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ABSTRACT

We study global optimization problems that arise in macromolecular modeling, and the
solution of these problems via continuation and smoothing. Our results unify and extend
the theory associated with the use of the Gaussian transform for smoothing. We show that
the Gaussian transform can be viewed as a special case of a generalized transform and that
these generalized transforms share many of the properties of the Gaussian transform. We
also show that the smoothing behavior of the generalized transform can be studied in terms
of the Fourier transform and that these results indicate that the Gaussian transform has

superior smoothing properties.
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1 Introduction to Macromolecular Global Optimization

Macromolecular modeling gives rise to a wide variety of global optimization problems with
interesting features. These problems usually require the determination of the global mini-
mum of a function with n = 3m variables, where m is the number of atoms in the molecule.
A typical problem requires the determination of a molecular structure such that the po-
sitions of the atoms z1,...,2,, in R? satisfy certain constraints on the structure or such
that a given potential energy function is minimized. There is also interest in determining
structures that nearly satisfy these constraints or that have nearly minimal potential value.

The problem of determining a structure that satisfies geometric constraints on the struc-
ture falls under the general area of distance geometry. Distance data between atoms and
other geometric constraints (for example, angle constraints) can be obtained from nuclear
magnetic resonance (NMR) data, but in most cases only partial information is available.
In particular, for distance data only a fraction of the distances 6; ; between the (¢, 7) pair
of atoms is available for a subset § of the atom pairs. Given this information, we seek

positions 2y, ..., 2, in R® of the atoms in the molecule such that
i = wjll = 6:5,  (5,4) €. (1.1)

Since the data obtained from NMR is usually inaccurate, distance geometry problems that
arise in the determination of protein structure are usually associated with the more general

problem of finding positions 2, ..., 2, in IR® such that
lij < i — ij < Ui, (i,7) €S, (1.2)

where [; ; and u; ; are lower and upper bounds on the distance constraints, respectively.
Problems (1.1) and (1.2) can be formulated in terms of finding the global minimum of
a function that measures the deviation of the structure from the constraints. We formulate

problem (1.1) in terms of finding the global minimum of the function

fx)y="Y" fij(zi—xj), (1.3)
ijeS
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where ,
Foi) = (Il2l* - 63) (1.4)

Similarly, we formulate problem (1.2) in terms of finding the global minimum of (1.3) where

z2_ ]2, 2 _ 2.
fi.j(z) = min? {7"96"12 Z’],O} + max? {7"96” 5 ul’],O} ) (1.5)
]

uy
For both of these problems, = {z1, ..., 2} solves problem (1.2) if and only if z is a global
minimizer of f and f(2) =0 (see Crippen and Havel [4]).

In general, distance geometry calculations impose additional constraints on the struc-
ture. For additional information on distance geometry, see Crippen and Havel [4], Havel [11],
Kuntz, Thomason, and Oshiro [16], and Briinger and Nilges [1].

In macromolecular modeling we are also interested in determining structures with min-
imal or nearly minimal potential energy. Various potential functions arise in applications.
We are interested, in particular, in the determination of positions zy,..., 2, in R> of the

atoms so that the potential energy
1 m

HEOEDY + > llail?

i) HQCZ_QCJH i=1

is minimized. For information and references to this problem, see Hasse and Schiffer [10],
Rafac, Schiffer, Hangst, Dubin, and Wales [21], and Schiffer [25].
The problems that we have introduced can be described in terms of finding the global

