swiy,  (5,4) €S, (2.2)

where [; ; and u; ; are lower and upper bounds on the distance constraints, respectively. An
important case of this problem is to obtain an e-optimal solution to the distance geometry

problem, that is, positions x1,...,x, such that
[l =2l = 65| <2, GLi)es (2.3)

for some ¢ > 0. An e-optimal solution is useful when the exact solution to the problem (2.1)
does not exist because of small errors in the data. This situation can happen, for example,
when the triangle inequality

0i; < bip+ Op

is violated for atoms {1, j, k} because of possible inconsistencies in the experimental data.

The distance geometry problem (2.1) is computationally intractable because the re-
striction of the distance geometry problem to a one-dimensional space is equivalent to the
set partition problem, which is known to be NP-complete [10]. Saxe [42] shows that k-
dimensional distance geometry problems are strongly NP-hard for all £ > 1. The following
result of Moré and Wu [34] shows that obtaining an approximate solution to the distance

geometry problem is also NP-hard.

Theorem 2.1 Determining an c-optimal solution to the distance geometry problem in IR
15 NP-hard.



The distance geometry problems that we have described can be formulated as global
optimization problems for which the constraints are satisfied at a global minimizer of the

problem. A simple formulation is in terms of finding the global minimum of the function

f@) =" pijlzi—aj), (2.4)
ijeS

where the pairwise potential p; ; : R™ — R is defined for problem (2.1) by

piste) = (el —e2,)" (2.5)

while Crippen and Havel [9] suggested that for problem (2.2)

€T 2—124 T 2 —u24
pi;(z) = min? {7" le Z’],O} + max? {7" | 5 Z’],O} ) (2.6)
]

uy
Clearly, @ = {zy,..., 2} solves the distance geometry problem if and only if = is a global
minimizer of f and f(z)=0.

Special optimization algorithms have been developed for solving the distance geometry
problem (2.1). For example, Hendrickson [21, 22] used a graph-theoretic viewpoint to
develop algorithms that test the uniqueness and rigidity of the distance graph. These
algorithms can be used to reduce the problem into smaller, easier subproblems. Glunt,
Hayden, and Raydan [12, 13] have proposed a special gradient method for determining a
local minimizer of the problem defined by (2.4) with

pi(x) = (=] = 6:,5)*

Al-Homidan and Fletcher [1] have done related work on a hybrid algorithm that combines
an alternating projection method with a quasi-Newton method.

If all pairwise distances are known and a solution exists, then the solution of the distance
geometry problem (2.1) can be determined (Blumenthal [3, Section 43], Crippen and Havel
[9, Section 6.3]) by computing the largest three eigenvalues and eigenvectors of the rank-3
positive semidefinite matrix A € R™*™ defined by

aj= 5 (6 +62-8%),  ig=1,...m,

where 6; = ||z; — ||, and ¢ € R™ is a convex combination of z1,...,,,. Note that if z¢ is
a convex combination of z1,...,2,,, then ¢; can be expressed in terms of ¢; ;. In practice,
xg is the centroid of zq,...,2,,. We can determine the coordinates z1,...,2,, by noting
that the identity

2w = x0)! (2j = x0) = [loi = w0l + llzj = woll* — flz; — ;)



implies that A = BT B is a positive semidefinite rank-3 matrix with
B=(z1—20,...,%m — %0) .

Hence, the vectors z1,..., 2, can be determined by computing the largest three eigenval-
ues and eigenvectors of the rank-3 matrix A. Alternatively, we could use the Cholesky
decomposition with diagonal pivoting.

In practice, only a small subset of the distances is known, and there are experimental
errors in the data, so the above procedure cannot be used. However, an extension of this
procedure is employed by the embed algorithm (see Crippen and Havel [9], and Havel [20])
in practical distance geometry calculations. In the first phase of the embed algorithm, the

sparse set of distance constraints is extended by using the relationships
wig = min (g, wip +ukg), o lig=max (b, by — ukg, Lk — k).

