
OTTER and the Moufang Identity Problem*

M

Larry Wos

athematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

T

Abstract

his article provides additional evidence of the value of using an automated reasoning program as a
s

t
research assistant. Featured is the use of Bill McCune’s program OTTER to find proofs of theorem
aken from the study of Moufang loops, but not just any proofs. Specifically, the proofs satisfy the pro-

-
c
perty of purity. In particular, when given, say, four equivalent identities (which is the case in this arti
le), one is asked to prove the second identity from the first, the third from the second, the fourth from

y
d
the third, and the first from the fourth. If the proof that 1 implies 2 does not rely on 3 or 4, then b
efinition the proof is pure with respect to 3 and 4, or simply the proof is pure. If for the four identi-

b
ties one finds four pure proofs showing that 1 implies 2, 2 implies 3, 3 implies 4, and 4 implies 1, then
y definition one has found a circle of pure proofs. By finding the needed twelve pure proofs, this arti-

l
cle shows that there does exist a circle of pure proofs for the four equivalent identities for Moufang
oops and for all orderings of the identities; however, for much of this article, the emphasis is on the

a
first three identities. In addition—in part to promote the use of automated reasoning programs and to
nswer questions concerning the choice of options—featured here is the methodology that was

p
employed and a discussion of some of the obstacles, some of which are subtle. The approach relies on
aramodulation (which generalizes equality substitution), on demodulation, and—so crucial for attack-

t
s
ing deep questions and hard problems—on various strategies, most important of which are the hot lis
trategy, the set of support strategy, and McCune’s ratio strategy. To permit verification of the results

-
p
presented here, extension of them, and application of the methodology to other unrelated fields, a sam
le input file and four proofs (relevant to a circle of pure proofs for the four identities) are included.

1

Research topics and challenges are offered at the close of this article.

. The Problem, the History, and the Objectives

Automated reasoning programs are now (in 1995) used to answer open questions and prove
e

P
interesting theorems from a wide variety of disciplines; se

admanabhan95a,Padmanabhan95b,Wos93a,Wos93b]. Two programs that have proved most useful in
d

R
this context and that are readily available to researchers are Bill McCune’s OTTER [McCune94] an

obert Boyer and J Moore’s Nqthm [Boyer88]. The fields in which successes have occurred include

m
universal algebra, algebraic geometry, logic calculi, program verification, and chip design. At least in

athematics and in logic—with added insight regarding the use of OTTER—far more is within reach.

s
o

One of the objectives of this article is to add to that needed insight by illustrating various feature
f OTTER; see the sample input file and four proofs given in the Appendix. In that context, some light

.
B
will be shed on making wise choices from among the numerous options offered by McCune’s program

y exploring some of OTTER’s options, this article will acquaint the researcher with various techniques
,

m
for using this program as an assistant. Additional knowledge and understanding regarding OTTER and

ore generally, regarding automated reasoning can be gleaned from consulting three books

r
[Wos92,Wos87],Wos96]. The first of the three books provides a thorough introduction to automated
easoning and, therefore, serves well for learning more about various inference rules, strategies, and

d
h
procedures cited in this article, for example, paramodulation, the set of support strategy, an
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

2

demodulation. The second book offers research problems in automated reasoning, and its fourth chapter

d
provides a rather extensive review of the field. The third book (to be published shortly) contains a
iskette of OTTER, demonstrates in detail how research in various fields was conducted with this pro-

gram, and (in Chapter 8) gives guidelines for option choosing.

This article has for a second objective the demonstration of the usefulness of OTTER to answer

d
questions that have remained unanswered for many years; see the cited history given shortly. Such
emonstrations may encourage researchers totally unfamiliar with automated reasoning to experiment

with a reasoning program.

The final and most pressing objective is to present the specific problem under study, the metho-
r

i
dology for attacking the problem, and the resulting successes. With the objectives stated, next in orde
s the promised history.

In the mid-1960s, I first heard (from Wayne Cowell, a colleague at Argonne National Laboratory)

a
about Moufang loops [Moufang35], formally defined in Section 2. Informally, a Moufang loop is an
lgebraic structure in which multiplication is the operation; however, one’s usual intuition is interfered

e
d
with because certain expected laws do not hold. Indeed, reasoning about such structures is made mor
ifficult because associativity is replaced by an identity of the following type, where multiplication is

the implicit operator.

Axiom, Moufang 1:

I

(xy)(zx) = (x(yz))x

was informed that, in the presence of the axioms for a loop (given in Section 2), Moufang 1 is
equivalent to Moufang 2, which is in turn equivalent to Moufang 3.

Axiom, Moufang 2:

A
((xy)z)y = x(y(zy))

xiom, Moufang 3:

S

x(y(xz)) = ((xy)x)z

uch in fact is the case. (A fourth equivalent Moufang identity, given later in this section, will also be

w
of concern in this article; the fourth Moufang identity is the mirror image of the first Moufang identity

ith the lefthand and righthand arguments interchanged, and the third identity is the mirror image of
the second.)

When presented with n equivalent identities (such as the three Moufang identities just given), pro-

t
perties, or definitions, mathematicians and logicians sometimes seek an aesthetic property that can be
ermed purity of proof [Wos95c]. Intuitively (with the formal definitions given in Section 2), purity

h
t
asks for n proofs showing that identity 1 implies 2, 2 implies 3, ..., identity n implies identity 1 suc
hat, other than the hypothesis and conclusion, no identity among the n is present in a proof. For the

.
I
(first) three Moufang identities, three proofs would be required. However, such was not available
nstead, the proof of the equivalence of the (first) three identities first showed that 1 implies 2, next that

t
2 implies 3, then—and here is the so-called flaw in the context of purity—that 3 implies 2, and finally
hat 2 implies 1. (To be faithful to the proof given by Bruck [Bruck71], I note that he proves Moufang

o
[
1 if and only if Moufang 2, then Moufang 2 if and only if Moufang 3; hence, purity is absent. See als
Chein78].) In other words, the proof consisted of four, rather than three, subproofs.

f
t

To show how the implied open question was answered—that focusing on the possible existence o
hree pure proofs for the equivalence of the (first) three Moufang identities—is central to this article.

s
Without access to OTTER, such proofs might have remained out of reach. Indeed, although I made
ome effort in the mid-1960s to use an automated reasoning program to study Moufang loops, too little

power was at that time offered by such programs.

Clearly, as one learns here, the situation has changed, in part because of the significant advances
f

p
in the design of such programs—OTTER is a fine example—and in part because of the formulation o
owerful strategies. Of the strategies that did not exist in the mid-1960s, the ones that play the more

y
[
important role in this article are McCune’s ratio strategy [McCune94,Wos96} and the hot list strateg
Wos95a,Wos95c,Wos96]. Both for the ordering 1, 2, 3 (of the Moufang identities) and the ordering 1,

l
3, 2, this article heavily emphasizes showing how the needed proofs were obtained. However, after
earning of the fourth Moufang identity (given almost immediately), I tested the methodology (featured

h

3

ere) by successfully applying it to finding the needed twelve pure proofs, the twelve pure proofs that
show that all orderings of the four Moufang identities admit a circle of pure proofs; see Section 8.

Axiom, Moufang 4:

(

x((yz)x) = (xy)(zx).

Only a historical accident caused the emphasis to be placed on the first three identities.)

-
t

Before turning to the formal elements of this article, one might wish the answers to three ques
ions. How does the methodology used here relate to that used in the study of pure proofs for the thir-

W
teen shortest single axioms for equivalential calculus [Wos95c]? Why are Moufang loops of interest?

hat makes the property of purity significant?

Regarding the first question, in [Wos95c], the object is to produce (if possible) a circle of pure
t

a
proofs for some ordering of all thirteen shortest single axioms for equivalential calculus. Where tha
rea of logic is not concerned with equality, the study of Moufang loops is, thus introducing various

,
a
complications in that the use of demodulation is virtually required; see Section 3. Naturally, therefore

different inference rule was used; instead of hyperresolution, paramodulation (which generalizes
,

t
equality substitution) was used. Regarding strategy, the set of support strategy played a key role here
he hot list strategy and the ratio strategy played a key role here and in the study of equivalential cal-

f
M
culus, but level saturation and the dynamic hot list strategy were not used here. For this study o

oufang loops, the methodology did not rely on a phase designed to see how many of the sought-after

e
conclusions could be deduced given an equation as hypothesis. Such a phase was included in the
quivalential-calculus study because many possible orderings of the thirteen shortest axioms exist and

e
p
the idea was to partially determine which were more likely to succeed in yielding a circle of pur
roofs.

As for the second question (for whose answer I thank Ken Kunen), Moufang loops are of interest

a
in part because of their relation to group theory, which itself is of substantial interest to mathematicians
nd physicists. For example, every subloop generated by two elements is in fact a group. For a second

f
h
example, every subloop generated by three elements such that (ab)c = a(bc) is a group. Because o

aving so many subloops that are groups, much nontrivial structure is present in a Moufang loop.

n
Chein found all 159 non-group Moufang loops of order less than 64. An attempt at finding all such
on-group Moufang loops of order 64 may be computationally difficult indeed. Various open questions

s
p
are of interest. For example, does every finite Moufang loop contain Sylow P-subgroups for all prime

that divide its order? (For those interested in loops and related structures such as quasigroups, see

i
[Chein90,Fenyves68,Fenyves69,Pflugfelder90]; the two papers by Fenyves might provide interesting
deas for future research in automated reasoning, and the other two cited references provide a good pic-

ture of the modern uses of loops, Moufang loops, and quasigroups, each formally defined in Section 2.)

Regarding the third question, purity of proof is related to proof elegance, as are proof length and
o

d
proof structure (with respect to the type of term that is present or absent). An interest in purity is als
istantly related to an interest in the independence of axioms that characterize a set of structures. For

a
example, in group theory, one can dispense with the axioms of right inverse and right identity, for they
re provable from the remaining axioms. Then, to perhaps add to one’s intuition concerning the

s
t
significance of purity of proof, one might keep in mind the sometimes-expressed preference for proof
hat avoid the use of certain lemmas (such as the inverse of the inverse of x equals x) or avoid the use

)
f
of a law such as commutativity, and the seeking of a proof avoiding some type of term (such as n(n(t)
or any term t, where n denotes negation). Finally, though only distantly related, an interest in purity

e
s
(to me) is somewhat reminiscent of the seeking of single axioms for some variety, for example, th
eeking of a single axiom for all groups such that (for all elements x) the 17th power of x equals the

identity e.

It must be noted that the notion of pure proof is indeed sensitive to the particular formal frame-

2

work that is in use.

. Definitions and Notation

A quasigroup is a set in which multiplication is defined and in which unique left and right solu-
tion exist. For example, regarding right solution, for all x and all y, there exists a unique z such that xz

4

= y. A loop is a quasigroup in which an identity exists, a 1 with 1x = x1 = x. A Moufang loop is a
-

t
loop satisfying any one of the four equivalent Moufang identities given in Section 1; of course, satisfac
ion of one of the four means satisfaction of all of the four, the following given in a notation acceptable

f
t
to the program OTTER. (When a line contains a ‘‘%’’, the characters from the first ‘‘%’’ to the end o
he line are treated by OTTER as a comment.)

(
% Axiom, Moufang 1:
x * y) * (z * x) = (x * (y * z)) * x.

(
% Axiom, Moufang 2:
(x * y) * z) * y = x * (y * (z * y)).

x
% Axiom, Moufang 3:

* (y * (x * z)) = ((x * y) * x) * z.

x
% Axiom, Moufang 4:

* ((y * z) * x) = (x * y) * (z * x).

The Moufang identities just given are expressed in one of the notations acceptable to OTTER,
McCune’s automated reasoning program used for the experiments and the successes reported here.

Although such expressions, in the strict sense that I normally use the term, are not clauses (see
e

s
Wos87,Wos92), throughout this article, I shall be cavalier and use the term clause loosely to includ
uch expressions. Also, I am somewhat cavalier when referring to a Moufang identity, sometimes

e
meaning the equation and sometimes meaning its encoding for OTTER. If Moufang 1, 2, 3, and 4 were
xpressed in clause form (in the notation I often use), they would appear in the following manner; of

course, as expected, one could use EQUAL as the predicate.

% Axiom, Moufang 1:
EQ(prod(prod(x,y),prod(z,x)),prod(prod(x,prod(y,z)),x)).

E
% Axiom, Moufang 2:

Q(prod(prod(prod(x,y),z),y),prod(x,prod(y,prod(z,y)))).

E
% Axiom, Moufang 3:

Q(prod(x,prod(y,prod(x,z))),prod(prod(prod(x,y),x),z)).

E
% Axiom, Moufang 4:

Q(prod(x,prod(prod(y,z),x)),prod(prod(x,y),prod(z,x))).

n
[

When equality is present in a problem, typically I choose as the inference rule paramodulatio
Wos87,Wos92] because this inference rule builds in equality-oriented reasoning (in fact, it generalizes

s
equality substitution). If that is the choice—because paramodulating from or into nonunit clauses can
harply reduce the effectiveness of a program—I prefer a set of unit clauses, clauses (or their

O
equivalent) free of the (logical) or symbol, in OTTER the symbol ‘‘ e ’’. Logical not is denoted in

TTER by ‘‘-’’.

The following units can be used to study Moufang loops, using any one of (or all four) Moufang
identities.

x = x.
x * rs(x,y) = y. % right solvable
rs(x, x * y) = y. % right solution is unique (implies left cancellation)

l
ls(x,y) * y = x. % left solvable
s(x * y , y) = x. % left solution is unique (implies right cancellation)

x
1 * x = x. % left identity

* 1 = x. % right identity
(x * y) * (z * x) = (x * (y * z)) * x. % Axiom, Moufang 1

2
x
((x * y) * z) * y = x * (y * (z * y)). % Axiom, Moufang

* (y * (x * z)) = ((x * y) * x) * z. % Axiom, Moufang 3
4

T

x * ((y * z) * x) = (x * y) * (z * x). % Axiom, Moufang

he study reported here relied on the use of the first seven cited units and, taken one at a time, a
Moufang identity; until Section 8, the focus is on the first three identities.

The researcher interested in studying Moufang loops with the aid of OTTER might begin by
,proving the following useful property of inverses. For all x, there exist a left and a right inverse of x

5

and, further, they are equal. Next, one might prove that cancellation, left and right, follows from the
t

e
given units; see the sample input file given in the Appendix for the two laws. Finally, one migh
xplore the use of cancellation in place of the uniqueness units. If the cancellation laws are employed,

i
which take the form of nonunit clauses, then the inference rule UR-resolution [Wos87,Wos92] is used
n addition to paramodulation. Different from the approach taken in this article, Kunen studied

r
l
Moufang loops briefly, using unit clauses for left and right inverse (not assuming the two are equal), fo
eft and right identity, and (one at a time) for one of the first three Moufang identities, and using two

nonunit clauses for (extensions of) the cancellation laws.

Regarding the presence of the unit clause x = x (reflexivity of equality), standard practice strongly
x

a
recommends its inclusion when paramodulation is in use (explicitly or, as with a Knuth-Bendi
pproach, implicitly), for proofs often terminate with the deduction of a statement of the form a != a

for some a where a is a constant.

Next, needed are the definitions of circle of proofs and pure proof, for the problem to be featured
asks one to find, if such exists, a circle of pure proofs for the (first) three Moufang identities.

