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ABSTRACTWe study global optimization problems that arise in macromolecular modeling, and thesolution of these problems via continuation and smoothing. Our results unify and extendthe theory associated with the use of the Gaussian transform for smoothing. We show thatthe Gaussian transform can be viewed as a special case of a generalized transform and thatthese generalized transforms share many of the properties of the Gaussian transform. Wealso show that the smoothing behavior of the generalized transform can be studied in termsof the Fourier transform and that these results indicate that the Gaussian transform hassuperior smoothing properties.



SMOOTHING TECHNIQUES FOR MACROMOLECULAR GLOBALOPTIMIZATIONJorge J. Mor�e and Zhijun Wu1 Introduction to Macromolecular Global OptimizationMacromolecular modeling gives rise to a wide variety of global optimization problems withinteresting features. These problems usually require the determination of the global mini-mum of a function with n = 3m variables, where m is the number of atoms in the molecule.A typical problem requires the determination of a molecular structure such that the po-sitions of the atoms x1; : : : ; xm in IR3 satisfy certain constraints on the structure or suchthat a given potential energy function is minimized. There is also interest in determiningstructures that nearly satisfy these constraints or that have nearly minimal potential value.The problem of determining a structure that satis�es geometric constraints on the struc-ture falls under the general area of distance geometry. Distance data between atoms andother geometric constraints (for example, angle constraints) can be obtained from nuclearmagnetic resonance (NMR) data, but in most cases only partial information is available.In particular, for distance data only a fraction of the distances �i;j between the (i; j) pairof atoms is available for a subset S of the atom pairs. Given this information, we seekpositions x1; : : : ; xm in IR3 of the atoms in the molecule such thatkxi � xjk = �i;j ; (i; j) 2 S: (1:1)Since the data obtained from NMR is usually inaccurate, distance geometry problems thatarise in the determination of protein structure are usually associated with the more generalproblem of �nding positions x1; : : : ; xm in IR3 such thatli;j � kxi � xjk � ui;j ; (i; j) 2 S; (1:2)where li;j and ui;j are lower and upper bounds on the distance constraints, respectively.Problems (1.1) and (1.2) can be formulated in terms of �nding the global minimum ofa function that measures the deviation of the structure from the constraints. We formulateproblem (1.1) in terms of �nding the global minimum of the functionf(x) = Xi;j2S fi;j(xi � xj); (1:3)This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38 and by the Argonne Director's Individual Investigator Program.1



where fi;j(x) = �kxk2 � �2i;j�2 : (1:4)Similarly, we formulate problem (1.2) in terms of �nding the global minimum of (1.3) wherefi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2 (kxk2 � u2i;ju2i;j ; 0) : (1:5)For both of these problems, x = fx1; : : : ; xmg solves problem (1.2) if and only if x is a globalminimizer of f and f(x) = 0 (see Crippen and Havel [4]).In general, distance geometry calculations impose additional constraints on the struc-ture. For additional information on distance geometry, see Crippen and Havel [4], Havel [11],Kuntz, Thomason, and Oshiro [16], and Br�unger and Nilges [1].In macromolecular modeling we are also interested in determining structures with min-imal or nearly minimal potential energy. Various potential functions arise in applications.We are interested, in particular, in the determination of positions x1; : : : ; xm in IR3 of theatoms so that the potential energyf(x) =Xi 6=j 1kxi � xjk + mXi=1 kxik2is minimized. For information and references to this problem, see Hasse and Schi�er [10],Rafac, Schi�er, Hangst, Dubin, and Wales [21], and Schi�er [25].The problems that we have introduced can be described in terms of �nding the globalminimum of a function of the formf(x) = Xi;j2S fi;j(xi � xj) + mXi=1 fi(xi); (1:6)where fi;j(x) = hi;j(kxk); fi(x) = hi(kxk) (1:7)for some functions hi;j : IR 7! IR and hi : IR 7! IR. Our approach for determining the globalminimum of functions of the general form (1.6,1.7) is based on smoothing and continuation.The smoothing process transforms a function f : IRn 7! IR into a smoother function hfi�with fewer local minimizers. The parameter � controls the degree of smoothing; the originalfunction is obtained if � = 0, while smoother functions are obtained as � increases. Giventhe smooth function hfi�, we use continuation on � to trace the minimizers of hfi� back tothe original function.In this paper we unify and extend the work of Wu [31] and Mor�e and Wu [18, 19] onusing the Gaussian transform hfi� for smoothing. Our results in Sections 2 and 3 show thatthe Gaussian transform can be viewed as a special case of a generalized transform and thatthese generalized transforms share many of the properties of the Gaussian transform. Of2