minimum of a function of the form

Fa)y= > Fijlwi =) + ) filei), (1.6)
ij€S =1
where
fii(e) = hij([lel),  fule) = hi(ll=]]) (L.7)
for some functions f;; : R — R and A; : R — R. Our approach for determining the global
minimum of functions of the general form (1.6,1.7) is based on smoothing and continuation.
The smoothing process transforms a function f : R” — IR into a smoother function (f),
with fewer local minimizers. The parameter A controls the degree of smoothing; the original
function is obtained if A = 0, while smoother functions are obtained as A increases. Given
the smooth function (f)\, we use continuation on A to trace the minimizers of (f), back to
the original function.
In this paper we unify and extend the work of Wu [31] and Moré and Wu [18, 19] on
using the Gaussian transform (f), for smoothing. Our results in Sections 2 and 3 show that
the Gaussian transform can be viewed as a special case of a generalized transform and that

these generalized transforms share many of the properties of the Gaussian transform. Of



interest are the results in Section 3 on the smoothing behavior of the generalized transform
in terms of the Fourier transform, since these results indicate that the Gaussian transform
has superior smoothing properties.

Sections 5 and 6 complete this paper with a discussion of techniques for computing the
generalized transform. Section 5 introduces the decomposable functions and shows how
the generalized transform of a decomposable function can be expressed in terms of one-
dimensional integrals, which can be either evaluated analytically or, at worst, approximated
by Gaussian quadratures. Section 6 outlines several techniques that can be used to compute
the Gaussian transform of any function defined by (1.6,1.7). We show that the Gaussian
trasnform can be expressed in terms of special functions or one-dimensional integrals. These
techniques are only applicable to the Gaussian trasnform, and thus show that the Gaussian

transform plays a special role in problems that arise in macromolecualr modelling.

2 Smoothing

The value (f), of the transformed function at a point € IR™ is generally obtained by com-
puting weighted averages of f in a neighborhood centered at x. The weights are determined

by a probability density function, that is, a nonnegative function p : R” — IR such that

/np(w)dx: 1.

We could use any density function, but the use of the Gaussian density function

ply) = #exp (=lw11?) . (2.1)

is natural. We also want the weight of the density function concentrated on the origin, so

we use the Gaussian density function

L (y 1 ylI?
py) = e (X) = 7 P (—%) (2.2)

with mean zero and variance %/\2.

Definition 2.1 The Gaussian transform (f)\ of a function f:R"™ — R™ is

(fIa(z) = ﬁ/ﬁ f(y)exp (—w) dy. (2.3)

This definition shows that the value of the transformed function (f), at a point z € R"
is a weighted average of the values of f in a neighborhood of z. This observation can also
be made by noting that the change of variables y = 2 + Aw in (2.3) shows that the Gaussian
transform can be written in the form

(D@ = = [ o+ M) exp(—]Jul?) du (24)



Finally, one can also think of the Gaussian transform as the convolution of f with the
Gaussian density function py. This last observation comes into play when we analyze the
smoothing properties of the Gaussian transform.

We have defined the Gaussian transform for a vector-valued mapping f : R” — IR™ be-
cause we are also interested in the more general case. In particular, this extended definition
will come up when discussing the smoothing of gradients and Hessian matrices.

The idea of transforming a function into a smoother function has been used extensively
in macromolecular modeling. Straub [29] reviews work in this area. The diffusion equation
method of Piela, Kostrowicki, and Scheraga [20] is central to our work since the idea of the
Gaussian transform underlies the diffusion equation method. Other approaches include the
packet annealing method of Shalloway [27, 26] and the effective energy simulated annealing
method of Coleman, Shalloway, and Wu [2, 3].

We generalize the definition of the Gaussian transform by replacing the Gaussian density

function with another density function p : R" — IR.

Definition 2.2 Given a density function p : R" — R, the generalized transform () of
a function f:IR"™ — IR™ is

{I(z) = %/Rn fe (%) dy. (2.5)

Transformations of the general form (2.5) have been used in stochastic optimization,

often in the equivalent formulation
(@) = [ sa =)o (o) dv. (26)

Any density function can be used in (2.5) but from a computational viewpoint, the Gaussian

density function (2.1) and the uniform density function

pr)=3  lolle <1, (2.7)

are of special interest.