Given a full set of bounds, distances é; ; € [; ;, u; ;] are chosen, and an attempt is made to
compute coordinates 1, ..., 2, as in the above procedure. This attempt usually fails, but
it can be used to generate a rank-3 approximation to A, which leads to an approximation to
the solution of problem (2.1). This approximation can be refined by minimizing a function
of the form (2.4,2.5).

The embed algorithm, as described above, may require many trial choices of ¢;; in
[l; ;,u; ;] before a solution to problem (2.2) is found. Current implementations of the embed
algorithm use a local minimizer of the problem defined by (2.4) and (2.5) as a starting
point for a simulated annealing procedure. In Section 4 we will outline the proposal of
Moré and Wu [34] for finding a solution of the distance geometry problem (2.2) by directly
determining a global minimizer of the function defined by (2.4) and (2.6).

2.2 Ionic Systems

The potential energy for a confined ionic system of m ions located at z1,...,2,, in R® can

be modeled, for example, by a function of the form
fla) =Y pigle =) + ) [l (2.7)
i#j i=1
where p; ; : IR® — R is defined by
pijle) = o(lzl),  o(r)=r7" (2.8)

Hasse and Schiffer [19], Rafac, Schiffer, Hangst, Dubin, and Wales [39], and Schiffer [44]
studied configurations of confined ionic systems via molecular dynamics simulation. The

results for small systems showed that ionic systems have a layered shell structures, with the



Figure 2.1: Confined ionic system with 60 ions (left) and 61 atoms (right).

number of shells increasing as the number of atoms in the system increases. The distribution
of the ions over the shells also varies with different systems. For example, Figure 2.1 shows
that the system of 60 ions has two shells with 12 ions in the inner shell and 48 ions in the
outer shell, while the system of 61 ions has three shells with a single ion (at the center of
the system) as the innermost shell.

Experiments indicate that as the number of atoms increases, the boundaries between
the shells become blurred, and eventually the system achieves a crystal form. Therefore,
there must be a phase transition from a system of layered shells to a body-centered cubic
lattice, a standard crystal structure. This phase transition is of special physical interest, but
in order to locate the transition, configurations for very large systems (say 200,000 ions)
must be determined. This calculation would be prohibitively expensive for a molecular
dynamics simulation, but may be possible by minimizing the potential energy function. We
have found in our preliminary studies that configurations for most systems with up to 100
ions can be determined by a single local minimization. Of course, for large systems, global

optimization algorithms are required to obtain the most stable configurations.

2.3 Molecular Clusters

A cluster is a group of identical molecules with specific geometrical and chemical proper-
ties. Clusters of chemical importance include, for example, argon and carbon clusters. A
fundamental problem in cluster science is to determine the geometrical structure of clusters

in their lowest energy states. Related problems include structure changes from clusters to



bulk matters and low energy paths between stable states. For a general review of these
topics, see Haberland [18].

Clusters of argon molecules were first studied by Hoare and coworkers [25, 24, 23].
Northby [37] obtained the structures for clusters with up to 147 molecules using a lattice
search algorithm, which later was improved and used for even larger clusters by Xue [52].
Results for small argon clusters have also been obtained by general-purpose algorithms such
as the diffusion equation method [28], the packet annealing algorithm [48], the stochastic
search method [6, 5], and the effective energy simulated annealing algorithm [7].

Argon clusters have been heavily studied because the potentials and structure of these
clusters are relatively simple. Argon clusters usually are modeled by the Lennard-Jones
potential

fla) =) pijle: — ),
i#j
where p; ; : IR® — R is defined by
pig(@)=o(llzl), ()= =270,
or by the Morse potential

o(r) = (1 —expa(l = r))* -1,
for some positive constant «. For example, Hoare [23] used o = 3.

