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High-Performance Comp. Chem. : : : 11 IntroductionThe objective of our research within our Federal High Performance Computing and Com-munications Initiative (HPCCI) Grand Challenge Applications project is to enable the useof very high performance computer architectures to solve Grand Challenge{class problemsin computational chemistry. One goal in this e�ort is to develop ab initio electronic struc-ture codes capable of modeling molecular systems of O(102�3) atoms and O(103�4) basisfunctions. To achieve this level of scalability will require use of massively parallel processors(MPP-s) and use of alternative numerical approaches. A recurring theme in our algorithmand software design and analysis is to develop techniques and tools that permit the develop-ment of scalable applications with explicit parallel constructs with only a minimal amountof extra e�ort.In this article we discuss the design of scalable parallel algorithms that emphasize thecost-e�ective use of both processors and memory. We use the direct [1] closed-shell self-consistent �eld (SCF) method for molecules as an example. E�cient SCF computationsare required for our research, and for more accurate theories. Also, SCF is representativeof more sophisticated theories in using irregular data-access patterns and accumulation ofresults into large data structures. However, with current approaches, the computationalcost of SCF grows at such a high rate with respect to problem size that even TERAFLOPcomputers2 would permit only modest growth in problem size. To make more substantialimprovements, it is necessary to incorporate more sophisticated algorithms with lower growthrates, for example, replacing an O(N4atom) algorithm with one with an e�ective scaling ofO(Natom){O(N2atom) [2, 3, 4, 5]. Parallelization of such algorithms will be the subject of2Computers capable of a TERAFLOP, or 1012 oating point operations per second



High-Performance Comp. Chem. : : : 2future publications.The �rst parallel self-consistent �eld (SCF) programs [6, 7, 8, 9, 10, 11, 12] were basedon the \replicated data" model, in which each processor in the parallel system held its owncomplete copy of the Fock and density matrices. While this approach is simple and performsacceptably well for moderate-sized chemical systems, it does not scale well to either largechemical systems or massively parallel computers. Current parallel computers have onlyenough memory per node to replicate matrices of size 100{1000 square, and the high costof memory relative to processors precludes adding memory. Instead, it is both necessaryand cost-e�ective to distribute the Fock and density matrices across the memories of allprocessors.Previous distributed SCF algorithms [13, 14] had the advantage of being based on reg-ular communication patterns that were compatible with conventional \two-sided" messagepassing semantics (cooperative sender and receiver). They su�ered, however, from ine�-ciencies arising from performing redundant computation, limited scalability and/or largeprocess waiting times caused by load imbalance and frequent synchronization. In addition,development of these parallel programs based upon messages passing required signi�cante�ort beyond that of developing a sequential program with similar functionality. We wishto understand not merely how to write a fast and scalable SCF program, but to isolatethe principles that make this task easier, and then apply those ideas to other algorithms ofcomputational chemistry.Below we continue our previous work [15] and explore an approach based on a novelcommunication strategy. The Fock matrix construction is parallelized using a dynamic load-balancing approach, as with the replicated data model [12]. However, the Fock and densitymatrices are distributed across processors and are accessed during the Fock-build using a



High-Performance Comp. Chem. : : : 3\one-sided" remote-fetch/store/accumulate communication paradigm that is conceptuallysimilar to shared memory. (We use the term \asynchronous global arrays" to describethis capability, which is discussed in more detail below.) This approach requires no extracomputation (compared with the sequential algorithm) but is potentially communication-intensive.We �rst describe briey the key computational steps of the SCF non-linear optimizationproblem. Following this is discussion of a key concept in the design of e�cient algorithmsfor current computer architectures (sequential or parallel) which uses the example of matrixmultiplication. We apply the same techniques to the SCF problem and present our cur-rent algorithm. A simple performance model of the algorithm is discussed and results arepresented.2 Self-Consistent Field (SCF) | basic theoryA very brief summary of the non-relativistic SCF method in the Born-Oppenheimer ap-proximation is given here, for more detailed references please refer to [16]. The restrictedHartree-Fock wavefunction for a closed-shell N-electron system is an antisymmetric productof N/2 doubly-occupied, orthonormal, molecular orbitals (MO-s). Each molecular orbital(�i) is expanded in a �nite basis set (��) usually chosen as atomic centered functions (oratomic orbitals, AO-s) : �i(r) = NbasisX�=1 �i(r)C�i; (1)where C�i are the coe�cients that transform between the AO and MO basis sets, usuallyreferred to as the MO coe�cients. For simplicity we limit consideration to real MO coe�-cients.



