
High Performance Computational Chemistry:(I) Scalable Fock Matrix Construction AlgorithmsIan T. Foster, Je�rey L. Tilson, Albert F. Wagner, Ron ShepardArgonne National LaboratoryArgonne, IL 60439Robert J. Harrison, Rick A. Kendall, Rik J. Little�eld,Molecular Science Research CenterPaci�c Northwest LaboratoryRichland,WA 99352AbstractSeveral parallel algorithms for Fock matrix construction are described. Thealgorithms calculate only the unique integrals, distribute the Fock and density ma-trices over the processors of a massively parallel computer, use blocking techniquesto construct the distributed data structures, and use clustering techniques on eachprocessor to maximize data reuse. Algorithms based on both square and row blockeddistributions of the Fock and density matrices are described and evaluated. Variantsof the algorithms are discussed that use either triple-sort or canonical ordering ofintegrals, and dynamic or static task clustering schemes. The algorithms are shownto adapt to screening, with communication volume scaling down with computationcosts. Modeling techniques are used to characterize algorithm performance. Giventhe characteristics of existing massively parallel computers, all the algorithms areshown to be highly e�cient on problems of moderate size. The algorithms usingthe row blocked data distribution are the most e�cient.1 IntroductionThe high computational power and large aggregate memory of massively parallel process-ing (MPP) supercomputers gives these machines the potential to solve Grand Challenge-class problems in computational chemistry. In this and a companion paper [1], we report1

our initial e�orts to develop e�ective ab initio electronic structure codes for MPP comput-ers that are capable of solving problems with O(102�3) atoms and O(103�4) basis func-tions. Problems of this scale almost automatically imply that all matrices be distributedover the processors. The present paper reviews a number of strategies for coding rela-tively simple electronic structure methods when using distributed data structures. Thecompanion paper describes a speci�c implementation and presents initial performancecharacteristics of electronic structure applications to problems of up to 100 atoms and1000 basis functions.The architecture of MPP computers is very di�erent from that of vector supercom-puters. A typical MPP computer consists of a collection of processors, each with itsown memory and connected via a high performance network. When designing algorithmsfor these computers, important issues include avoiding replicated computation (compu-tational e�ciency), distributing data structures so as to avoid wasting memory (datadistribution), distributing computation to processors so as to avoid idle time when oneprocessor is busy and others are not (load balance), and minimizing time spent sendingand receiving messages (communication e�ciency). A metric that integrates these di�er-ent criteria is scalability: the extent to which an algorithm is able to solve larger problemsas the number of processors is increased.The complex architecture of MPP computers makes intuitive notions of performanceunreliable. Hence, a sound methodology when developing parallel algorithms is to beginby examining algorithmic alternatives at a theoretical level. Only once scalability hasbeen established should e�ort be devoted to implementations on parallel computers. Inthis paper, we apply this methodology to the direct closed-shell self-consistent �eld (SCF)method [2, 3]. See [4] (and references therein) for a recent review of current parallel SCFdevelopment. SCF is an important method in its own right and, in addition, is typicalof other more sophisticated methods in its use of large data structures and irregular dataaccess patterns. We develop a family of algorithms for the Fock matrix constructioncomponent of the SCF method, analyze the scalability of these algorithms, and makerecommendations as to which algorithm to incorporate in a parallel implementation.The SCF method obtains the energy and wavefunction of a molecular system byiterating over two basic steps until self-consistency is obtained. First, a two-dimensionalFock matrix F is constructed from the current estimate of the wavefunction. Second, Fis diagonalized to obtain an improved estimate of the wavefunction. The second step iscomputationally trivial on sequential computers but can become a rate limiting step onlarge numbers of processors [6]. In future work, we will explore an alternative schemeproposed by Shepard [7] that avoids the need for diagonalization.We focus on the Fock matrix construction problem in this paper. The Fock matrix Fin the atomic orbital (AO) basis is de�ned asFij = hij + NXk=1 NXl=1Dkl �(ijjkl)� 12(ikjjl)� ; (1)where N is the number of basis functions, h is the one-electron Hamiltonian, D is theone-particle density matrix, and (ijjkl) represents a two-electron integral. All quantitiesare assumed hereafter to be real. The calculation of the two-electron integrals is the mostexpensive component of this computation. It might appear from Eqn. 1 that N4 integrals2

must be evaluated. However, D and F are symmetric and for any (i; j; k; l) the followingintegrals are equivalent:(ijjkl) = (jijkl) = (ijjlk) = (jijlk) = (kljij) = (kljji) = (lkjij) = (lkjji): (2)Once (ijjkl) is computed, the related elements of F (Fij, Fik, Fil, Fjk, Fjl, and Fkl) canbe updated with the product of this integral and the appropriate element of D. Hence,the total number of integrals to be computed is onlyNintg = �N+12 + 1�2 ! � N48 (3)In order to exploit this symmetry, each integral calculation requires up to six D-elementsand contributes to at most six F -elements.The issue of screening must also be addressed. For large molecules, most integralsare so small that their contribution to F is negligible. For large molecules, screening canreduce the number of contributing integrals from O(N4) to close to O(N2).Early parallel SCF programs either replicated the D and F matrices in each processorof a parallel computer or had one processor maintain the data and control which processorcomputes an integral batch. In all cases a resulting F matrix would reside on a singleprocessor for analysis [8-17]. This approach simpli�ed implementation and achieved highperformance. However, the replicated data restricted scalability: the maximum problemsize that could be solved was limited by the amount of memory on a single processor. Forexample, Feyereisen and Kendall's parallel DISCO code [15] is limited to approximately400 basis functions (without symmetry) on the 512-processor Intel Touchstone Deltacomputer, which has 16 MB of memory per processor. Nevertheless, these studies providedmuch useful information on the distribution of computational tasks, load balancing andtask scheduling, etc.A scalable parallel Fock matrix construction algorithm must distribute the D andF matrices over available processors, so that the maximum problem size is limited onlyby the aggregate memory available on the MPP computer. In Colvin et al.'s systolicalgorithm [18], Fock and density submatrices are circulated among processors. However,this approach requires the computation of 3N4=8 integrals and su�ers from an overlysynchronous computational model. Furlani and King [19] describe an algorithm thatavoids these de�ciencies. Their algorithm uses several of the techniques discussed in thispaper, including a two-dimensional blocked distribution of Fock and density matrices, theuse of static and dynamic scheduling to balance the computational load, the reuse of localdata, and agglomeration of integral computations into larger tasks. However, they do notanalyze their algorithm's parallel scalability.The algorithms presented in this paper distribute the principal data structures, avoidredundant integral computation, provide a framework for addressing the load balancingproblem, and can be adapted to highly screened or unscreened calculations. In addition,analysis shows that communication costs are signi�cantly less than computation costs onmost reasonable computer systems. Hence, the algorithms are expected to be e�cientand scalable. The results of this analysis are con�rmed in the companion paper [1].The rest of the paper is organized as follows. In Section 2, we describe the basicfeatures of the algorithm in the absence of screening. In Section 3, we describe variations3