interest are the results in Section 3 on the smoothing behavior of the generalized transformin terms of the Fourier transform, since these results indicate that the Gaussian transformhas superior smoothing properties.Sections 5 and 6 complete this paper with a discussion of techniques for computing thegeneralized transform. Section 5 introduces the decomposable functions and shows howthe generalized transform of a decomposable function can be expressed in terms of one-dimensional integrals, which can be either evaluated analytically or, at worst, approximatedby Gaussian quadratures. Section 6 outlines several techniques that can be used to computethe Gaussian transform of any function de�ned by (1.6,1.7). We show that the Gaussiantrasnform can be expressed in terms of special functions or one-dimensional integrals. Thesetechniques are only applicable to the Gaussian trasnform, and thus show that the Gaussiantransform plays a special role in problems that arise in macromolecualr modelling.2 SmoothingThe value hfi� of the transformed function at a point x 2 IRn is generally obtained by com-puting weighted averages of f in a neighborhood centered at x. The weights are determinedby a probability density function, that is, a nonnegative function � : IRn 7! IR such thatZIRn �(x) dx= 1:We could use any density function, but the use of the Gaussian density function�(y) = 1�n=2 exp ��kyk2� ; (2:1)is natural. We also want the weight of the density function concentrated on the origin, sowe use the Gaussian density function��(y) = 1�n��y�� = 1�n=2�n exp �kyk2�2 ! (2:2)with mean zero and variance 12�2.De�nition 2.1 The Gaussian transform hfi� of a function f : IRn 7! IRm ishfi�(x) = 1�n=2�n ZIRn f(y) exp �ky � xk2�2 ! dy: (2:3)This de�nition shows that the value of the transformed function hfi� at a point x 2 IRnis a weighted average of the values of f in a neighborhood of x. This observation can alsobe made by noting that the change of variables y = x+�u in (2.3) shows that the Gaussiantransform can be written in the formhfi�(x) = 1�n=2 ZIRn f(x+ �u) exp(�kuk2) du: (2:4)3



Finally, one can also think of the Gaussian transform as the convolution of f with theGaussian density function ��. This last observation comes into play when we analyze thesmoothing properties of the Gaussian transform.We have de�ned the Gaussian transform for a vector-valued mapping f : IRn 7! IRm be-cause we are also interested in the more general case. In particular, this extended de�nitionwill come up when discussing the smoothing of gradients and Hessian matrices.The idea of transforming a function into a smoother function has been used extensivelyin macromolecular modeling. Straub [29] reviews work in this area. The di�usion equationmethod of Piela, Kostrowicki, and Scheraga [20] is central to our work since the idea of theGaussian transform underlies the di�usion equation method. Other approaches include thepacket annealing method of Shalloway [27, 26] and the e�ective energy simulated annealingmethod of Coleman, Shalloway, and Wu [2, 3].We generalize the de�nition of the Gaussian transform by replacing the Gaussian densityfunction with another density function � : IRn 7! IR.De�nition 2.2 Given a density function � : IRn 7! IR, the generalized transform hhfii� ofa function f : IRn 7! IRm ishhfii�(x) = 1�n ZIRn f(y) ��x� y� � dy: (2:5)Transformations of the general form (2.5) have been used in stochastic optimization,often in the equivalent formulationhhfii�(x) = ZIRn f(x� �v) � (v) dv: (2:6)Any density function can be used in (2.5) but from a computational viewpoint, the Gaussiandensity function (2.1) and the uniform density function�(x) = 12 ; kxk1 � 1; (2:7)are of special interest.The earliest reference to transformations of the form (2.5) in stochastic optimizationseems to be due to Katkovnik (see, for example, Katkovnik and Kulchitskii [12]). Referencesand generalizations of this work can be found in the work of Rubinstein [22, 23, 24], wherethe generalized transformation (2.5) is called a smoothed functional. Related work and otherreferences can be found in Kreimer and Rubinstein [15] and Ermoliev, Norkin, and Wets [6].Transformations of the form (2.5) also arise in the theory of distributions, but in this workthe density � is usually in�nitely di�erentiable and of compact support.The emphasis of the work on stochastic optimization has been on the approximationof non-smooth functions. There has been little emphasis on computational issues. Inparticular, the transformation (2.5) is never computed explicitly; instead, a Monte Carlomethod is used to approximate the transformation. As we shall see, the emphasis of thework on global optimization is quite di�erent.4