Potentials for other clusters can be more involved. For example, in the study of metal

clusters [41, 18, 26] it is common to use potentials of the form

. 1/2
@)= "pijlzi—wi) =Y (Z gij(zi — %‘)) :
i#i

it =1
where p;; : R® — R and ¢; ; : R? — R are of the form v(||z||) with

v(r) = aexp[—=5(r —1)],
for positive constants @ and §. Note that these potentials are functions of the pairwise
distance between atoms, and that they decay rapidly as r approaches infinity. The potential
for ionic systems, on the other hand, decays slowly as r approaches infinity.
Cluster problems are difficult for most global optimization strategies because they tend
to have a large number of local minimizers that act as points of attraction for any local

minimizer. For argon clusters, Hoare [23] found that systems with 6 < m < 13 atoms had
2, 4, 8, 18, 57, 145, 366, 989

different minima, respectively, and on the basis of this observation conjectured that the
number of minima grew like exp(m?). We are usually interested in global minimizers, but
local minimizers with low function values are also of interest because they represent the

most stable structures. For a discussion of these issues see, for example, Jellinek [26].



3 Smoothing Transformations

The global continuation approach to finding the global minimizer is to transform the func-
tion into a smoother function with fewer local minimizers, apply an optimization algorithm
to the transformed function, and trace the minimizers back to the original function. This ap-
proach is well suited for problems with many local minimizers. As already noted, molecular
optimization problems tend to have a large number of local minimizers.

A transformed function is a coarse approximation to the original function, with small and
narrow minimizers being removed, while the overall structure of the function is maintained.
This property allows the optimization algorithm to skip less interesting local minimizers
and to concentrate on regions with average low function values, where a global minimizer
is most likely to be located.

The smoothing transform, called the Gaussian transform, depends on a parameter A
that controls the degree of smoothing. The original function is obtained if A = 0, while

smoother functions are obtained as A increases.

Definition 3.1 The Gaussian transform (f)\ of a function f:R" — R is

(@) = ﬁ/l%" fly)exp (—w) dy. (3.1)

The value (f)a(z)is an average of f in a neighborhood of z, with the relative size of this
neighborhood controlled by the parameter A. The size of the neighborhood decreases as A
decreases so that when A = 0, the neighborhood is the center 2. The Gaussian transform

(f)x can also be viewed as the expected value of f with respect to the Gaussian density

P S O 1

For the mathematical properties of the Gaussian transform, readers are referred to Wu [51]

function

and Moré and Wu [35]. We also note that other density functions may be considered; an
analysis of these generalized transformations can be found in Moré and Wu [36].

Motivation for the Gaussian transform can be obtained by showing that the Gaussian
transform of the two-dimensional version of the Griewank function

fle)=1+ ZZ:; (;0220) - Z':f[lcos (%) (3.2)

removes local minimizers. This function was constructed by Griewank [16] to test global

optimization algorithms on problems with a large number of local minimizers. Figure 3.1

shows plots of the Griewank function and the Gaussian transform

(f)a(z) =1 —I—é (2%0 + 4/\%) — f[lexp (—%) cos (%) (3.3)




of the Griewank function; justification for (3.3) as the Gaussian transform of the Griewank

function will be provided shortly.
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Figure 3.1: The Gaussian transform for the Griewank function. The original function

(A = 0) is in the top left corner, with A = 1 in the top right corner, A = 2 in the bottom
left corner, and A = 4 in the bottom right corner.

Figure 3.1 shows that the Gaussian transform reduces the number of minimizers as A
increases, and that the global minimizer of the original function can be found by applying a
local minimization algorithm to the transformed functions and tracing the minimizers back
to the original function. Although these plots are suggestive, it is important to keep in
mind that the global smoothing approach is not guaranteed to succeed in all cases.

The following result of Wu [51] explains why the Gaussian transform reduces the high-

frequency components of the function and eliminates local minimizers as A increases.
Theorem 3.2 Iff: R”™ —C is the Fourier transform of f : R"™ — R, then
[((M(@)] = exp (=22%w]?) |F(w)].