that can make the basic algorithm more versatile and e�cient. In Section 4, we discussthe rami�cations of screening. In Section 5, we present a performance analysis of selectedalgorithm variants. In Section 6, we summarize.2 Blocked Fock Matrix Construction AlgorithmsOur Fock matrix construction algorithm is computationally e�cient: in the absence ofscreening it performs only the essentialO(N4=8) integral evaluations. Hence, in evaluatingits performance we shall focus on its communication requirements and load balance. Onmany parallel computers, the cost of a communication can be modeled with reasonableaccuracy as a function of a startup cost, t0, and a per-word cost, t1. This measure neglectsboth network and node contention. If we characterize the communication requirementsof an algorithm in terms of the total volume of data moved between processors, V , andthe number of messages sent, M , then the total communications time Tcommunicate is:Tcommunicate = Mt0 + V t1: (4)To illustrate, consider a simple parallel algorithm where there is a random distributionamong processors of both integral evaluations and F andD matrix elements. Each integralevaluation requires six D elements and computes contributions to six F elements. Forlarge P , where P is the number of processors, an integral and its data elements will almostalways be located on di�erent processors, so the total communication requirements willbe M = V = 32N4: (5)On most parallel computers, the cost of sending a message is a substantial fraction ofthe time required for computing an integral. As this algorithm generates twelve messagesper integral, it is unlikely to be e�cient. Our goal in designing e�cient parallel algorithmsis to reduce both the number of messages sent and the total volume of data communicated.2.1 A Blocked AlgorithmA commonly-used technique for reducing communication requirements in parallel algo-rithms is to block computations into larger tasks. This technique can reduce communica-tion requirements if computations in a task read and write the same data, then both thenumber of messages and the total volume of data communicated can be reduced.We can incorporate blocking into the Fock matrix construction algorithm by rede�ningthe (i; j; k; l) in Eqn. 1 to index symmetry-distinct atomic center integrals, where eachintegral now represents a batch of basis function integrals and can be designated a task.We could also interpret these indices as referring to shells, molecular fragments, etc.We will show below that the data accessed by a task shows considerable locality,and that this locality can be exploited in a number of ways to reduce communicationrequirements. For now, we assume simply that the D and F matrices are distributedusing a two-dimensional blockwise distribution of the sort illustrated in Fig. 1. When the4

H H O

H

H

OFigure 1: The density matrix forH2O, assuming a basis set that allocates 4 basis functionsto each H and 10 to O. Hence, N = 4 + 4 + 10 = 18, and Ic = N=n(atoms)=6. Thesolid lines delineate submatrices Dij; each submatrix is located on a single processor andhence can be communicated in a single message.indices in Eqn. 1 are interpreted as referring to atomic centers, each Dij in that equationrepresents a submatrix, which in this distribution is located on a single processor andcan be communicated in a single message. Each submatrix will contain approximatelyIc�Ic elements, where Ic is the number of basis functions divided by the number of atoms.However, as the number of basis functions varies with the type of atom, submatrices neednot be square.We can now determine the total communications requirements for this blocked algo-rithm. The total number of messages per task is still 12 as in Eqn. 5 but the total numberof tasks becomes Tasks � NXi=1;Ic iXj=1;Ic iXk=1;Ic kXl=1;Ic 1� 18 �NIc�4 :The use of Ic signi�es a stride on the indices. The total number of messages becomesMblocked = 12 � Tasks � 32 �NIc�4 : (6)5

As each message transfers a submatrix of Ic � Ic elements. The total volume transferredis: Vblocked � 3N42(Ic)2 : (7)We see that blocking reduces message counts by a factor of (Ic)4 and volume by (Ic)2.When blocking by atoms, Ic is typically 10 or greater, so the reduction in communicationrequirements achieved with this technique is substantial.We now consider more sophisticated blocking strategies. First, we must consider theorder in which the unique integrals for the construction of F are evaluated. We shalldiscuss parallel algorithms based on both a canonical ordering (speci�ed in Fig. 2) or a\triple-sort" ordering (Fig. 3). In the triple-sort ordering, the compute(i,j,k,l) operationcomputes up to three batches of integrals if the index permutations lead to symmetry-distinct integrals. In the canonical ordering, this operation computes exactly one batchof integrals. In a sequential computer environment, the two orderings di�er only slightlyin their performance. We shall show that in a parallel environment, their communicationrequirements and screening characteristics can be quite di�erent.For simplicity, the indices in Figs 2 and 3 refer to basis functions, and a �xed stride ofIc is used. However, it is straightforward to modify the �gures to index shells, atoms, etc.,directly, with unit stride. The screening tests in each �gure will be discussed in Section4. In this and the succeeding section, we assume that all index values survive screening.Consider the impact of choosing the innerloop(i,j,k) operation of these �gures as atask. If m is set to i for canonical and j for triple-sort, the number of innerloop(i,j,k)tasks is: NXi=1;Ic iXj=1;Ic mXk=1;Ic 1 � N36(Ic)3 triple � sort (8)� N33(Ic)3 canonical (9)In both orderings, the increased granularity has decreased the number of tasks byO(N=Ic).Canonical ordering has twice as many tasks as triple-sort.Each compute(i,j,k,l) operation reads and writes data at locations (ij), (ik), (il),(jk), (jl), and (kl). Hence, each innerloop(i,j,k) task accesses the following elementsof D and F . (Due to blocking, each of these \elements" is a submatrix of size Ic � Ic.)1. (i j) f [i; j] g2. (i k) f [i; k] g3. (j k) f [max(j; k); min(j; k)] g4. (i l) f [i; l] j 1 � l � ltop g5. (k l) f [i; l] j 1 � l � ltop g6. (j l) f [k; l] j 1 � l � ltop gIn this table, ltop is k for triple-sort order and the lhi of Fig. 2 for canonical. Thislist exploits the symmetry of F and D in both orderings. The data for each task comes6

