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SMOOTHING OF MIXED COMPLEMENTARITY PROBLEMSSteven A. Gabriel and Jorge J. Mor�eAbstractWe extend the smoothing approach to the mixed complementarity problem, andstudy the limiting behavior of a path de�ned by approximate minimizers of a nonlinearleast squares problem. Our main result guarantees that, under a mild regularity condi-tion, limit points of the iterates are solutions to the mixed complementarity problem.The analysis is applicable to a wide variety of algorithms suitable for large-scale mixedcomplementarity problems.1 IntroductionA central problem in complementarity is the development of algorithms for the solution ofmixed complementarity problems. Given a mapping f : IRn 7! IRn, and bounds l and uin IRn, with l < u, a solution of the mixed nonlinear complementarity problem is a vectorx 2 IRn such that fi(x) = 0 if xi 2 [li; ui];fi(x) � 0 if xi = li;fi(x) � 0 if xi = ui: (1:1)A wide variety of algorithms have been proposed for the solution of the mixed comple-mentarity problem, although most algorithms are only applicable to the classical nonlinearcomplementarity problem of �nding x 2 IRn such thatx � 0; f(x) � 0; xT f(x) = 0: (1:2)Clearly, the mixed complementarity problem (1.1) reduces to the classical problem (1.2)when l � 0 and u � +1.We consider a recent approach to the solution of the classical problem (1.2), introducedby Chen and Mangasarian [6], that is based on smoothing a residual r : IRn 7! IRn associatedwith the complementarity problem. This approach has attracted attention because thenumerical results of Billups, Dirkse, and Ferris [2] show that the smooth code, which isbased on these ideas, has superior performance.We extend the smoothing approach to the mixed complementarity problem, and studythe limiting behavior of a path x(�), where x(�) is an approximate solution to the leastsquares problem minn12kr�(x)k2 : x 2 IRno : (1:3)This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



If f�kg is a sequence converging to zero and fxkg is an approximate minimizer of (1.3) with� = �k, we want to guarantee that any limit point of fxkg solves the mixed complementarityproblem (1.1). In related work, Chen and Harker [5] considered a path where r�[x(�)] = 0.This approach requires stronger assumptions since we need to guarantee the existence anduniqueness of the solutions of r�(x) = 0. On the other hand, (1.3) always has approximateminimizers.We introduce the smoothing approach in Section 2. We relate this approach to thesmoothed functionals introduced by Katkovnik (see, for example, Katkovnik and Kulchit-skii [12]) to approximate n-dimensional nondi�erentiable functions in stochastic optimiza-tion. References and generalizations of this work can be found in the work of Rubin-stein [19, 20, 21]. Smoothing is also used in global optimization, but with the purpose ofremoving local minimizers of n-dimensional smooth functions. See Mor�e and Wu [16] forinformation and additional references for this work.Section 3 de�nes the smooth residual for the mixed complementarity problem (1.1),while Section 4 studies the limiting behavior of a sequence fxkg, where xk is an approximateminimizer of (1.3) with � = �k and f�kg converges to zero. We show that if a regularitycondition is satis�ed, then any limit point of fxkg solves the mixed complementarity problem(1.1). Chen and Mangasarian [6] were only able to show that the limit points of the sequencewere �-accurate solutions to the classical complementarity problem (1.2).The notation that we use is fairly standard. Unless otherwise noted, k�k is the Euclideannorm. We use AK, or AK;K for the principal submatrix of A 2 IRn�n with (i; j) 2 K � K,and AI ;J for the submatrix of A with (i; j) 2 I � J .2 Smoothing FunctionsWe propose a class of smoothing functions that can be used to approximate the mixednonlinear complementarity problem by a smooth system of nonlinear equations. We �rstdevelop the properties for the scalar-valued version of the smoothing function and thenextend the results to the vector case in the next section.The key to our development is a smooth approximation to the median function. We usethe notation mid(�) for the median of three numbers because in this case the median is thenumber in the middle.De�nition 2.1 Let � : IR 7! IR+ be a density function with bounded absolute mean, that is,� = Z +1�1 jsj�(s) ds < +1: (2:1)For any � > 0 and constants �l; �u 2 IR, with �l < �u, de�ne the smooth approximation tothe mid function by p�(�) = Z +1�1 mid(�l; �u; �� �s)�(s) ds;2