Definition, circle of proofs. For a set of k equivalent elements—formulas, equations, properties,

t
conditions, or definitions—a circle of proofs is a sequence of proofs such that the first proof shows that
he first element implies the second, the second proof shows that the second element implies the third,

..., and the k-th proof shows that the k-th element implies the first.

Definition, pure proof with respect to a set of elements. For a set of elements—formulas,

r
equations, properties, conditions, or definitions—a proof of element j from element i is pure with
espect to the set of elements if and only if it does not rely on the use of any of the elements but the j-

t
r
th and the i-th. The presence of a proper instance of an element other than the j-th or i-th does no
ender the proof impure. If such instances are absent, by definition, the proof is instance pure. Further,

d
if none of the deduced steps contains as a proper subterm an instance of an unwanted element, by
efinition, the proof is subterm pure.

In response to a natural query, note that purity is not lost when the proof contains an element

p
derived from that which is unwanted. For example, if Moufang 3 is unwanted, purity is not lost in the
resence of an equation that is derived from Moufang 3 by multiplying one of its terms by the identity

-
i
1. For a second and more interesting example, purity is not lost if one of the intermediate steps (result
ng from demodulation) is an equation derivable from Moufang 3 by applying left division. Somewhat

t
related, in Section 3.1, the subtlety of purity in the context of reasoning backward (from the denial of
he desired conclusion) is addressed with an example.

3. Obstacles and Subtleties

Ordinarily my approach to attacking a new problem is to make one or more runs and see what I

t
can learn by examining the corresponding output file(s). For but one example, I might discover that a
ype of term is present in many, many clauses and conjecture that such terms, and hence the clauses

t
containing them, are best purged immediately upon generation. In this study, however, I first discussed
he problem with my colleague McCune, for I thought it likely that various obstacles could be recog-

s
nized and circumvented early. Indeed, our discussions did help to identify certain obstacles and to
hape the approach (presented in this article) that was subsequently used to obtain the desired proofs.

n
Also, though indirectly, those discussions set the stage for and perhaps even dictated the number and
ature of the experiments central to this article; see Section 4 in relation to Sections 3.1 and 3.2.

3.1. Possible Approaches

Although finding any proof regardless of its properties might prove more than challenging, the
s

t
most obvious—and perhaps most formidable—obstacle is the requirement of purity. Three approache
o deriving pure proofs are possible: an approach based on a forward search, using the denial of the

s
a
conclusion only to detect proof completion; an approach based on a backward search, using the axiom
nd hypotheses of the theorem only to complete applications of an inference rule; and an approach

based on a bidirectional search, reasoning both forward and backward.

6

In [Wos95c] where the focus is on circles of pure proofs for thirteen shortest single axioms of
-

e
equivalential calculus, forward proofs are a virtual necessity in that condensed detachment is the infer
nce rule in use (from the viewpoint of logic). (In the study of this area of logic, a backward search is

f
ordinarily impractical, for reasoning backward from the denial of some desired conclusion typically
orces the program to cope with very long clauses.) However, for the current study of Moufang loops,

f
having the program produce a proof relying solely on reasoning forward—thus making its examination
or purity straightforward (on the surface) although perhaps painful—might be impractical from the per-

u
spective of automated reasoning. (Indeed, one learns in Section 3.2 that, at least when demodulation is
sed, one cannot merely examine the deduced steps of the proof to see if an unwanted equation is

m
present and, if not, then accurately claim that the proof is pure; in particular, an unwanted equation

ight be present as an intermediate step that results from demodulation.) In fact, as frequently occurred
e

i
in the experiments featured here, a strictly forward search failed to yield any proof. (However, if on
nsists with the understanding that no proofs may be completed, one can instruct OTTER to make a for-

t
l
ward search by placing the negation of the target equation in the passive list of clauses. Clauses in tha
ist are used only for detecting unit conflict, which signals proof completion, and for applying forward

subsumption.)

If a forward proof is out of reach, one is then forced to instruct the program to seek a backward
y

f
proof or a bidirectional proof. The following syntactic example of a backward proof (included simpl
or illustration) shows that a mere reading of the proof does not suffice where purity is concerned. The

axioms of the example are, in clause form, (1) through (3).

(1) P.
.

(
(2) -P e Q
3) -Q e R.

The theorem to prove asserts that P implies R. The following proof is one of contradiction, beginning
with clause (4), the negation or denial of the conclusion of the theorem, and reasoning backward.

(4) -R.

The assignment is to produce a pure proof, pure with respect to the axiom represented with clause (5).

T

(5) Q.

he proof uses clause (4) to deduce clause (6), which is then used to deduce clause (7), which contrad-
icts clause (1).

(6) -Q.

T

(7) -P.

he claim that the proof consisting of clauses (1) through (4) followed by clauses (6) and (7) is pure
f

c
with respect to clause (5) is, as my colleague McCune has (in effect) pointed out, total sophistry. O
ourse, the backward proof does not explicitly contain clause (5), but, if it is transformed into a forward

f
n
proof, clause (5) is indeed present. Put another way, clause (5) is ‘‘really’’ present in the proof, even i
ot explicitly. One thus sees that the cited obstacle of finding a proof that is indeed pure is subtler than

it might first appear.

The third possible approach, a bidirectional proof, proceeds forward and backward, using the

d
negative equality (arising, from assuming, say, that Moufang 2 is not deducible from Moufang 1) to
educe additional negative equalities. Unfortunately, when a bidirectional search produces a proof—

a
s
just as is the case when a backward search produces a proof—one must transform the proof into
trictly forward proof to be then checked to see that an unwanted equation is not present. Such check-

e
ing is error prone if done by hand; one can, of course, have OTTER do the work instead, but some
ffort and some additional instructions to the program will be required. I shall give an example of how

3

to proceed in that regard at the close of Section 7.

.2. The Means to Seek Purity

Independent of the approach taken, there is the problem of devising a method (for the program to
o

m
apply) to avoid the use, implicitly or explicitly, of some unwanted equation. OTTER offers tw

echanisms to block the use of some unwanted equation (or clause): weighting

7

.[McCharen76,Wos87,Wos92] and demodulation [Wos87,Wos92]

The following command and weightilist illustrate how weighting is used.

w
assign(maxiweight,20).

eightilist(purgeigen).
.

w
% Blocking use of Moufang 3

eight((x * (y * (x * z)) = ((x * y) * x) * z),1000).

T

endiofilist.

he inclusion of the cited command and weightilist in the input file will prevent OTTER from retain-

t
ing the clause equivalent of Moufang 3, for it will be assigned a purgeigen weight strictly greater than
he maxiweight. (The purgeigen weight is used for deciding whether or not to retain a clause, in con-

t
p
trast to the pickigiven weight which is used to decide where next to focus attention. The maxiweigh
laces an upper bound on the weight, or priority, of retained clauses. When no weight template applies,

the purgeigen weight and the pickigiven weight are measured solely in terms of symbol count.)

Because variables in a weight template are treated as indistinguishable, the use of weighting to
s

M
block, say, the retention of Moufang 3 will also block the retention of any clause that resemble

oufang 3, where the differences rest with the particular occurrences of variables. Whether or not the

s
preceding property is a disadvantage, there does exist a far more serious problem in using weighting to
eek pure proofs if, because of other considerations, demodulation is also in use. (The use of demodu-

t
w
lation might be virtually required to prevent the program from retaining a huge number of clauses tha

ould otherwise be simplified and then purged with subsumption.)

e
r

Regarding the more serious problem, for but one example, the program may apply an inferenc
ule to a set of hypotheses, then apply a sequence of demodulators, and one of the intermediate clauses

s
(before the demodulation is complete) may be Moufang 3. Weighting would have no effect in the
ituation under discussion. In such an event, although Moufang 3 would not be explicitly present in the

t
t
proof, it would be used implicitly; therefore, the proof (in a true sense) would not be pure with respec
o Moufang 3.

In place of weighting to block the use of an unwanted equation, such as Moufang 3, OTTER
offers demodulation used in the following manner.

list(demodulators).
.

E
% Blocking use of Moufang 3

Q((x * (y * (x * z)) = ((x * y) * x) * z), $T).
.

e
EQ((((x * y) * x) * z = x * (y * (x * z))), $T)
ndiofilist.

(Note that this use of demodulation focuses on demodulating an entire clause, in contrast to the far
-

d
more common use that focuses on a term. Also note that, rather than a single demodulator, two demo
ulators are included, one to cope with Moufang 3 as given in this article, and one to cope with the

e
c
case in which its arguments are interchanged.) When OTTER demodulates a clause to $T, true, th
lause is automatically purged. Just as the use of weighting to seek pure proofs has pitfalls, so also

-
c
does the use of demodulation. With demodulation as the means for blocking the participation, expli
itly or implicitly, of an unwanted equation, three pitfalls exist.

-
t

The first pitfall, easily avoided but commonly encountered, concerns the orientation of demodula
ors. With OTTER, one can give a lexical ordering in the following way.

A

lex([$T,a,b,c,d,e,1,i*i,rs(i,i),ls(i,i),=(i,i)]).

s given, $T is treated as lighter than other terms. Were one to err (as I in fact did at one point early
e

o
in the study) and place $T at the righthand end of the list, then the cited equalities (for blocking the us
f Moufang 3) would not apply.

The second pitfall concerns the use of back demodulation, a procedure that is so often of value in
n

i
increasing the effectiveness of a program. To instruct the program to back demodulate clauses stored i
ts database—which means to rewrite by simplifying and canonicalizing each, if possible, with every

newly adjoined demodulator—one uses the following command.

set(backidemod).

8

In the presence of this command, when a newly retained clause is made into a demodulator, the pro-

i
gram attempts to apply it to all clauses currently retained. The key to the possible pitfall is contained
n the modifier ‘‘all’’, for, indeed, even existing demodulators can be back demodulated. Therefore, if

d
misfortune occurs, the two input demodulators (used to block the retention of Moufang 3) can be back
emodulated. As a matter of history, in some of the experiments preceding those reported in this arti-

d
cle, such occurred, necessitating the commenting out of the command, thus avoiding the use of back
emodulation.

The final pitfall concerns the choice of demodulating inside out or outside in. The default in
.

H
OTTER is inside out, correctly suggesting that, in the majority of cases, that is the preferred choice

owever, such demodulation can cause the program to present a proof in which, say, Moufang 3 is

i
implicitly present. Indeed, when a sequence of demodulators is being applied inside out, one of the
ntermediate clauses might in fact be the clause equivalent of an unwelcome equation, the equation

f
t
whose presence prevents the proof from being pure. At that point, it may well happen that neither o
he two cited equalities (used to block, for example, Moufang 3) gets applied, because of the inside-out

path. The appropriate action to take is to include the following command.

set(demodioutiin).

s4. Theorems and Experiment

Two possible circles of pure proofs exist for the (first) three equivalent Moufang identities; the
t

e
fourth Moufang identity comes into play in Section 8. Circle 1 (for the first three identities), if i
xists, consists of three proofs: a proof that Moufang 1 implies Moufang 2, a proof that is pure with

n
o
respect to Moufang 3; 2 implies 3, pure with respect to 1; and 3 implies 1, pure with respect to 2. I
ther words, for Circle 1, the identities are ordered 1, 2, 3, 1. The only other possible order is 1, 3, 2,

t
1, and corresponding to that order is Circle 2. Therefore, to explore the possible existence of either of
he two circles, there exist six possibly true theorems to attack.

y
c

For each of the six purported theorems—taking into account the discussion of Section 3 and m
ontinued interest in the use of strategy—a sequence of five experiments are in order. For each of the

b
six purported theorems, the first experiment was designed to determine whether any proof can be found
y OTTER, ignoring purity. This program offers a wide variety of options and strategies. However, at

a
least currently, no algorithm or metarules exist for making effective choices; experience and intuition
re generally the basis for option choosing. (In [Wos96], Chapter 8 does offer some biased guidelines

r
in that regard.) The fact that a theorem has already been proved by some means (typically by a
esearcher) is, at this time (in 1995), no guarantee that a proof of it is within range of an automated rea-

soning program.

Since for all six theorems OTTER produced a proof, the other four experiments (in the sequence
-

i
of five) each focused on finding a pure proof. The second experiment (conducted mainly out of curios
ty) focused on the use of weighting to block the unwanted Moufang identity. Again, in all six cases,

i
the second experiment produced a proof, but a proof not guaranteed to be pure. Therefore, as discussed
n Section 3, to guarantee that proofs produced are pure, weighting was replaced by demodulation in the

a
c
third experiment. The third experiment succeeded in all six cases. Actually, as already discussed,
aveat must be issued: In particular, if the proof is bidirectional, then the lack of purity may be hidden

n
s
within that part of the proof that proceeds backward from the assumed falseness of the theorem. I
uch an event, either some hand computation is needed, or some not-so-standard use of OTTER is

l
p
required. In either situation, misfortune is possible in that purity may be absent from the bidirectiona
roof.

In all six cases, a proof was produced by the third experiment, and therefore, for the fourth and
e

h
fifth experiments, efficiency became an equal concern. The fourth experiment explored the use of th
ot list strategy [Wos95a,Wos95c,Wos96] to see what effect its use would have on efficiency and on

d
a
proof length. Because the fourth experiment succeeded (in all six cases), the fifth experiment explore

heavier use of the hot list strategy. The fifth experiment in all cases succeeded. However, as it

p
turned out, in four of the six cases (in the context of Experiment 5), an attempt at a (strictly) forward
roof failed, necessitating action to (so to speak) convert a bidirectional proof into a forward proof; see

Section 7 for the actions that were taken. (Incidentally, I chose not to be concerned about converting

9

bidirectional proofs for any of Experiments 1 through 4 because purity was proved for all six theorems
t

w
in the context of Experiment 5, after the converting procedure was applied to the four cases where i

as needed; see Section 7 for the procedure.)

5. Successes and Options

To gain some understanding and some insight into the options that were used and the significance

a
of the changes in them within a sequence of experiments, some background information is in order. In
ddition to providing a clearer picture of how the problem focusing on the (first) three Moufang identi-

t
ties was solved, this background information is intended to aid researchers in the use of OTTER in
otally unrelated areas, to show how decisions were made, and to (in part) satisfy the frequent request

g
for giving guidance for making choices from among the numerous options offered by McCune’s pro-
ram.

Although (as Ken Kunen did in some successful experimentation [Kunen94]) one can include can-
r

t
cellation laws among the axioms, my preference is for a representation in which no nonunit clauses (o
heir equivalent) are present. This preference is consistent with my goal of demonstrating that the use

-
m
of an automated reasoning program often requires little guidance in the context of adding various lem

as. Because equality is the relation, paramodulation is the choice, a choice that (because of efficiency
-

B
considerations) asks for the inclusion of few or no nonunit clauses in the input. (Whether a Knuth

endix approach, which relies on paramodulation, is effective is left to future research, possibly by oth-

f
ers.) Also different from Kunen, no input demodulators were included with the purpose of using them
or canonicalization, for I had no conjecture regarding which would be useful. Instead, OTTER was

p
instructed to set(processiinput), a command that makes some or all input clauses into demodulators. To

ermit new demodulators to be adjoined during the run, the command set(dynamicidemod) was

b
included. The preceding two commands were included because of the conviction that efficiency would
e severely decreased without the presence of demodulators. As expected from the discussion of Sec-

r
t
tion 3, set(demodioutiin) was the command, to instruct demodulation to be from the outside in (rathe
han inside out).

