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SMOOTHING OF MIXED COMPLEMENTARITY PROBLEMS

Steven A. Gabriel and Jorge J. Moré

Abstract

We extend the smoothing approach to the mixed complementarity problem, and
study the limiting behavior of a path defined by approximate minimizers of a nonlinear
least squares problem. Our main result guarantees that, under a mild regularity condi-
tion, limit points of the iterates are solutions to the mixed complementarity problem.
The analysis 1s applicable to a wide variety of algorithms suitable for large-scale mixed
complementarity problems.

1 Introduction

A central problem in complementarity is the development of algorithms for the solution of
mized complementarity problems. Given a mapping f : R® — R"”, and bounds [ and u
in R"™, with [ < u, a solution of the mixed nonlinear complementarity problem is a vector
x € IR™ such that

0 if ¢ [liaui],

filz) >0 if z; =1, (1.1)
filz) <0 if  x; = u;.

A wide variety of algorithms have been proposed for the solution of the mixed comple-
mentarity problem, although most algorithms are only applicable to the classical nonlinear

complementarity problem of finding 2 € R™ such that
x>0, fz)>0, alf(z)=0. (1.2)

Clearly, the mixed complementarity problem (1.1) reduces to the classical problem (1.2)
when [ =0 and v = +oc.

We consider a recent approach to the solution of the classical problem (1.2), introduced
by Chen and Mangasarian [6], that is based on smoothing a residual r : R™ — RR"™ associated
with the complementarity problem. This approach has attracted attention because the
numerical results of Billups, Dirkse, and Ferris [2] show that the smooth code, which is
based on these ideas, has superior performance.

We extend the smoothing approach to the mixed complementarity problem, and study
the limiting behavior of a path z(-), where z(\) is an approximate solution to the least
squares problem

min {3[|ra(e)[[* s w € R"}. (1.3)
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If {\;} is a sequence converging to zero and {z} is an approximate minimizer of (1.3) with
A = A, we want to guarantee that any limit point of {2} solves the mixed complementarity
problem (1.1). In related work, Chen and Harker [5] considered a path where ry[z(A)] = 0.
This approach requires stronger assumptions since we need to guarantee the existence and
uniqueness of the solutions of ry(2) = 0. On the other hand, (1.3) always has approximate
minimizers.

We introduce the smoothing approach in Section 2. We relate this approach to the
smoothed functionals introduced by Katkovnik (see, for example, Katkovnik and Kulchit-
skii [12]) to approximate n-dimensional nondifferentiable functions in stochastic optimiza-
tion. References and generalizations of this work can be found in the work of Rubin-
stein [19, 20, 21]. Smoothing is also used in global optimization, but with the purpose of
removing local minimizers of n-dimensional smooth functions. See Moré and Wu [16] for
information and additional references for this work.

Section 3 defines the smooth residual for the mixed complementarity problem (1.1),
while Section 4 studies the limiting behavior of a sequence {1}, where z}, is an approximate
minimizer of (1.3) with A = Ay and {Az} converges to zero. We show that if a regularity
condition is satisfied, then any limit point of {2} solves the mixed complementarity problem
(1.1). Chen and Mangasarian [6] were only able to show that the limit points of the sequence
were e-accurate solutions to the classical complementarity problem (1.2).

The notation that we use is fairly standard. Unless otherwise noted, ||-|| is the Euclidean
norm. We use Ag, or Ax x for the principal submatrix of A € R™™" with (¢,7) € K x K,
and Az 7 for the submatrix of A with (¢,7) €7 x J.

2 Smoothing Functions

We propose a class of smoothing functions that can be used to approximate the mixed
nonlinear complementarity problem by a smooth system of nonlinear equations. We first
develop the properties for the scalar-valued version of the smoothing function and then
extend the results to the vector case in the next section.

The key to our development is a smooth approximation to the median function. We use
the notation mid(-) for the median of three numbers because in this case the median is the

number in the middle.

Definition 2.1 Let p: R — Ry be a density function with bounded absolute mean, that is,

+oo
K= /_OO Islp(s) ds < +oc. (2.1)

For any A > 0 and constants a;, o, € R, with a; < a,, define the smooth approximation to

the mid function by
+oo
pa(a) = / mid(ag, ay,, a — As)p(s)ds,

— 00



where mid(-) is the median operator.