where mid(�) is the median operator.Chen and Mangasarian [6], following the work of Kreimer and Rubinstein [13], intro-duced a smooth approximation to the standard complementarity problem (1.2); we willshow that the above de�nition extends their work to the mixed complementarity problem.Lemma 2.2 If p� : IR 7! IR is the smooth approximation to the median function, then�l � p�(�) � �u; (2:2)and lim�!+1 p�(�) = �u; lim�!�1 p�(�) = �l: (2:3)Proof. We prove (2.2) by noting that since �l � mid(�l; �u; �) � �u and � is a densityfunction,�l � Z +1�1 �l�(s) ds � Z +1�1 mid(�l; �u; �� �s)�(s) ds� Z +1�1 �u�(s) ds = �u:We prove only the �rst relationship in (2.3) since the proof of the other is similar. Notethat jmid(�l; �u; �� �s)�(s)j � maxfj�lj; j�ujg�(s);and thus Lebesgue's dominated convergence theorem implies thatlim�!+1 p�(�) = Z +1�1 lim�!+1mid(�l; �u; �� �s)�(s) ds= Z +1�1 �u�(s) ds = �u:Lemma 2.2 shows that the mapping p� is a smooth approximation to the mid functionwith the same bounds as the mid function. We now show that the derivative of p� approx-imates the derivative of the function � 7! mid(�u; �u; �). In particular, when the supportof the density function �, supp(�) = f� 2 IR : �(�) > 0g;is all of IR, we show that p0�(�) 2 (0; 1).Lemma 2.3 The mapping p� : IR 7! IR is continuously di�erentiable withp0�(�) = Z (���l)=�(���u)=� �(s) ds: (2:4)In particular, p0�(�) 2 [0; 1]. Furthermore, if supp(�) = IR, then p0�(�) 2 (0; 1).3



Proof. The de�nition of the mid function implies thatp�(�) = �u Z (���u)=��1 �(s) ds+ Z (���l)=�(���u)=� (�� �s)�(s) ds+ �l Z +1(���l)=� �(s) ds:Hence, (2.4) follows by direct computation. If we assume that supp(�) = IR, then we cannothave p0�(�) = 0 because this implies that � vanishes in a nontrivial interval.An immediate consequence of Lemma 2.3 is that p� is an increasing function and thatif supp(�) = IR, then p� is strictly increasing. Also note that p� is nonexpansive, that is,jp�(�)� p�(�)j � j�� �j:This property follows directly from the result jp0�(�)j � 1 in Lemma 2.3.The behavior of p0� as � goes to zero is important to the results in Section 4. Note thatexpression (2.4) shows thatlim�!0 p0�(�) = 1; � 2 (�l; �u); lim�!0 p0�(�) = 0; � =2 [�l; �u]: (2:5)Expression (2.4) also shows that p� is twice di�erentiable withp00�(�) = 1� ����� �l� �� ��� � �u� �� : (2:6)As a special case of (2.6) note that if �u = +1, then p00�(�) � 0, and hence, p� is convex.This is reasonable to expect, since in this case, the function � 7! mid(�u; �u; �) is alsoconvex. Also note that (2.6) implies thatlim�!0 p00�(�) = 0; � =2 f�l; �ug;but that p00�(�) can be unbounded for � 2 f�l; �ug.An important property of the function p� is that we can bound the error between thesmooth function p� and the original function mid(�l; �u; �), independent of �.Lemma 2.4 If p� : IR 7! IR is the smooth approximation to the mid function, and � is theconstant de�ned by (2.1), thenjp�(�)�mid(�l; �u; �)j � ��: (2:7)Proof. If � : IR 7! IR is de�ned by �(s) = mid(�l; �u; s), then � is the projection operatorfor the interval [�l; �u], and thusj�(�2)� �(�1)j � j�2 � �1j: (2:8)4