The earliest reference to transformations of the form (2.5) in stochastic optimization
seems to be due to Katkovnik (see, for example, Katkovnik and Kulchitskii [12]). References
and generalizations of this work can be found in the work of Rubinstein [22, 23, 24], where
the generalized transformation (2.5) is called a smoothed functional. Related work and other
references can be found in Kreimer and Rubinstein [15] and Ermoliev, Norkin, and Wets [6].
Transformations of the form (2.5) also arise in the theory of distributions, but in this work
the density p is usually infinitely differentiable and of compact support.

The emphasis of the work on stochastic optimization has been on the approximation
of non-smooth functions. There has been little emphasis on computational issues. In
particular, the transformation (2.5) is never computed explicitly; instead, a Monte Carlo
method is used to approximate the transformation. As we shall see, the emphasis of the

work on global optimization is quite different.



3 Properties of the Generalized Transform

The Gaussian transform has many interesting properties, with most of these properties being
shared by the generalized transform ((f))\. We first consider the questions of existence of
the transformations.

The Gaussian transform is defined if f is continuous almost everywhere, and if

| f(@)] < Brexp(Ba|z|]) (3.1)

for positive constants #; and 2. Existence follows from (2.4), since (3.1) implies that

[+ Av)exp (= llell”)| < Brexp (Ballall)exp (B2 llell = [Jo]?) -

The situation for the generalized transform is more delicate. The generalized transform
{(f) is defined if we assume that the density function p in (2.5) is continuous almost
everywhere and has compact support. We can also admit density functions with infinite
support if we restrict the class of functions f and density functions p. For example, if we

assume that

| ()] < 81+ Ball2||”
holds for positive constants #; and §2 and exponent p, then the generalized transform ((f))\

is defined if
[ lelfptoyde,  k=0.100p
R’ﬂ

exists. In this section we assume that f satisfies assumption (3.1) whenever we are discussing
the Gaussian transform (f), or the generalized transform ((f)), for a density function with
compact support. The modifications needed to handle arbitrary density functions should
be clear from this discussion.

The generalized transform is a linear operator in the vector space of functions that are

continuous almost everywhere and satisfy (3.1), since

{afhr=alflr (A + o= (fuda + (D

for any scalar o and functions f; and f;. The generalized transform ((f)), is also an isotone

operator, since it preserves the standard order relation between functions, that is,

fu < fz o implies that — (fi)hy < (/o)

In particular,
min {f(y) : R"} < {fPa(z) < max{f(y): R"}.

These properties are direct consequences of the definition of the generalized transform ((f))».



The differentiability properties of the generalized transform ((f)) follow from general
results (see, for example, Lang [17, Chapter 13]) on the differentiability of functions of the

form
o) = [ hr.)dy.
Rn

where the mapping h : R"™ — R is integrable in y. If 0,h is continuous almost everywhere

in an open set of the form B x R”, and
|00z, y)| < hpe(y), (z,y) € BxR", (3.2)
for some integrable function hp : IR™ — IR, then g is differentiable and
g'(z) :/ deh(z,y) dy.
Rn
This result can be applied, in particular, to the Gaussian transform.
Theorem 3.1 The Gaussian transform (f) is infinitely differentiable.

Proof. Define

h(z,y) = f(y)p (x 5 y) ,

and note that

.h(e.) = 3 fo0 (S51).

A calculation based on (3.1) shows that (3.2) holds, and thus (f), is differentiable. The
argument can be repeated to show that (f), is infinitely differentiable. il

Theorem 3.1 does not hold for the generalized transform (( f)), unless we make additional
assumptions on f or on the density function p. Consider, for example, the uniform density

function
p(s) = %7 |s] < 1.

In this case the generalized density function reduces to

(=4 [ f =2y,

~1
and thus )
/ - — j— j—
(0 (2) = 55 (Fle +2) = fz = V).
This calculation shows that ((f)), is differentiable but that if f is not continuous, then {{f))\
is not continuously differentiable.
The functions that arise in our work on macromolecular modeling are usually twice

differentiable, and in this case we can show that the generalized transform ((f)) is also

twice differentiable.