Chen and Mangasarian [6], following the work of Kreimer and Rubinstein [13], intro-
duced a smooth approximation to the standard complementarity problem (1.2); we will

show that the above definition extends their work to the mixed complementarity problem.

Lemma 2.2 If py: R — R is the smooth approzimation to the median function, then

ap < pala) < oy, (2.2)
and
lir_l{l pal@) = ay, lim pi(a) = a. (2.3)

Proof. We prove (2.2) by noting that since oy < mid(ay, o, @) < o, and p is a density

function,

+ oo + oo + oo
op < / aip(s)ds < / mid(ag, ay,a — As)p(s)ds < / ayp(s)ds = ay.

— 00 — 00 — 00

We prove only the first relationship in (2.3) since the proof of the other is similar. Note
that
[mid(ar, @y, o — As)p(s)] < mas{ e, laa }(5),

and thus Lebesgue’s dominated convergence theorem implies that

+o0 oo
lir_l{l pala) = / lir_l{l mid(ag, ay,a — As)p(s)ds = / ayp(s) ds = ay,.

— 00

Lemma 2.2 shows that the mapping p) is a smooth approximation to the mid function
with the same bounds as the mid function. We now show that the derivative of p\ approx-
imates the derivative of the function a — mid(a,, a,,a). In particular, when the support

of the density function p,
supp(p) = {a € R : p(a) > 0},

is all of IR, we show that p)(a) € (0, 1).

Lemma 2.3 The mapping py : R — R is continuously differentiable with
, (a—ap) /A
ph(a) = /( p(s) ds. (24)

a—oay) /A

In particular, p\(a) € [0,1]. Furthermore, if supp(p) = R, then p\(a) € (0,1).



Proof. The definition of the mid function implies that

(a—aw) /A (a—ap) /A 400
pala) = au/ p(s)ds + /( B (a—As)p(s)ds+ al/ p(s)ds.

— 0 a—ary) (a—ag)/A

Hence, (2.4) follows by direct computation. If we assume that supp(p) = R, then we cannot

have p) (a) = 0 because this implies that p vanishes in a nontrivial interval. il

An immediate consequence of Lemma 2.3 is that py is an increasing function and that

if supp(p) = R, then p, is strictly increasing. Also note that p, is nonexpansive, that is,

[pa(a) = pA(B)] < | — f].

This property follows directly from the result [p)(«)| <1 in Lemma 2.3.
The behavior of p\ as A goes to zero is important to the results in Section 4. Note that

expression (2.4) shows that

}in%p&(a) =1, a€(aa), }in%p&(a) =0, a¢la,a,l (2.5)

Expression (2.4) also shows that py is twice differentiable with

e =3 (55) = (5] .

As a special case of (2.6) note that if a,, = 400, then pY(a) > 0, and hence, p) is convex.

This is reasonable to expect, since in this case, the function a — mid(a,, oy, @) is also

convex. Also note that (2.6) implies that

/l\lr%p’/\’(a) = 07 a ¢ {alvau}v

but that p{(«) can be unbounded for a € {ay, o, }.
An important property of the function p, is that we can bound the error between the

smooth function py and the original function mid(a;, a,, @), independent of a.

Lemma 2.4 If p\: R — R is the smooth approzimation to the mid function, and k is the
constant defined by (2.1), then

Ipa(a) — mid(ay, ay, )| < KA. (2.7)

Proof. If ¢ : R — IR is defined by ¢(s) = mid(ey, o, s), then ¢ is the projection operator

for the interval [ay, ], and thus

|p(az) — ¢lar)| < |ag — aq]. (2.8)



We can also prove this inequality by noting that ¢ is piecewise linear, and that (2.8) holds
in each of the pieces. Since

+oo

[pate) = mid(ar, ay0)| < [

+o0
[ lota =29 = dlelp(s)ds < [ Alslo(s)ds <

the result follows immediately. W

The techniques used in Lemma 2.4 can be used to establish additional properties for the

function py. For example, we can show that

|p/\2(a) - p/\1(a)| < H|’\2 - ’\1|'

This result follows from (2.8) in Lemma 2.4, since
+ oo
paote) = ()l € [ Joa = Xas) = 6= Aas) pls) ds < kA = A