As those familiar with my views expect, I emphasized the use of strategy: Three were used, part

[
or all of the time. With the command assign(pickigiveniratio,3), McCune’s ratio strategy
McCune94,Wos92,Wos96] was used, chosen because numerous experiments in various areas strongly

n
c
suggest that the likelihood of success is increased when some of the reasoning is driven by focusing o
omplex clauses retained early in the attack. With this command, OTTER was instructed to choose (for

t
the focus of attention to direct the program’s reasoning) three clauses by weight (symbol complexity, in
his case), one by first come first serve (or breadth first), then three, then one, and the like. The ratio

n
w
strategy blends (subject to the assignment of the pickigiveniratio parameter) a bit of level saturatio

ith (usually more) choosing of clauses for the focus of attention by weight.

m
t

More important to the research was the use of the hot list strategy, chosen to cause the progra
o immediately consider the clauses in the hot list with each newly retained clause. Use of the hot list

q
strategy typically requires the researcher to choose from among the input statements that present the
uestion or problem those that are conjectured to merit immediate visiting (as hypotheses) and, if the

-
m
value assigned to the heat parameter is greater than 1, even immediate revisiting. The chosen state

ents are placed in the (input) hot list, and they are used one at a time or in combination (depending
-

c
on the inference rule being applied) to complete inference rule applications, rather than to initiate appli
ations. Members of the hot list are not subject to any restriction regarding unit and nonunit clauses.

a
Potentially powerful choices for members of the hot list include the elements of the special hypothesis
nd elements of the initial set of support. (The special hypothesis of a theorem of the form if P then Q

,
i
refers to that part of P, if such exists, that excludes the underlying axioms and lemmas. For example
n the study of the theory that asserts that rings in which the cube of x = x are commutative, the special

s
hypothesis consists of the equation xxx = x.) Also, when an inference rule in use relies on the use of
ome clause as a nucleus (as in hyperresolution), then placing a copy of such a clause in the hot list is

-
t
often profitable. Further, if a needed nucleus is absent from the hot list, then (with the rarest excep
ions) the program cannot use the hot list strategy for that case, for the strategy requires that, other than

e
p
the initiating clause, all remaining clauses used in an application of the corresponding inference rule b
resent in the hot list. The exceptions occur when a nucleus is used to initiate an application of an

10

.inference rule, which is indeed rare in the experiments with which I am familiar

When the program decides to retain a new conclusion, before another conclusion is chosen from
w

c
list(sos) as the focus of attention to drive the program’s reasoning, the hot list strategy causes the ne
onclusion to initiate applications of the inference rules in use, with the remaining hypotheses (or

d
parents) that are needed all chosen from the hot list. Members of the hot list, whether input or adjoined
uring a run, are not subject to back demodulation or back subsumption; in other words, clauses in the

b
hot list are never rewritten with the discovery of new demodulators (rewrite rules), nor are they purged
ecause of being captured by a newly retained clause.

If one wishes the program during the run to adjoin new members to the hot list, one uses the
t

s
dynamic hot list strategy [Wos95a,Wos95c] (which McCune formulated as an extension of the hot lis
trategy); see Section 6.3. If that is the choice, then one assigns an integer, positive or negative, to the

a
p
dynamiciheatiweight parameter with the intention that conclusions that are retained and that have
ickigiven weight (complexity) less than or equal to the assigned value will be adjoined to the hot list.

c
(A clause, or its equivalent, technically has two weights, its pickigiven weight which is used in the
ontext of choosing clauses as the focus of attention to drive the program’s reasoning, and its

s
purgeigen weight which is used in the context of clause discarding; often the two weights are the
ame.) The dynamiciheatiweight assignment places an upper bound on the pickigiven weight of

clauses that can be adjoined to the hot list during the run.

When the heat parameter is assigned the value 1, conclusions that result from consulting the hot

d
list (whether one is using the hot list strategy or the dynamic hot list strategy) have heat level 1. (By
efinition, input clauses have level 0, and a deduced clause has a level one greater than that of its

r
i
parents.) If the program decides to retain a conclusion of heat level 1 and if the (input) heat paramete
s assigned the value 2, then before another conclusion is chosen as the focus of attention, the heat-

n
level-1 conclusion is used to initiate the search for conclusions of heat level 2 (with the hypotheses
eeded to complete the corresponding application of the inference rule chosen from the hot list). The

e
o
heat parameter can be assigned to whatever positive integer the researcher chooses, with the objectiv
f placing corresponding emphasis on the immediate use of the members of the hot list. If the parame-

ter is assigned the value 0, then the hot list strategy will not be used.

Finally, as expected if one is familiar with my research, the set of support strategy
-

t
[Wos87,Wos92] was used, contributing significantly to program efficiency (see Section 6.1). (This stra
egy was chosen and used in the manner discussed here to prevent the program from exploring the

e
m
entire theory of loops.) Because attempts at completing forward proofs (each in a single run) failed th

ajority of the time, the denial of the conclusion to be proved was placed in list(sos), the initial set of

t
support. The only other member of that list was the hypothesis. For example, when attacking the
heorem that asserts the deducibility of Moufang 1 from Moufang 3, list(sos) contained two clauses, the

s
equivalent of Moufang 3 and the equivalent of the negation of Moufang 1. (For the researcher wishing
ome information immediately regarding placing all clauses in the initial set of support, I can report

t
with satisfaction that, other than in a few cases, the results for all five experiments, for each of the six
heorems attacked, required less CPU time when the two-element set of support was used; see Section

6.1 for more detail.)

Regarding option changes from experiment to experiment, the minimal changes were made in
y

d
order to gain the most meaningful information in the context of effectiveness. For example, the onl
ifferences between the third and the fifth experiment when attacking the theorem that asserts that

,
w
Moufang 2 implies Moufang 3, with the constraint that Moufang 1 not be used (explicitly or implicitly)

as the addition of a hot list (for the fifth experiment) and the setting of the heat parameter. For a
t

M
second example, three differences existed between the fourth experiment focusing on proving tha

oufang 1 implies Moufang 3 with Moufang 2 not participating at all and the fourth experiment focus-
,

r
ing on proving that Moufang 2 implies Moufang 1 with Moufang 3 not participating at all. First
egarding list(sos) (the initial set of support), Moufang 1 and the negation of Moufang 3 are replaced by

f
d
Moufang 2 and the negation of Moufang 1. Second, regarding list(demod), which is the input list o
emodulators, two equalities corresponding to Moufang 2 are replaced by two corresponding to

g
p
Moufang 3; the choice of input demodulators is dictated by the choice of which identity to avoid bein
resent, implicitly or explicitly, in a completed proof. Perhaps unexpected, two equalities are included,

for the program must be in a position to cope with the deduction of the unwanted identity with the

11

lefthand and righthand arguments interchanged. The third difference rests with the contents of list(hot),

a
the initial hot list. When Moufang 1 is the hypothesis, a copy of it appears in list(hot) in addition to
ppearing in list(sos). When Moufang 2 is the hypothesis, then a copy of it appears in list(hot) as well

m
as in list(sos). The choice of which clauses to place in the initial hot list is a reflection of the recom-

endation to place key clauses in list(hot), in the two cited cases the clause that corresponds to the
hypothesis of the theorem under attack.

Regarding the five experiments taken as a sequence, for a given implication, say Moufang 3
,

p
implies Moufang 2, many options were shared. Among them, maxiweight was assigned the value 20
ickigiveniratio was assigned the value 3, maxiproofs was assigned the value 2, and maximem was

d
assigned the value 20000 (20 megabytes). Also in common were set(dynamicidemod) (to adjoin new
emodulators during the run), set(demodioutiin) (for outside-inside demodulation), set(processiinput)

r
t
(to make some or all input clauses into demodulators), and set(paraiinto) and set(paraifrom) (both fo
he inference rule paramodulation). With respect to the latter two set commands, OTTER is instructed,

a
for each clause chosen as the focus of attention to drive its reasoning, to paramodulate from that clause
nd also to paramodulate into that clause with all of the clauses available in list(usable). Because

e
e
paramodulation’s performance deteriorates markedly when a nonunit clause is involved, in all fiv
xperiments (for each of the six theorems under attack), the commands set(paraiintoiunitsionly) and

a
p
set(paraifromiunitsionly) are included. (As it turned out, the preceding two commands to cope with
ossible need played no role, for nonunit clauses were never included.) Other than clauses correspond-

t
p
ing to a Moufang identity or the negation of one, all input clauses were placed in list(usable), were no
laced in the initial set of support.

For each of the six theorems, the first experiment in the sequence of five focused merely on pro-
-

t
vability. Indeed, no actions were taken to block the presence in a proof of the unwanted Moufang iden
ity. Despite the lack of a guarantee when using weighting to block an unwanted equation or formula

e
i
(as discussed in Section 3), Experiment 2 extended Experiment 1 by including a single weight templat
n weightilist(purgeigen), an inclusion of the following type.

%
weightilist(purgeigen).

Blocking use of Moufang 3.
.

e
weight((x * (y * (x * z)) = ((x * y) * x) * z),1000)
ndiofilist.

In the third through the fifth experiment (for each theorem of the six), to guarantee (with one pro-
viso) purity, weighting was replaced by demodulation, in the following manner.

list(demodulators).
.

E
% Blocking use of Moufang 3

Q((x * (y * (x * z)) = ((x * y) * x) * z), $T).
.

e
EQ((((x * y) * x) * z = x * (y * (x * z))), $T)
ndiofilist.

As for the proviso, forward proofs were often difficult to complete, necessitating in many cases a
t

p
bidirectional search. The example given in Section 3.1 (in terms of P, Q, and R) correctly suggests tha
roofs containing steps resulting from reasoning backward from a negative clause can ‘‘hide’’ the pres-

O
ence of an unwanted equation or formula. As (in effect) promised earlier, I show in Section 7 how

TTER was used to replace the so-called backward portion of the proof with a forward portion, main-
taining the restriction of blocking the unwanted identity.

The fourth and fifth experiments in each of the six sequences extended the third experiment by
e

e
adding the use of the hot list strategy. In the fourth experiment, the (input) hot list contained a singl
lement. For example, when Moufang 3 was the hypothesis, then a copy of it was placed in list(hot).

t
In the fifth experiment also included in list(hot) were the axioms of a loop, those clauses (excluding
hat for reflexivity) that were also present in list(usable).

5.1. The First Circle

At this point, comparisons are in order. For the first circle (focusing on the first three identities),
three proofs are of interest: a proof that Moufang 1 implies Moufang 2, pure with respect to Moufang

12

3; a proof that Moufang 2 implies Moufang 3, pure with respect to Moufang 1; and a proof that

w
Moufang 3 implies Moufang 1, pure with respect to Moufang 2. As commented in Section 1, (from

hat I know) the third proof was absent in prior studies of Moufang loops. Instead, the proof that
Moufang 3 implies Moufang 1 relied on the use of Moufang 2.

The first theorem for discussion asserts that Moufang 1 implies Moufang 2. However, purity is

w
not relevant to the first of the sequence of five experiments, for that experiment is concerned merely

ith completing any proof. (All experiments in this article were conducted on a SPARCstation-10. For

r
brevity, although the CPU times that are cited are indeed approximate figures, each is given without the
eminder of ‘‘approximately’’.) In 125 CPU-seconds, a forward proof was produced of length 73

t
c
(paramodulation steps) and level 20, completing with retention of clause (1876). (By definition, inpu
lauses have level 0, and a deduced clause has a level one greater than that of its parents; demodulators

s
n
do not count among parents of a deduced clause.) The use of demodulators in deducing a clause affect
either proof length nor proof level.

The second and third experiments (of the sequence of five) produced the same proof with similar
statistics.

In the fourth experiment (in which the hot list strategy was introduced), some ground was gained,

a
and some was lost. A shorter proof (based solely on reasoning forward) was found, one of length 58
nd level 19, completing with the retention of clause (2707). However, the CPU time required to find

o
c
the proof increased to 589 CPU-seconds. For the curious, quite often more CPU time is required t
omplete a shorter proof.

The fifth experiment was most satisfying. A length 28 and level 14 proof was found, completing
-

s
with retention of clause (611). In addition to the sharp reduction in proof length, less than 4 CPU
econds were required. The only drawback at all was that the proof contains one deduced step pro-

t
s
duced by reasoning backward from the denial of the theorem. Two experiments sufficed to replace tha
tep with a forward reasoning step. Of less interest, in 30 CPU-seconds (in the same run) OTTER did

d
s
complete a forward proof of length 82 and level 23, with retention of clause (1478). With the cite
tep replacement, each of the five experiments in fact yielded a pure proof.

e
s

The cited successes with the study of Moufang 1 implies Moufang 2 immediately called for th
tudy of Theorem 2, Moufang 2 implies Moufang 3. The first experiment—testing the difficulty of

f
c
obtaining any proof, regardless of purity—produced a proof in 771 CPU-seconds with retention o
lause (2783). The proof has length 55 and level 16. Except for one step, the proof is forward; a sub-

-
m
sequent experiment produced the desired replacement step to yield a forward proof. The second experi

ent essentially imitated the first. The third differed somewhat, producing a proof in 866 CPU-seconds
-

w
with retention of clause (2778). The proof has length 52, level 16, and, except for one step, is a for

ard proof. A single experiment provided the needed replacement step to yield a forward proof. Even
f

c
the fourth experiment was similar, yielding a 57-step proof of level 14, completing with retention o
lause (2013). To obtain the proof, 591 CPU-seconds were required. Again, one additional experiment

sufficed to replace one step to produce a forward proof.

The breakthrough in the context of CPU time, as in the study of the first theorem of Circle 1,

s
occurred with the fifth experiment. Indeed, a 50-step proof of level 17 was produced in 19 CPU-
econds with retention of clause (1294). The proof contains one step resulting from reasoning back-

o
ward from the negation of the theorem, a step that was easily replaced with one experiment. It turned
ut that, again, (with the cited step replacements) the proofs yielded by the five experiments focusing

on the second theorem of Circle 1 are pure (with respect to Moufang 1).

To complete the study of Circle 1, the third theorem became the focus, the theorem asserting the

5
deducibility of Moufang 1 from Moufang 3. Of course, purity with respect to Moufang 2 was key. In
55 CPU-seconds, the first experiment yielded a 47-step proof of level 16 with retention of clause

e
t
(2359). The proof contains two steps of so-called backward reasoning. The experiment to replace th
wo steps with forward reasoning succeeded, but, rather amusing, only one replacement step was

o
needed. (On the other hand, as shown by example in Section 7, sometimes the replacement of one step
f backward reasoning can require the use of two steps of forward reasoning.) The second and third

6
i
experiments essentially mirrored the first. The fourth experiment produced a 55-step proof of level 1
n 1910 CPU-seconds with retention of clause (2491). As in the first experiment, the single experiment

d

13

esigned to replace two backward-reasoning steps with forward-reasoning steps found one step that was
sufficient.

Again, the fifth experiment was the most satisfying, but not as dramatically as with the first and
h

r
second theorems. In 103 CPU-seconds, OTTER produced a 68-step proof of level 22, completing wit
etention of clause (1860). As was becoming the custom, one experiment produced a forward-reasoning

l
fi
step to replace the single step resulting from reasoning backward. With the cited step replacements, al

ve proofs are pure.

e5.2. The Second Circl

Three theorems, 4, 5, and 6, are the focus for Circle 2. Theorem 4 asserts that Moufang 2
o

M
implies Moufang 1, of course, with the additional objective of finding a proof pure with respect t

oufang 3. Theorem 5 has Moufang 3 for its hypothesis and Moufang 2 as its conclusion, and purity
s

i
is with respect to Moufang 1. Finally, Theorem 6 has Moufang 1 as its hypothesis and Moufang 3 a
ts conclusion, and purity is with respect to Moufang 2.