Theorem 3.2 If f: R" — R is twice continuously differentiable almost everywhere on R™

and
V2 f(@)|| < 71 exp(vallz]]) (3.3)

for some positive constants v1 and 73, then

VM) = (V). VEI) = (V2 ha(e).

An informal proof of this result can be obtained by differentiating under the integral
sign in (2.4) to obtain that

V() = [ Ve = Mp () du= (T F)a).

which is the desired result for the gradient. If we repeat the process, we obtain that
V(o) = [ VR = e () du = (VA (@)

so that the generalized transform of the Hessian matrix is the Hessian of (f))..

Theorem 3.2 was stated informally by Wu [31] for the Gaussian density function; a
formal proof under assumption (3.3) appears in Moré and Wu [18]. The proof for the
generalized transform follows the arguments used by Moré and Wu [18]; the only tricky
part in the proof is to show that assumption (3.3) guarantees that we can differentiate
under the integral sign.

Theorem 3.2 is of interest from a computational viewpoint because optimization al-
gorithms require the gradient and Hessian of ((f))x. This result shows that the gradient
and Hessian of ((f)), are also smooth functions in the sense that they are obtained by

transforming the gradient and Hessian matrix, respectively.

4 Smoothing Properties of the Generalized Transform

One of the main attractions of the generalized transform is the ability to reduce the high-
frequency components of the function. We quantify this statement in terms of the Fourier

transform
flw) = /R" f(z) exp (—inx) dx

of f, since f(w) is the component of f associated with the frequency w.

o~

The key to estimating f(w) is to express the generalized transform in terms of the

convolution of f with the density function. Since

(o) =5z [ swp (S) du= [ o= 0)pato) do,

where

pa(v) = A—lnp G) :



we can write {(f)), as the convolution

(FIr(e) = (f+pa)()

of f with py. If f is integrable, then the Fourier transform of the convolution of f with
any integrable function is the product of the convolutions (see, for example, Folland [7,
Chapter 8]), thus

(Fha(w) = (f* p)(w) = flw)pa(w). (4.1)

The following result expresses (4.1) in terms of the original density function p.

Theorem 4.1 If f: R" — R is integrable, then

(fIr(w) = fw)p(Aw). (4.2)
Proof. Since ((f))\ is integrable whenever f is integrable, the result follows from (4.1) by
verifying that px(w) = p(Aw). 11

We use Theorem 4.1 to estimate the rate of decay of the Fourier transform for various

density functions. The estimates are simplified when the density function p satisfies

This result shows that we can compute p once we know the one-dimensional p;. The
Fourier transform of the one-dimensional uniform density function is obtained directly from
the definition; the Fourier transform of the one-dimensional Gaussian density function is a
standard calculation. In this manner we obtain that the Fourier transform of the Gaussian
density function (2.1) is

plw) = exp (—L|w]?) (4.3)

while for the uniform density function (2.7),

n .
N sin w;
plw) = TT 22, (4.4
: w
=1
Note that |p(w)| < 1 for both density functions, as must be true for any density function.
We use Theorem 4.1 to estimate the rate of decay of the Fourier transform in terms of the
largest frequency component. If |wpax| is the largest component of w, then ||w| > |wmax/,
and thus (4.3) shows that

JE—

| ()] < exp (=57 wmasl?) |Fi)]



for the Gaussian density function. In contrast, for the uniform density function, (4.4) shows
that )
—— sin(A|wmax|) | =
| ] < SEmag el
A|u]max|
Clearly, the estimate for the Gaussian density function is more favorable.

Theorem 4.1 and the analysis of the rate of decay of the Fourier transform are an
extension of the results obtained by Wu [31] for the Gaussian transform. Although we have
considered only the Gaussian and uniform density functions, it is clear that this analysis
can be carried out provided we are able to estimate the Fourier transform of the density
function.