High-Performance Comp. Chem. : : : 4The MO coe�cients are chosen to minimize the energy subject to the orthonormalityconstraints. With the MO coe�cients as parameters the SCF problem is a non-linear opti-mization problem with constraints. Alternatively [17], the parameters may be chosen to beorbital rotations, which results in an unconstrained non-linear optimization problem. TheMO coe�cients C�i are speci�ed as a rotation of some initial orthonormal set of orbitalsC(0)�i : C = C(0)eK: (2)The matrixK is antisymmetric which ensures the rotation is unitary. The energy is invariantto rotation of either the occupied or unoccupied orbitals among themselves, so only theoccupied-unoccupied block of K is determined by the minimization procedure.We use letters a; b; : : : to denote unoccupied MO-s, i; j; : : : to denote occupied MO-s,p; q; : : : to denote arbitrary MO-s, and Greek letters to label AO-s. The energy and itsderivative with respect to the orbital-rotation parameters kai may be expressed in terms ofintegrals over the molecular orbitalsE(K) =Xi (hii + Fii); (3)and @E@kai �����K=0 = 4Fai; (4)where hij are integrals over the one-electron operators in the Hamiltonian (e.g., kinetic energyand nuclear attraction operators) in the MO representation. Here F denotes the Fock matrixwhich elements are given by,Fpq = hpq + 12Xk [2(pqjkk)� (pkjqk)] : (5)



High-Performance Comp. Chem. : : : 5The two-electron integrals, (pqjrs), arise from the electron-electron repulsion operator in theHamiltonian and are de�ned as(pqjrs) = Z d�1d�2�p(r1)�q(r1)r�112 �r(r2)�s(r2): (6)The MO-based equations are not very useful since the one- and two-electron integrals arecomputed in the AO basis. De�ning the AO density matrix (D) asD�� = 2Xk C�kC�k; (7)the following equations are obtained for the energyE(K) = 12X�� (h�� + F��)D�� ; (8)and the Fock matrix F�� = h�� + 12X!� [2(��j!�) � (�!j��)]D!�: (9)The two-electron integrals possess an eight-fold symmetry; interchange of the labels � $ �,or ! $ �, or �� $ !� leave the value of (��j!�) unchanged. Use of these symmetriesto avoid redundant computation results in each AO integral potentially contributing to sixFock matrix elements (F��, F��, F�!, F��, F�!, F!�).An algorithm for the optimization of the SCF wavefunction is as follows.1. Generate an initial set of orthonormal orbitals.2. Generate the AO density from the orbitals.3. Construct the Fock matrix.4. From the Fock matrix or energy gradient determine improved orbitals.



High-Performance Comp. Chem. : : : 65. Repeat from step 2 until converged.The third step is the computational bottleneck on sequential computers. A conventionalSCF program implements the fourth step by obtaining the new MO-s as the eigenvectors ofthe Fock matrix (possibly also employing damping, level-shifting and other methods [18]).For Nbasis basis functions there are O(N4basis) two-electron integrals. Locality in the AObasis causes the number of integrals to decrease to approximately O(N2basis) with the use ofscreening for very large, spatially-extended systems. Calculations withO(102) basis functionsare quite routine on scienti�c workstations and the largest calculations to date use O(103)basis functions for systems with high symmetry on supercomputers.The input/output (I/O) problem of storing and repetitively processing the two-electronintegrals is avoided by computing the integrals as required [1]. Each integral may takeseveral hundred or more oating point operations (FLOPs) to compute. This is particularlypertinent to current MPP architectures which generally provide very high computation ratesand very poor I/O rates.2.1 Replicated Data Parallel AlgorithmThe replication of the Fock and density matrices within each processor of a distributed-memory parallel computer eliminates all communication during the two-electron Fock matrixcontribution. Each processor computes part of the integral list adding them into its ownlocal matrix. Subsequently, the complete Fock is obtained by combining the partial matriceswith a global summation operation. The algorithm is perfectly parallel (assuming somerudimentary load balancing [8, 12, 19]) and the global summation of the Fock matrix canbe done e�ciently (e.g., on the Intel Touchstone Delta a global summation of 106 numbers