Theorem 4 was proved in the first experiment in 193 CPU-seconds with retention of clause

t
(1980). The proof has length 24 and level 12. A single experiment provided a forward-reasoning step
o replace the one step that resulted from reasoning backward. The second and third experiments were

r
essentially copies of the first. The fourth yielded a 37-step proof of level 12 in 202 CPU-seconds with
etention of clause (1562). A single experiment provided a forward-reasoning step to replace the one

-
s
step that resulted from reasoning backward. The fifth experiment was minutely pleasing, for 51 CPU
econds sufficed to produce a proof, one of length 62 and level 19, completing with retention of clause

f
(1640). A single experiment provided a forward-reasoning step to replace the one step that resulted
rom reasoning backward. With the cited step replacements, the proofs yielded by the five experiments

focusing on the first theorem (Theorem 4) of Circle 2 are pure.

Theorem 5 proved to be more difficult than did Theorem 4, requiring in the first experiment 573
d

p
CPU-seconds and the retention of clause (2351). The resulting 47-step proof of level 16 is a forwar
roof. The second and third experiments essentially mirrored the first. The fourth required 752 CPU-

fi
seconds and the retention of clause (2030) to complete a forward proof of length 66 and level 17. The

fth experiment produced the desired proof in 205 CPU-seconds with retention of clause (2091), a proof
of length 60 and level 22 that is a forward proof. All five proofs are pure and are also forward proofs.

The study of Theorem 6 was more rewarding than was the study of either Theorem 4 or Theorem
9

i
5, as one sees from the following data. The first experiment produced a proof of length 59 and level 1
n 41 CPU-seconds with retention of clause (1622). One experiment sufficed to produce a step to con-

m
vert the 59-step bidirectional proof to a forward proof. The second and third experiments essentially

atched the first. The fourth experiment proved to be a singular failure, requiring 667 CPU-seconds

r
and the retention of clause (2740) to complete a 93-step proof of level 25. The proof contains one step
esulting from reasoning backward, easily replaced to produce a forward proof by conducting a single

experiment.

The fifth experiment, however, was indeed satisfying. Less than 3 CPU-seconds were required to
-

p
produce a 30-step proof of level 15, and only 614 clauses were retained before the proof was com
leted. In addition, the proof offered a piquant property: To replace the only step resulting from back-

r
ward reasoning, to produce a forward proof, required two forward-reasoning steps. With the cited step
eplacements, the proofs yielded by the five experiments focusing on the third theorem (Theorem 6) of

6

Circle 2 are pure.

. Insight Regarding the Use of Strategy

To complement the preceding material of this article, this section is devoted to a more detailed
s

u
discussion of various strategies. Program performance can indeed be sharply enhanced by a judiciou
se of strategy. Even further, my more than thirty years of use of an automated reasoning program

-
l
convinces me that relying heavily on strategy is essential when attacking deep questions and hard prob
ems. The evidence is drawn, as expected, from experimentation.

6.1. The Set of Support Strategy

14

In the thirty experiments reported here, a natural question concerns the role of the set of support

t
strategy, a strategy that restricts a program’s reasoning to drawing conclusions that are recursively
raceable to the input clauses placed in list(sos). In particular, what is the effect on program perfor-

o
mance if this strategy is not used? Much of the answer is contained in a comparison of the results
btained from conducting experiments in pairs, each pair consisting of one experiment with and one

O
without the set of support strategy. To conduct an experiment without the set of support strategy, (with

TTER) one places all clauses in list(sos). (As a practical matter, the clause for reflexivity of equality,

p
x = x, can be placed in the input usable list, for almost never is the program permitted to apply
aramodulation into or from a variable; such permission would, with few exceptions, drown a program

f
h
in drawn conclusions, for unification would always succeed.) In keeping with an accurate account o
istory, I note that I conducted thirty experiments without using the set of support strategy before con-

-
i
ducting the thirty with its use, the latter being the basis of this article. To have done so is not in keep
ng with my usual approach of heavily relying on the set of support strategy, as anyone familiar with

s
e
my research can attest. The explanation (for my omission of the use of the set of support strategy) rest
ither with inadequate attention to detail or with a preoccupation with the problem under study.

t
a

Among the favorable comparisons, Theorem 2 provides relevant evidence, the theorem tha
sserts the deducibility of Moufang 3 from Moufang 2. In the first experiment (in which no attempt

l
1
was made to block the use of Moufang 1), without the set of support strategy, a 52-step proof of leve
8 was completed, requiring 1897 CPU-seconds. On the other hand, with the set of support strategy, a

f
w
55-step proof of level 16 was completed, only requiring 771 CPU-seconds. Why the shorter proo

ithout the strategy, yet requiring roughly 2.5 times as much CPU time? First, in the unsupported
s

f
proof, the first three steps are yielded by applying paramodulation to combinations of various axiom
or a loop (see Section 2 for the definition), and none of the parents of any of these steps is Moufang 2

e
p
or the negation of Moufang 3. Nevertheless, amusing enough, two of the three steps are found in th
roof obtained by using the set of support strategy with list(sos) containing only Moufang 2 and the

-
s
negation of Moufang 3. When the axioms of a theory are placed in list(sos), OTTER is given permis
ion to explore the underlying theory, seeking lemmas and such. To ensure that the members of

-
m
list(sos) are considered before other clauses for driving the program’s reasoning, the following com

and is included.

.set(inputisosifirst)

The second factor regarding the difference in CPU time and the difference in proof length rests

l
with the fact that, by placing Moufang 2 and the negation of Moufang 3 in list(sos) and the axioms in
ist(usable), the program is prevented from exploring the basic theory. Although the result will usually

,
w
be the inaccessibility to various lemmas, in general far fewer paths of inquiry are traversed. Indeed

ithout the use of the set of support strategy, to complete the proof, perhaps as many as 303,551
-

p
clauses were generated of which 1575 were retained. When the strategy was used, the proof was com
leted after generating perhaps as many as 289,428 clauses of which 1563 were retained. (Precision

y
a
regarding how many clauses were generated is lacking, for the run was not terminated immediatel
fter finding the first proof in either case.) More significant, to obtain a proof without the aid of the

-
t
strategy, 363 clauses were chosen as the focus of attention to drive the program’s reasoning. In con
rast, with the strategy, 340 clauses were chosen.

For a second example, still focusing on Theorem 2 (of the first circle), the fourth experiment also
e

r
shows the value of using the set of support strategy. Without the strategy, 1811 CPU-seconds wer
equired to obtain a proof; in contrast, with the strategy, 591 CPU-seconds were required. As noted, the

)
l
fourth experiment of each sequence of five relies on the use of the hot list strategy, where (the initial
ist(hot) contains the hypothesis of the theorem and no other clauses.

t
i

A third example is provided by staying with Theorem 2 but switching to the fifth experiment, tha
n which the (initial) hot list was expanded to include the axioms of a loop. Without the set of support

s
strategy, 171 CPU-seconds were required to produce the desired proof; with the strategy, only 19 CPU-
econds were required.

15

For additional evidence, the focus switches to Theorem 5, the theorem asserting the deducibility
e

t
of Moufang 2 from Moufang 3. This theorem is in an obvious sense the converse of Theorem 2, th
heorem that was just under scrutiny. In the context of the first of the five experiments, without the set

s
of support strategy, 1615 CPU-seconds were required to obtain a proof; with the strategy, 573 CPU-
econds were required. Perhaps unexpected in view of the decrease in CPU time, 2311 clauses were

2
retained in order to complete a proof without the strategy, in contrast to the requirement of retaining
351 with it. The additional CPU time is mainly accounted for by the need to choose as the focus of

o
attention 362 clauses when the strategy was not used, in contrast to choosing 331 clauses as the focus
f attention when the strategy was used. With the strategy, OTTER generated roughly 250,000 clauses

p
and retained 1344 to produce a proof. In contrast, without the set of support strategy, to complete a
roof, the program generated roughly 277,000 clauses of which 1309 were retained.

f
T

An example of proof lengthening by using the set of support strategy is found in the context o
heorem 2. Theorem 5 provides an example of proof shortening: In the context of Experiment 1,

c
without the strategy, the first completed proof has length 54 and level 17; with the strategy, the first
ompleted proof has length 47 and level 16. One might find it piquant to note that the shorter proof

r
p
was obtained without the use of the three lemmas used as the first three deduced steps in the longe
roof, lemmas obtained by applying paramodulation to pairs of axioms for a loop. In other words, the

O
use of three lemmas from the theory of loops (ignoring the property of being Moufang) did not aid

TTER in finding a shorter proof.

The fourth and, to some extent, the fifth experiments (focusing on Theorem 5) also provide evi-

e
dence of the value (in the context of efficiency) of using the set of support strategy. In the fourth
xperiment, without the strategy, 2420 CPU-seconds were required to produce a proof; with its use, 752

e
r
CPU-seconds were required. The first of the two cited proofs has length 34 and level 11; despite th
eduction in the required CPU time, the second has length 66 and level 17. In the fifth experiment (in

e
a
which an extensive hot list was used), 256 CPU-seconds were required to produce a proof without th
id of the set of support strategy; with its aid, 205 CPU-seconds were required. Where the first of the

two cited proofs has length 35 and level 16, the second has length 60 and level 22.

The story would hardly be complete without an example of an increase in CPU time when the set

m
of support strategy is used. For that example, Theorem 1 suffices, in the context of the fourth experi-

ent. As a reminder, the theorem asserts the deductibility of Moufang 2 from Moufang 1. The
-

t
experiment’s objective is to find a proof that is pure with respect to Moufang 3, using the hot list stra
egy with but one element in list(hot), namely, Moufang 1. Without the set of support strategy, 364

-
s
CPU-seconds is enough to yield a 68-step proof of level 17. However, although this strategy is con
idered by many researchers in automated reasoning to be the most powerful strategy for restricting a

f
s
program’s reasoning, 589 CPU-seconds were required to complete a proof with the use of the set o
upport strategy. The proof has length 58 and level 19.

.

R

The cited data supports my usual recommendation, the following

ecommendation. In the vast majority of cases, the power of a program’s attack is significantly
t

e
increased if one uses the set of support strategy. Without additional knowledge, ordinarily, the mos
ffective choice for the initial set of support is the union of the special hypothesis and the negation (or

f
t
denial) of the conclusion. In the presence of a set S of axioms, the special hypothesis of a theorem o
he form P implies Q is P. For example, in ring theory, the additional hypothesis that the cube of x = x

w
(for every x) is sufficient to prove commutativity. If the given recommendation is followed regarding

hich input clauses are to be placed in list(sos), then the elements of the (initial) set of support are the

6

clauses corresponding to xxx = x and the assumed falseness of commutativity.

.2. The Resonance Strategy

In addition to the set of support strategy and the hot list strategy, OTTER offers other strategies

o
that can sharply increase program performance, for example, the resonance strategy [Wos95b]. The
bjective of the resonance strategy is to enable the researcher to suggest equations or formulas

c
expressed as unit clauses, called resonators, each of whose symbol pattern (all of whose variables are
onsidered indistinguishable) is conjectured to merit special attention for directing a program’s reason-

ing. To each resonator, one assigns a value reflecting its relative significance; the smaller the value, the

16

greater the significance. My notion in formulating this strategy was that the steps of a known proof of

f
one theorem might indeed be effective if used to direct an automated reasoning program in its search
or a proof of a related theorem. Resonators are not lemmas, do not have true or false values. Instead,

a
any equation or formula that matches an included resonator is given the value of the matching resonator
nd is, therefore, given a corresponding preference for being chosen as the focus of attention to direct

t
the program’s reasoning. A clause matches a resonator if and only if, when all variables in both are
reated as the same variable, the two are identical.

After completing the research on which this article is mainly based, it seemed natural to experi-

i
ment briefly with the resonance strategy to see what effect its use would have, leaving a more thorough
nvestigation either to a future article or to other researchers. My notion was to choose one proof from

)
d
among the proofs produced by the thirty experiments featured in this article, and use the (positive
educed steps of that proof as resonators. Equations or formulas containing logical not or containing

logical or are never used as resonators. What criteria would be reasonable for choosing the key proof?

Although, other than aesthetics, no persuasive justification can be given, three criteria taken
a

s
together appealed to me. First, narrow the choice to one from among those six experiments in which
ubstantial hot list was used, the fifth of each sequence of five for the six theorems. Intuitively, if the

,
a
use of such a hot list could sharply reduce the CPU time required to obtain a proof—which it often did
s reported here—then perhaps the proofs thus obtained offered some special property. Second, narrow

e
i
the list further by focusing on experiments that yielded a proof in less than 30 CPU-seconds. Mor
ntuition: perhaps such a degree of effectiveness would be inherited. Third, from the narrowed list,

fi
choose the experiment that reduced the required CPU time the most. Applying the criteria selects the

fth experiment focusing on Theorem 2, that in which Moufang 2 as hypothesis is used to deduce
Moufang 3 while blocking the participation of Moufang 1.

From the first proof yielded by the fifth experiment concerned with Theorem 2, forty-nine resona-

m
tors were chosen, the positive deduced steps. Each was assigned a pickigiven weight of 2 (to give any

atching clause that is retained a high priority for being chosen as the focus of attention), and a

e
weightilist(pickiandipurge) was used. The same set of support was used. In each of the following
xperiments, the only change from its original form was the addition of the use of the resonance stra-

tegy (as described).

The third criterion for choosing the resonators to be used suggested which of the thirty experi-

t
ments to revisit first, namely, the first experiment focusing on Theorem 2. From the viewpoint of CPU
ime, the target was 771 CPU-seconds, the time required to obtain a proof on the first visit to the exper-

-
s
iment under consideration. How satisfying: With the addition of the resonance strategy, only 12 CPU
econds (approximately) were required. Where the first visit completed a proof upon retention of clause

r
t
(2783), the second visit completed a proof upon retention of clause (895). As for the explanation fo
he dramatic reduction in CPU time, the first visit required choosing 340 clauses as the focus of atten-

-
p
tion to drive the reasoning; in contrast, the second visit required but 63. When the proof was com
leted in the first visit, 29,000 clauses had been generated of which 1563 were retained. In contrast, in

the revisiting, 13,000 were generated of which 519 were retained upon completion of the proof.

Closer inspection of the two runs revealed additional riches. Where the proof obtained in the first

o
visit has length 55 and level 16, the proof obtained in the second visit has length 40 and level 12. As
ne can see from the data, the use of 40 clauses (for the proof) out of 519 is more impressive than

r
p
using 55 out of 1563. Of the 40 deduced steps in the shorter proof, 20 were not present in the longe

roof.

Immediately, one might wonder about the direct role of the resonators. In particular, how many
f

t
of the 40 steps are among the 49 resonators? The answer is 31. In that resonators are treated as i
heir variables are indistinguishable, the natural question to answer next concerns how many of the 40

.
T
deduced steps match (in the sense discussed earlier in the context of the resonance strategy) a resonator

hat question can easily be answered by taking the 49 resonators and making all of their variables the
.

N
variable x, then applying the same actions to the 40 deduced steps, and finally making a comparison

oting that 31 of the 40 steps are among the resonators, I fully expected that almost all of the 40 steps

b
would match a resonator (in the sense used here). I was wrong: Indeed, the number increased merely
y 1, from 31 to 32.