3 Properties of the Generalized TransformThe Gaussian transform has many interesting properties, with most of these properties beingshared by the generalized transform hhfii�. We �rst consider the questions of existence ofthe transformations.The Gaussian transform is de�ned if f is continuous almost everywhere, and ifjf(x)j � �1 exp(�2kxk) (3:1)for positive constants �1 and �2. Existence follows from (2.4), since (3.1) implies that���f(x+ �v) exp��kvk2���� � �1 exp (�2kxk) exp ��2�kvk � kvk2� :The situation for the generalized transform is more delicate. The generalized transformhhfii� is de�ned if we assume that the density function � in (2.5) is continuous almosteverywhere and has compact support. We can also admit density functions with in�nitesupport if we restrict the class of functions f and density functions �. For example, if weassume that jf(x)j � �1 + �2kxkpholds for positive constants �1 and �2 and exponent p, then the generalized transform hhfii�is de�ned if ZIRn kvkk�(v) dv; k = 0; 1; : : : ; pexists. In this section we assume that f satis�es assumption (3.1) whenever we are discussingthe Gaussian transform hfi� or the generalized transform hhfii� for a density function withcompact support. The modi�cations needed to handle arbitrary density functions shouldbe clear from this discussion.The generalized transform is a linear operator in the vector space of functions that arecontinuous almost everywhere and satisfy (3.1), sincehh�fii� = �hhfii�; hhf1 + f2ii� = hhf1ii� + hhf2ii�for any scalar � and functions f1 and f2. The generalized transform hhfii� is also an isotoneoperator, since it preserves the standard order relation between functions, that is,f1 � f2 implies that hhf1ii� � hhf2ii�:In particular, min ff(y) : IRng � hhfii�(x) � max ff(y) : IRng :These properties are direct consequences of the de�nition of the generalized transform hhfii�.5



The di�erentiability properties of the generalized transform hhfii� follow from generalresults (see, for example, Lang [17, Chapter 13]) on the di�erentiability of functions of theform g(x) = ZIRn h(x; y) dy;where the mapping h : IRn 7! IR is integrable in y. If @xh is continuous almost everywherein an open set of the form B � IRn, andj@xh(x; y)j � hB(y); (x; y) 2 B � IRn; (3:2)for some integrable function hB : IRn 7! IR, then g is di�erentiable andg0(x) = ZIRn @xh(x; y) dy:This result can be applied, in particular, to the Gaussian transform.Theorem 3.1 The Gaussian transform hfi� is in�nitely di�erentiable.Proof. De�ne h(x; y) = f(y)��x� y� � ;and note that @xh(x; y) = 1�f(x)�0�x� y� � :A calculation based on (3.1) shows that (3.2) holds, and thus hfi� is di�erentiable. Theargument can be repeated to show that hfi� is in�nitely di�erentiable.Theorem 3.1 does not hold for the generalized transform hhfii� unless we make additionalassumptions on f or on the density function �. Consider, for example, the uniform densityfunction �(s) = 12 ; jsj � 1:In this case the generalized density function reduces tohhfii�(x) = 12 Z 1�1 f(x� �s) ds;and thus hhfii�0(x) = 12��f(x+ �)� f(x� �)�:This calculation shows that hhfii� is di�erentiable but that if f is not continuous, then hhfii�is not continuously di�erentiable.The functions that arise in our work on macromolecular modeling are usually twicedi�erentiable, and in this case we can show that the generalized transform hhfii� is alsotwice di�erentiable. 6