— 00

Thus, we have shown that the mapping (a, A) — pa(a) is Lipschitz in A.
Chen and Mangasarian [6] approximated the function a — a4 = max(0,a) with the

function ¢ : IR — R defined by

(@) = %/_:(a ~ 1) G) it = %/_-:O(a ~)ep G) dt, (2.9)

where p is a density function with bounded absolute mean. We now show that the two

definitions agree in this case.
Lemma 2.5 If oy = 0 and o, = +00, then py(a) = ¢\(a).
Proof. The substitution ¢ = As shows that

(o) = %/_—:o(a —t)gp (;) dt = /+Oo max(0,a — As)p(s)ds = pr(a),

— 00
as desired.

Our development does not impose any restrictions on the density function p. In contrast,

Chen and Mangasarian [6] based much of their development on the density function

expla)
a)= —————F .
A= T espla)?
In global optimization work, Moré and Wu [16] have shown that the normal density function
has superior smoothing properties, but at present it is not clear if similar results will hold

in the complementarity area.



3 The Mixed Complementarity Problem

The mixed complementarity problem can be formulated as the solution of a nonsmooth

system of nonlinear equations r(z) = 0, where r : R" — IR”™ is defined by
r(z) =2 —mid(l,u,z — f(z)). (3.1)
For future reference, we state this equivalence formally.

Lemma 3.1 Let r : R" — R" be the residual (3.1

). A vector x € R" solves the mized
complementarity problem (1.1) if and only if r(z) = 0.

Lemma 3.1 is a special case of a result of Faves [8], which formulates variational inequali-
ties as a system of nonsmooth nonlinear equations. In the case of the mixed complementarity
problem, the equivalence of (1.1) with r(2) = 0 is a direct consequence of the definition of
the mid function.

We introduce a smooth residual for the mixed complementarity problem by first extend-

ing the function py) : R — R to R" by defining

pa() = (pa(2:))-
The mapping py : R"™ — R"™ is continuously differentiable with a diagonal Jacobian matrix
pi(x) = diag (p (%))
Other properties of py will be developed as needed.

Definition 3.2 Let p : R — Ry be a density function with bounded absolute mean. For
any A > 0 define the smooth residual ry : R™ — R"™ by

ra(z) =z —pa(e = f(2)).

The smooth residual r\ can be used to obtain approximate solutions to the mixed com-
plementarity problem (1.1) by solving ry(z) = 0. On the other hand, Chen and Mangasarian
[6] obtain approximate solutions to the mixed complementarity problem (1.1) by solving

the system of nonlinear equations

f@) =+
r—l—-qg(e—1l-w) | =0,

u—x—q\(u—2z—v)

where ¢y is the smooth function defined by (2.9). Our formulation in terms of ry(z) = 0
requires fewer variables and seems to be more suitable for computations.
We now extend Lemma 2.4 to R™ by assuming that || - || is a monotone norm, that is,

|z| < |y| implies that ||z|] < ||y||. Clearly, all [, norms are monotone.



Theorem 3.3 Let || - || be @ monotone norm. If ry : R"™ — R" is the smooth residual, then
l7a(2) = r(@)l| < wA[le]],
where e € R™ is the vector of all ones, and k is the constant defined by (2.1).

Proof. Lemma 2.4 shows that ||p\(z) — mid(/, u, z)|| < kA||e]|, and thus,

[ra(@) = r(@)|| = lIpate = f(2)) — mid(l, v, 2 = f(2))]] < RAlle]]-

We now show that approximate solutions to the system ry(z) = 0 are also approximate

solutions to 7(z) = 0 and that the accuracy depends mainly on A.
Lemma 3.4 Ifr):R" — R" is the smooth residual and ||r\(z)|| < e, then
[r(@)[] < Arlle]| + &
Proof. Lemma 3.3 implies that
(@)l < llra(z) = r(2) |+ llra(@)]] < mAllell + ¢,

as desired.l

Finally, we show that if we find an @ € R"™ with ||r(z)|| small, then z is an approximate
solution of (1.1).