We can also prove this inequality by noting that � is piecewise linear, and that (2.8) holdsin each of the pieces. Sincejp�(�)�mid(�l; �u; �)j � Z +1�1 j�(�� �s)� �(�)j�(s) ds � Z +1�1 �jsj�(s) ds� ��;the result follows immediately.The techniques used in Lemma 2.4 can be used to establish additional properties for thefunction p�. For example, we can show thatjp�2(�)� p�1(�)j � �j�2 � �1j:This result follows from (2.8) in Lemma 2.4, sincejp�2(�)� p�1(�)j � Z +1�1 j�(�� �2s)� �(�� �2s)j�(s) ds � �j�2 � �1j:Thus, we have shown that the mapping (�; �) 7! p�(�) is Lipschitz in �.Chen and Mangasarian [6] approximated the function � 7! �+ = max(0; �) with thefunction q : IR 7! IR de�ned byq�(�) = 1� Z ��1(� � t)�� t�� dt = 1� Z +1�1 (�� t)+�� t�� dt; (2:9)where � is a density function with bounded absolute mean. We now show that the twode�nitions agree in this case.Lemma 2.5 If �l = 0 and �u = +1, then p�(�) = q�(�).Proof. The substitution t = �s shows thatq�(�) = 1� Z +1�1 (�� t)+�� t�� dt = Z +1�1 max(0; �� �s)�(s) ds = p�(�);as desired.Our development does not impose any restrictions on the density function �. In contrast,Chen and Mangasarian [6] based much of their development on the density function�(�) = exp(�)(1 + exp(�))2 :In global optimization work, Mor�e and Wu [16] have shown that the normal density functionhas superior smoothing properties, but at present it is not clear if similar results will holdin the complementarity area. 5



3 The Mixed Complementarity ProblemThe mixed complementarity problem can be formulated as the solution of a nonsmoothsystem of nonlinear equations r(x) = 0, where r : IRn 7! IRn is de�ned byr(x) = x�mid(l; u; x� f(x)): (3:1)For future reference, we state this equivalence formally.Lemma 3.1 Let r : IRn 7! IRn be the residual (3.1). A vector x 2 IRn solves the mixedcomplementarity problem (1.1) if and only if r(x) = 0.Lemma 3.1 is a special case of a result of Eaves [8], which formulates variational inequali-ties as a system of nonsmooth nonlinear equations. In the case of the mixed complementarityproblem, the equivalence of (1.1) with r(x) = 0 is a direct consequence of the de�nition ofthe mid function.We introduce a smooth residual for the mixed complementarity problem by �rst extend-ing the function p� : IR 7! IR to IRn by de�ningp�(x) = (p�(xi)):The mapping p� : IRn 7! IRn is continuously di�erentiable with a diagonal Jacobian matrixp0�(x) = diag (p0�(xi)) :Other properties of p� will be developed as needed.De�nition 3.2 Let � : IR 7! IR+ be a density function with bounded absolute mean. Forany � > 0 de�ne the smooth residual r� : IRn 7! IRn byr�(x) = x� p�(x� f(x)):The smooth residual r� can be used to obtain approximate solutions to the mixed com-plementarity problem (1.1) by solving r�(x) = 0. On the other hand, Chen and Mangasarian[6] obtain approximate solutions to the mixed complementarity problem (1.1) by solvingthe system of nonlinear equations0BBB@ f(x)� w + vx� l � q�(x� l� w)u � x� q�(u� x� v) 1CCCA = 0;where q� is the smooth function de�ned by (2.9). Our formulation in terms of r�(x) = 0requires fewer variables and seems to be more suitable for computations.We now extend Lemma 2.4 to IRn by assuming that k � k is a monotone norm, that is,jxj � jyj implies that kxk � kyk. Clearly, all lp norms are monotone.6



Theorem 3.3 Let k � k be a monotone norm. If r� : IRn 7! IRn is the smooth residual, thenkr�(x)� r(x)k � ��kek;where e 2 IRn is the vector of all ones, and � is the constant de�ned by (2.1).Proof. Lemma 2.4 shows that kp�(x)�mid(l; u; x)k � ��kek; and thus,kr�(x)� r(x)k = kp�(x� f(x))�mid(l; u; x� f(x))k � ��kek:We now show that approximate solutions to the system r�(x) = 0 are also approximatesolutions to r(x) = 0 and that the accuracy depends mainly on �.Lemma 3.4 If r� : IRn 7! IRn is the smooth residual and kr�(x)k � ", thenkr(x)k � ��kek+ ":Proof. Lemma 3.3 implies thatkr(x)k � kr�(x)� r(x)k+ kr�(x)k � ��kek+ ";as desired.Finally, we show that if we �nd an x 2 IRn with kr(x)k small, then x is an approximatesolution of (1.1).Lemma 3.5 Let r : IRn 7! IRn be the residual for the mixed complementarity problem (1.1).If kr(x)k1 � ", then xi 2 [li � "; ui + "] for all indices i, andjfi(x)j � " if xi 2 (li + "; ui � ");fi(x) � �" if jxi � lij � ";fi(x) � " if jxi � uij � ":Proof. Since the mid only has three possible values,ri(x) = 8>>><>>>: fi(x) if li � xi � fi(x) � ui;xi � li if xi � fi(x) < li;xi � ui if xi � fi(x) > ui:Since jri(x)j � ", we obtain that xi 2 [li� "; ui+ "] in all three cases. If xi 2 (li+ "; ui� "),then jxi � lij > " and jxi � uij > ", so we must have ri(x) = fi(x), and thus jfi(x)j � ".The proofs of the other two cases are similar.7