fock buildDO i = 1, N, IcDO j = 1, i, IcIF (i,j pair survive screening) THENDO k = 1, i, IcCALL innerloop(i,j,k)ENDDOENDIFENDDOENDDOinnerloop(i,j,k)IF (k.EQ.i) lhi = jIF (k.NE.i) lhi = kDO l = 1, lhi, IcIF (k,l pair survive screening) THENCALL compute(i,j,k,l)ENDIFENDDOcompute(i,j,k,l)DO FOR STRIDE OF i, j, k, lEVALUATE Iintg = (ijjkl)Fij = Fij + DklIintgFkl = Fkl + DijIintgFik = Fik - 12DjlIintgFil = Fil - 12DjkIintgFjl = Fjl - 12DikIintgFjk = Fjk - 12DilIintgENDDOFigure 2: Basic logic for Fock matrix construction: canonical order7

fock buildDO i = 1, N, IcDO j = 1, i, IcIF (i,j pair survive screening) THENDO k = 1, j, IcCALL innerloop(i,j,k)ENDDOENDIF ENDDOENDDOinnerloop(i,j,k)DO l = 1, k, IcCALL compute(i,j,k,l)ENDDOcompute(i,j,k,l)DO FOR STRIDE OF i, j, k, lIF(k,l pair survive screening) EVALUATE I1 = (ijjkl)IF([i,k and j,l pairs survive screening].AND.[distinct]) EVALUATE I2 = (ikjjl)IF([i,l and j,k pairs survive screening].AND.[distinct]) EVALUATE I3 = (iljjk)DO n = 1,3 (Distinct In only)Iintg = InFij = Fij + DklIintgFkl = Fkl + DijIintgFik = Fik - 12DjlIintgFil = Fil - 12DjkIintgFjl = Fjl - 12DikIintgFjk = Fjk - 12DilIintgENDDOENDDOFigure 3: Basic logic for Fock matrix construction: triple-sort order8

 i > j > k
(triple-sort or canonical)

 i > k > j
(canonical order only)

k

j

i

5

4 1

6 3

2

k

j

i

6

5

4 21

3

Figure 4: Data requirements for an (ijk) task, in the absence of screening. The numbersrefer to the data requirements listed in the text.from the ith, jth, and kth rows of D and F . Furthermore, the �rst 5 elements all comefrom the lower triangle of D and F . The sixth element also comes from the lower triangleunless canonical order is used and i > k > j (a situation that occurs approximately halfthe time in canonical order). These data requirements are illustrated in Fig. 4 where i, j,and k should be thought of as indexing blocks of Ic rows.We see that the data accessed by the integrals in an innerloop(i,j,k) task do indeedshow considerable locality. We can exploit this locality by distributing the D matrix asfollows. We create N=Ic data sets, D1, ..., DN=Ic. Each data set comprises an entire rowof submatrix blocks (in the canonical algorithm) or partial row to the diagonal (in thetriple-sort algorithm). These data sets are then distributed over the available processors.The F matrix is distributed in the same manner.With this data distribution strategy, the communication requirements of an innerlooptask can be satis�ed with just six messages: three before the task is executed (one fromeach of the processors holding Di, Dj , and Dk) and three afterwards (to the same proces-sors, for Fi, Fj, and Fk). Notice that for e�ciency, only those elements of Di, etc., thatare required by a particular task should be communicated. (As illustrated in Fig. 4, eachtask requires at most (Ic � Ic) 3k+1 elements of D.) The communication requirementsare then as follows. Mrow blocked triple sort � N3(Ic)3 (10)Vrow blocked triple sort � 14 N4(Ic)2 (11)9

Mrow blocked canonical � 2 N3(Ic)3 (12)Vrow blocked canonical � 34 N4(Ic)2 (13)In summary, the blocking of integrals into innerloop(i,j,k) tasks reduces M byO(N=Ic) and V by a constant factor relative to the blocked algorithm. For the row-blocked algorithm, triple-sort order has better performance than canonical: its M and Vare less by factors of 2 and 3, respectively. In addition, triple-sort stores only the lowertriangle of the D and F matrices: half as much data as canonical sort.2.2 SymmetrizationAnother issue inuencing the relative performance of the canonical and triple sort order-ings is symmetrization. As illustrated in Fig. 4, the canonical ordering produces an F thatmust be symmetrized. The actual arithmetic operations involved in the symmetrization,namely summing the symmetrically related elements of F , will normally be insigni�cant.However, the operation has the same communication requirements as a parallel matrixtranspose [21, 22]. The usual algorithm requires that each processor exchange data withevery other processor, for a total of P 2 communications on a computer with P processors.Assuming O(N) processors, the total communication costs are O(N2) data in O(N2)messages. In the absence of screening, these costs are at least O(N) less than those as-sociated with the construction of F . However, they may become signi�cant if screeningreduces communication costs during F construction to O(N2).2.3 Load BalanceTasks can vary signi�cantly in their computational cost, for three reasons. First, thecomputational cost of a single integral can vary greatly. (For simple hydrocarbons, thetime to calculate (ijjkl) integrals can vary by orders of magnitude depending on thenumber of basis functions indexed by i, j, k, and l.) Second, as discussed in Section 4below, screening can alter the number of integrals actually computed. Third, for therow-blocked algorithm, the number of integrals in a task depends on k.A consequence of this variation in task cost is that an allocation strategy that places anequal number of tasks on each processor may su�er from load imbalances. One solution tothis problem is to use a centralized scheduler to allocate tasks to processors in a demand-driven manner [15, 19]. Scheduler-based techniques can achieve excellent load balance, butincrease communication requirements and are not truly scalable. Alternatively, a randomallocation strategy can be used. This relies on the law of large numbers to balance thecomputational load. If P � N , each processor will have on average O(N2) tasks withoutscreening and, as will be shown later, O(N) tasks with screening. This suggests thata random allocation approach will be load balanced. This should also be true of theblocked algorithm where the random allocation would be at the head of the l loop inthe innerloop of Figs 2 and 3. Hybrid schemes that use both a scheduler and randommapping are also possible [19]. 10