High-Performance Comp. Chem. : : : 7takes about 3 seconds).The poor scaling inherent in this approach is readily apparent. To hold two symmetricmatrices of dimension N on each of P processors requires approximately 8PN2 bytes ofmemory. The size of calculation is constrained by the memory on each processor and the costof the machine is dominated by memory rather than processors. By abandoning replicateddata algorithms, we remove the rigid constraint on problem size and enable the usage ofmachines with a far more cost-e�ective ratio of processors to memory, a point raised byHillis [20] in justifying the design of the CM-2.Burkhardt et al [9] distributed the integral computation across many small Transputer-based nodes, keeping the Fock matrix on just one processor with a large memory. Whilethis addresses the cost issue the algorithm is intrinsically not scalable, since accumulationof the integrals into the Fock matrix is a sequential bottleneck. Fully distributed algorithms[13, 14, 15] are required.One key to understanding the design and performance of fully distributed algorithms isan understanding of how to manage e�ciently the memory hierarchy of parallel computers.We consider such issues in the next section.3 NUMA | Non Uniform Memory AccessNUMA refers to some regions of memory being more expensive to access than others. Con-sider for instance a standard RISC workstation. Its high performance stems from relianceon algorithms and compilers that optimize usage of the memory hierarchy formed by reg-isters, on-chip cache, o�-chip cache, main-memory and virtual memory. The programmingof MIMD parallel computers (either shared or distributed memory) is united with the pro-



High-Performance Comp. Chem. : : : 8gramming of sequential computers by the concept of NUMA. By focusing on NUMA, insteadof the details of the programming model, parallel computation is seen to be di�erent fromsequential computation only in the essential di�erence of concurrent execution, rather thanin nearly all aspects.3.1 Stripmining or blocked algorithmsConsider the multiplication of two N �N matricesCij = Cij + NXk=1AikBkj : (10)A traditional vector supercomputer can fetch data from memory as fast as it can compute(which is why super computers are expensive { again it is the memory for which you arepaying). Thus, it is not too ridiculous to use the simplest loop structure to implement thematrix multiplication (Figure 1).The total number of memory references in the inner loop is 2N3, which is the same asthe operation count. With the slower memory of low-cost workstations it is necessary tomodify the algorithm so that most memory references are to blocks of the matrix kept inthe fast cache. The blocking is achieved by partitioning or stripmining each loop (Figure 2)into Nblock blocks.The tra�c between the cache and processor is still 2N3, but the tra�c between the cacheand memory is now just 2NblockN2, a reduction by a factor of N=Nblock . If Nblock is adjustedso that this ratio signi�cantly exceeds the ratio of the bandwidths processor to cache, andcache to memory, then the matrix multiply can proceed essentially un-hindered by the slowmemory (the cache must be big enough to hold the necessary block size). The issues areidentical in parallel computation, except interprocessor bandwidth is compared with local-



High-Performance Comp. Chem. : : : 9memory bandwidth, and the latencies associated with memory reference are more signi�cantand must be incorporated into performance models.The method we use to reduce communication in the parallel Fock matrix construction isidentical to that used for this simple matrix multiplication example.3.2 One-sided memory accessNo emerging standards for parallel programming languages (notably just High PerformanceFortran, HPF-1 [21]) provide extensive support for MIMD programming. The only trulyportable MIMD programming model is message passing, for which a standard interface hasbeen recently proposed [22] . It is, however, very hard to develop applications with fullydistributed data structures using the message-passing model [13, 14]. What is needed issupport for one-sided access to data structures (here limited to one- and two-dimensionalarrays) in the spirit of shared memory. With some e�ort this can be done portably [23] andin return for this investment we gain a much easier programming environment that speedscode development and improves extensibility and maintainability.We also gain a signi�cant performance enhancement from increased asynchrony of execu-tion of processes [24]. Message passing forces processes to cooperate (e.g., by responding torequests for a particular datum). Inevitably, this involves waiting for a collaborating processto reach the same point in the algorithm, which is only partially reduced by the use of com-plex bu�ering and asynchronous communication strategies. With a one-sided communicationmechanism, where each process can access what it needs without explicit participation ofanother process, all processes can operate independently. This eliminates unnecessary syn-chronization and naturally leads to interleaving of computation and communication.