Theorem 3.2 shows that <?>\A(w), the component of (f)) for frequency w, can be made



arbitrarily small if Al|w|| is sufficiently large. In particular, the high-frequency components
are removed when A is large.

Computing the Gaussian transform usually requires the evaluation of n-dimensional
integrals, but for many functions that arise in practice, it is possible to compute the Gaussian
transform explicitly in terms of one-dimensional transforms. In particular, if the function

is decomposable, that is, if the function f:R"™ — R can be written in the form

f(x):i ﬁfk,j(%‘) ,

k=1 \yj=1
for some set of functions { fi ;}, where f ; : R — R, then a simple computation shows that

m n

(M) =7 | T fridale)

k=1 \j=1
Thus, computing (f)\ for a decomposable function requires the computation of only one-
dimensional transforms (f ;).
The Gaussian transform of polynomials and other analytic functions have been deter-
mined by Kostrowicki and Piela [27] by using an alternative definition of the Gaussian
transform. For a derivation that uses definition (3.1), see Moré and Wu [35]. These results

show, in particular, that
t— 12+ %/\2, t — cos(at)exp (—%QQV) ,

are the Gaussian transforms of the functions ¢ — t* and ¢ — cos(at), respectively. Since
(3.2) is decomposable, the Gaussian transform of the Griewank function is given by (3.3).
For distance geometry problems, as well as for many other molecular problems, we are
interested in transforming a class of functions defined in terms of the distances between
pairs of atoms. Given functions p;; : R” — R of the distances between atoms 7 and j, we
consider a general function
fla)= ) pijlei— ), (3.4)
ijeS
where § is some subset of all pairs of atoms, and z; € RP is the position of the i-th atom.
We are concerned with three-dimensional problems where p = 3.
The following result of Moré and Wu [35] shows that computing the Gaussian transform

of (3.4) requires only the Gaussian transform of p; ;.

Theorem 3.3 If f: R" — R and h : RP — R are related by
fz) = h(PTa),

for some matriz P € R"P such that PT P = %I, then

(N)a() = (B)or(PT2).

10



Theorem 3.3 reduces the computation of the Gaussian transform of f, which is defined
on IR", to the computation of the Gaussian transform of h, which is defined on R?. As an

application of this result, note that

(M) =D (pig) ez — )
ijeS
is the Gaussian transform for the function defined by (3.4). In this case f is defined on
RP", but p; ; is defined on RP.
In some applications we can compute the Gaussian transform (p; ;)» explicitly. For

example, in the distance geometry problem (2.1), the function p; ; : R? — IR is defined by

2
pii@) = (ll2l* = 82,) " (3.5)
This function is decomposable. Moreover, the Gaussian transform is explicitly given by
(pigha(e) = pig(a) + 3+ (p = DIVl + Fp(p + 2)A" = psf A%, (3.6)

For a derivation of this result, see Moré and Wu [35].

As we have noted in Section 2, most of the potentials used in molecular optimization
problems are sums of functions of the form f(z) = h(||z||) for some mapping h : R — R.
The following result of Moré and Wu [34] shows that the Gaussian transform of f can be

expressed in terms of one-dimensional integrals.

Theorem 3.4 If f : R® — R is of the form f(x) = h(||z||) for some function h : R — IR,

then
o) = 5 [ s [eXp (_““ = ) - (_(r o )] "

where r = ||z||. If the mapping h is an even function, then

(foa(z) = ,\;\/ﬂ /_J:o sh(s)exp (—(T ;28)2) ds.