2.4 Blocked Algorithm SummaryBlocking is equivalent to the use of a non-unit stride Ic in the nested loops executed whenconstructing the Fock matrix. We have described and analyzed the performance, in theabsence of screening, of both simple blocked and row blocked algorithms, based on bothtriple-sort and canonical orderings of integrals. All algorithms evaluate the minimumnumber of integrals and support a full distribution of the D and F matrices. Blockingis shown to reduce communication requirements by a factor of between (Ic)2 and (Ic)4,depending on the algorithm used. Row blocking is more e�cient than simple blocking.The triple-sort algorithm is superior to the canonical algorithm: it has lower communica-tions costs, uses one half as much memory, and does not require the M = V = O(N2) Fmatrix symmetrization.3 ClusteringThe analysis in the previous section showed that the blocking of integrals into tasksimproves parallel performance by reducing communication requirements. Hence, we mightwonder whether it is bene�cial to group tasks into even larger collections. In this section,we describe two techniques for organizing tasks into larger collections that we call clusters,and show that both techniques can reduce communication costs in certain circumstances.The �rst technique supports a dynamic mapping strategy while the second de�nes a staticmapping. These techniques are described in the context of the row-blocked algorithm anddistribution scheme described in Section 23.1 Dynamic ClusteringIn the �rst clustering algorithm that we consider, each processor executes the logic spec-i�ed in Fig. 5. The assigned to me function determines whether a particular (i; j; k)task is intended for that processor. As discussed in the preceding section, this could beimplemented as a call to a scheduler or as some \random" function.The functions get and put represent the communication operations required to fetchDk and store Fk, respectively. The function conditional put performs a communicationonly if the index of the row to which it is applied has changed since the last iteration.The conditional get performs a communication if the requested elements of D are notalready locally stored. Thus a change in the row index since the last iteration will certainlygenerate a communication. However, a change in the requested column indeces for a �xedrow may or may not generate a communication. The conditional gets and puts allowelements of data sets Di, Dj , Fi, and Fj to be reused or cached, thereby reducing totalcommunication requirements.We now analyze the communication requirements of this clustered algorithm. Weconsider the triple-sort ordering; the canonical ordering is similar. We consider the com-munication requirements of the Dk/Fk, Dj/Fj, and Di/Fi pairs in turn.(Dk/Fk): The contributions to both M and V are as in the row-blocked algorithm:that is, 1=3 the values given in Eqns 10 and 11.11

DO i = 1, N, IcDO j = 1, i, IcIF (i,j pair survive screening) THENDO k = 1, m, IcIF (assigned to me(ijk)) THENCALL conditional get(Di)CALL conditional put(Fi)CALL conditional get(Dj)CALL conditional put(Fj)CALL get DkCALL innerloop(i,j,k)CALL put(Fk)ENDIFENDDOENDIF ENDDOENDDOFigure 5: Clustered algorithm [m = j (triple-sort) or i (canonical)](Dj/Fj): The number of messages generated for Dj is as in the row-blocked algorithm:i.e., one sixth of Mrow blocked. In contrast, the number of messages for Fj is bounded fromabove by min(P ,j=Ic) for each (i; j) pair. This is because the Fj data transfer occursafter all tasks in the pair are complete; hence, each of P processors generates at most onemessage. If there are fewer tasks than processors (i.e., if P > j=Ic), then at most j=Icmessages are generated. The number of messages can be less than this upper bound iftasks are not maximally dispersed over processors. (In the unlikely event that all of thesetasks were assigned to one processor, then there would be only one message for Fj.)Dj and Fj make identical contributions to V . From Fig. 4, we see that the Dj elementsread by tasks in a series with �xed (i; j) but increasing k are precisely those elements readwhen processing the highest k value. Assuming that the highest k values are distributedevenly among processors, the total number of Dj elements read by all processors will bethe size of a single element times the sum of the P (or j=Ic, if P > j=Ic) highest k values.With blocking, a single element has size (Ic)2, and we sum the min(P ,j=Ic) highest valuesof k=Ic. This is an upper bound: fewer elements will be read if the highest k values arenot evenly distributed over processors. A similar analysis applies to the Fj elements.(Di/Fi): Tasks with a �xed i can assume the same value of k multiple times. Withtriple-sort ordering, there are i=Ic values of k that begin a stride. Each of these valueswill, because of the loop over j, occur (i� k)=Ic times, making the total number of (j; k)-strided pairs approximately (i=Ic)2=2. For Di, for each allowable value of k, the numberof messages must be bounded from above by min(P ,(i � k)=Ic). For Fi the number ofmessages is, by analogy with Fj, bounded from above by min(P ,(i=Ic)2=2). The messagevolume for Di is the same as that for Fi. By analogy with Dj , the V contribution of Di is12