Theorem 3.2 If f : IRn 7! IR is twice continuously di�erentiable almost everywhere on IRnand kr2f(x)k � 
1 exp(
2kxk) (3:3)for some positive constants 
1 and 
2, thenrhhfii�(x) = hhrfii�(x); r2hhfii�(x) = hhr2fii�(x):An informal proof of this result can be obtained by di�erentiating under the integralsign in (2.4) to obtain thatrhhfii�(x) = ZIRnrf(x� �u)� (u) du = hhrfii�(x);which is the desired result for the gradient. If we repeat the process, we obtain thatr2hhfii�(x) = ZIRn r2f(x� �u)� (u) du = hhr2fii�(x);so that the generalized transform of the Hessian matrix is the Hessian of hhfii�.Theorem 3.2 was stated informally by Wu [31] for the Gaussian density function; aformal proof under assumption (3.3) appears in Mor�e and Wu [18]. The proof for thegeneralized transform follows the arguments used by Mor�e and Wu [18]; the only trickypart in the proof is to show that assumption (3.3) guarantees that we can di�erentiateunder the integral sign.Theorem 3.2 is of interest from a computational viewpoint because optimization al-gorithms require the gradient and Hessian of hhfii�. This result shows that the gradientand Hessian of hhfii� are also smooth functions in the sense that they are obtained bytransforming the gradient and Hessian matrix, respectively.4 Smoothing Properties of the Generalized TransformOne of the main attractions of the generalized transform is the ability to reduce the high-frequency components of the function. We quantify this statement in terms of the Fouriertransform bf(w) = ZIRn f(x) exp ��iwTx� dxof f , since bf(w) is the component of f associated with the frequency w.The key to estimating bf(w) is to express the generalized transform in terms of theconvolution of f with the density function. Sincehhfii�(x) = 1�n ZIRn f(y) ��x � y� � dy = ZIRn f(x� v) �� (v) dv;where ��(v) = 1�n��v�� ;7



we can write hhfii� as the convolutionhhfii�(x) = (f � ��)(x)of f with ��. If f is integrable, then the Fourier transform of the convolution of f withany integrable function is the product of the convolutions (see, for example, Folland [7,Chapter 8]), thus dhhfii�(w) = d(f � ��)(w) = bf(w)c��(w): (4:1)The following result expresses (4.1) in terms of the original density function �.Theorem 4.1 If f : IRn 7! IR is integrable, thendhhfii�(w) = bf(w)b�(�w): (4:2)Proof. Since hhfii� is integrable whenever f is integrable, the result follows from (4.1) byverifying that c��(w) = b�(�w).We use Theorem 4.1 to estimate the rate of decay of the Fourier transform for variousdensity functions. The estimates are simpli�ed when the density function � satis�es�(x) = nYj=1 �j(xj);where each �j : IR 7! IR is a one-dimensional density function, since then we haveb�(w) = nYj=1 b�j(wj):This result shows that we can compute b� once we know the one-dimensional b�j . TheFourier transform of the one-dimensional uniform density function is obtained directly fromthe de�nition; the Fourier transform of the one-dimensional Gaussian density function is astandard calculation. In this manner we obtain that the Fourier transform of the Gaussiandensity function (2.1) is b�(w) = exp ��14kwk2� (4:3)while for the uniform density function (2.7),b�(w) = nYj=1 sinwjwj : (4:4)Note that jb�(w)j � 1 for both density functions, as must be true for any density function.We use Theorem 4.1 to estimate the rate of decay of the Fourier transform in terms of thelargest frequency component. If jwmaxj is the largest component of w, then kwk � jwmaxj,and thus (4.3) shows that��� dhhfii�(!)��� � exp ��14�2jwmaxj2� ��� bf(!)���8