Theorem 3.4 can be used to compute the Gaussian transform for molecular optimization

problems. As an example, note that the potential function (2.7) used for the confined ionic

system has h(r) = 7!, and thus the Gaussian transform is

i) = = [exp (—(T ;28)2) ~ exp (—(T ;8)2)] ds

! " (—t%)dt " (—t%)dt
= exp(— — exp(—
T /_oo /T/A
1 +r/A

2
_ 2 —
-/ /—T/A exp(=t7)dt T

erf(r/A),

11



where erf is the standard error function.

Theorem 3.4 reduces the computation of the Gaussian transform to the computation
of one-dimensional integrals. We can compute these integrals with standard techniques
for numerical integration (for example, an adaptive quadrature), but these techniques usu-
ally require a large number of function evaluations. An alternative approach is to use a
Gauss-Hermite approximation, as suggested by Moré and Wu [34]. The Gauss-Hermite

approximation to the one-dimensional transform

Uhie)= = [ ot s) exp(-s7)ds

is obtained by using Gaussian quadratures on the integral. Hence,

() = %Zwﬂ s) 57)

is the Gauss-Hermite transform, where w; and s; are, respectively, the standard weights
and nodes for Gaussian quadratures. The weights and nodes can be found in the tables of
Stroud and Secrest [50] or computed with the gauss subroutine in ORTHOPOL [11] if the
function h is even. For general h we should use a Gaussian quadrature for the semi-infinite
interval [0, 400), as advocated by Steen, Byrne, and Gelbard [49].

The Gauss-Hermite transform (3.7) can be viewed as a discrete transform, with carefully
chosen sample points. The computation of the Gauss-Hermite transform requires ¢ function
evaluations, but even for modest values of ¢ we obtain a good approximation to the Gaussian

transform.

Theorem 3.5 Let (f)\, be the transformation of f : R — R defined in (3.7). If O s
piecewise continuous on IR for some | < 2q, there is a constant u;, independent of f, such
that

(@) = (Fhag(o)] < uNa(a),

where

o(z)= {/+OO exp(—s%) rf(l)(x + /\5)‘2 d5}1/2 .

— 00

Theorem 3.5 is due to Moré and Wu [34]. This result shows that (3.7) is a good
approximation to (f)y provided A < 1, but that the accuracy is likely to deteriorate if
A > 1. This is not a serious difficulty because for large A we use (3.7) only to guide an

algorithm to a global minimizer, but for small A we work with the original function f.

4 Computational Experiments

Given the Gaussian transform (f)\, we can use a continuation algorithm to trace a minimizer

of (f)x. In this section we provide an overview of computational experiments carried out

12



with a simple continuation algorithm that uses a sequence of continuation parameters
/\0>/\1>"'>Ap20.

An optimization algorithm is used to determine a minimizer 231y of (f)),. For Ay we can
use any starting point, but for Ay with £ > 0, it is reasonable to use z; as the starting

point. Algorithm gmin provides an outline of our continuation algorithm:

Algorithm gmin
Choose a random vector zg € R *3.
for k=0,1,...,p
Determine z;11 = loecmin ((f),, *k).
end do

The vector x,47 is a candidate for the global minimizer. In most cases we use gmin with
a set of randomly generated starting points with p > 0. Setting p = 0 in gmin reduces
to the use of locmin on the original function f from a random starting point. A standard
multistart method is obtained if gmin is used from a set of randomly generated starting
points with p = 0.

Algorithm gmin depends on the optimization procedure locmin(-,-) and on the choice of
the continuation parameters Ax. We will discuss the choice of optimization procedure later;

in our computational experiments the continuation parameters are determined by setting

we= (1-2) .
D

More sophisticated choices that make use of the behavior of {f), along the path are clearly
possible.

The molecular optimization problems that we are considering can be modeled in terms
of the potential function

fla)= ) pijlei— ), (4.1)
ijeS

where p; ; : IR?> — IR is the pairwise potential. Algorithm gmin can be used to determine
the global minimizer of f once we determine the Gaussian transform (f)y. We have already
noted that Theorem 3.3 implies that

(M) =D (pig)yanlei — z;). (4.2)
i,jeS

Hence, we need to determine the Gaussian transform of p; ;.