17

Among other conclusions, one could envision having a strong preference for using the hot list
t

1
strategy, which, therefore, dictated running Experiment 5 for Theorem 2 first before running Experimen
, and then (out of curiosity, at least) using the corresponding resonators to run Experiment 1. Unfor-

)
w
tunately, such a sequence of experiments (when compared with the sequence presented in this article

ould have hidden the value of the hot list strategy. Still, all in all, the cited results hint at the power
offered by combining the set of support strategy, the hot list strategy, and the resonance strategy.

The impressive (to me) reduction in CPU time virtually demanded some additional experimenta-
-

v
tion. Of the other twenty-nine experiments that might be revisited, clearly the most charming and pro
ocative focused on Theorem 5, for the following reason. Theorem 5 is the converse of Theorem 2,

i
interchanging the hypothesis and conclusion of the latter. Therefore, to expect any significant decrease
n CPU time to obtain a proof of Theorem 5 by using resonators from a proof of Theorem 2 is indeed

f
fi
counterintuitive. To provide the simplest comparison, the obvious choice from among the sequence o

ve experiments to revisit was the first of the five.

Where in the first visiting 573 CPU-seconds were required to obtain a proof of Theorem 5, in the
e

r
revisiting (with the use of the 49 resonators taken from a proof of Theorem 2) 238 CPU-seconds wer
equired. In the first of the two runs, the completed proof has length 47 and level 16; in the second, the

.
R
proof has length 33 and level 15. Of the 33 deduced steps, 6 are not present in the 47-step proof

egarding the direct role of the resonance strategy, 18 of the 33 steps are not identical to one of the 49
-

p
resonators. In the context of resonator matching, 15 steps do not match a resonator, which (when com
ared with the preceding experiment in which 8 do not match) in part explains why the decrease in

required CPU time was less dramatic.

From among the remaining twenty-eight experiments meriting revisiting, I chose but three for
-

fi
testing the power of the resonance strategy, keying on the same forty-nine resonators; the other twenty

ve must wait for future research by me or by another researcher. The first of the three focused on
t

t
Theorem 4, Experiment 1. (My emphasis on the first of the sequence of five experiments throughou
his subsection is explained by the conjecture that the most interesting results would be found in that

r
context.) The first visit to that experiment yielded a 24-step proof of level 12 in 193 CPU-seconds, with
etention of clause (1980). The revisiting (with the resonance strategy) produced a proof of length 32

t
f
and level 12 in 14 CPU-seconds, with retention of clause (917). Of the 32 deduced steps, 19 are no
ound among the deduced steps of the proof produced in the first visiting. Only 6 of the 32 are not

i
identical to one of the 49 resonators, and only 5 do not match one of the resonators (in the sense used
n the context of the resonance strategy in which all variables are treated as indistinguishable). Again

)
r
one finds a rather impressive decrease in CPU time in the context of the first visit and the (second
evisiting, and also finds that a large fraction of the deduced steps of the proof produced by the revisit-

ing match one of the included resonators. One could hardly call such correlations merely coincidental.

The second of the three experiments focused on Theorem 1, (in effect) the converse of Theorem
p

p
4. Again, the first of the sequence of five experiments was the target. In 125 CPU-seconds, a 73-ste
roof of level 20 was produced, with retention of clause (1876). With the resonance strategy, only 6

e
(
CPU-seconds were required, completing a proof of length 28 and level 12, with retention of claus
817). Of the 28 deduced steps, 11 are not present in the much longer proof. Regarding the role of the

a
resonance strategy, 10 of the 28 steps are not identical to any of the 49 resonators, and 6 do not match
ny of the resonators.

For the final experiment (of the three relying on the 49 resonators), I chose a so-to-speak self-

w
referential experiment. Specifically, what would occur in the contexts of CPU time and proof length

hen the 49 resonators taken from the proof of Theorem 2, Experiment 5, are used to influence the
e

C
search for a proof of that same theorem when revisiting the same experiment? The answers are that th

PU time increased from 19 CPU-seconds to 25 CPU-seconds, but the proof length decreased from 50
f

c
to 41; the level decreased from 17 to 15 also. In the revisiting, the proof completed upon retention o
lause (1834), after 56 clauses had been chosen as the focus of attention to drive the reasoning. In the

e
f
first visit, the proof completed upon retention of clause (1294), after 77 clauses had been chosen as th
ocus of attention. Where did the extra CPU time go, in view of finding a shorter proof and focusing

y
d
on fewer clauses to drive the program’s reasoning? The additional 6 CPU-seconds is almost equall
ivided with the weighing of clauses—which is to be expected in view of the inclusion of 49 weight

templates as opposed to none—and the use of the hot list strategy, which I cannot explain.

18

The preceding data strongly supports the thesis that, through the use of the resonance strategy,

t
deduced steps of the proof of one theorem can be of substantial value in seeking the proof of a related
heorem. However, as the following data shows—and as one would almost certainly predict—the

.
W
choice of resonators sometimes aids the program not at all, or even interferes with its performance

hen, for example, one takes as resonators the positive steps of the first proof found for Theorem 1 in
e

p
Experiment 5, of which there are 27, and uses them to seek a proof of Theorem 2, Experiment 1, th
erformance of the program is harmed. Indeed, without the resonators, OTTER completes a proof in

e
p
771 CPU-seconds; with the 27 resonators, the CPU time increases to 1404 CPU-seconds. Also, th
roof length increases, from 55 to 64, and the level increases, from 16 to 18. But the situation often is

t
confusing and often lacks consistency, as the following shows. When the same 27 resonators are used
o seek a proof of Theorem 1, Experiment 1, the CPU time decreases to 4 CPU-seconds from 125, the

6

proof length decreases to 33 from 73, and the level decreases to 15 from 20.

.3. The Dynamic Hot List Strategy

Closely related to the hot list strategy, which plays a key role in obtaining the results featured in
t

i
this article, is the dynamic hot list strategy. Although I did not use the latter strategy, its use migh
ndeed prove valuable in a study of this type and might provide an interesting research topic.

a
r

McCune, recognizing the value of enabling a program to adjoin elements to the hot list during
un, extended the hot list strategy to the dynamic hot list strategy. The same heat parameter governs

t
the degree to which the hot list is revisited when a new clause is retained. On the other hand, unlike
he hot list strategy, a second input parameter affects the dynamic hot list strategy, namely, the

w
dynamiciheatiweight. The dynamiciheatiweight assignment places an upper bound on the pickigiven

eight of clauses that can be adjoined to the hot list during the run.

e
w

For example, one might wish the program to add to the hot list during the run any retained claus
hose pickigiven weight (whether determined by a weight template or by symbol count) is less than or

equal to 4. In that event, one includes the following command.

assign(dynamiciheatiweight,4).

A far more intriguing and intricate example concerns the case in which the researcher wishes the

i
program to adjoin to the hot list during the run certain clauses if they are deduced and retained. As an
llustration, one might wish the hot list to contain the clause equivalent of the property of commuta-

.
F
tivity of product if the corresponding equation is deduced and retained. The following actions suffice

irst, one begins by relying on a strategy that combines the power of the resonance strategy with that of

t
the hot list strategy (in its dynamic incarnation); see [Wos95a]. Second, one assigns, say, the value 2 to
he dynamiciheatiweight (by using the just-cited assign command with 4 replaced by 2). Finally, one

includes the following.

weightilist(pickiandipurge).
.

e
weight(EQ(prod(x,y),prod(y,x)),2)
ndiofilist.

Of course, one must assign to the maxiweight a value greater than or equal to 2 to permit the program
-

i
to retain the clause encoding of commutativity of product, if that clause is deduced. If the cited equal
ty clause is deduced, it will be assigned a weight of 2, of course assuming that no earlier weight tem-

n
plate applies and that the clause is not demodulated. The clause will be retained if subsumption does
ot purge it. Because of having a weight of 2, which is also the value assigned to the

6

dynamiciheatiweight parameter, the clause will be adjoined to the hot list during the run—as desired.

.4. An Alternative Strategic Approach

For studying Moufang loops and other areas in which equality plays a major role, one other stra-
t

g
tegy and one other approach merit mention. The strategy is the tail strategy [Wos96], a strategy tha
ives preference to equations whose second argument is short. To instruct OTTER to use the tail stra-

tegy, one includes the following command.

weight(EQ($(1),$(2)),1).

19

.The command can also be expressed in the following manner

weight(($(1) = $(2)),1).

I found this strategy, formulated by McCune when he was studying equivalential calculus [Wos90], use-
ful in attacking problems from Robbins algebra and other areas.

Regarding a sharply different alternative than used in this article, by including the following com-
mand, one can rely on a Knuth-Bendix approach.

set(knuthibendix).

By including the cited command, the program is instructed to continually attempt to make all positive
-

i
equalities into demodulators (rewrite rules) and, more generally, to rely (as much as possible) on seek
ng a complete set of reductions. Studies focusing on various aspects of group theory, for example,

u
have profited from using Knuth-Bendix; see [McCune92] and [Wos93a]. Unfortunately, too often, the
se of this approach consumes an inordinate amount of CPU time in demodulation. Therefore, a most

a
attractive (to me) but difficult research problem to attack concerns some compromise between full reli-
nce on Knuth-Bendix and full reliance on paramodulation (as shown in the included input file).

7. Proof Anomalies and Proof Conversion

The oddities and anomalies that one finds in proofs can contain clues to means for increasing pro-
.

F
gram performance. Three anomalies are cited here without any suggestion regarding their significance

irst, the replacement of a step resulting from reasoning backward by one or more steps resulting from
.

I
reasoning forward often can require the use of paramodulation rather than the use of demodulation
ndeed, sometimes the backward reasoning step benefits by focusing on an equation that is free of vari-

-
i
ables, thus permitting demodulation to be used. When that part of the reasoning is replaced by reason
ng forward from the appropriate equations, often the program must focus on equations in which vari-

ables abound, thus requiring paramodulation, for two-way unification can be required.

Before turning to the second anomaly, an example of the preceding phenomenon is in order, an
f

f
example showing how a single step of backward reasoning can require as a replacement two steps o
orward reasoning. The example is taken from the replacement of steps resulting from reasoning back-

-
b
ward by steps resulting from reasoning forward in the context of Experiment 5 focusing on the deduci
ility of Moufang 3 from Moufang 1 (Theorem 6). Perhaps a thorough study of the example can show

-
w
how to proceed in obtaining forward proofs in a single run, rather than obtaining bidirectional or back

ard proofs that then are transformed into forward proofs. The first set of clauses is taken from that
part of the proof where reasoning backward occurs.

----> UNIT CONFLICT at 2.97 sec ----> 615 [binary,614.1,10.1] $ANS(m3).

2
10 [] x = x.
7 [copy,26,flip.1] ((a*b)*a)*c != a* (b* (a*c)) e $ANS(m3).

.
3
29,28 [paraiinto,24.1.1.1.2,19.1.1,demod,22] (x*y)*x = x* (y*x)
31,330 (heat=1) [paraiinto,316.1.1.2,4.1.1,flip.1] rs(rs(x,1),y) = x*y.

.
6
585,584 (heat=1) [paraiinto,573.1.1.1.2.1,6.1.1,demod,271,396,331,526,129] (x* (y*x))*z = x* (y* (x*z))

14 [paraifrom,330.1.2,27.1.2.2.2,demod,29,585,331] a* (b* (a*c))!= a* (b* (a*c)) e $ANS(m3).

n
f
To replace the cited negative equality, clause (614), the following two-step proof was used (based o
orward reasoning).

----> UNIT CONFLICT at 0.17 sec ----> 25 [binary,23.1,7.1] $ANS(m3).

-
Length of proof is 2. Level of proof is 2.
--------------- PROOF ----------------

3
2 [] (x*y)*x = x* (y*x).

[] (x* (y*x))*z = x* (y* (x*z)).

7
5 [] rs(rs(x,1),y) = x*y.

[] ((a*b)*a)*c != a* (b* (a*c)) e $ANS(m3).
.

2
17,16 [paraiinto,5.1.2,2.1.2] rs(rs(x,1),y*x) = (x*y)*x
3 [paraifrom,5.1.2,3.1.1.1,demod,17] ((x*y)*x)*z = x* (y* (x*z)).

sRegarding a possible template for the choice and precise placement of the various clauses OTTER use

20

to produce the needed steps of forward reasoning, see the example given at the close of this section,

t
just after the discussion of the third anomaly. However, note that one may be forced to modify the
emplate, for example, by commenting out dynamicidemod or by adding clauses to the input list of

demodulators or by taking some other (not necessarily) small action.

Regarding the second anomaly, when one closely examines a proof in which backward reasoning
-

i
occurs, where the goal is to discover the obstacle to completing a proof in which only forward reason
ng occurs, the following can be unearthed. The forward step merely requires the paramodulation from

y
c
a clause A into a clause B to yield a clause C, which, if nothing interferes, would complete a proof b
ontradiction by providing unit conflict with the negation of the conclusion or with the negation of the

p
conclusion with its two arguments interchanged. In such an event, one might theorize that the forward
roof could be obtained merely by placing in list(passive) both the negation of the conclusion and its

s
flip, with the two arguments interchanged. When I tried an experiment of the type under discussion, the
ought-after forward proof was not produced. Instead, I found that indeed paramodulation was applied

n
w
from A into B, but interference took place. Specifically, before unit conflict was detected, demodulatio

as applied to C, where the demodulators are a form of associativity (whose general and well-known
f

t
form does not hold in Moufang loops), followed by demodulation with B. To my surprise, the result o
he cited demodulation was a clause that was an instance of reflexivity of equality and was thus sub-

sumed by x = x which was present in list(usable).

For the third anomaly, which was discovered directly as a result of the just-cited experiment, one
t

r
might experience something like bewilderment by trying the following. One selects an experimen
eported in this article or one selects an experiment from one’s own research and revisits it with one

e
p
small modification, the removal of the clause x = x for reflexivity. I was motivated to do so by th
ossibility that a forward proof would be discovered in the absence of reflexivity and its power for sub-

w
sumption. My choice was to revisit one of the experiments featured in Section 6.2, the experiment in

hich forty-nine resonators were used in the study of proving Moufang 3 from Moufang 2, Experiment

s
5. Rather than rediscovering the 39-step proof that was found in the experiment, OTTER found a
horter proof, one of length 35. I do find such oddities piquant, disturbing, and, most of all, counterin-

tuitive.

At this point, I provide an example (as promised) of how steps resulting from reasoning backward
e

f
from the negation of the conclusion can be replaced by steps whose nature is forward reasoning. Th
ocus is on the proof of Theorem 2, Experiment 5. That proof contains one step resulting from reason-

O
ing backward from the flip of the negation of the theorem. The flip of an equality is produced by

TTER by simply interchanging the lefthand and righthand arguments. The following three clauses are
present in which != occurs, the third being a deduced clause.

25 [] a* (b* (a*c)) != ((a*b)*a)*c e $ANS(m3).
.

1
26 [copy,25,flip.1] ((a*b)*a)*c != a* (b* (a*c)) e $ANS(m3)

38 [paraiinto,26.1.1.1.1,57.1.2,demod,58,28] (a* (b*a))*c != a* (b* (a*c)) e $ANS(m3).

o
o
Clause (138) is used to complete the proof when considered with the following clause, clause (1294), t
btain unit conflict.

1294 (heat=1) [paraifrom,1281.1.1,3.1.1.1,demod,1087] (x* (y*x))*z = x* (y* (x*z)).

s
u
The object is to replace clause (138) with a clause resulting from reasoning forward, a clause that give
nit conflict when considered with the negation of Moufang 3 or with its flip, clauses (25) and (26),

respectively.