for the Gaussian density function. In contrast, for the uniform density function, (4.4) showsthat ��� dhhfii�(!)��� � sin(�jwmaxj)�jwmaxj ��� bf(!)��� :Clearly, the estimate for the Gaussian density function is more favorable.Theorem 4.1 and the analysis of the rate of decay of the Fourier transform are anextension of the results obtained by Wu [31] for the Gaussian transform. Although we haveconsidered only the Gaussian and uniform density functions, it is clear that this analysiscan be carried out provided we are able to estimate the Fourier transform of the densityfunction.Figures 4.1 and 4.2 illustrate the smoothing transform as applied to the two dimensional(n = 2) version of the Griewank function,f(x) = 1 + nXi=1 x2i200!� nYi=1 cos� xipi�:This function was constructed by Griewank [9] as a global optimization test function. TheGaussian and uniform transforms for the Griewank function arehfi�(x) = 1 + nXi=1  x2i200 + �2400!� nYi=1 exp ��24i! cos� xipi�and hhfii�(x) = 1 + nXi=1 x2i200 + �2600!� nYi=1�sin� �pi� =� �pi�� cos� xipi� ;respectively.Figures 4.1 and 4.2 show the transformed functions for the Griewank function usingthe Gaussian and uniform transforms, respectively. The graphs in the left column are thetransformed functions, and those in the right are the corresponding contours. The values of� increase as we go from the graph on the top to the graph in the bottom. For these graphsthe values of � are 0; 1; 2, and 4, with � = 0 for the graph on the top. From these pictures,we see that both transforms smooth the function well for increasing � values. However, fora given � value, the Gaussian transform is slightly smoother than the uniform transform.In other words, in order to obtain a su�ciently smooth function, a larger � value may berequired for the uniform transform than for the Gaussian transform.We have applied a simple Matlab minimization procedure to the transformed functionsin the �gures, �rst the top one, and then the next, and so on. The symbol � in the contoursmarks the solutions obtained. The pictures show that after smoothing the function, byeither the Gaussian or the uniform transform, the global minimizer of the function wasfound with a few continuation steps. 9
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Figure 4.1: The Gaussian transform for the Griewank function10
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Figure 4.2: The uniform transform for the Griewank function11



5 Computing the Generalized TransformA serious drawback to the general use of the generalized transform is that computing hhfii�for a function de�ned on IRn requires the computation of n-dimensional integrals. Forfunctions that arise in applications we can usually avoid this di�culty by reducing thecomputation of the n-dimensional integrals to k-dimensional integrals where k � n. Inthis section we consider a class of functions for which the computation of the generalizedtransform requires the computation of only 1-dimensional generalized transforms.De�nition 5.1 A function f : IRn 7! IR is decomposable if f can be written in the formf(x) = mXk=10@ nYj=1 fk;j(xj)1A ; (5:1)for some set of functions ffk;jg, where fk;j : IR 7! IR.This class of functions was introduced by Wu [31] under the term generalized multilinearfunctions; Mor�e and Wu [18] introduced the term decomposable to avoid confusion with theuse of multilinear for a function that is linear in each argument.Decomposable functions form an algebra, that is, a vector space that is closed under mul-tiplication. Linear and quadratic functions in IRn are decomposable. Polynomial functions,that is, functions that are linear combinations of terms of the formxp11 xp22 � � �xpnn ;for arbitrary integer powers pi � 0, are also decomposable. An interesting example ofdecomposable functions arises in the �tting of data by minimizing the l2 norm�(�; x) = mXi=10@ nXj=1�j exp(�tixj)� yi1A2of the di�erence between an exponential model and the data y1; : : : ; ym at times t1; : : : ; tm.Clearly, � is a decomposable function of the variables (�1; x1); : : : ; (�n; xn).The decomposable functions are of interest with respect to the Gaussian transformbecause computing the Gaussian transform of a decomposable function requires the com-putation of only a one-dimensional Gaussian transform. Indeed, if f is de�ned by (5.1),then hfi�(x) = mXk=10@ nYj=1 hfk;ji�(xj)1A :Thus, computing hfi� for a decomposable function requires the computation of only theone-dimensional integrals for each hfk;ji�. 12