For the distance geometry problem (2.1), the pairwise potential p; ; is defined by (3.5).

This potential is decomposable, and the Gaussian transform of p; ; is given by (3.6). Hence,

13



4.2) shows that the Gaussian transform for the distance geometry problem (2.1) is
h hat the G i it for the di bl i
(@)= >0 [(lee = gl = 82,07 + 10A|2: — 22| + 7, (4.3)
(i,)eS

where

y= Y (15A"-652,0%).
(i.4)€S

For the distance geometry problem (2.2), the pairwise potential is
zl|?2 =12, zl|? — u? .
pij(z) = min? {7" | 5 YL 0% 4 max? 7" | 5 SN
li g
In this case, the potential p; ; is not decomposable, but p; ;(2) = h; ; (||z||), where

r2 =%, r?Z _u?.
h@j(T) = mjn2{ . 27]70} + max> {%70} . (4‘4)

0 Ui

Since h; ; is an even function, Theorem 3.4 shows that

<p2'7]‘>/\($) = ﬁ/j:o Shi7]‘(8)exp (_(T ;28) ) ds

1 Foo 9
= N / (74 As)h; ;(r + As)exp (—5 ) ds,
where r = ||z||, and thus (4.2) yields that the Gaussian transform for the distance geometry

problem (2.2) is

(Foa(z) Z ! /+Oo(7‘i7]‘ + \/ix\s)hi7]‘(ri7]‘ + \/5/\5) exp (—52) ds,

T )=
z’,jeS\/_ b ST

where r;; = |Jz; — 2;||. In our computational experiments we use the Gauss-Hermite

approximation

> ! Zq: (i + V2 sp)hi (i + V2Xsk), (4.5)

(fIrglz) = s VT k=1

where wy, and s are the weights and nodes for the Gaussian quadrature, respectively

The functions defined by (4.3) and (4.5) are partially separable because (f)\ and (f)\,
are the sum of |S| functions that depend on six variables. We note that the number of
flops required to compute the function, gradient, or Hessian matrix of (f)y and (f)\ 4 is of
order |S| because the function and derivatives of each element function can be evaluated
with a constant number of flops. An important difference between (4.3) and (4.5), with
h; ; defined by (4.4), is that (f)\ is infinitely differentiable for any A > 0, while (f)\, is
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only continuously differentiable with a piecewise continuous Hessian matrix V2(f), ,. This
difference affects the choice of the procedure locmin.

In discussing the choice of locmin, we assume that we are dealing with distance geometry
problems, or more generally, with a problem where |S| is bounded by a small multiple of n.
In this case (f), and (f)\ 4 have sparse Hessian matrices, so it makes sense to take advantage
of this structure. Problems where |S| is essentially n? (for example, cluster problems) are
discussed in the next section.

A Newton method that takes into account the sparsity of the problem is probably the
best choice for locmin if the function is defined by (4.3) because for these problems the cost
of function, gradient, and Hessian matrix evaluation is of order n, and the cost per iteration
is also of order n. Moré and Wu [35] used a trust region version because these algorithms
are able to escape regions of negative curvature that are present in these problems.

The choice of procedure locmin has to be done with some care for the function defined
by (4.5) because (f)r, is not twice continuously differentiable. The Hessian matrix is
discontinuous at points where the argument of h;; coincides with either [; ; or w;;. We
cannot expect to avoid these discontinuities, in particular, if /; ; or u; ; are close. Moré and
Wu [34] used the variable-metric limited-memory code vmlm in MINPACK-2, which is an
implementation of the Liu and Nocedal [33] algorithm.