High-Performance Comp. Chem. : : : 10Most programs contain multiple algorithms some of which may naturally be task parallel(e.g., Fock matrix construction), and others that may be e�ciently and compactly expressedas data parallel operations (e.g., evaluating the trace of a matrix product). Both types ofparallelism must be e�ciently supported.4 Prototype support for distributed globally address-able arraysConsideration of the requirements of the SCF algorithm discussed below, and also the parallelCOLUMBUS con�guration interaction program [25], second-order M�ller-Plesset Perturba-tion theory and parallel Coupled-Cluster methods [26] led to the design and implementationof some preliminary tools [23] to support one-sided access to distributed one- and two-dimensional arrays. In this section we outline briey the functionality provided by thislibrary.4.1 Programming modelThe current GA programming model can be characterized as follows:� MIMD parallelism is provided using a multi-process approach, in which all non-GAdata, �le descriptors, and so on are unique to each process.� Processes can communicate with each other by creating and accessing GA distributedmatrices, and also (if desired) by conventional message-passing.



High-Performance Comp. Chem. : : : 11� Matrices are physically distributed block-wise, either regularly or as the Cartesianproduct of irregular distributions on each axis.� Each process can independently and asynchronously access any 2-D patch of a GAdistributed matrix, without requiring cooperation by the application code in any otherprocess.� Several types of access are supported, include `get', `put', `accumulate' (oating pointsum-reduction), and `get and increment' (integer). This list is expected to be extendedas needed.� Each process is assumed to have fast access to some portion of each distributed matrix,and slower access to the remainder. These speed di�erences de�ne the data as being`local' or `remote', respectively. However, the numeric di�erence between `local' and`remote' access times is unspeci�ed.� Each process can determine which portion of each distributed matrix is stored `locally'.Every element of a distributed matrix is guaranteed to be `local' to exactly one process.4.2 Supported operationsEach operation may be categorized as being either an implementation dependent primitiveoperation or constructed in an implementation independent fashion from primitive opera-tions. Operations also di�er in their implied synchronization. A �nal category is providedby interfaces to third party libraries.The following are primitive, architecture dependent operations that are invoked syn-chronously by all processes:



High-Performance Comp. Chem. : : : 12� create an array, controlling alignment and distribution;� destroy an array; and� synchronize all processes.The following are primitive operations that may be invoked in true MIMD style by anyprocess with no implied synchronization with other processes:� fetch, store and accumulate into rectangular patch of a two-dimensional array;� gather and scatter array elements;� atomic read and increment of an array element;� inquiry about the location and distribution of the data; and� access to local data to support and/or improve performance of application speci�cdata-parallel operations.The following are a set of BLAS-like data-parallel operations that have been developedon top of the primitive operations. Synchronization is included as a user convenience.� vector operations (e.g., dot-product or scale) optimized to avoid communication bydirect access to local data;� matrix operations (e.g., symmetrize) optimized to reduce communication by directaccess to local data; and� matrix multiplication.



High-Performance Comp. Chem. : : : 13The following is functionality that is provided by third party libraries made available byusing the GA primitives to perform necessary data rearrangement. The O(N2) cost of suchrearrangement is observed to be negligible in comparison to that of O(N3) linear-algebraoperations. These libraries may internally use any form of parallelism appropriate to thecomputer system, such as cooperative message passing or shared memory.� standard and generalized real symmetric eigensolver; and� linear equation solver (interface to SCALAPACK [27].4.3 Sample code fragmentThis interface has been designed in the light of emerging standards. In particular HPF[21] will certainly provide the basis for future standards de�nition of distributed arraysin FORTRAN. The basic functionality described above (create, fetch, store, accumulate,gather, scatter, data-parallel operations) all may be expressed as single statements usingFORTRAN-90 array notation and the data-distribution directives of HPF. What HPF doesnot currently provide is random access to distributed arrays from within a MIMD parallelsubroutine call-tree, and reduction into overlapping regions of shared arrays.The following code fragment uses the FORTRAN interface to create an n by m doubleprecision array, blocked in at least 10 by 5 chunks, which is zeroed and then has a patch �lledfrom a local array. Unde�ned values are assumed to be computed elsewhere. The routinega create() returns in the variable g a a handle to the global array with which subsequentreferences to the array may be made.integer g_a, n, m, ilo, ihi, jlo, jhi, ldimdouble precision local(1:ldim,*)