Lemma 3.5 Letr: R"™ — IR”" be the residual for the mized complementarity problem (1.1).
If Ir(2)||ec < e, then z; € [l; — e, u; + €] for all indices i, and

|f2($)| <e Zf T; € (li—|—€,u2'—€),
file) > —e if o - 1] <e,

Proof. Since the mid only has three possible values,

filz) it L <o = fi(x) <y,
ri{e) =9 a; =l i wi— fi(e) <l
2, —u; if wx;— fz(ac) > Uj.
Since |ri(x)| < e, we obtain that @; € [l; — ¢, u; +¢] in all three cases. If z; € (I; +¢,u; —¢),

then |z; — ;] > ¢ and |z; — w;| > ¢, so we must have r;(z) = fi(z), and thus |fi(2)] < e.

The proofs of the other two cases are similar. il



4 Regularity

Given the smooth residual r) : R™ — IR"™, we approach the mixed complementarity problem
by generating a path z(A) for A > 0 in which 2(A) is an approximate solution to the least

squares problem

min {3[|ra(e)[[* s w € R"}. (4.1)

Given a sequence {A;} that converges to zero, we require that the approximate minimizer
x) be generated so that

klirf r(zg) ri(zr) = 0, (4.2)

where
re(z) =7y, (2).
There are various ways to generate iterates that satisfy (4.2). For example, given the

iterate (xg, Ag), choose A1 > 0, and use any nonlinear least squares algorithm on (4.1)

with A = Ag4q to generate an iterate such that

gt (Prgt) g (@)l < mllri(an) Tre(an)|)s (4.3)

where n € (0,1). Clearly, if the sequence {(xy, Ar)} satisfies (4.3), then (4.2) holds.
We want to impose conditions on f : R" — IR™ that guarantee that if {(xy, A\r)} satisfies

(4.2), then any limit point of {1} solves the mixed complementarity problem. Since
ri(x) = 1= D(x)(I - f(x)), (4.4)

where D(z) = p\(z— f(z)), we are led to the study of matrices of the form M = I—-D+ DA,
where D = diag(d;) has d; € [0,1]. Our results show a strong connection between the
nonsingularity of M and the class of P- and Py-matrices.

A matrix A € R™" is a P-matrix if for any @ # 0 there is an index ¢ such that
x;[Az]; > 0. Similarly, a matrix A € R"*" is a Py-matrix if for each & # 0 there is an index
i such that z; # 0 and z;[Az]; > 0. A P-matrix (Fp-matrix) can also be defined as any
matrix for which all principal submatrices have positive (nonnegative) determinants. For
additional information on P-matrices, see the book of Cottle, Pang, and Stone [7].

Our analysis of matrices of the form M = I — D + DA hinges on the following result of
Sandberg and Willson [22].

Theorem 4.1 A € R"™" is a Py-matriz if and only if A+ D is nonsingular for each

diagonal matriz D with positive diagonal entries.

Theorem 4.1 has been rediscovered at least twice. This result can be found, for example,

in Chen and Harker [3, Theorem 3.3], and in Luca, Facchinei, and Kanzow [14, Lemma 5.1].



Theorem 4.2 A € R"*" is a Py-matriz if and only if M = I — D + DA is nonsingular for
any diagonal matriz D = diag(d;) with 0 < d; < 1.

Proof. If A is a Fy-matrix, then DA is also a FPy-matrix for any nonnegative diagonal
matrix D, and since I — D has positive diagonal entries, Theorem 4.1 implies that M is
nonsingular. Conversely, assume that M is nonsingular for any diagonal matrix D with
0 < d; < 1. Note that the diagonal matrix S = D=1 — I has positive diagonal entries if and
only if D has entries with 0 < d; < 1, and that M = D (S + A). Hence, M is nonsingular
if and only if S + A is nonsingular, and thus the result follows from Theorem 4.1. il

If the support of the density function used to generate the smooth residual is R, then
Lemma 2.3 guarantees that p\(a) € (0,1), and thus Theorem 4.2 shows that the Jacobian
matrix (4.4) of the smooth residual ry is nonsingular if f’(z)is a Pp-matrix. If p has compact

support, then we need to impose stronger conditions.

Theorem 4.3 A € R™™" is a P-matriz if and only if M = I — D + DA is nonsingular for
any diagonal matriz D = diag(d;) with 0 < d; < 1.