4 RegularityGiven the smooth residual r� : IRn 7! IRn, we approach the mixed complementarity problemby generating a path x(�) for � > 0 in which x(�) is an approximate solution to the leastsquares problem minn12kr�(x)k2 : x 2 IRno : (4:1)Given a sequence f�kg that converges to zero, we require that the approximate minimizerxk be generated so that limk!+1 r0k(xk)Trk(xk) = 0; (4:2)where rk(x) � r�k(x):There are various ways to generate iterates that satisfy (4.2). For example, given theiterate (xk; �k), choose �k+1 > 0, and use any nonlinear least squares algorithm on (4.1)with � = �k+1 to generate an iterate such thatkr0k+1(xk+1)T rk+1(xk+1)k � �kr0k(xk)Trk(xk)k; (4:3)where � 2 (0; 1). Clearly, if the sequence f(xk; �k)g satis�es (4.3), then (4.2) holds.We want to impose conditions on f : IRn 7! IRn that guarantee that if f(xk; �k)g satis�es(4.2), then any limit point of fxkg solves the mixed complementarity problem. Sincer0�(x) = I �D(x)(I � f 0(x)); (4:4)where D(x) = p0�(x�f(x)), we are led to the study of matrices of the formM = I�D+DA,where D = diag(di) has di 2 [0; 1]. Our results show a strong connection between thenonsingularity of M and the class of P - and P0-matrices.A matrix A 2 IRn�n is a P -matrix if for any x 6= 0 there is an index i such thatxi[Ax]i > 0. Similarly, a matrix A 2 IRn�n is a P0-matrix if for each x 6= 0 there is an indexi such that xi 6= 0 and xi[Ax]i � 0. A P -matrix (P0-matrix) can also be de�ned as anymatrix for which all principal submatrices have positive (nonnegative) determinants. Foradditional information on P -matrices, see the book of Cottle, Pang, and Stone [7].Our analysis of matrices of the form M = I �D+DA hinges on the following result ofSandberg and Willson [22].Theorem 4.1 A 2 IRn�n is a P0-matrix if and only if A + D is nonsingular for eachdiagonal matrix D with positive diagonal entries.Theorem 4.1 has been rediscovered at least twice. This result can be found, for example,in Chen and Harker [3, Theorem 3.3], and in Luca, Facchinei, and Kanzow [14, Lemma 5.1].8