Figures 4.1 and 4.2 illustrate the smoothing transform as applied to the two dimensional

(n = 2) version of the Griewank function,

= 1—|—ZZ:;(;()220) —Ecos (%)

This function was constructed by Griewank [9] as a global optimization test function. The

Gaussian and uniform transforms for the Griewank function are

(Fale) = 1+; (2%0 400) He p( )COS (\x/i)

()G ()

Figures 4.1 and 4.2 show the transformed functions for the Griewank function using

and

n 2 /\2
(Fhae) =1+ Z; (200 600)

respectively.

the Gaussian and uniform transforms, respectively. The graphs in the left column are the
transformed functions, and those in the right are the corresponding contours. The values of
A increase as we go from the graph on the top to the graph in the bottom. For these graphs
the values of A are 0,1,2, and 4, with A = 0 for the graph on the top. From these pictures,
we see that both transforms smooth the function well for increasing A values. However, for
a given A value, the Gaussian transform is slightly smoother than the uniform transform.
In other words, in order to obtain a sufficiently smooth function, a larger A value may be
required for the uniform transform than for the Gaussian transform.

We have applied a simple Matlab minimization procedure to the transformed functions
in the figures, first the top one, and then the next, and so on. The symbol * in the contours
marks the solutions obtained. The pictures show that after smoothing the function, by
either the Gaussian or the uniform transform, the global minimizer of the function was

found with a few continuation steps.
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Figure 4.1: The Gaussian transform for the Griewank function
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5 Computing the Generalized Transform

A serious drawback to the general use of the generalized transform is that computing (f))\
for a function defined on IR™ requires the computation of n-dimensional integrals. For
functions that arise in applications we can usually avoid this difficulty by reducing the
computation of the n-dimensional integrals to k-dimensional integrals where k& < n. In
this section we consider a class of functions for which the computation of the generalized

transform requires the computation of only 1-dimensional generalized transforms.

Definition 5.1 A function f :IR" — R is decomposable if f can be written in the form

n

o) =3 (1] festen ) (5.1)
k=1

i=1
for some set of functions { fi ;}, where fi ; : R — R.

This class of functions was introduced by Wu [31] under the term generalized multilinear
functions; Moré and Wu [18] introduced the term decomposable to avoid confusion with the
use of multilinear for a function that is linear in each argument.

Decomposable functions form an algebra, that is, a vector space that is closed under mul-
tiplication. Linear and quadratic functions in R™ are decomposable. Polynomial functions,

that is, functions that are linear combinations of terms of the form

P1,.P2 ., ,.Pn
Ty Ty Lns

for arbitrary integer powers p; > 0, are also decomposable. An interesting example of

decomposable functions arises in the fitting of data by minimizing the I norm

2

b(a,z) = f: Zn:aj exp(—t;zj) — yi

=1 \j=1
of the difference between an exponential model and the data yq,..., 9, at times t1,...,1,,.
Clearly, ® is a decomposable function of the variables (a1, x1),...,(a,, z,).

The decomposable functions are of interest with respect to the Gaussian transform
because computing the Gaussian transform of a decomposable function requires the com-
putation of only a one-dimensional Gaussian transform. Indeed, if f is defined by (5.1),
then

m n

(M) =7 | T fridale)

k=1 \y=1
Thus, computing (f), for a decomposable function requires the computation of only the

one-dimensional integrals for each (f; ;)\.

12



We extend the above result to the generalized transform (( f))\ by imposing an additional

assumption on the density function p, that is, we assume that
n
= H ,Oj(wj), (5'2)
j=1

where each p; : R — IR is a one-dimensional density function. This assumption on p means
that the random variables associated with each density functions p; are independent. The
Gaussian (2.1) and uniform (2.7) density functions, as well as most other n-dimensional

density functions, satisfy this assumption.