The first step of the procedure is intended to prevent reasoning backward. Therefore, clauses (25)

u
and (26) are placed in list(passive). Clauses in that list do not participate in the reasoning; they are
sed only to determine proof completion (by detecting unit conflict) and for forward subsumption. The

e
(
next move is designed to have the paramodulation involve clause (1294) rather than clause (138); claus
138) must not be derived. With clause (26) in this converting procedure in list(passive) and from the

e
(
facts that clause (57) was paramodulated into clause (26) and the result was demodulated with claus
58) and clause (28), two actions are taken. Clause (1294) is placed as the only clause in list(sos), and

(the following) clauses (27) and (57) are placed in list(usable), along with the clause for reflexivity.

58,57 (heat=1) [paraiinto,29.1.1,9.1.1,demod,20,22,flip.1] ls(x,1)*y = x*y.

21

.

A

28,27 [paraiinto,23.1.1.1.1,19.1.1,demod,20] (x*y)*x = x* (y*x)

pair of numbers, such as 58,57, says that clause (58) is a copy of clause (57), the former used as a
s

s
demodulator, and the latter used for paramodulation (in this case). Of course, all of the history i
tripped from the clauses when they are placed in the various input lists. Also, as is obvious, no need

k
h
exists for placing clauses (57) and (58) both in list(usable), for they are identical; a similar remar
olds for clauses (28) and (27). What is not obvious is that none of the cited clauses is placed in

t
b
list(demodulators), the reason being that I conjectured that demodulation with these clauses would no
e needed. (Sometimes, to find the needed forward steps, clauses may need to be inserted into the

input demodulator list.)

As for options, with a few exceptions, one can use those of the experiment that produced the
s

a
proof being converted to a forward proof. One can drop the use of the hot list strategy, and one i
dvised to avoid the use of set(processiinput), thus preventing any of the input clauses from being

demodulated.

What may surprise the researcher, as it did me, is the fact that clause (27) and clause (1294) were

8

enough to produce (by applying paramodulation) the desired clause to unit conflict with clause (26).

. Extending Purity to the Fourth Moufang Identity

To test the possible value and scope of a new methodology, a profitable approach is to find a
e

m
problem that was not in the set of problems that precipitated the study that led to formulating th

ethodology. This section features such a problem, brought to my attention by Ken Kunen. In particu-

i
lar, he notes that focusing on three equivalent Moufang identities is a historical accident, for a fourth
dentity [Fenyves69] (the following expressed in a notation acceptable to OTTER) is of equal interest;

the identity is the mirror image of Moufang 1.

% Axiom, Moufang 4:
.

W

x * ((y * z) * x) = (x * y) * (z * x)

hen Kunen brought this identity to my attention, he also suggested that, rather than seeking circles of
f

t
pure proofs, one might search for a set of pure proofs that, if found, shows that all possible orderings o
he four Moufang identities admit a corresponding circle of pure proofs. Twelve proofs are needed.

s
p

One could begin by seeking a proof that Moufang 1 implies Moufang 2 such that the proof i
ure with respect both to Moufang 3 and to Moufang 4, in contrast to requiring (as was the case earlier

f
in this article) purity with respect to Moufang 3 alone. Almost immediately upon learning of this
ourth identity, I applied the methodology used in this article to searching for the desired twelve proofs.

Here I give the results and briefly detail some of the highlights.

Rather than a sequence of experiments, my choice was to attempt to go to the heart of the matter,

i
in particular, by focusing on the fifth experiment. After all, the approach on which the fifth experiment
s based had proved the most powerful, when compared with the other four elements of the sequence of

M
five. My plan was simply to take the corresponding input file for attacking, say, Moufang 1 implies

oufang 2 and merely add demodulators to block the use of Moufang 4. For a second illustration, for
r

E
the sought-after proof of Moufang 1 from Moufang 4, the plan called for taking the input file (fo

xperiment 5) that includes, say, Moufang 3 as hypothesis and the negation of Moufang 1 (as the denial

f
of the sought-after conclusion) and replacing Moufang 3 with Moufang 4 and adding two demodulators
or blocking the use of Moufang 3.

In most respects, the plan worked beautifully. Indeed, ten of the twelve proofs were yielded quite

M
readily. However, the proof that Moufang 2 implies Moufang 1 that is pure with respect to both

oufang 3 and Moufang 4 and the proof that Moufang 3 implies Moufang 1 that is pure with respect to
e

a
both Moufang 2 and Moufang 4 gave trouble. The culprits had to be the two demodulators that wer
dded to block the use (in a proof) of Moufang 4, for no other change was made from the correspond-

t
c
ing two experiments that had succeeded (as discussed earlier in this article). One of culprits in fac
aused OTTER to deduce -$T, where $T denotes true; hence, the empty clause was deduced, where it

was not wanted.

In order to circumvent this unfortunate occurrence, $T was replaced throughout the input file by
the constant junk, and a weightilist was included containing one template, the following.

22

T

weight(junk,1000).

he idea is to demodulate any unwanted clause to the constant junk (rather than to $T), and then purge

w
any clause containing junk. Therefore, weightilist(purgeigen) was used. A smaller value than 1000

ould have sufficed, as long as the value exceeded the value assigned to the maxiweight.

n
p

The modification succeeded, and the final two proofs (of the desired twelve) were completed. I
oint of fact, many of the runs yielded two proofs of the sought-after result. Measured in CPU time,

t
the most difficult to obtain required approximately 1084 CPU-seconds (on a SPARCstation-10). The
heorem was that of proving Moufang 1 from Moufang 2, and it was the second proof that required the

f
time. That proof was sought because its use made easier the task of converting the backward-reasoning
raction of a bidirectional proof into a forward proof; see Section 7 for the approach. Its length is 48,

i
and its level is 17. Of the set of proofs that were produced, the longest consists of 83 deduced steps;
ts level is 23; and the theorem is that of deducing Moufang 2 from Moufang 1, the second proof. On

the other hand, some proofs were produced almost immediately, having length 2 and level 2.

Summarizing, the research featured in this article suggests that use of the hot list strategy is most

u
effective for this type of problem. Also, the use of demodulation to prevent the participation of
nwanted equations succeeds, although in a few cases its use is supplemented with the use of weight-

t
ing. Finally, motivated by Kunen’s suggestion, I applied the methodology for seeking pure proofs to
he ensemble of the four Moufang identities, not only yielding their equivalence, but also yielding the

e
o
desired twelve pure proofs. As a corollary, all orderings of the four Moufang identities admit a circl
f pure proofs, for example, the ordering 1, 3, 2, 4, 1 and the ordering 1, 4, 2, 3, 1.

s
c

To put totally to rest any notion that, with enough effort, CPU time, and ingenuity, pure proof
an always be found regardless of the ordering, a brief review of the study of the thirteen shortest sin-

-
c
gle axioms for equivalential calculus suffices. Were the parallel situation to hold for equivalential cal
ulus, then one could select any two of the thirteen shortest single axioms and prove that the first

s
implies the second with a proof that is pure with respect to the other eleven. However, quite the oppo-
ite is true. Specifically, although one can of course select any of the thirteen and prove any of the

f
p
remaining twelve—for each by itself is a complete axiom system—for many pairs of formulas, purity o
roof is often unobtainable, regardless of the effort, CPU time, and ingenuity involved. For a striking

-
e
example of an impenetrable barrier, note that the first application of condensed detachment (the infer
nce rule often used to study this area of logic) to the axiom known as UM with itself yields that

a
known as XGF. Therefore, with UM as hypothesis, any sequence of deduced steps must contain XGF
s the first step, in turn implying that only one pure proof (with respect to the other shortest single

axioms) is possible when condensed detachment is the inference rule in use, namely, that of XGF.

Because of the use of demodulation (which captures instances of demodulators), and because of

s
(where needed) application of the technique of Section 7 for replacing steps of backward reasoning with
teps of forward reasoning, all twelve proofs are pure even with respect to instances of the undesired

-
p
equations, and none of the proofs contains hidden use of an unwanted equation; see the syntactic exam
le given in Section 3.1 regarding a backward proof. In other words, among other properties, none of

b
the proofs relies upon as an intermediate step (resulting from demodulation) the use of an equation to
e avoided, which is where the outside-in demodulation comes into play. The presence of instance pur-

ity for the proofs, although not an objective, adds nicely to the result.

As a final note for the curious, in the context of quasigroups rather than loops, the four Moufang
e

a
identities are provably equivalent even when the two axioms regarding the identity element 1 ar
bsent. With small modifications, the methodology presented here found a circle of pure proofs for the

.
T
four identities, with the ordering 1, 2, 4, 3. The proofs range in length from 32 to 391 deduced steps

heir difficulty, measured in CPU time, ranges from 6 CPU-seconds to 27,175 CPU-seconds; the latter

o
time is for the theorem that asserts the deducibility of Moufang 1 from Moufang 3. Of note is the use
f the resonance strategy to obtain the cited proof requiring 27,175 CPU-seconds. The resonators are

i
those proof steps that do not mention the identity element 1 and that are from the proof that Moufang 3
mplies Moufang 1 when the two axioms for the identity element 1 are present. Without the resonance

s
t
strategy, even after more than 71,000 CPU-seconds, no proof was obtained. These two experiment
aken together give additional evidence of the value of using for resonators proof steps from a related

etheorem. Quite a challenge for automated reasoning is offered by the theorem that asserts th

23

deducibility of Moufang 3 from Moufang 2, where the two axioms for the identity 1 are absent, and
a

p
where purity with respect to Moufang 1 and Moufang 4 is required; indeed, I failed to find such
roof. A similar situation is presented when Moufang 3 is the hypothesis and Moufang 2 is the conclu-

9

sion.

. Review, Conclusions, and Future Research

Featured in this article is the problem of finding, if such exist, three pure proofs that together
t

M
prove the equivalence of the (first) three identities known as the Moufang identities. A proof tha

oufang 1 implies Moufang 2 is pure with respect to Moufang 3 if and only if Moufang 3 is not
present in the proof, explicitly or implicitly.

Although Bruck supplied proofs of the equivalence of the (first) three identities [Bruck71], an
e

e
open question remained, one that (in effect) is concerned with the following flaw in the proofs. Th
quivalence was established by showing that Moufang 1 implies Moufang 2, 2 implies 3—and here is

-
t
the flaw—rather than showing directly that 3 implies 1, so-to-speak two proofs were presented respec
ively showing that 3 implies 2 and that 2 implies 1. Aesthetically, in mathematics and in logic, when

e
p
asked to establish the equivalence of a set of properties or definitions, one prefers a circle of pur
roofs (as formally defined in Section 2). To answer the implied open question (focusing on the first

o
three Moufang identities), one must order the three identities and then supply three proofs that, for the
rdering, are each pure. For example, the ordering might be 1, 3, 2, which would then ask for a proof

,
a
that 1 implies 3 that is pure with respect to 2, a proof that 3 implies 2 that is pure with respect to 1
nd a proof that 2 implies 1 that is pure with respect to 3.

.
P

This article shows that both orderings admit a circle of pure proofs, namely, 1, 2, 3, and 1, 3, 2
erhaps equally important, the method for obtaining the required proofs with substantial assistance from

-
d
McCune’s program OTTER is detailed. Access to the details enables one to verify the results indepen
ently and to extend the studies on which this article is based. In addition, this information provides

t
some insight for researchers who might wish to use OTTER for attacking questions totally unrelated to
hose featured here. To further that possibility, the Appendix offers a sample input file and four proofs

.
I
(for the circle of pure proofs for the ordering 1, 2, 3, 4 of all four Moufang identities); see Section 8
n Section 8, the method is successfully applied to the study of a fourth Moufang identity [Fenyves69]

n
(brought to my attention by Ken Kunen) in the context of obtaining twelve pure proofs, the proofs
eeded to establish that all orderings admit a circle of pure proofs. The method, through the use of

e
demodulation outside-in, produces a bonus: The proofs are free of the use of instances of the unwanted
quations, even in the context of the intermediate steps resulting from demodulation. Nor do the proofs

p
contain the hidden use of an unwanted equation (as discussed in Section 3.1 where the focus is on
roofs featuring reasoning backward from the denial of the theorem under study). That aspect was

b
verified by finding steps resulting from forward reasoning to replace any that resulted from reasoning
ackward. I thus continue the practice of acquainting researchers with the use of OTTER and its

options, showing how and why to make various choices.

The three strategies that played the key role are the hot list strategy (see Section 5), the set of
t

o
support strategy (see Section 5 and Section 6.1), and McCune’s ratio strategy (see Section 5). The firs
f these three strategies derives its power from rearranging the order in which conclusions are drawn,

l
enabling the program to draw conclusions far sooner than it would otherwise. Indeed, use of the hot
ist strategy permits an automated reasoning program to ‘‘look ahead’’. The second derives its power

p
from restricting the reasoning, thus avoiding numerous paths of inquiry. The third strategy derives its
ower from combining a search based on conclusion complexity with one based on breadth first.

d
t

Throughout this article, data is sprinkled regarding CPU time, clause retention, proof length, an
he like. As one quickly discovers, anomalies occur among the data. Research that culminates in

g
p
explaining the anomalies might be quite useful in the fuller context of using an automated reasonin
rogram to solve problems in mathematics and in logic. Such research might also shed needed light on

r
o
the topic of option selection. Indeed, research that succeeds in producing some effective metarules fo
ption choosing would clearly be significant.

Among the features of OTTER covered here, features that can be put to good use in a variety of
contexts, are techniques for blocking the use of unwanted equations or formulas and diverse strategies

24

for increasing the effectiveness of an automated reasoning program. Of the two techniques for prevent-

u
ing the participation of an unwanted equation or formula, weighting and demodulation, the latter can be
sed to guarantee one’s objective, where the former (though useful) admits loopholes. The picture and

subtleties are discussed in some detail in Section 3.

In the context of future research, Section 6.2 focuses on the resonance strategy, a strategy that

t
encourages the user of the program to supply symbol patterns (in the input) that can sharply influence
he preference given to retained conclusions. The preference or priority assigned to retained conclu-

r
sions directs the program in its choice of where next to focus its attention. Also of interest for future
esearch is the dynamic hot list strategy (see Section 6.3), formulated by McCune as an extension of the

e
h
hot list strategy. This strategy enables an automated reasoning program to adjoin new clauses to th
ot list during the run.

Although the question central to this article was answered by finding two circles of pure proofs
,

m
(for the first three Moufang identities), many of the proofs lacked one aesthetic property. In particular

any of the proofs (obtained in the primary runs) contained a step resulting from reasoning backward
.

T
from the negation of the conclusion to be proved, and, occasionally, two such steps were present

herefore, to satisfy the aesthetic constraint of having access to proofs all of whose steps result from
h

t
forward reasoning, additional runs were needed; see Section 7. An interesting and challenging researc
opic focuses on finding some means to obtain in a single run the desired forward proof, for each of the

s
a
six theorems that were featured in this article. Also meriting research is the study of ‘‘short’’ proof
nd the study of ‘‘elegant’’ proofs; the two properties are often tightly coupled, but not necessarily.

The strategies discussed in this article have proved useful for research of the type just cited.