bounded from above by (Ic)2 elements times the min(P ,(i=Ic)2=2) highest values of k=Ic(including the multiple times a k=Ic value occurs).From these considerations, we obtain the following expressions for the clustered algo-rithm for triple-sort ordering:Mclustered = 12Mrow blocked+MFj +MFi +MDi (14)Vclustered = 13Vrow blocked+ Vj + Vi (15)where MFj = NXi=1;Ic iXj=1;Ic min(P; j=Ic)MFi = NXi=1;Ic min(P; (i=Ic)2=2)MDi = NXi=1;Ic iXk=1;Ic min(P; (i� k)=Ic)Vj = 2 NXi=1;Ic iXj=1;Ic jXk=max(1;j�IcP);Ic(Ic)2(k=Ic)Vi = 2 NXi=1;Ic iXk=max(1;i�Ic(2P)1=2);Ic[(i� k)=Ic](Ic)2(k=Ic)The lower limits on the j and k summation in the expressions for Vj and Vi correspondto the min(P ,j=Ic) or min(P ,(i=Ic)2=2) highest values of k=Ic discussed above.These expressions demonstrate the value of clustering, particularly for smaller P .Communication costs range from approximately 1=3 those of the row-blocked algorithm(for small P) to approximately the same (for large P).3.2 Static ClusteringThe clustering scheme presented above exploits reuse within clusters of O((N=Ic)2=P)tasks. We now present an alternative technique that constructs much larger clusterscontaining O((N=Ic)2) tasks. This provides additional opportunities for reuse. In anattempt to ensure load balance, these clusters are constructed so that in the absence ofscreening, each contains the same number of integrals.As noted previously, one reason why task costs vary is the length of the l loop. In theabsence of screening, this length is determined entirely by the i, j, and k indices. Hence,it is possible to cluster tasks to generate supertasks containing a constant number of lvalues (integrals). Supertasks are then mapped to processors either randomly or using ascheduler. If supertasks have the property that two of the three task indices remained the13

Repeat for x = p and x = N � p + 1:i = xDO j = 2, i, 2DO k = 1, iCALL innerloop(i,j,k)ENDDOENDDOk = xDO i = x, NDO j = 1, i, 2CALL innerloop(i,j,k)ENDDOENDDOFigure 6: Algorithm for Constructing Supertask Number psame while the third ranges, on average, over a large number of values, then the number ofmessages per task for unit strides approaches two. This corresponds to the small P limitfor the clustered algorithm and is the minimumnumber possible without data replication.We de�ne one possible supertasking strategy. For convenience this strategy will bedescribed in terms of a unit stride for canonical ordering. However, it can be adapted fora non-unit stride and triple-sort ordering.Consider N=2 supertasks, each containing approximately N3=4 integrals. The N=2supertasks are numbered 1::N=2 and indexed by p. The algorithm for supertask p is givenin Fig. 6 for canonical ordering and for a common unit stride. It is easy to show that thisclustering algorithm, designated static cluster, does indeed yield supertasks containingthe same number of integrals. From Fig. 6, when x = p, we havepXj=2 by 2 pXk=1 k + NXi=p iXj=1 by 2 p � p2 p(p + 1)2 + p NXi=p i2= p2(p+ 1)4 + p2 N�pXi=1 (i+ p)= p2(p+ 1)4 + p2 (N � p)(N � p+ 1)2 + p(N � p)!= pN(N + 1)4� pN24As supertask p comprises integrals for x = p and x = N � p+1, the total number of14

integrals is approximately pN24 + (N � p)N24 = N34 ;which is a constant for �xed N . Note that the number of tasks per supertask is not aconstant; this is approximately 3N2 + 2p(p �N)4 ;which, as p is in the range (0; N=2), ranges over (5=2N2; 3N2) for large N .Each supertask has four double-loop structures. For each of the four double loops, oneof the indices of all the tasks to be included is �xed. A second index varies slowly and thelast index varies over, on average, a large range of consecutive values. It is easy to showthat, for large N , communication requirements are related as follows. This relationshipapplies for all values of P up to N=2, the total number of supertasks.Mstatic clusterMrow blocked = Vstatic clusterVrow blocked = 13 (16)3.3 Clustering SummaryThe clustering of task collections to enhance reuse of D and F matrix values is a generaltechnique that can enhance the performance of a parallel Fock matrix construction algo-rithm by reducing communication costs. Both the static and dynamic clustering schemespresented in this section have been shown to scale down communications requirementsby as much as 2=3. In the dynamic scheme, the reduction in communication costs dropso� as P increases; in the static scheme, the reduction of 2=3 is maintained even for largeP . However, we shall see in the next section that static clustering is not e�ective in thepresence of screening.Notice that while we have focused here on the row-blocked algorithm, the blockedalgorithm can also be adapted to clustering by the use of conditional get and putstatements as in Fig. 5. This strategy is employed in the code described in the companionpaper, which uses a clustered version of the blocked algorithm with an atom-indexedblocking of data.4 ScreeningEach integral computed when constructing the Fock matrix represents the coulombicinteraction of two pairs of overlapping basis functions. If either a pair of basis functionsdoes not overlap signi�cantly or if the interaction of the two pairs is negligible then thecorresponding integral will not contribute signi�cantly to the �nal F matrix and neednot be computed. Screening may be accomplished by the use of a tolerance limit on theintegrals, speci�ed in Figs 2 and 3. In large molecules, this screening criterion can reducethe cost of constructing F from a nominal O(N4) integrals to, in the limit, O(N2) [3, 5].The e�ect of screening on communication requirements cannot be analytically de-termined without some approximate representation of which index values will pass thescreening tests. Hence, we make two simplifying assumptions:15

1. On average, no more than s values of j from 1 to i and no more than s values of l from1 to k survive screening to produce a non-negligible integral (ijjkl). Both the triple-sort and canonical loop orderings require, as is assumed in this screening model, thatj never be greater than i and l never be greater than k. For small molecules, s � Nand essentially every integral is computed, while for large molecules 1� s� N .2. The s values of j that survive screening are generally located from j = i � s toi. This assumption requires that basis functions be indexed in approximately theorder of their centers when moving from one end of a molecule to the other.For molecules containing many di�erent types of atoms, the use of one screening parameters is certainly a coarse simpli�cation. Nevertheless, our experiments suggest that formany chemically bonded systems, the assumptions are reasonably accurate, and that sis typically of O(100) basis functions for molecules composed of �rst row atoms. Theassumed location of the indices that survive screening is a coarse approximation but onethat leads to convenient expressions of M and V that qualitatively represent the e�ect ofscreening.As a simple application of this model, consider the number of integrals, Nintg, that mustbe computed: Nintg=screened = NXi=1 iXj=max(1;i�s) iXk=1 kXl=max(1;k�s) 1 � s2N22 (17)As is the case with all other expressions in this section, the approximate result is trueonly in the limit of s� N . The blocked algorithm sees a similar reduction:Mblocked=screened � 6s2N2(Ic)4 (18)Vblocked=screened � 6s2N2(Ic)2 (19)The e�ect of screening on the row-blocked algorithm of Section 2 needs some elabora-tion. Each task requires six messages, resulting inMrow blocked=screened = 6 NXi=1;Ic iXj=max(1;i�s);Ic mXk=1;Ic 1 � 3sN2(Ic)3 (20)where the value of m depends on triple-sort or canonical ordering but the �nal resultsdo not. For V , the data requirements with screening are illustrated in Fig. 7; see Fig. 4for the unscreened case. Each task must transfer 3(min(k; s + 1)) + 1 D-matrix valuesin three messages. This requires that screening be performed on the j and l indices be-fore data is transferred. In the triple-sort ordering, the triple permutation within eachcompute(i,j,k,l) operation necessitates screening tests on each permutation of the in-dices. The F -matrix rows are transferred at the end of the task, after screening hasbeen performed. Hence, total communication volume is as follows; again, the results areindependent of the choice of integral orderings.16