Theorem 5.2 If f : R" — R is decomposable and the density function p : R” — R
satisfies (5.2), then

) =3 (ﬁ <<fk,j>>x(wj)) |

k=1 \j=1
Proof. The result follows from (5.2) and the definition of the generalized transform. il

Theorem 5.2 can be used to compute the generalized transform of a decomposable
function provided we are able to compute the generalized transform of the component
functions fi ;. In the remainder of this section we explore the case where the component
function is analytic.

We obtain an expression for the generalized transform of an analytic function f by

noting that in this case the Taylor series converges uniformly, and thus

Zf V”Amwmwm.

This expression simplifies when the density function is even.

Theorem 5.3 If f : R — R is analytic and p : R — R is even, then the generalized
transform ((f)\ satisfies

+oo /\21 400
-y ﬂzl)mw / wp (u) du.
(=0 rToo

Proof. Just note that the integrals with odd powers vanish by symmetry for any density

function that is symmetric around the origin. il

Theorem 5.3 shows that if p is the uniform density function then

(@) /\(21)
Zf? BT (5.3)

13



is the generalized transform of f. In particular, for the sin, cos, and exp functions, expression

(5.3) shows that
sin A sin A sinh A

sin(x) v cos(x) o exp(z) S

are, respectively, the generalized transforms for these functions. Theorem 5.3 also yields an

expression for the Gaussian transform if we make use of the identity

Looftee o 2 (20)!
72 /_Oo u” exp (—u ) du = TR

which can be verified from standard tables or by integration by parts. Hence, Theorem 5.3
shows that

1 21 (A) (20)
n A
Z ik 5 (5.4)
is the Gaussian transform of an analytic function f. As a special case of (5.4),
sin(r)exp(~1X2),  cos(r)exp(~5A%),  exp(e) exp(1X?)

are, respectively, the generalized transforms for the sin, cos, and exp functions.
Piela, Kostrowski, and Scheraga [20] used (5.4) as the motivation for the diffusion equa-
tion method by noting that the mapping

+oo
e 0) = fhailo) = 3 /@)t
=0 "’

satisfies the diffusion equation

9%h oh
)= S, h(r,0)= f(a)

Thus, in this approach, the transformation is defined as any solution to the n-dimensional
diffusion equation. In later work ([13, 14]) it was shown that (2.4) could also be used to
define this transformation in R™. In our work we have used (2.4) as the definition of the

Gaussian transform and derived all results from this definition.

Theorem 5.4 If f: R — R is the monic polynomial f(z) = z*, then

(@) = kaJ (ﬁ) (g)’w

(=0

s the Gaussian transform, while if p is the uniform density function, then

[%/2] A /\21 y
()= 2 ((k—Ql)!) CEA

(=0

is the generalized transform.

14



Proof. The result follows directly from (5.3) and (5.4). I

As an application of Theorem 5.4 to an n-dimensional function, consider the general

quadratic
flz) = %wTQw + T,
where @) € R™*"™ and ¢ € R". A computation shows that

P
%xTQx +cle+ R (Z f]“)
=1

for the Gaussian density function, while

Py
%xTQx +cle+ 5 (Z f]“)
=1

for the uniform density function. Thus, for quadratic functions, both transforms only differ

OPNED

OPNED

by a re-scaling of the parameter A. This result holds for any even density function, since

(5.3) shows that
+ oo

(i) =+ 32 [ alo(u) du

— 00

when f(z) = 22
6 The Gaussian Transform for Macromolecular Problems

For macromolecular modeling problems we are interested in transforming a class of functions
in terms of the distances between pairs of atoms, where z; € R? is the position of the i-th
atom. In general we are concerned with three-dimensional problems where p = 3, but values
of p > 3 are also of interest. Given functions f; ; : R” — R of the distance between atoms z;
and z;, we outline several techniques that can be used to compute the Gaussian transform
of the potential function

J@)= 3" fijlai—a)), (6.1)

ijeS

where S is some subset of all pairs of atoms, and the mappings f; ; are of the form

fii(@) = hi; ({l]), (6.2)

for some mapping h; ; : IR — IR.