The data presented here support various conclusions. First, quite likely, the question central to
l

c
this article would still be open were it not for McCune’s program OTTER. Second, of a more genera
haracter, the data given throughout this article provides substantial evidence of the power of the hot

w
list strategy, of the power of the set of support strategy, and of the virtual requirement of using strategy

hen attacking deep questions and hard problems with such a program. Indeed, a glance at the CPU
s

m
times with and without the strategies is most encouraging regarding the value of strategy. No longer i

emory the obstacle to effective research with the assistance of a reasoning program; CPU time is the

A

dominant concern.

ppendix

To aid and stimulate research, I present here a sample input file (for use with McCune’s program
r

M
OTTER) and the four proofs of which the first circle consists, for the ordering 1, 2, 3, 4 of the fou

oufang identities. The following sample input file provides a beginning. When a line contains a
-

m
‘‘%’’, the characters from the first ‘‘%’’ to the end of the line are treated by the program as a com

ent. In the proofs, two copies of an input clause denotes its presence in two input lists, one of which
e

i
is the hot list. Also, as an example, [paraiinto,24.1.1.1.2,19.1.1,demod,22] says that clause (24) is th
nto clause, clause (19) is the from clause, and clause (22) is used as a demodulator. The notation

t
a
24.1.1.1.2 says that the term of interest is the second subargument of the first subargument of the firs
rgument of the first literal. When OTTER lists in a proof a pair of numbers, such as 28,27, to desig-

t
nate the clause number of a retained clause, the clause is used both as a demodulator and as a parent in
he application of some inference rule; the higher number designates the use as a demodulator. Finally,

i
the proof length cited by OTTER can be greater than the actual length; for example, OTTER counts for
ts computation of length clauses obtained by ‘‘flip’’, interchanging the two arguments of an equality.

Sample Input File

t
%
op(400,xfx, *). % make all association explici

set(urires).
% The following two commands prevent paramodulation involving a nonunit clause.

s
set(paraiintoiunitsionly).
et(paraifromiunitsionly).

25

.
s
set(paraiinto). % Paramodulate into the chosen clause
et(paraifrom). % Paramodulate from the chosen clause.

.
s
set(orderieq). % Flip arguments if righthand heavier than lefthand
et(dynamicidemod). % Adjoin demodulators during the run.

.
s
% set(backidemod). % Apply new demodulators to retained clauses
et(lrpo). % Activate the LRPO ordering for orienting equalities and deciding dynamic demodulators.

s
set(demodioutiin). % Demodulate from outside to inside.
et(processiinput). Treat input clauses as if they were generated by applying an inference rule.

l
clear(printikept). % Do not enter in the output file clauses as they are retained.
ex([$T,a,b,c,d,e,1,i*i,rs(i,i),ls(i,i),=(i,i)]). % Order the symbols for demodulation.

a
assign(maxiweight,20). % Limit the complexity of retained clauses.
ssign(maximem,20000). % Limit the memory use to 20 megabytes.

.
a
assign(pickigiveniratio,3). % Three clauses are chosen by weight and one by breadth first, repeatedly
ssign(maxiproofs,2). % Limit the number of completed proofs to 2.

.
a
assign(report,90). % Every 90 CPU seconds, write a statistical summary into the output file
ssign(heat,1). % Limits the recursion through the hot list.

.
%
% The following list can be used to purge unwanted equations of various types

weightilist(purgeigen).
.

%
% Blocking use of Moufang 1

weight(((x * y) * (z * x) = (x * (y * z)) * x),1000).

%
% Blocking use of Moufang 2.

weight(((x * y) * z) * y = x * (y * (z * y)),1000).

%
% Blocking use of Moufang 3.

weight((x * (y * (x * z)) = ((x * y) * x) * z),1000).

%

% endiofilist.

Used to complete applications of inference rules.

x
list(usable).

= x.

x * rs(x,y) = y. % right solvable
rs(x, x * y) = y. % right solution is unique (implies left cancellation)

l
ls(x,y) * y = x. % left solvable
s(x * y , y) = x. % left solution is unique (implies right cancellation)

1
% identity:

* x = x .

%

x * 1 = x.

left cancellation
.

%
% x*y != u e x*z != u e y = z

right cancellation
.

e
% y*x != u e z*x != u e y = z
ndiofilist.

% Used to initiate applications of inference rules.

%
list(sos).

A consequence of left and right surjective:

%
% It’s all that is needed here.

x * R(x) = 1.

%
% L(x) * x = 1.

The following negate left and right inverse.

%
% d * y != 1.

y * e != 1.

26

p

%

% actually, L and R turn out to be the same in a Moufang loo

Axiom, Moufang 1:
.

%
% (x * y) * (z * x) = (x * (y * z)) * x

Axiom, Moufang 2:
.

%
((x * y) * z) * y = x * (y * (z * y))

Axiom, Moufang 3:
.

%
% x * (y * (x * z)) = ((x * y) * x) * z

Axiom, Moufang 4:
% x * ((y * z) * x) = (x * y) * (z * x).

%
% Negation Axiom, Moufang 1:

((a * b) * (c * a) != (a * (b * c)) * a) e $ANS(m1).

%
% Negation Axiom, Moufang 2:

((a * b) * c) * b != a * (b * (c * b)) e $ANS(m2).

a
% Negation Axiom, Moufang 3:

* (b * (a * c)) != ((a * b) * a) * c e $ANS(m3).

%
% Negation Axiom, Moufang 4:

a * ((b * c) * a) != (a * b) * (c * a) e $ANS(m4).

%

endiofilist.

Used mainly to detect proof completion and to monitor progress.

%
% list(passive).

((a * b) * (c * a) != (a * (b * c)) * a) e $ANS(m1).

%
% ((a * b) * c) * b != a * (b * (c * b)) e $ANS(m2).

a * (b * (a * c)) != ((a * b) * a) * c e $ANS(m3).

%
% a * ((b * c) * a) != (a * b) * (c * a) e $ANS(m4).

endiofilist.

% The following list can be used to purge unwanted equations of various types.

%
list(demodulators).

Blocking use of Moufang 1.
.

E
EQ(((x * y) * (z * x) = (x * (y * z)) * x), $T)

Q(((x * (y * z)) * x = ((x * y) * (z * x))), $T).

%
% Blocking use of Moufang 2.

EQ((((x * y) * z) * y = x * (y * (z * y))), $T).
.

%
% EQ(((x * (y * (z * y))) = (((x * y) * z) * y)), $T)

Blocking use of Moufang 3.
.

%
% EQ((x * (y * (x * z)) = ((x * y) * x) * z), $T)

EQ((((x * y) * x) * z = x * (y * (x * z))), $T).
% Blocking use of Moufang 4.
EQ((x * ((y * z) * x) = (x * y) * (z * x)), $T).

.
e
EQ(((x * y) * (z * x) = x * ((y * z) * x)), $T)
ndiofilist.

% Used for the hot list strategy.

%
list(hot).

Axiom, Moufang 1:
.

%
% (x * y) * (z * x) = (x * (y * z)) * x

Axiom, Moufang 2:
.

%
((x * y) * z) * y = x * (y * (z * y))

Axiom, Moufang 3:
.

%
% x * (y * (x * z)) = ((x * y) * x) * z

Axiom, Moufang 4:
% x * ((y * z) * x) = (x * y) * (z * x).
x * rs(x,y) = y. % right solvable

27

)
l
rs(x, x * y) = y. % right solution is unique (implies left cancellation
s(x,y) * y = x. % left solvable

ls(x * y , y) = x. % left solution is unique (implies right cancellation)

1
% identity:

* x = x .

e
x * 1 = x.
ndiofilist.

Four Proofs in Order for the First Circle for the Four Moufang Identities

-
Moufang 1 implies Moufang 2
---- Otter 3.0.4, August 1995 -----

The job was started by wos on merlin.mcs.anl.gov, Thu Aug 31 21:36:46 1995

-

The command was "otter304".

---> UNIT CONFLICT at 3.96 sec ----> 616 [binary,615.1,12.1] $ANS(m2).

-
Length of proof is 29. Level of proof is 14.
--------------- PROOF ----------------

7
6 [] x*rs(x,y) = y.

[] rs(x,x*y) = y.

9
8 [] ls(x,y)*y = x.

[] ls(x*y,y) = x.

1
10 [] 1*x = x.
1 [] x*1 = x.

1
12 [] x = x.
3 [] x*rs(x,y) = y.

.
1
16,15 [] rs(x,x*y) = y
7 [] ls(x,y)*y = x.

.
2
19 [] ls(x*y,y) = x
2,21 [] 1*x = x.

.
2
24,23 [] x*1 = x
5 [] (x*y)* (z*x) = (x* (y*z))*x.

.
2
26 [copy,25,flip.1] (x* (y*z))*x = (x*y)* (z*x)
8 [] ((a*b)*c)*b != a* (b* (c*b)) e $ANS(m2).

.
3
30,29 [paraiinto,26.1.1.1.2,21.1.1,demod,24] (x*y)*x = x* (y*x)
1 [paraiinto,26.1.1.1.2,17.1.1,demod,30,flip.1] (x*ls(y,z))* (z*x) = x* (y*x).

.
3
33 [paraiinto,26.1.1.1.2,13.1.1,demod,30,flip.1] (x*y)* (rs(y,z)*x) = x* (z*x)
7 [paraiinto,26.1.2.1,13.1.1,demod,30] x* ((rs(x,y)*z)*x) = y* (z*x).

4
43 (heat=1) [paraiinto,29.1.1.1,6.1.1,flip.1] x* (rs(x,y)*x) = y*x.

7,46 (heat=1) [paraifrom,29.1.1,9.1.1.1] ls(x* (y*x),x) = x*y.
.

1
70,69 (heat=1) [paraifrom,33.1.1,7.1.1.2] rs(x*y,x* (z*x)) = rs(y,z)*x

13 [paraifrom,26.1.1,15.1.1.2] rs(x* (y*z),(x*y)* (z*x)) = x.
.

1
126,125 (heat=1) [paraiinto,113.1.1.2.1,11.1.1,demod,70,22] rs(x,x)*y = y

36,135 [paraiinto,125.1.1,23.1.1] rs(x,x) = 1.
.

2
176 [paraifrom,43.1.1,15.1.1.2] rs(x,y*x) = rs(x,y)*x
04 (heat=1) [paraiinto,176.1.1.2,10.1.1,demod,136,flip.1] rs(x,1)*x = 1.

2
209 [paraifrom,204.1.1,26.1.2.2,demod,30,24] x* ((y*rs(x,1))*x) = x*y.

13 [paraifrom,204.1.1,26.1.2.1,demod,30,22] rs(x,1)* ((x*y)*rs(x,1)) = y*rs(x,1).

2
216,215 [paraifrom,204.1.1,19.1.1.1] ls(1,x) = rs(x,1).
23 (heat=1) [paraifrom,209.1.1,7.1.1.2,demod,16,flip.1] (x*rs(y,1))*y = x.

2
244 (heat=1) [paraifrom,213.1.2,9.1.1.1,demod,47] rs(x,1)* (x*y) = y.
46 [paraifrom,31.1.1,15.1.1.2,demod,70] rs(ls(x,y),x)*z = y*z.

.
2
248 (heat=1) [paraiinto,246.1.1,11.1.1,demod,24] rs(ls(x,y),x) = y

58 [paraiinto,223.1.1.1.2,248.1.1,demod,216] (x*y)*rs(y,1) = x.
.267,266 (heat=1) [paraiinto,258.1.1.1,8.1.1,flip.1] ls(x,y) = x*rs(y,1)

28

.
3
268 (heat=1) [paraiinto,258.1.1.1,6.1.1] x*rs(rs(y,x),1) = y

12 [paraiinto,244.1.1.1,248.1.1,demod,267,22] x* (rs(x,1)*y) = y.

5
326 (heat=1) [paraiinto,312.1.1.2,6.1.1,flip.1] rs(rs(x,1),y) = x*y.
23 [paraifrom,268.1.1,37.1.1.2.1,flip.1] x* (rs(rs(y,rs(z,x)),1)*z) = z* (y*z).

5
528,527 [paraifrom,268.1.1,244.1.1.2,flip.1] rs(rs(x,y),1) = rs(y,1)*x.
30,529 (heat=1) [paraifrom,523.1.1,7.1.1.2,demod,528,528] rs(x,y* (z*y)) = ((rs(x,1)*y)*z)*y.

6
615 [paraifrom,326.1.2,28.1.2,demod,530,528,126] ((a*b)*c)*b != ((a*b)*c)*b e $ANS(m2).

16 [binary,615.1,12.1] $ANS(m2).

-
Moufang 2 implies Moufang 3
---- Otter 3.0.4, August 1995 -----

The job was started by wos on merlin.mcs.anl.gov, Thu Aug 31 21:39:13 1995

-

The command was "otter304".

---> UNIT CONFLICT at 19.30 sec ----> 1279 [binary,1277.1,140.1] $ANS(m3).

-
Length of proof is 51. Level of proof is 17.
--------------- PROOF ----------------

6
5 [] ((x*y)*z)*y = x* (y* (z*y)).

[] x*rs(x,y) = y.
.

8
7 [] rs(x,x*y) = y

[] ls(x,y)*y = x.
.

1
9 [] ls(x*y,y) = x
0 [] 1*x = x.

.
1
11 [] x*1 = x
3 [] x*rs(x,y) = y.

.
1
15 [] rs(x,x*y) = y
8,17 [] ls(x,y)*y = x.

2
19 [] ls(x*y,y) = x.
2,21 [] 1*x = x.

.
2
24,23 [] x*1 = x
5 [] ((x*y)*z)*y = x* (y* (z*y)).

.
2
27 [] a* (b* (a*c)) != ((a*b)*a)*c e $ANS(m3)

8 [copy,27,flip.1] ((a*b)*a)*c != a* (b* (a*c)) e $ANS(m3).
.

3
30,29 [paraiinto,25.1.1.1.1,21.1.1,demod,22] (x*y)*x = x* (y*x)
1 [paraiinto,25.1.1.1.1,17.1.1] (x*y)*z = ls(x,z)* (z* (y*z)).

.
3
32 [paraiinto,25.1.1.1.1,13.1.1] (x*y)*rs(z,x) = z* (rs(z,x)* (y*rs(z,x)))
6,35 [paraiinto,25.1.1.1,23.1.1,demod,22] (x*y)*y = x* (y*y).

.
4
38,37 [paraiinto,25.1.1.1,13.1.1,flip.1] x* (y* (rs(x*y,z)*y)) = z*y
1 (heat=1) [paraiinto,29.1.1.1,6.1.1,flip.1] x* (rs(x,y)*x) = y*x.

.
7
60,59 (heat=1) [paraiinto,31.1.1,11.1.1,demod,22,24,flip.1] ls(x,1)*y = x*y

0 (heat=1) [paraifrom,31.1.2,7.1.1.2] rs(ls(x,y),(x*z)*y) = y* (z*y).

1
110 (heat=1) [paraifrom,35.1.1,7.1.1.2] rs(x*y,x* (y*y)) = y.
20 [paraifrom,25.1.1,19.1.1.1] ls(x* (y* (z*y)),y) = (x*y)*z.

.
1
122 [paraifrom,25.1.1,15.1.1.2] rs((x*y)*z,x* (y* (z*y))) = y
29,128 (heat=1) [paraiinto,120.1.1.1,8.1.1,flip.1] (ls(x,y* (z*y))*y)*z = ls(x,y).

1
136 (heat=1) [paraiinto,122.1.1.2,8.1.1,demod,129] rs(ls(x,y),x) = y.
38 [paraiinto,59.1.1,23.1.1,demod,24] ls(x,1) = x.