The formulation of the distance geometry problem (2.2) in terms of p; ;(2) = h; ; (||z]])
where h; ; is defined by (4.4) is typical, but other formulations have been used. Crippen
and Havel [9] used

r?—[?. r? —u?,
2 0 2 i
hi ;(r) = min {T,O + max TJ,O ,
because they felt that this formulation lead to a problem with fewer minimizers, but Havel
[20] advocates the use of

2 _ g2 2 2
re =17, e —ul.
hi ;(r) = min? {722’],0} + max? {72 Z’],O}
r2 41 ug
because this formulation avoids the barrier created at » = 0. In both formulations p; ; has

a discontinuous second derivative. If we use

2. —r? 3

sJ M

(7[24 if r< li,jv
27]

hij(r) = 0 it rell;;,ul, (4.6)
2 —u?. 3
(fl’]) if r> Ui i,
Uij

then p; ; is twice continuously differentiable. Moreover, if f is defined by (4.1), then f(z) > 0
with f(z) = 0 if and only if = solves the distance geometry problem (2.2). From an
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optimization point of view, formulation (4.6) is preferable because it allows the use of a
Newton method in locmin.

The computational experiments performed by Moré and Wu [35, 34] on various distance
geometry problems show that algorithm gmin is able to find global minimizers reliably and
efficiently. An interesting aspect of these results is that algorithm gmin with p > 0 requires
less than twice the effort (measured in terms of function and gradient evaluations) than
p = 0. At first sight this is surprising because gmin with p > 0 requires the solution of p
minimization problems. However, for reasonable choices of Ag, finding a minimizer of (f)\
with A = Ag is found quickly because (f)y is a smooth, well-behaved function. A minimizer
of (f)» with A = Ay is also found quickly because zj is a good starting point. On the other
hand, gmin with p = 0 must find a local minimizer of f, which is not necessarily smooth
or well-behaved, from a starting point that is not guaranteed to be near a minimizer. We
expect that future work will improve the continuation procedure and further reduce the

cost of the continuation procedure.

5 Future Directions

Global smoothing and continuation have proved to be effective tools for the solution of
molecular optimization problems with a moderate number of atoms, but improvements in
these techniques will be needed to address problems with a large number of atoms. In this

section we outline possible extensions to the work that we have presented.

5.1 Continuation Algorithms

Algorithm gmin is a relatively simple algorithm for tracing a curve z(\), where x(A) is a
minimizer of (f)\. For problems with a large number of atoms we need to improve gmin by

computing z(A) more efficiently. If we define function A : R" x R — R by
b, ) = (Ph(e),
and differentiate twice with respect to the variable z, we obtain
Oprh[z(N), \]2'(N) + rph[z(N), A] = 0.

This differential equation, together with the initial value z(0) = z¢, defines a trajectory
z(A) under suitable nondegeneracy assumptions. We can use continuation algorithms (see,
for example, Allgower and Georg [2]), but these algorithms are designed to trace stationary

points of h, that is, solutions to

Dphlz(M), ] = 0.

Our situation is somewhat different because we need to trace minimizers of h. However,

in general it is not possible to define a continuous trajectory of minimizers, and thus we
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must be prepared to jump curves. For additional information on issues related to tracing

minimizers, see Gudat, Guerra Vazquez, and Jongen [17].

5.2 Smoothing

The Gaussian transform is isotropic because if we view the function f in a different coordi-

nate system via the function h: R"™ — IR defined by
h(z) = f(PTe),

then (h)\(Px) = (f)a(z) for any orthogonal matrix P € R™*". If we wish to emphasize
some directions, then Wu [51] suggested the use of the anisotropic Gaussian transform

defined by .
() = —rgar ] o S0 (SIA (0= 2)I) dy

for any nonsingular matrix A. For this transformation (h)a(Pz) = (f)a(z) if PA is or-
thogonal, so that the scaling in A controls the smoothing. Wu [51] showed that if A is
a diagonal matrix, then this transformation can be used for decomposable functions and
potential functions in molecular optimization problems.