 i > j > k
(triple-sort or canonical)

 i > k > j
(canonical order only)

k

j

i

k

j

iFigure 7: Data requirements for an (ijk) task, in the presence of screening with s = 2.Vrow blocked=screened = NXi=1;Ic iXj=max(1;i�s);Ic mXk=1;Ic(3min(k; s+ 1) + 1) � 3s2 �NIc�2 (21)In summary, we see that screening scales communication volumes in large molecules byO(s2=N2) and message counts by O(s=N). As computation costs are, in the limit, scaledby O(s2=N2), screening causes message counts to become a signi�cantly greater contrib-utor to total execution time. Screening also acts to make communications requirementsof triple-sort and canonical orderings the same.4.1 Dynamic ClusteringIn Section 3, we showed that some components of Mclustered (Dj, Dk, Fk) and Vclustered(Dk, Fk) were identical to corresponding components of Mrow blocked and Vrow blocked, whileothers needed to be corrected to allow for clustering. In addition, we determined that Dmessage volumes were identical to F message volumes. These relationships also hold inthe presence of screening. Hence, we need only determine the contribution of Fj and Fi toM and V and the contributions of Di to M , all within the context of triple-sort ordering.Consider �rst the contributions toM of Fj, Fi, andDi. These contributions correspondto the latter three terms in Eqn. 14. Each term includes a summation over j: for Fj, thesummation over j is explicit, while for Fi and Dj , the j summation is implicit in thenon-P component of the min operation. Given our screening model, the lower limit ofthese summations must change from 1 to max(1,i� s), giving the expression:Mclustered=screened = 12Mrow blocked=screened+MFj=screened+MFi=screened+MDi=screened (22)17

where MFj=screened = NXi=1;Ic iXj=max(1;i�s);Ic min(P; j=Ic)MFi=screened = NXi=1;Ic min(P; si=(Ic)2)MDi=screened = NXi=1;Ic iXk=1;Ic min(P; min[i� k; s]=Ic)Equation 15, the expression for message volume, can be generalized for screening into:Vclustered=screened = 13Vrow blocked=screened+ Vj=screened+ Vi=screened (23)where Vj=screened = 2 NXi=1;Ic iXj=max(1;i�s);Ic min24 jXk=max(1;j�IcP);Ic(Ic)k; sj35Vi=screened = 2 NXi=1;Ic min24 iXk=max(1;i�klo);Ic min(i� k; s)k; iXj=max(1;i�s);Ic js35In Vj=screened, the lower limit of the j summation has been modi�ed to include thescreening constraint. The min statement reects two limits. If the number of processors issmall, then each task performed on a processor for a given (i; j) pair will require segmentsof s columns that will overlap those required by other tasks on the same processor. Inthis \overlapping" limit, the message volume is una�ected by screening. This is the �rstargument in the min operation; it is identical to that in the unscreened case (Eqn. 15).On the other hand, if the number of processors is large, then the few tasks performed oneach processor will have s column segments that do not overlap. In this limit, messagevolume is sIc elements for each of the j=Ic values of k. This is the second argument inthe min operation.A similar analysis is applied in Vi=screened. The �rst argument in the min operationis the \overlapping" limit. This is identical to the no screening case (Eqn. 15), exceptthat the lower limit in the k summation (klo) is changed. The klo in that limit has theunscreened value of Ic(2P) 12 if P < (0:5)(s=Ic)2 or Ic(P=s) � (0:5)(s=Ic) otherwise. Thesecond argument is the large P limit, where we have sIc elements for each (j; k) pair fora given i.In the above expressions, the relationship between the clustered and the row-blockedalgorithm as a function of P does not change substantially with screening. However, aswith the row-blocked algorithm, screening makes the communications requirements of theclustered algorithm independent of triple-sort or canonical ordering.There is some structure to the columns selected by screening in D and F . Sincescreening tests are similar for all basis functions in a shell of an atom and (to a lesser18

extent) for all the basis functions of an atom, screening will tend to either process or ignoreentire shell or atom submatrices inD and F (see Fig. 1). To process the conditional get,the data transmitted is presumed column selected within the row-based data set. A morecompact selection would be shell or atom selection.4.2 Static ClusteringWhen evaluating the impact of screening on our static clustering algorithm, our �rstconcern is to determine whether the number of integrals per supertask stays constant. Inlarge molecules, it is generally the case that s� p � N=2. Hence, the number of integralsperformed by that part of the supertask where x = p is as follows, given our simplifyingassumptions concerning screening.pXj=min(2;p�s) by 2 pXk=1min(1+s; k) + NXi=p iXj=min(1;i�2) by 2 min(1+s; p) � s2N2 +sp(N�p+1)(24)Adding the contribution for x = N � p + 1, we �nd that the number of integrals ina supertask is no longer independent of p. Hence, load imbalance becomes a problem,particularly when the number of processors is similar to the number of supertasks (N=2).We have devised alternative static clustering algorithms that account for screeningwhen constructing supertasks, but we have not been able to devise a single algorithm thatapplies in a variety of screening regimes. Hence, we conclude that our static clusteringalgorithm is probably not a robust method for allocating tasks to processors. In addition,we know that both the use of a single screening parameter s and the assumption thatall integrals have the same cost are unrealistic approximations. We expect that tasksconstructed using any algorithm based on these approximations will in practice di�erconsiderably in cost. An accurate static clustering algorithm would appear to require adetailed analysis of the chemical nature of the basis functions, shells, or atoms involved ina particular system. In general, we doubt that the e�ort required to perform this analysiswill be worthwhile.5 Performance AnalysisThe performance of a parallel algorithm is determined by both communication and com-putation requirements (as characterized in preceding sections in terms of M , V , and thenumber of integrals Nintg) and the characteristics of a particular MPP computer. Recallthat the communication performance of a computer can be represented by parameters t0and t1 (Eqn. 4) Computational performance can be related to the peak rate of oatingpoint operations per second. However, in practice, such rates are hardly ever obtained.For the Fock matrix construction problem, the computation time Tcompute is best expressedas Tcompute = Nintgtintg (25)19