Theorem 4.2 A 2 IRn�n is a P0-matrix if and only if M = I�D+DA is nonsingular forany diagonal matrix D = diag(di) with 0 � di < 1.Proof. If A is a P0-matrix, then DA is also a P0-matrix for any nonnegative diagonalmatrix D, and since I � D has positive diagonal entries, Theorem 4.1 implies that M isnonsingular. Conversely, assume that M is nonsingular for any diagonal matrix D with0 < di < 1. Note that the diagonal matrix S = D�1� I has positive diagonal entries if andonly if D has entries with 0 < di < 1, and that M = D (S +A). Hence, M is nonsingularif and only if S +A is nonsingular, and thus the result follows from Theorem 4.1.If the support of the density function used to generate the smooth residual is IR, thenLemma 2.3 guarantees that p0�(�) 2 (0; 1), and thus Theorem 4.2 shows that the Jacobianmatrix (4.4) of the smooth residual r� is nonsingular if f 0(x) is a P0-matrix. If � has compactsupport, then we need to impose stronger conditions.Theorem 4.3 A 2 IRn�n is a P -matrix if and only if M = I �D+DA is nonsingular forany diagonal matrix D = diag(di) with 0 � di � 1.Proof.Assume thatM is nonsingular for any diagonal matrixD = diag(di) with 0 � di � 1.Theorem 4.2 shows that A must be a P0-matrix, so we need to prove only that AK;K isnonsingular for any index set K. If we set di = 1 for i 2 K, and di = 0 for i =2 K, thenM = 0@ AK;K AK;L0 I 1A ;where L is the complement of K. Hence, AK;K is nonsingular, as desired. Conversely, if Ais a P -matrix, but Mx = 0 for some x 6= 0, thendi[Ax]i = (di � 1)xi; 1 � i � n:If di = 0, then xi = 0, while if di > 0, thenxi[Ax]i = �di � 1di �x2i � 0:Hence, xi[Ax]i � 0 for all indices i, contradicting the assumption that A is a P -matrix.We can weaken the conditions needed for nonsingularity of M when we know that thesubmatrix AK;K with K = fi : di = 1g is nonsingular. For this result, recall that if theprincipal submatrix AK;K of A is nonsingular, and L is the complement of K in f1; 2; : : : ; ng,then A=AK;K = AL;L � AL;KA�1K;KAK;L9



is the Schur complement of AK;K in A, and that the fundamental relationship0@ I 0�AL;KA�1K;K I 1A0@ AK;K AK;LAL;K AL;L 1A = 0@ AK;K AK;L0 A=AK;K 1A ; (4:5)shows that A is nonsingular if and only if the Schur complement A=AK;K is nonsingular.Theorem 4.4 Let D = diag(di) be a diagonal matrix with di 2 [0; 1], and setK = fi : di = 1g; L = fi : 0 < di < 1g:If the principal submatrix AK of A 2 IRn�n is nonsingular and AK[L=AK is a P0-matrix,then M = I �D +DA is nonsingular.Proof. De�ne S = fi : di = 0g, and note that we can permute the rows and columns of Aso that M = 0BBB@ I 0 0AK;S AK;K AK;LEAL;S EAL;K I � E + EAL;L 1CCCA ;where E = diag(ei) and 0 < ei < 1. Hence, M is nonsingular if and only if the lower 2� 2block principal submatrix cM of M is nonsingular. A computation shows thatcM=AK = I �E +E(AK[L=AK);and thus Theorem 4.1 shows that cM=AK is nonsingular. Hence, M is nonsingular, asdesired.Theorem 4.4 can be used to prove that every limit point of fr0k(xk)g is nonsingularprovided a regularity condition is imposed. For any x 2 IRn de�ne the index setsI = fi : li < xi � fi(x) < uig;B = fi : xi � fi(x) = lig [ fi : xi � fi(x) = uig;E = fi : xi � fi(x) < lig [ fi : xi � fi(x) > uig: (4:6)The notation is suggestive because I;B; E are the indices of xi�fi(x) that are, respectively,on the interior, boundary, and exterior of the interval [li; ui]. Also note that we havesuppressed the dependence on x because the vector x in question will always be clear fromthe discussion.De�nition 4.5 A vector x 2 IRn is regular if [f 0(x)]K is nonsingular for all K such thatI � K � I [ B, and [f 0(x)]I[B=[f 0(x)]Iis a P0-matrix. 10