.
1
140 [paraiinto,28.1.1.1.1,59.1.2,demod,60,30] (a* (b*a))*c != a* (b* (a*c)) e $ANS(m3)
42,141 [paraifrom,138.1.1,136.1.1.1] rs(x,x) = 1.

.
2
216 [paraifrom,41.1.1,31.1.2.2] (x*rs(y,z))*y = ls(x,y)* (z*y)
23 [paraifrom,41.1.1,15.1.1.2] rs(x,y*x) = rs(x,y)*x.

.
2
230 (heat=1) [paraiinto,216.1.2.2,10.1.1,demod,18] (x*rs(y,1))*y = x

60 (heat=1) [paraiinto,223.1.1.2,10.1.1,demod,142,flip.1] rs(x,1)*x = 1.

2
276 [paraiinto,260.1.1.1,136.1.1] x*ls(1,x) = 1.

81,280 (heat=1) [paraifrom,276.1.1,7.1.1.2,flip.1] ls(1,x) = rs(x,1).

29

.
2
286 [paraifrom,260.1.1,25.1.1.1.1,demod,22,flip.1] rs(x,1)* (x* (y*x)) = y*x
88 [paraifrom,260.1.1,15.1.1.2] rs(rs(x,1),1) = x.

.
3
299 (heat=1) [paraiinto,286.1.1.2.2,8.1.1,demod,18] rs(x,1)* (x*y) = y

05 [paraifrom,276.1.1,31.1.2.2.2,demod,281,281,24,281,18] (x*y)*rs(y,1) = x.

3
308,307 (heat=1) [paraiinto,305.1.1.1,8.1.1,flip.1] ls(x,y) = x*rs(y,1).
09 (heat=1) [paraiinto,305.1.1.1,6.1.1] x*rs(rs(y,x),1) = y.

.
3
339 [paraiinto,37.1.2,31.1.2,demod,38,308] (x*rs(y,1))* (y* (z*y)) = (x*z)*y
48,347 (heat=1) [paraiinto,339.1.1.2.2,8.1.1,demod,308,flip.1] (x* (y*rs(z,1)))*z = (x*rs(z,1))* (z*y).

3
361 [paraiinto,230.1.1.1,32.1.1,demod,30,348,22] x* ((rs(x,1)*rs(x,1))* (x*y)) = y.

66,365 [paraiinto,230.1.1.1,29.1.1,demod,348] (rs(x,1)*rs(x,1))* (x*y) = rs(x,1)*y.

3
370 (heat=1) [paraifrom,361.1.1,7.1.1.2,demod,366] rs(x,y) = rs(x,1)*y.
92 [paraiinto,299.1.1.1,288.1.1] x* (rs(x,1)*y) = y.

4
407 [paraiinto,299.1.1.2,13.1.1] rs(x,1)*y = rs(x,y).
09,408 (heat=1) [paraiinto,392.1.1.2,6.1.1,flip.1] rs(rs(x,1),y) = x*y.

.
4
437 (heat=1) [paraifrom,407.1.1,9.1.1.1,demod,308] rs(x,y)*rs(y,1) = rs(x,1)

46 [paraifrom,299.1.1,19.1.1.1,demod,308] x*rs(y*x,1) = rs(y,1).
.

5
463 (heat=1) [paraifrom,446.1.1,7.1.1.2,flip.1] rs(x*y,1) = rs(y,rs(x,1))

36,535 [paraifrom,309.1.1,299.1.1.2,flip.1] rs(rs(x,y),1) = rs(y,1)*x.
.

6
613 [paraifrom,370.1.2,35.1.2.2,demod,36,flip.1] x*rs(y,rs(y,1)) = x* (rs(y,1)*rs(y,1))
52,651 (heat=1) [paraiinto,613.1.1,8.1.1,demod,308,536,536,36,142,22,flip.1] (x* (y*y))* (rs(y,1)*rs(y,1)) = x.

9
963 [paraifrom,437.1.1,110.1.1.1,demod,409] x* (rs(x,y)* (rs(y,1)*rs(y,1))) = rs(y,1).

95,994 (heat=1) [paraifrom,963.1.1,7.1.1.2] rs(x,rs(y,1)) = rs(x,y)* (rs(y,1)*rs(y,1)).
.

1
1023,1022 [paraifrom,463.1.1,407.1.1.1,demod,995,flip.1] rs(x*y,z) = (rs(y,x)* (rs(x,1)*rs(x,1)))*z
063,1062 [paraifrom,535.1.1,407.1.1.1,flip.1] rs(rs(x,y),z) = (rs(y,1)*x)*z.

.
1
1074 [paraifrom,535.1.2,37.1.1.2.2.1.1,demod,1063,142,22] rs(x,1)* (y* ((rs(y,x)*z)*y)) = z*y
077,1076 (heat=1) [paraifrom,1074.1.1,7.1.1.2,demod,1063,142,22,flip.1] x* ((rs(x,y)*z)*x) = y* (z*x).

1
1270 [paraiinto,70.1.1.2.1,407.1.1,demod,308,1023,995,652,1063,142,22] (x*y)* (rs(y,z)*x) = x* (z*x).
277 (heat=1) [paraifrom,1270.1.1,5.1.1.1,demod,1077] (x* (y*x))*z = x* (y* (x*z)).

M

1279 [binary,1277.1,140.1] $ANS(m3).

oufang 3 implies Moufang 4
-

T
----- Otter 3.0.4, August 1995 ----

he job was started by wos on merlin.mcs.anl.gov, Thu Aug 31 15:53:30 1995

-

The command was "otter304".

---> UNIT CONFLICT at 10.56 sec ----> 1133 [binary,1132.1,28.1] $ANS(m4).

-
Length of proof is 30. Level of proof is 13.
--------------- PROOF ----------------

6
5 [] (x*y)* (z*x) = (x* (y*z))*x.

[] x*rs(x,y) = y.
.

8
7 [] rs(x,x*y) = y

[] ls(x,y)*y = x.
.

1
9 [] ls(x*y,y) = x
0 [] 1*x = x.

.
1
11 [] x*1 = x
4,13 [] x*rs(x,y) = y.

.
2
16,15 [] rs(x,x*y) = y
0,19 [] ls(x*y,y) = x.

2
22,21 [] 1*x = x.
4,23 [] x*1 = x.

25 [] x* (y* (x*z)) = ((x*y)*x)*z.
.

2
27,26 [copy,25,flip.1] ((x*y)*x)*z = x* (y* (x*z))
8 [] a* ((b*c)*a) != (a*b)* (c*a) e $ANS(m4).

.
3
29 [paraiinto,26.1.1.1.1,23.1.1,demod,22] (x*x)*y = x* (x*y)
4,33 [paraiinto,26.1.1.1.1,13.1.1,flip.1] x* (rs(x,y)* (x*z)) = (y*x)*z.

30

.
3
36,35 [paraiinto,26.1.1,23.1.1,demod,24] (x*y)*x = x* (y*x)
7 [paraiinto,26.1.1,13.1.1,demod,36,flip.1] x* (y* (x*rs(x* (y*x),z))) = z.

4
39 (heat=1) [paraiinto,29.1.1,6.1.1,flip.1] x* (x*rs(x*x,y)) = y.

3 (heat=1) [paraifrom,29.1.1,7.1.1.2] rs(x*x,x* (x*y)) = y.
.

6
58 (heat=1) [paraiinto,33.1.1.2.2,11.1.1,demod,24] x* (rs(x,y)*x) = y*x

5 (heat=1) [paraiinto,33.1.2.1,5.1.2,demod,34,27,flip.1] ((x*y)* (z*x))*u = x* ((y*z)* (x*u)).

8
70,69 (heat=1) [paraifrom,33.1.1,7.1.1.2] rs(x,(y*x)*z) = rs(x,y)* (x*z).
3,82 (heat=1) [paraifrom,35.1.2,5.1.2.1,demod,27] (x*y)* (x*x) = x* (y* (x*x)).

1
91,90 (heat=1) [paraiinto,37.1.1.2.2.2,7.1.1,flip.1] (x* (y*x))*z = x* (y* (x*z)).
03 [paraifrom,26.1.1,19.1.1.1,demod,36] ls(x* (y* (x*z)),z) = x* (y*x).

.
1
114,113 (heat=1) [paraiinto,103.1.1.1.2,8.1.1] ls(x*y,z) = x* (ls(y,x*z)*x)

15 (heat=1) [paraiinto,103.1.1.1,10.1.1,demod,114,114,91,22,22,22,22,24] x* (ls(y,x*y)*x) = x.
.

1
120,119 (heat=1) [paraifrom,103.1.2,5.1.2.1,demod,83,114,36,20,flip.1] x* ((y*x)*x) = x* (y* (x*x))

47 [paraifrom,29.1.1,19.1.1.1,demod,114,114,36,120] x* (x* (ls(y,x* (x*y))* (x*x))) = x*x.

1
151 [paraifrom,29.1.2,15.1.1.2,demod,70] rs(x,x)* (x*y) = x*y.
54,153 (heat=1) [paraiinto,147.1.1.2.2.1.2.2,10.1.1,demod,22,22,22,24,24,24] ls(x,x) = 1.

2
176,175 (heat=1) [paraifrom,151.1.1,9.1.1.1,demod,154,flip.1] rs(x,x) = 1.
39 [paraifrom,39.1.1,15.1.1.2,flip.1] x*rs(x*x,y) = rs(x,y).

.
2
258,257 (heat=1) [paraifrom,239.1.1,7.1.1.2,flip.1] rs(x*x,y) = rs(x,rs(x,y))

73 [paraifrom,58.1.1,43.1.1.2.2,demod,258,16] rs(x,y*x) = rs(x,y)*x.
.

3
292,291 (heat=1) [paraiinto,273.1.1.2,10.1.1,demod,176,flip.1] rs(x,1)*x = 1

56 [paraifrom,291.1.1,33.1.1.2.2,demod,24,14,flip.1] (x*rs(y,1))*y = x.
.

3
360 [paraifrom,291.1.1,26.1.1.1.1,demod,22,flip.1] rs(x,1)* (x* (rs(x,1)*y)) = rs(x,1)*y
67,366 (heat=1) [paraifrom,356.1.1,9.1.1.1] ls(x,y) = x*rs(y,1).

.
5
373 (heat=1) [paraiinto,360.1.1.2.2,6.1.1,demod,14] rs(x,1)* (x*y) = y

53,552 [paraifrom,373.1.1,19.1.1.1,demod,367] x*rs(y*x,1) = rs(y,1).
.

1
1132 [paraifrom,65.1.1,115.1.1,demod,367,553,292,24] x* ((y*z)*x) = (x*y)* (z*x)
133 [binary,1132.1,28.1] $ANS(m4).

-
Moufang 4 implies Moufang 1
---- Otter 3.0.4, August 1995 -----

The job was started by wos on merlin.mcs.anl.gov, Wed Sep 6 10:14:31 1995

-

The command was "otter304".

---> UNIT CONFLICT at 0.31 sec ----> 124 [binary,123.1,12.1] $ANS(m1).

-
Length of proof is 3. Level of proof is 2.
--------------- PROOF ----------------

2
12 [] x = x.
2,21 [] 1*x = x.

2
23 [] x*1 = x.
5 [] x* ((y*z)*x) = (x*y)* (z*x).

.
2
26 [] (a*b)* (c*a) != (a* (b*c))*a e $ANS(m1)

7 [copy,26,flip.1] (a* (b*c))*a != (a*b)* (c*a) e $ANS(m1).
.

1
29,28 [paraiinto,25.1.1.2.1,23.1.1,demod,22,flip.1] (x*y)*x = x* (y*x)
23 [paraiinto,27.1.2,25.1.2,demod,29] a* ((b*c)*a) != a* ((b*c)*a) e $ANS(m1).

R

124 [binary,123.1,12.1] $ANS(m1).

eferences

[Boyer88] Boyer, R. S., and Moore, J S., A Computational Logic Handbook, Academic Press: New

[

York, 1988 (also Web information http://www.cli.com/software/nqthm/obtaining.html).

Bruck71] Bruck, R. H., A Survey of Binary Systems, Springer-Verlag: Berlin, 1971.

[

31

Chein78] Chein, O. Moufang Loops of Small Order, Memoirs of the American Mathematical Society

[

13, issue 1, no. 197, January 1978.

Chein90] Chein, O., Pflugfelder, H. O., and Smith, J. D. H., Quasigroups and Loops: Theory and

[

Applications, Heldermann Verlag: Berlin, 1990.

Fenyves68] Fenyves, F., ‘‘Extra loops I’’, Publicationes Mathematicae Debrecen 15, 235-238 (1968).

.

[

[Fenyves69] Fenyves, F., ‘‘Extra loops II’’, Publicationes Mathematicae Debrecen 16, 187-192 (1969)

Kunen94] Kunen, K., Private communication (1994).

r
a
[McCharen76] McCharen, J., Overbeek, R., and Wos, L., ‘‘Complexity and related enhancements fo
utomated theorem-proving programs’’, Computers and Mathematics with Applications 2, 1-16 (1976).

e
a
[McCune92] McCune, W., and Wos, L., ‘‘Application of automated deduction to the search for singl
xioms for exponent groups’’, pp. 131-136 in Logic Programming and Automated Reasoning, Lecture

[

Notes in Artificial Intelligence, Vol. 624, ed. A. Voronkov, Springer-Verlag: New York, 1992.

McCune94] McCune, W., OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6,

[

Argonne National Laboratory, Argonne, Illinois, 1994.

Moufang35] Moufang, R. ‘‘Zur Struktur von Alternativko
..
rpern’’, Math. Ann. 110, 416-430 (1935).

,
C
[Padmanabhan95a] Padmanabhan, R., and McCune, W., ‘‘Automated reasoning about cubic curves’’

omputers and Mathematics with Applications (special issue on automated reasoning) 29, no. 2, 17-26

[

(January 1995).

Padmanabhan95b] Padmanabhan, R., and McCune, W., ‘‘Single identities for ternary Boolean alge-
,

1
bras’’, Computers and Mathematics with Applications (special issue on automated reasoning) 29, no. 2

3-16 (January 1995).

[Pflugfelder90] Pflugfelder, H. O., Quasigroups and Loops: Introduction, Heldermann Verlag: Berlin,

[

1990.

Wos87] Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice-Hall: Englewood

[

Cliffs, N.J., 1987.

Wos90] Wos, L., ‘‘Meeting the challenge of fifty years of logic’’, J. Automated Reasoning 6, no. 2,

[

213-222 (1990).

Wos92] Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning: Introduction and

[

Applications, 2nd ed., McGraw-Hill: New York, 1992.

Wos93a] Wos, L., ‘‘Automated reasoning answers open questions’’, Notices of the AMS 5, no. 1, 15-

[

26 (January 1993).

Wos93b] Wos, L., ‘‘The kernel strategy and its use for the study of combinatory logic’’, J. Automated

[

Reasoning 10, no. 3, 287-343 (June 1993).

Wos95a] Wos, L., ‘‘The power of combining resonance with heat’’, J. Automated Reasoning

[

(accepted for publication).

Wos95b] Wos, L., ‘‘The resonance strategy’’, Computers and Mathematics with Applications (special
issue on automated reasoning) 29, no. 2, 133-178 (January 1995).

32

[Wos95c] Wos, L., ‘‘Searching for circles of pure proofs’’, J. Automated Reasoning (accepted for pub-

[

lication).

Wos96] Wos, L., The Automation of Reasoning: An Experimenter’s Notebook with OTTER Tutorial,
accepted for publication by Academic Press (1996).