High-Performance Comp. Chem. : : : 14c call ga_create(MT_DBL, n, m, 'A', 10, 5, g_a)call ga_zero(g_a)call ga_put(g_a, ilo, ihi, jlo, jhi, local, ldim)The above code is very similar in functionality to the following HPF-like statementsinteger n, m, ilo, ihi, jlo, jhi, ldimdouble precision a(n,m), local(1:ldim,*)!hpf$ distribute a(block(10),block(5))c a = 0.0a(ilo:ihi, jlo:jhi) = local(1:ihi-ilo+1, 1:jhi-jlo+1)The di�erence is that this single HPF assignment would be executed in a data-parallelfashion, whereas the global array put operation will execute in MIMD parallel mode suchthat each process may reference di�erent array patches.5 The distributed SCF algorithmOur initial distributed SCF prototype code [15] parallelized only the two-electron contri-bution to the Fock matrix construction. This e�ort was successful in that an acceptablye�cient parallel Fock matrix construction was achieved. It was apparent, however, that theremainder of the program, which was still using replicated data methods, needed completerewriting. There were several problems: the distributed data tools we had used did not ac-commodate e�cient data-parallel operations; the distribution of tasks was overly complex,



High-Performance Comp. Chem. : : : 15causing load balancing problems; excess data was being moved in sparse problems; and theoverall parallel scalability was not as good as desired.The design of the current algorithm follows the analysis used for the matrix-multiplyalgorithm above. The cost of accessing an element of the global density or Fock matricesmust be o�set by using this element multiple times. To achieve this re-use of data we simplystripmine the four-fold loop over basis functions. Since the computation is a quartic functionof the block size while the communication is only a quadratic function, small block sizessu�ce to make the computation time dominate the communication time. This is the sameprinciple independently used by Furlani and King [14], but, in constrast to the complexitiesof their message-passing algorithm, the support for \one-sided" access to distributed arraysenables a very simple, e�cient and readily modi�ed implementation.We presently stripmine by grouping basis functions according to their (usually atomic)centers. While this has the disadvantage that the granularity is �xed, the granularity issu�cient for our initial target machines (Intel Touchstone Delta, Kendall Square Researchand IBM SP1), and the scheme has the advantage that the sparsity may be used in the outerstripmining loops. The simplest parallel loop structure is presented in Figure 3.The four loops over iat, jat, kat, and lat determine unique quartets of atoms, andthe outermost two IF blocks take advantage of sparsity using the Schwarz inequality (thescreening information is compressed and may be distributed). Parallelism with full dynamicload-balancing is introduced by comparing a sequential count of interacting atomic quartets(ijkl) against the value of a shared counter accessed by calling the function next task().Each task requires fetching up to six blocks of the density matrix and accumulating into thecorresponding blocks of the Fock matrix.Following our previous analysis [15], communication may be reduced by up to a factor of



High-Performance Comp. Chem. : : : 16two by de�ning a task as all lat for given iat, jat, and kat. With this task de�nition theij, ik, and jk blocks of the matrices are common to all atomic quartets in a task. Cachingof the blocks is preferred to pre-fetching for both its simplicity, and so that communicationtakes full advantage of sparsity. The larger tasks also eliminate a potential bottleneck access-ing the shared counter. However, the available parallelism is limited by this choice and thelargest task size increases linearly with the number of atoms in the molecule which causesload-balancing problems. Thus, we actually de�ne a task to be for given iat, jat, andkat up to �ve values of lat, �ve being a comprise between a large value for optimal cachingand a small value for �ne grain load balance. Finally, contention for access to global arrayelements is reduced and load-balancing is further improved by reversing the loop order andrandomizing the order of atoms in the input. The �nal algorithm is given in Figure 4.Since the global-array tools provide direct support for both data-parallel and task-paralleloperations it was straightforward to parallelize the remainder of the SCF program. Thus, allcomputational steps of complexity greater than O(Natom) are parallelized (essentially onlythe input and output phases are sequential). E�cient parallel matrix multiply operationsare implemented directly using the global-array tools, while other operations (e.g., matrixdiagonalization) internally convert to the data-layout required by the parallel linear algebraroutines. In contrast to the Fock matrix construction, the diagonalizer is parallelized by usingconventional message-passing instead of the global array routines. This strategy, which isfeasible because of the regularity of the linear algebra algorithms, produces somewhat highere�ciency.We emphasize that the combination of \asynchronous global array" access and conven-tional message passing produces a hybrid communication strategy that allows optimizingdi�erent parts of the application in di�erent ways. Those portions of the application that