Regularity conditions typically are used to show that if a complementarity problem isformulated as an optimization problem, then any local minimizer that satis�es the regu-larity condition is actually a global minimizer, and thus a solution to the complementarityproblem. Pang and Gabriel [17], Mor�e [15], Xiao and Harker [23, 24], Ferris and Ralph[10], and De Luca, Facchinei, and Kanzow [14] have introduced regularity conditions for theclassical complementarity problem (1.2), while Gabriel [11], Billups [1], and Billups, Dirkse,and Ferris [2] seem to be the only researchers that have used this type of regularity conditionfor mixed complementarity problems. Comparisons between these regularity conditions aredi�cult because they depend on the formulation of the complementarity problem as anoptimization problem. We could use our regularity condition to show that any stationarypoint of minn12kr(x)k22 : x 2 IRnois a solution to the mixed complementarity problem (1.1), but we use it to guarantee thatevery limit point of fr0k(xk)g is nonsingular.Luca, Facchinei, and Kanzow [14] used a similar regularity condition for the classicalcomplementarity problem to guarantee that all elements of the generalized Jacobian of theresidual r : IRn 7! IRn, wherer(x) = �(x; f(x)); �(�; �) = q(�2 + �2)� (�+ �)are nonsingular. Our regularity condition seems to be weaker because if (as expected) B isempty, then we only require [f 0(x)]I to be nonsingular.If x is a solution to the mixed complementarity problem (1.1), then the index sets (4.6)can be be expressed in the formI = fi : xi 2 (li; ui); fi(x) = 0g;B = fi : xi 2 fli; uig; fi(x) = 0g;E = fi : xi = li; fi(x) > 0g [ fi : xi = ui; fi(x) < 0g:Facchinei and Kanzow [9] used this condition for the classical complementarity problem,where l � 0 and u � +1, to guarantee superlinear convergence of a truncated Newtonmethod.Theorem 4.6 Assume that f : IRn 7! IRn is continuously di�erentiable. If f(xk; �k)gconverges to (x�; 0) and x� is regular, then every limit point of fr0k(xk)g is nonsingular.Proof. Any limit point of fr0k(xk)g is of the form I � D + Df 0(x�), where D = diag(di)has di 2 [0; 1], and thus the proof follows from Theorem 4.4 if we show that [f 0(x�)]K isnonsingular for K = fi : di = 1g and that the matrixB = [f 0(x�)]K[L=[f 0(x�)]K; (4:7)11



where L = fi : 0 < di < 1g, is a P0-matrix. We �rst prove that [f 0(x�)]K is nonsingular.We claim that I � K � (I [ B). If i 2 I, then (2.5) shows that di = 1, and thus i 2 K.Hence, I � K. We prove that K � (I [ B) by noting that if i =2 (I [ B), then i 2 E , andthus (2.5) implies that di = 0. Hence i =2 K. This establishes our claim.Since I � K � (I [ B), the regularity assumption implies that [f 0(x�)]K is nonsingular.We now prove that the matrix B in (4.7) is a P0-matrix.We need to know that a submatrix of a P0-matrix is also a P0-matrix. This result is adirect consequence of the de�nition of a P0-matrix. We also need to know that the Schurcomplement of a P0-matrix is again a P0-matrix. This result is due to Chen and Harker [4,Lemma 2.3].The Schur quotient formula (see, for example, Cottle, Pang, and Stone [7, pages 76{77])shows that[f 0(x�)]I[B=[f 0(x�)]K = �[f 0(x�)]I[B=[f 0(x�)]I� = �[f 0(x�)]K=[f 0(x�)]I� :is a Schur complement of the P0-matrix [f 0(x�)]I[B=[f 0(x�)]I . Hence, [f 0(x�)]I[B=[f 0(x�)]Kis also a P0-matrix.We prove that (K[L) � (I [B) by noting that if i =2 (I [B), then i 2 E , and thus (2.5)implies that di = 0. Hence, i =2 (K [ L), as desired. Since (K [ L) � (I [ B), the matrix Bin (4.7) is a submatrix of the P0-matrix [f 0(x�)]I[B=[f 0(x�)]K. Hence, B is a P0-matrix.Theorem 4.6 is applicable to any sequence fxkg. If we assume that xk is an approximateminimizer of (4.1), in the sense that (4.2) holds, then we can obtain a result applicable tothe mixed complementarity problem (1.1).Theorem 4.7 Assume that f : IRn 7! IRn is continuously di�erentiable, that f�kg con-verges to zero, and that f(xk; �k)g satis�es (4.2). If x� is a limit point of fxkg, and x� isregular, then x� solves the mixed complementarity problem.Proof. Without loss of generality, assume that fxkg converges to x�. Since Theorem 4.7shows that every limit point of fr0k(xk)g is nonsingular, (4.2) implies that frk(xk)g convergesto zero. Since Lemma 3.3 shows thatkrk(xk)� r(xk)k � ��kkek;and since f�kg converges to zero, we obtain that r(x�) = 0, and thus x� solves the mixedcomplementarity problem.5 Concluding RemarksAfter completing the manuscript, Francisco Facchinei and Christian Kanzow pointed outthat [f 0(x)]I[B=[f 0(x)]I is a P -matrix under our regularity assumption. This result shows,12
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