The Gaussian transform can be extended to a general density function p : R™ — R by

defining the generalized transform by

(=57 [ swe (552) v

The analysis of Moré and Wu [36] shows that the smoothing properties of the Gaussian
transform can be extended to this class of transformation. By admitting a larger class of

transformations, we should be able to extend the range of functions that can be transformed.

5.3 Optimization Algorithms

Newton methods are appropriate for distance geometry problems where |S| is of order n
because for these problems the cost of function, gradient, and Hessian matrix evaluation
is of order n, and the cost per iteration is also of order n. A standard Newton method is
not appropriate for large cluster problems where |S| is of order n? because the storage is of
order n? and the cost per iteration is of order n?.

The limited-memory variable-metric method [33] is suitable for systems with a large
number of atoms because the memory requirements and cost per iteration is of order n. Un-
fortunately, the number of iterations required for convergence on these problems increases
rapidly with the number of atoms. Preliminary experiments with a standard truncated
Newton method showed that this method required a large number of inner conjugate gra-

dient iterations. Since each conjugate gradient iteration requires order n operations, it is
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not surprising that the standard truncated Newton method required more computing time
than the limited-memory variable-metric method.

We expect that a truncated Newton method with a suitable preconditioner will reduce
the computing time required to solve cluster problems. Schlick and Fogelson [45, 46] devel-
oped such an algorithm for molecular dynamics simulation and structure refinement, with
a preconditioner constructed from an approximate Hessian matrix. Similar ideas should

apply to cluster problems.

5.4 Function Evaluations

We have already noted that the number of flops required to compute the function and
derivatives in a distance geometry problem is of order |S|. In distance geometry problems
|S| is of order n, and thus we can evaluate these functions in order n. In cluster problems,
however, all pairwise potentials are included, and then the cost of evaluating the function,
gradient, and Hessian matrix is of order n%. This represents a major hurdle to the solution
of large cluster problems, since in a typical problem we need multiple runs and hundreds of
function evaluations per run to determine the global minimizer.

We can reduce the cost of the function evaluation by computing an approximation to
the function. The fast multipole method (Greengard and Rokhlin [15], and Greengard [14]),
in particular, has attracted considerable attention because the running time is proportional
to n. However, implementation of the fast multipole method requires considerable care
and analysis, so only sophisticated implementations are able to achieve the order n running
time.

Board and coworkers [32, 31, 40] have developed several sequential and parallel pack-
ages for computing electrostatic force fields and potentials using fast multipole algorithms.
These implementations have been done with considerable care but are geared to molecular
dynamics simulations where it is reasonable to assume a uniform distribution of atoms. The
performance of these algorithms degrades considerably in an optimization setting because
the distribution of the atoms is not uniform, unless we are in the final stages of convergence.
In our opinion the only currently effective method for reducing the computing time of the

function evaluation in large cluster problems is to evaluate the function in parallel.

5.5 High-Performance Architectures

Macromolecular systems usually have 1,000 to 10,000 atoms, and the ionic systems of phys-
ical interest contain up to 200,000 ions. Determining the global solutions for these problems
will not be feasible without the use of parallel high-performance architectures, even with
the most efficient optimization algorithm.

The global continuation algorithm can be parallelized easily at a coarse level, with each

processor assigned the computation of a solution trajectory. This strategy requires little
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communication among processors and is suitable for massively parallel architectures, such
as the IBM SP. Indeed, we have implemented, for example, the continuation algorithms for
distance geometry problems on the IBM SP at Argonne. Although we have not yet tested
the algorithms with large problems, the results on medium-sized problems (with 500 atoms)
show that the algorithms have satisfactory performance on as many as 64 processors.
Load balancing and synchronization between the processors are two of the problems
that must be addressed for systems with a large number of atoms. Load balancing can be
a problem because trajectories may require different amount of computing time. Another
problem is that processors may end up tracing the same solution trajectory, even if they
are given different starting points. Synchronization between the processors will be required

to make sure that different trajectories are traced.
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