Proof. Assume that M is nonsingular for any diagonal matrix D = diag(d;) with 0 < d; < 1.
Theorem 4.2 shows that A must be a Fy-matrix, so we need to prove only that Ax g is

nonsingular for any index set K. If we set d; = 1 for i € K, and d; = 0 for ¢ ¢ K, then

A A
M= K Axc 7
0 1
where £ is the complement of K. Hence, Ax x is nonsingular, as desired. Conversely, if A
is a P-matrix, but Ma = 0 for some 2 # 0, then

di[Az]; = (d; — 1)y, 1<¢<n.

If d; = 0, then z; = 0, while if d; > 0, then
1

k3

Hence, x;[Ax]; < 0 for all indices 4, contradicting the assumption that A is a P-matrix. il

We can weaken the conditions needed for nonsingularity of M when we know that the
submatrix Ax x with K = {¢ : d; = 1} is nonsingular. For this result, recall that if the
principal submatrix Ax x of A is nonsingular, and £ is the complement of K in {1,2,...,n},
then

AfAxx = Az r — AL‘,)CA)E})CA)C,IL



is the Schur complement of Ax x in A, and that the fundamental relationship

1 0 Acx Axec \ | Axx Axe (4.5)
—A,c,/cA,E},C 1 Acx Acr 0 AfAcx |’

shows that A is nonsingular if and only if the Schur complement A/Ax x is nonsingular.
Theorem 4.4 Let D = diag(d;) be a diagonal matriz with d; € [0,1], and set
K=Ai:d; =1}, L=A{i:0<d; <1},

If the principal submatriz Ax of A € R™™"™ is nonsingular and Axyc/Ax is a Py-matriz,
then M =1 — D + DA is nonsingular.

Proof. Define § = {i : d; = 0}, and note that we can permute the rows and columns of A

so that
I 0 0

M = Axs  Axx Ax.c )
EA/U"S EA/;JC I—-F+ EA/;J;
where IV = diag(e;) and 0 < e¢; < 1. Hence, M is nonsingular if and only if the lower 2 X 2

block principal submatrix M of M is nonsingular. A computation shows that
M/Ax =1 - E 4 E(Axuc/Ax),

and thus Theorem 4.1 shows that M/A;C is nonsingular. Hence, M is nonsingular, as

desired. 1

Theorem 4.4 can be used to prove that every limit point of {r}(zx)} is nonsingular

provided a regularity condition is imposed. For any z € IR”™ define the index sets

I = {Z <z — fz(ac) < ui},
B=Ai:z;— file)=1L}U{i:a; — fi(z) = u;}, (4.6)
&= {Z X — fz(ac) < lZ} U {Z X — fz(ac) > uz}
The notation is suggestive because Z, B, £ are the indices of z; — f;(x) that are, respectively,
on the interior, boundary, and exterior of the interval [l;,u;]. Also note that we have

suppressed the dependence on x because the vector z in question will always be clear from

the discussion.

Definition 4.5 A vector @ € R" is regular if [f'(2)]x is nonsingular for all K such that
ITCKCTUB, and

[F())zus/ 1 (2)]z

1s a Py-matrix.

10



Regularity conditions typically are used to show that if a complementarity problem is
formulated as an optimization problem, then any local minimizer that satisfies the regu-
larity condition is actually a global minimizer, and thus a solution to the complementarity
problem. Pang and Gabriel [17], Moré [15], Xiao and Harker [23, 24], Ferris and Ralph
[10], and De Luca, Facchinei, and Kanzow [14] have introduced regularity conditions for the
classical complementarity problem (1.2), while Gabriel [11], Billups [1], and Billups, Dirkse,
and Ferris [2] seem to be the only researchers that have used this type of regularity condition
for mixed complementarity problems. Comparisons between these regularity conditions are
difficult because they depend on the formulation of the complementarity problem as an
optimization problem. We could use our regularity condition to show that any stationary
point of

min {&|lr(2)|3: 2 € R"}

is a solution to the mixed complementarity problem (1.1), but we use it to guarantee that
every limit point of {r}(z})} is nonsingular.
Luca, Facchinei, and Kanzow [14] used a similar regularity condition for the classical

complementarity problem to guarantee that all elements of the generalized Jacobian of the

residual » : R™ — IR", where

r(@) = ¢, f(z)),  ola,p)=y/(a?+52) - (a+f)

are nonsingular. Our regularity condition seems to be weaker because if (as expected) B is
empty, then we only require [f'(z)]7 to be nonsingular.
If z is a solution to the mixed complementarity problem (1.1), then the index sets (4.6)

can be be expressed in the form
Z=Aiz € (lw), filz) =0},
B={i:a; € {li,u}, fiz)=0},
E={izai=1, fi(z) > 03 U{i: 2 = i, fi(w) <0}
Facchinei and Kanzow [9] used this condition for the classical complementarity problem,

where [ = 0 and u = 400, to guarantee superlinear convergence of a truncated Newton
method.