The example z — [|z|| points out that functions of the general form (6.1) and (6.2) are
not usually decomposable. On the other hand, we now show that we can still reduce the
computation of the Gaussian transform to the computation of one-dimensional integrals in
terms of /; ;. Note that in these problems f is defined on R"™, where n = mp and m is the
number of atoms, but that %; ; is defined in R.

The following result of Moré and Wu [19] is needed to prove that computing the Gaussian

transform of (6.1) requires only the Gaussian transform of f; ;.
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Theorem 6.1 If f: R" — R and h : RP — R are related by
flx) = h(PTa),
for some matriz P € R™P such that PTP = 021, then
(F)a(@) = (h)ar(PT2).

As an application of Theorem 6.1 consider the mapping f : R" — IR defined by (6.1).
Computing the Gaussian transform of this mapping is immediate if we are able to compute
the Gaussian transform of fy : R” — IR defined by

fol@) = fij(wi — ;).
Clearly, we can find a matrix P € R"*? of the form
P = (62'1 — €y €y — ejp)
such that PTz = z; — x;. Since PTP = 621, where ¢ = 2, Theorem 6.1 shows that
(folr(z) = (fij)yan(zi — 2j).

An immediate consequence of this result is that
(Ma(e)= > (fig)anlei — )
ijeS
is the Gaussian transform of the potential function defined by (6.1). In this case f is defined
on R"™, but f; ; is defined on IR”.
The other ingredient needed for computing the Gaussian transform of functions defined

by (6.1) and (6.2) is the Gaussian transform of the function f; ; defined by (6.2). Note that,
unlike Theorem 6.1, the following result requires that f be defined on IR>.

Theorem 6.2 If f : R® — R is of the form f(x) = h(||z||) for some function h : R — IR,

then
(fir(z) = /\\}7?7‘ /OOO sh(s) [exp (— (r ;28) ) — exp (— (r —/I\_ZS) )] ds, (6.3)

where r = ||z||. If the mapping h is an even function, then

)= 5= [ sty en (—(T ;5)2) ds. (6.4
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Moré and Wu [19] proved Theorem 6.2 and used (6.4) to approximate the Gaussian
transform of (1.5). More generally, note that the integrals that appear in (6.3) and (6.4)
can be expressed explicitly or in terms of special functions. For example, if h(s) = s, then

(6.3) can be expressed in terms of the complementary error function

T %/;—OO exp (—52) ds.

However, in most cases we need to approximate the integrals with a quadrature. An adaptive
quadrature could be used, but this is quite likely to be expensive in terms of function
evaluations. Moré and Wu [19] recommended the use of Gaussian quadratures because
this leads to a discrete transformation that shares many of the properties of the standard

Gaussian transform. For the one-dimensional Gauss transform
1 too
(@)= = [ st rs)exp (=) ds

the use of Gaussian quadratures on this integral yields an approximation

(f)rg = %éwif(x + Asi), (6.5)

which is exact for all polynomials of degree less than 2¢g, where ¢ is the number of nodes
in the quadrature. The weights w; and nodes s; in (6.5) are independent of f and can be
found in the literature (for example, Stroud and Secrest [30]) or can be computed with some
of the subroutines in ORTHOPOL (Gautschi [8]). The computation of the Gauss-Hermite
transform requires ¢ function evaluations, but even for modest values of ¢ we obtain a good
approximation to the Gauss transform. For additional information on Gaussian quadrature,
see Stroud and Secrest [30] and Davis and Rabinowitz [5]. Steen, Byrne, and Gelbard [28]

have Gaussian quadratures for the integrals in (6.3).
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