High-Performance Comp. Chem. : : : 17are not communication intensive but have many di�erent task sizes and unpredictable com-munication patterns are best implemented with asynchronous arrays; conventional messagepassing may be more appropriate to those portions that are communication-intensive butregular. We anticipate that such hybrid schemes will become increasingly common.5.1 Performance ModelLet the basis functions on each atom overlap on average with functions on � other atoms.The factor � (between 1 and Natom) is determined by the molecular geometry, di�usenessof the basis set, and the integral screening thresholds. There will be (�Natom)28 interactingatomic quartets. If each integral takes � seconds to compute, and perfect load balance (seebelow) is achieved then the total computational cost on P processors is approximatelyTcompute = (�Natom)28 �P �NbasisNatom�4 : (11)On average, about four blocks of the density and Fock matrices must be accessed for eachquartet. The communication cost is thus approximately (neglecting possible contention andqueuing) Tcommunicate = (�Natom)28 8P  t0 + t1 �NbasisNatom�2! ; (12)where t0 and t1 are the latency in seconds and transmission cost in seconds per oating-pointnumber. The ratio of computation to communication is readily computed asTcomputeTcommunicate = � �NbasisNatom�48�t0 + t1 �NbasisNatom �2� ; (13)Appropriate values for the Intel Touchstone Delta and a double-zeta plus polarizationbasis set



High-Performance Comp. Chem. : : : 18� � = 0:0001 seconds/integral� NbasisNatom = 10� t0 = 0:0003 seconds� t1 = 10�6 seconds/wordSubstituting these numbers we obtainTcomputeTcommunicate = 18(0:0003 + 0:0001) = 312:5 (14)This high ratio of computation to communication predicts very high parallel e�ciency inde-pendent of sparsity up to O(N2atom) processors. With the current granularity the communi-cation cost is primarily due to latency. The large ratio between computation and communi-cation justi�es the assumption that communication contention is not signi�cant. Contentionwill only become an issue if the number of processors approaches (on mesh architectures suchas the Delta) the square of this ratio. Queuing for data access is empirically observed to benot signi�cant for the algorithm of Figure 4. We have also investigated various strategies forrandomization of tasks which rigorously eliminated queuing, however we obtained slightlydegraded performance due to uctuations in load balance. Excellent load balance is ensuredby arranging for large tasks to occur �rst, limiting the maximum task size and by using fulldynamic load balancing.5.2 PerformanceSeveral test calculations have been executed to demonstrate and explore the performance ofthe new program. The molecules, which were near their equilibrium geometries, and basis



High-Performance Comp. Chem. : : : 19sets are briey described in Table 1. Full details of basis sets and geometries are availablefrom the authors upon request.Figure 5 displays the speedups obtained for the two-electron Fock-matrix construction forthese systems on the Intel Touchstone Delta. The single processor times for all but the twosmallest systems were estimated by assuming that the calculations on the smallest numberof processors used were executing at 99% e�ciency. We observe that the series of similarmolecules C2H6, C4H10, C8H18 demonstrate best speedups of 31, 81, and 367, respectively,which are very close to N2atom=2. This �nite speedup is due to the available parallelism beingexhausted. Speedup degrades before this number of processors are used because as thenumber of tasks per processor diminishes the load balance worsens. For these small systemsbetter asymptotic performance could be obtained by varying the maximum task size withthe number of processors, so that in the limit of many processors each processor evaluatesthe interactions of just one quartet of atoms.Systems with more interactions (e.g., the 28 atom cluster Si8O12H8, as opposed to thechain C8H18) or more atoms demonstrate excellent speedup. The largest system, Si16O25H14in a 6-31g� basis, obtains a speedup of 496 on 512 processors, an e�ciency of 97%. It isnot yet apparent why the e�ciency is not higher still, as would be expected from the simpleperformance model above. One possible cause is that the model is too simplistic in its useof a �xed average value of 10 for the number of basis functions per atom.Next to the Fock-matrix construction, the other major step is the diagonalization, whichwhile running in parallel, obtains an e�ective speedup of only 6. It is this that results in thespeedup of the entire SCF calculation being only 438 on 512 processors, an e�ciency of 86%.The parallel e�ciency of the diagonalization increases as the matrix size increases, howeverthe O(N3) scaling of the diagonalization is similar to the scaling of integral evaluation in



High-Performance Comp. Chem. : : : 20DO i = 1, NDO j = 1, Nsum = CijDO k = 1, Nsum = sum + Aik * BkjENDDO kCij = sumENDDO jENDDO i Figure 1: A simple matrix-multiplication algorithm.Molecule Basis Atoms FunctionsC2H6 C(5s2p1d)/H(2s1p)y 8 64C4H10 C(5s2p1d)/H(2s1p)y 14 118C8H18 C(5s2p1d)/H(2s1p)y 26 226Si8O12H8 6-31gz 28 228Si8O12H8 6-31g�z 28 348Si16O25H14 6-31gz 55 461Si16O25H14 6-31g�z 55 707y zTable 1: Systems used to study performance of the SCF program.