where tintg is the time per integral, a quantity that can be measured.In the companion paper, timings of an actual code based on the ideas discussed hereare presented for the Intel Touchstone Delta MPP computer. The values of t0, t1, andtintg found to be appropriate for this computer are 300 microseconds (�sec), 1�sec, and500�sec, respectively. These times depend on not only the inherent characteristics ofthe Delta but also the particular implementation of the communication operations andintegral routines. However, they are representative of what can be obtained on today'sproduction MPP computers.In previous sections, M and V have been determined for blocked, row-blocked, andclustered algorithms and Nintg has been similarly de�ned for the screened and unscreenedcase. The performance of these algorithms can be conveniently represented by theire�ciency, which is the ratio of the computation time to the sum of the computation timeplus the total message time or:E�ciency = NintgtintgNintgtintg +Mt0 + V t1 (26)This quantity lies between 0 and 1 and when multiplied by the number of processors Pgives the parallel speedup achieved by the code.The e�ciency of the various Fock matrix construction algorithms can now be de-termined as a function of N , s, and P . For example, with N = 1000 and s = 100,and assuming the communication parameters listed above, the e�ciency predicted forthe blocked, row-blocked, and clustered algorithms does not vary signi�cantly for P upto 1000. However, it does vary strongly with Ic. With Ic = 1, the blocked algorithmachieves an e�ciency of only 0.12, while for the row-blocked algorithm e�ciency is 0.95,and the clucstered is as high as 0.98 for low P and 0.96 for high P . With Ic = 10, allalgorithms achieve an e�ciency of essentially 1.00. Note that these predicted e�cienciesdo not account for load imbalance and diagonalization.These results of this analysis suggest that, as expected, the smaller number of messagesgenerated by the row-blocked algorithm makes it signi�cantly more e�cient than theblocked algorithm when Ic is small. However, the stride Ic is clearly a more importantdeterminant of performance. Uniformly increasing the stride on all three indices or, moregenerally, rede�ning i, j, and k to index collections of basis functions (i.e., shells, atoms,molecular fragments, etc.), seems to be the single most important strategy for improvinge�ciency. Our performance models predict that almost perfect parallel e�ciencies shouldbe achieved once the stride length is 10. A stride of ten is a typical value for the numberof basis functions per atom in many basis sets of choice for atoms in the �rst row of theperiodic table.It is interesting to study the sensitivity of these results to machine parameters. Fig. 8plots e�ciency as a function of P when the computation/communication cost ratio isdecreased by a factor of 100. This might correspond, as indicated in the Figure caption,to a 100-fold increase in computation speed (tintg = 5�sec, t0 = 300�sec, t1 = 1�sec),for example in a MPP machine of the future. Alternatively, it could represent a 100-folddecrease in communication speed (tintg = 500�sec, t0 = 30; 000�sec, t1 = 100�sec), forexample on a local area network (e.g., Ethernet). For interest, we include a replicatedcode, which avoids communication during computation but which must broadcast the20

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

50 100 150 200 250 300 350 400 450 500

E
ff

ic
ie

nc
y

Processors

Blocked
Row-blocked

Clustered
Replicated

Figure 8: Predicted e�ciency of four Fock matrix construction algorithms whenN = 1000,s = 100, Ic = 10, and tintg = 5�sec.lower triangle of D and sum the partially constructed copies of the lower triangle of Flocated on each processor. We see that all methods continue to achieve good performance,although the row-blocked and clustered algorithms are now noticeably better than theblocked algorithm. We also see that the replicated code is not always the most e�cient.At high values of P , it communicates large amounts of data that are never used becauseof screening. These results suggests that the algorithms described in this paper will bee�cient even on loosely-coupled parallel computers, as long as a strides of 10 or largerare used.Figure 8 might also correspond to a non-direct Hartree-Fock algorithm that exploitsthe considerable disk space of some MPP computers. For example, the 128 node IBMSP1 facility at Argonne National Laboratory has 1GB of dedicated disk space for eachprocessor with an aggregate disk space of 128 GB. For problems with screening, thenumber of integrals grows as (sN)2=2. If s = 100 and N < 1750, the integrals thatsurvive screening could be computed in the �rst iteration and then saved onto local disk.In subsequent iterations, those integrals can be read o� disk in such large batches thattransfer time is bandwidth limited. With a realistic bandwidth of 1MB/sec, the cost oftransfering an integral is about 8�sec. These are approximately the conditions of Figure 8.At no time in this paper have we considered strides that were of di�erent lengths fordi�erent do-loops. It is possible to generalize the formulas for M and V to this case.Suppose the possible combinations of di�erent strides are restricted to those that havethe same total local memory allocations for permanent and temporary storage of data21