We extend the above result to the generalized transform hhfii� by imposing an additionalassumption on the density function �, that is, we assume that�(x) = nYj=1 �j(xj); (5:2)where each �j : IR 7! IR is a one-dimensional density function. This assumption on � meansthat the random variables associated with each density functions �j are independent. TheGaussian (2.1) and uniform (2.7) density functions, as well as most other n-dimensionaldensity functions, satisfy this assumption.Theorem 5.2 If f : IRn 7! IR is decomposable and the density function � : IRn 7! IRsatis�es (5.2), then hhfii�(x) = mXk=10@ nYj=1 hhfk;jii�(xj)1A :Proof. The result follows from (5.2) and the de�nition of the generalized transform.Theorem 5.2 can be used to compute the generalized transform of a decomposablefunction provided we are able to compute the generalized transform of the componentfunctions fk;j . In the remainder of this section we explore the case where the componentfunction is analytic.We obtain an expression for the generalized transform of an analytic function f bynoting that in this case the Taylor series converges uniformly, and thushhfii�(x) = +1Xl=0 f (l)(x)(�1)j�jj! Z +1�1 ul� (u) du:This expression simpli�es when the density function is even.Theorem 5.3 If f : IR 7! IR is analytic and � : IR 7! IR is even, then the generalizedtransform hhfii� satis�eshhfii�(x) = +1Xl=0 f (2l)(x) �2l(2l)! Z +1�1 u2l� (u) du:Proof. Just note that the integrals with odd powers vanish by symmetry for any densityfunction that is symmetric around the origin.Theorem 5.3 shows that if � is the uniform density function thenhhfii�(x) = +1Xl=0 f (2l)(x) �(2l)(2l+ 1)! (5:3)13



is the generalized transform of f . In particular, for the sin, cos, and exp functions, expression(5.3) shows that sin(x)sin�� ; cos(x)sin�� ; exp(x)sinh��are, respectively, the generalized transforms for these functions. Theorem 5.3 also yields anexpression for the Gaussian transform if we make use of the identity1�1=2 Z +1�1 u2l exp ��u2� du = (2l)!4ll! ;which can be veri�ed from standard tables or by integration by parts. Hence, Theorem 5.3shows that hfi�(x) = +1Xl=0 1l!f (2l)(x)��2�(2l) (5:4)is the Gaussian transform of an analytic function f . As a special case of (5.4),sin(x) exp(�14�2); cos(x) exp(�14�2); exp(x) exp(14�2)are, respectively, the generalized transforms for the sin, cos, and exp functions.Piela, Kostrowski, and Scheraga [20] used (5.4) as the motivation for the di�usion equa-tion method by noting that the mappingh(x; t) = hfi2pt(x) = +1Xl=0 1l!f (2l)(x)tlsatis�es the di�usion equation@2h@x2 (x; t) = @h@t (x; t); h(x; 0) = f(x):Thus, in this approach, the transformation is de�ned as any solution to the n-dimensionaldi�usion equation. In later work ([13, 14]) it was shown that (2.4) could also be used tode�ne this transformation in IRn. In our work we have used (2.4) as the de�nition of theGaussian transform and derived all results from this de�nition.Theorem 5.4 If f : IR 7! IR is the monic polynomial f(x) = xk, thenhfi�(x) = bk=2cXl=0 � k!(k � 2l)! l!���2�2l xk�2lis the Gaussian transform, while if � is the uniform density function, thenhhfii�(x) = bk=2cXl=0 � k!(k � 2l)!� �2l(2l+ 1)!xk�2lis the generalized transform. 14



Proof. The result follows directly from (5.3) and (5.4).As an application of Theorem 5.4 to an n-dimensional function, consider the generalquadratic f(x) = 12xTQx+ cTx;where Q 2 IRn�n and c 2 IRn. A computation shows thathhfii�(x) = 12xTQx+ cTx+ �24  nXi=1 qi;i!for the Gaussian density function, whilehhfii�(x) = 12xTQx+ cTx+ �26  nXi=1 qi;i!for the uniform density function. Thus, for quadratic functions, both transforms only di�erby a re-scaling of the parameter �. This result holds for any even density function, since(5.3) shows that hhfii�(x) = x2 + �2 Z +1�1 u2�(u) duwhen f(x) = x2.6 The Gaussian Transform for Macromolecular ProblemsFor macromolecular modeling problems we are interested in transforming a class of functionsin terms of the distances between pairs of atoms, where xi 2 IRp is the position of the i-thatom. In general we are concerned with three-dimensional problems where p = 3, but valuesof p > 3 are also of interest. Given functions fi;j : IRp 7! IR of the distance between atoms xiand xj , we outline several techniques that can be used to compute the Gaussian transformof the potential function f(x) = Xi;j2S fi;j(xi � xj); (6:1)where S is some subset of all pairs of atoms, and the mappings fi;j are of the formfi;j(x) = hi;j (kxk) ; (6:2)for some mapping hi;j : IR 7! IR.The example x 7! kxk points out that functions of the general form (6.1) and (6.2) arenot usually decomposable. On the other hand, we now show that we can still reduce thecomputation of the Gaussian transform to the computation of one-dimensional integrals interms of hi;j . Note that in these problems f is de�ned on IRn, where n = mp and m is thenumber of atoms, but that hi;j is de�ned in IR.The following result of Mor�e and Wu [19] is needed to prove that computing the Gaussiantransform of (6.1) requires only the Gaussian transform of fi;j .15