High-Performance Comp. Chem. : : : 21DO iblock = 1, NblockDO jblock = 1, NblockLoad block of C into cacheDO kblock = 1, NblockLoad A and B blocks into cacheDO i in iblockDO j in jblocksum = CijDO k in kblocksum = sum + Aik * BkjENDDO kCij = sumENDDO jENDDO iENDDO kblockENDDO jblockENDDO iblock Figure 2: A stripmined matrix-multiplication algorithm.



High-Performance Comp. Chem. : : : 22task = next_task()ijkl = 0DO iat = 1, NatomDO jat = 1, iatIF (T(iat,jat) .gt. tol1) thenDO kat = 1, iatlat_hi = katIF (kat .eq. iat) lat_hi = jatDO lat = 1, lat_hiIF (T(iat,jat)*T(kat,lat) .gt. tol2) thenIF (ijkl .eq task) thenFetch atomic blocks of density matrixDij, Dik, Dil, Djk, Djl, DklCompute integrals and form Fock matrixUpdate atomic blocks of Fock matrixFij, Fik, Fil, Fjk, Fjl, Fkltask = next_task()ENDIFijkl = ijkl + 1ENDIFENDDO latENDDO katENDIFENDDO jatENDDO iatFigure 3: Pseudo-code representing the loop structure of the simplest stripmined paralleltwo-electron Fock matrix construction.



High-Performance Comp. Chem. : : : 23task = next_task()ijkl = 0DO kat = Natom, 1, -1DO iat = Natom, kat, -1DO jat = iat, 1, -1IF (T(iat,jat) .gt. tol1) thenlat_hi = katIF (kat .eq. iat) lat_hi = jatDO lat_lo = 1, lat_hi, 5IF (ijkl .eq task) thenDO lat = lat_lo, MIN(lat_lo+4, lat_hi)IF (T(iat,jat)*T(kat,lat) .gt. tol2) thenFetch only if changed Dij, Dik, Djk(also storing corresponding Fock elements)Fetch Dil, Djl, DklCompute integrals and form Fock matrixUpdate Fil, Fjl, FklENDIFENDDO lattask = next_task()ENDIFijk = ijk + 1ENDDO lloENDIFENDDO jatENDDO iatENDDO katFigure 4: Pseudo-code representing the loop structure of the �nal stripmined parallel two-electron Fock matrix construction.Figure 5: Speedup of two-electron Fock matrix construction for the test systems versusnumber of processors used on the Intel Touchstone Delta.



High-Performance Comp. Chem. : : : 24large molecules. Once improved algorithms are adopted for the Fock matrix construction[2, 3, 4, 5] the diagonalization will be dominant. Several approaches have been proposedfor eliminating this bottleneck [17, 28]. We are adopting a variation of the second-orderconvergent approach proposed by Shepard [17], in part because of the wide range of propertiesthat may be computed from the orbital Hessian.6 ConclusionsA simple and classical strip-mining algorithm su�ces to achieve an e�cient and scalableFock-matrix construction in which all matrices are fully distributed. Since the computationis a quartic function of the block size while the communication is only a quadratic function,small block sizes su�ce to make the computation time dominate the communication time.A simple performance model that takes into account the cost of integral evaluation, thevolume of communication, and the latency and bandwidth of communication predicts that aconstant e�ciency of about 99% (for the Fockmatrix construction) is achieved for the numberof processors less than approximately the square of the number of atoms. An e�ciency of97% is measured for a large molecular system on 512 processors. A production version ofthis algorithm would include dynamic adjustment of the granularity in response to the basisset size and machine performance parameters. Far greater gains are realizable, however, by�rst pursuing alternative algorithms [2, 3, 4, 5].The current programming model, mixing globally-addressable arrays with message pass-ing is both portable and e�cient. In particular, machines such as the Kendall Square Re-search and the Cray T3D which have hardware support for shared memory should proveparticularly e�ective in this model.
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