structures of D and F . Our analysis shows that under the circumstances considered inFig. 8, it is the largest stride common to all the do-loops that determines e�ciency.6 ConclusionWe have presented several scalable and e�cient parallel algorithms for the constructionof the Fock matrix in SCF problems. The algorithms are scalable in that they allow theFock and density matrices to be distributed over multiple processors. They are e�cientin that they perform only a single pass through the integrals and allow for two levels oftask grouping referred to as blocking and clustering which reduce both the total numberand volume of interprocessor communications. These grouping techniques have beenshown to be e�ective even when screening reduces computation costs from O(N4) toO(N2) integrals. We have characterized the e�ectiveness of the algorithms by developingmathematical models for communication costs as functions of problem size, number ofprocessors, available memory, and a screening parameter.Evaluations of these models with parameters typical of existing MPP computers showthat all the algorithms proposed are highly e�cient. The most e�cient algorithms dis-tribute theD and F matrices in blocks containing multiple rows. These algorithms requirea communications library that in one message can transmit selected columns from theserow-based data structures. The next most e�cient algorithms use submatrices of D andF as their blocks. These algorithms can be implemented using a simple communicationslibrary able to transmit an entire submatrix with no need for column (or row or element)selection.We have evaluated two alternative integral orderings: triple-sort and canonical. Ouranalysis suggests that triple-sort ordering is to be preferred over canonical. It requiresone half as much storage and constructs a symmetrized Fock matrix. In the atypical caseof applications with little screening, triple-sort performs less communication. Otherwise,communication costs are the same for both methods.We have also examined two general classes of clustering technique: static and dynamic.Both schemes can adapt to varying amounts of memory, with communication requirementsscaling inversely with available memory. We show that static clustering is superior fromthe point of view of communication requirements. However, it tends to su�er from loadimbalances in the presence of screening. Hence, we recommend the more exible dynamicclustering technique.In a companion paper [1], a fully scalable code is presented that exploits the algorithmsdiscussed here and, in addition, addresses other practical issues such as the distributionof all data structures of order N2 (e.g., the overlap integrals used in screening), the de-velopment of a communications library for e�cient data transfer, coding modi�cations toimprove load balancing, and the diagonalization of the distributed Fock matrix. Empiri-cal studies performed with this code con�rm the general conclusions of this paper as doesthe work of Furlani and King [19].Future work is being directed in three broad areas. First, the use of a electrostaticmoment expansion for the calculation of the Coulomb interactions in the Fock matrix isa well-known way of reducing the number of individual integrals that must be calculated.22

We are examining the implications of this approach for the algorithms discussed in thispaper. Second, we are extending the current approach to compute higher order derivativesof the energy with respect to coordinates. Third, we are investigating alternatives to theuse of conventional linear algebra methods for the diagonalization step. In particular, anenergy minimization procedure in the parameter space of the basis function amplitudesappears promising on parallel computers.AcknowledgmentsWe are grateful to John Garnett for his assistance in the early stages of this work, and toEwing Lusk and Rick Stevens for insightful discussions. We thank Martyn F. Guest, DavidE. Bernholdt, Adrian T. Wong, Mark Stave, James Anchell, Anthony C. Hess, George L.Fann, Jaroslaw Nieplocha, Greg S. Thomas, and David Elwood of the Molecular ScienceResearch Center, Paci�c Northwest Laboratory, for providing access to code used in ourexperiments.This work was performed under the auspices of the High Performance Computingand Communications Program of the O�ce of Scienti�c Computing, U.S. Department ofEnergy under contract W-31-109-Eng-38 with the University of Chicago which operatesthe Argonne National Laboratory and under contract DE-AC-6-76RLO 1830 with BattelleMemorial Institute which operates the Paci�c Northwest Laboratory.References[1] Harrison, R. J., Guest, M. F., Kendall, R. A., Bernholdt, D. E., Wong, A. T.,Stave, M., Anchell, J., Hess, A. C., Little�eld, R. L., Fann, G. L., Nieplocha, J.,Thomas, G. S., Elwood, D., Tilson, J., Shepard, R. L., Wagner, A. F., Foster, I.,Lusk, E., and Stevens, R. submitted J. Comp. Chem., 1994.[2] Roothaan, C., Reviews of Modern Physics, 23, 69, 1951.[3] Alml�of, J., Faegri, K. Jr., Korsell, K., J. Comp. Chem, 3, 385, 1982.[4] Harrison, R. J., Shepard, R, For publication in Annual Review of Physical Chemistry,1994.[5] H�aser, M., Ahlrichs, R., J. Comp. Chem, 10, 104, 1989.[6] Little�eld, R., and Maschho�, K.,Theor. Chim. Acta, 84, 457, 1993.[7] Shepard, R., Theor. Chim. Acta, 84, 343, 1993.[8] Clementi, E., Corongiu, G., Detrich, J., Chin, S., Domingo, L., Int. J. Quant. Chem.:Quantum Chem. Symp., 18, 601, 1984.[9] Dupuis, M., Watts, J. D., Theor. Chim. Acta, 71, 91, 1987.23

[10] Feyereisen, M., Kendall, R., Nichols, J., Dame, D., Golab, J., J. Comp. Chem., 14,818, 1993.[11] Brode, S., Horn, H., Ehrig, M., Moldrup, D., Rice, J., Ahlrichs, R., J. Comp. Chem.,14, 1142, 1993.[12] Burkhardt, A., Wedig, U., Schnering, H. G. v., Theor. Chim. Acta., 86, 497, 1993.[13] Shirsat, R., Limaye, A., Gadre, S., J. Comp. Chem., 14, 445, 1993.[14] L�uthi, H., Mertz, M., Feyereisen, M., and Alml�of, J., Intl J. Quant. Chem., 13, 160,1992.[15] Feyereisen, M., and Kendall, R., Theo. Chim. Acta., 84, 289, 1993.[16] L�uthi, H. P., Alml�of, Theor. Chim. Acta., 84, 443, 1993.[17] Guest, M., Sherwood, P., van Lenthe, J., Theor. Chim. Acta., 84, 423, 1993.[18] Colvin, M., Janssen, C., Whiteside, R., and Tong, C., Theo. Chim. Acta., 84, 301,1993.[19] Furlani, T. R., King, H. F., J. Comp. Chem., submitted for publication., 1994.[20] Harrison, R., Theo. Chim. Acta., 84, 363, 1993.[21] A. Edelman, J. Parallel and Distributed Computing, 11, 328, 1991.[22] S. L. Johnsson and C-T. Ho, SIAM J. Matrix Anal. Appl. 9, 419, 1988.

24