Theorem 6.1 If f : IRn 7! IR and h : IRp 7! IR are related byf(x) = h(PTx);for some matrix P 2 IRn�p such that PTP = �2I, thenhfi�(x) = hhi��(PTx):As an application of Theorem 6.1 consider the mapping f : IRn 7! IR de�ned by (6.1).Computing the Gaussian transform of this mapping is immediate if we are able to computethe Gaussian transform of f0 : IRn 7! IR de�ned byf0(x) = fi;j(xi � xj):Clearly, we can �nd a matrix P 2 IRn�p of the formP = �ei1 � ej1 ; : : : ; eip � ejp�such that PTx = xi � xj . Since PTP = �2I , where �2 = 2, Theorem 6.1 shows thathf0i�(x) = hfi;jip2�(xi � xj):An immediate consequence of this result is thathfi�(x) = Xi;j2Shfi;jip2�(xi � xj)is the Gaussian transform of the potential function de�ned by (6.1). In this case f is de�nedon IRn, but fi;j is de�ned on IRp.The other ingredient needed for computing the Gaussian transform of functions de�nedby (6.1) and (6.2) is the Gaussian transform of the function fi;j de�ned by (6.2). Note that,unlike Theorem 6.1, the following result requires that f be de�ned on IR3.Theorem 6.2 If f : IR3 7! IR is of the form f(x) = h(kxk) for some function h : IR 7! IR,then hfi�(x) = 1�p�r Z 10 sh(s) "exp �(r � s)2�2 !� exp �(r + s)2�2 !#ds; (6:3)where r = kxk. If the mapping h is an even function, thenhfi�(x) = 1�p�r Z +1�1 sh(s) exp �(r � s)2�2 ! ds: (6:4)16



Mor�e and Wu [19] proved Theorem 6.2 and used (6.4) to approximate the Gaussiantransform of (1.5). More generally, note that the integrals that appear in (6.3) and (6.4)can be expressed explicitly or in terms of special functions. For example, if h(s) = s, then(6.3) can be expressed in terms of the complementary error functionx 7! 2p� Z +1x exp ��s2� ds:However, in most cases we need to approximate the integrals with a quadrature. An adaptivequadrature could be used, but this is quite likely to be expensive in terms of functionevaluations. Mor�e and Wu [19] recommended the use of Gaussian quadratures becausethis leads to a discrete transformation that shares many of the properties of the standardGaussian transform. For the one-dimensional Gauss transformhfi�(x) = 1p� Z +1�1 f(x+ �s) exp��s2� ds;the use of Gaussian quadratures on this integral yields an approximationhfi�;q = 1p� qXi=1wif(x+ �si); (6:5)which is exact for all polynomials of degree less than 2q, where q is the number of nodesin the quadrature. The weights wi and nodes si in (6.5) are independent of f and can befound in the literature (for example, Stroud and Secrest [30]) or can be computed with someof the subroutines in ORTHOPOL (Gautschi [8]). The computation of the Gauss-Hermitetransform requires q function evaluations, but even for modest values of q we obtain a goodapproximation to the Gauss transform. For additional information on Gaussian quadrature,see Stroud and Secrest [30] and Davis and Rabinowitz [5]. Steen, Byrne, and Gelbard [28]have Gaussian quadratures for the integrals in (6.3).AcknowledgmentsOur research on macromolecular global optimization problems has been in
uenced by JohnSchi�er's work on ionic systems and Julius Jellinek's work on clusters. Steve Pieper deservesspecial mention for bringing the work on ionic systems to our attention and for sharing hisinsights on this problem.
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