Theorem 4.6 Assume that f : R™ — R" is continuously differentiable. If {(zy, \r)}

converges to (z*,0) and «* is regular, then every limit point of {rj(x1)} is nonsingular.

Proof. Any limit point of {rj(z)} is of the form I — D + D f'(2*), where D = diag(d;)
has d; € [0,1], and thus the proof follows from Theorem 4.4 if we show that [f'(z*)]|x is
nonsingular for K = {i : d; = 1} and that the matrix

B = [f'(2")kue/[f' (@), (4.7)

11



where £ = {i:0 < d; < 1}, is a Py-matrix. We first prove that [f'(2*)]x is nonsingular.

We claim that Z C K C (ZU B). If ¢ € Z, then (2.5) shows that d; = 1, and thus 7 € K.
Hence, 7 C K. We prove that K C (Z U B) by noting that if ¢ ¢ (Z U B), then i € £, and
thus (2.5) implies that d; = 0. Hence ¢ ¢ K. This establishes our claim.

Since Z C K C (Z U B), the regularity assumption implies that [f'(2*)]x is nonsingular.
We now prove that the matrix B in (4.7) is a Fy-matrix.

We need to know that a submatrix of a Fy-matrix is also a FPy-matrix. This result is a
direct consequence of the definition of a FPy-matrix. We also need to know that the Schur
complement of a Pp-matrix is again a Pp-matrix. This result is due to Chen and Harker [4,
Lemma 2.3].

The Schur quotient formula (see, for example, Cottle, Pang, and Stone [7, pages 76-77])
shows that

L@ )zus/ [ (27)e = ([F (e )zos/ [ (2)]z) / (1 ()] /L (27)]2) -

is a Schur complement of the Py-matrix [f'(2*)]zug/[f (2*)]z. Hence, [f'(*)]zur/[f'(2™)]k
is also a Py-matrix.

We prove that (KU L) C (ZUB) by noting that if ¢ ¢ (ZUB), then 7 € £, and thus (2.5)
implies that d; = 0. Hence, i ¢ (KU L), as desired. Since (KU L) C (Z U B), the matrix B
in (4.7) is a submatrix of the Po-matrix [f'(2*)]zus/[f'(2*)]k. Hence, B is a Py-matrix. Il

Theorem 4.6 is applicable to any sequence {z}. If we assume that z is an approximate
minimizer of (4.1), in the sense that (4.2) holds, then we can obtain a result applicable to

the mixed complementarity problem (1.1).

Theorem 4.7 Assume that f : R™ — RR™ is continuously differentiable, that {\;} con-
verges to zero, and that {(x, \g)} satisfies (4.2). If x* is a limit point of {zi}, and * is

regular, then x* solves the mized complementarity problem.

Proof. Without loss of generality, assume that {z;} converges to #*. Since Theorem 4.7
shows that every limit point of {7} (21)} is nonsingular, (4.2) implies that {ry(zx)} converges

to zero. Since Lemma 3.3 shows that

k() = r(zp)ll < wAgllell,

and since {A;} converges to zero, we obtain that r(2*) = 0, and thus 2* solves the mixed

complementarity problem. il

5 Concluding Remarks

After completing the manuscript, Francisco Facchinei and Christian Kanzow pointed out

that [f'(2)]zus/[f'(2)]7 is a P-matrix under our regularity assumption. This result shows,

12



for example, that the R-regularity assumption of Robinson [18] is equivalent to our regularity
assumption if z is a solution of the classical complementarity problem.

The observation of Facchinei and Kanzow follows by noting that if A is nonsingular,
then (4.5) shows that the Schur complement A/Ax is nonsingular with respect to any
nonsingular principal submatrix Ax. Hence, if A/Ax is a Py-matrix, then A/Ax has a

positive determinant.
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