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We discuss issues in developing scalable parallel algorithms and focus in particular on
the distribution, as opposed to the replication, of key data structures. Replication of large
data structures limits the maximum calculation size by imposing a low ratio of processors to
memory. Only applications which distribute both data and computation across processors
are truly scalable.

The use of shared data structures that may be independently accessed by each process
even in a distributed-memory environment greatly simplifies development and provides a
significant performance enhancement. We describe tools we have developed to support this
programming paradigm. These tools are used to develop a highly efficient and scalable al-
gorithm to perform self-consistent field calculations on molecular systems. A simple and
classical strip-mining algorithm suffices to achieve an efficient and scalable Fock-matrix con-
struction in which all matrices are fully distributed. By stripmining over atoms we also
exploit all available sparsity and pave the way to adopting more sophisticated methods for

summation of the Coulomb and exchange interactions.
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1 Introduction

The objective of our research within our Federal High Performance Computing and Com-
munications Initiative (HPCCI) Grand Challenge Applications project is to enable the use
of very high performance computer architectures to solve Grand Challenge—class problems
in computational chemistry. One goal in this effort is to develop ab initio electronic struc-
ture codes capable of modeling molecular systems of O(10°7?) atoms and O(10°~*) basis
functions. To achieve this level of scalability will require use of massively parallel processors
(MPP-s) and use of alternative numerical approaches. A recurring theme in our algorithm
and software design and analysis is to develop techniques and tools that permit the develop-
ment of scalable applications with explicit parallel constructs with only a minimal amount
of extra effort.

In this article we discuss the design of scalable parallel algorithms that emphasize the
cost-effective use of both processors and memory. We use the direct [1] closed-shell self-
consistent field (SCF) method for molecules as an example. Efficient SCF computations
are required for our research, and for more accurate theories. Also, SCF is representative
of more sophisticated theories in using irregular data-access patterns and accumulation of
results into large data structures. However, with current approaches, the computational
cost of SCF grows at such a high rate with respect to problem size that even TERAFLOP
computers? would permit only modest growth in problem size. To make more substantial
improvements, it is necessary to incorporate more sophisticated algorithms with lower growth
rates, for example, replacing an O(N7?, ) algorithm with one with an effective scaling of

O(]\/Yatmn)fO(]\/v2

atom

) [2, 3, 4, 5]. Parallelization of such algorithms will be the subject of

ZComputers capable of a TERAFLOP, or 1012 floating point operations per second
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future publications.

The first parallel self-consistent field (SCF) programs [6, 7, 8, 9, 10, 11, 12] were based
on the “replicated data” model, in which each processor in the parallel system held its own
complete copy of the Fock and density matrices. While this approach is simple and performs
acceptably well for moderate-sized chemical systems, it does not scale well to either large
chemical systems or massively parallel computers. Current parallel computers have only
enough memory per node to replicate matrices of size 100-1000 square, and the high cost
of memory relative to processors precludes adding memory. Instead, it is both necessary
and cost-effective to distribute the Fock and density matrices across the memories of all
processors.

Previous distributed SCF algorithms [13, 14] had the advantage of being based on reg-
ular communication patterns that were compatible with conventional “two-sided” message
passing semantics (cooperative sender and receiver). They suffered, however, from ineffi-
ciencies arising from performing redundant computation, limited scalability and/or large
process waiting times caused by load imbalance and frequent synchronization. In addition,
development of these parallel programs based upon messages passing required significant
effort beyond that of developing a sequential program with similar functionality. We wish
to understand not merely how to write a fast and scalable SCF program, but to isolate
the principles that make this task easier, and then apply those ideas to other algorithms of
computational chemistry.

Below we continue our previous work [15] and explore an approach based on a novel
communication strategy. The Fock matrix construction is parallelized using a dynamic load-
balancing approach, as with the replicated data model [12]. However, the Fock and density

matrices are distributed across processors and are accessed during the Fock-build using a
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“one-sided” remote-fetch/store/accumulate communication paradigm that is conceptually
similar to shared memory. (We use the term “asynchronous global arrays” to describe
this capability, which is discussed in more detail below.) This approach requires no extra
computation (compared with the sequential algorithm) but is potentially communication-
intensive.

We first describe briefly the key computational steps of the SCF non-linear optimization
problem. Following this is discussion of a key concept in the design of efficient algorithms
for current computer architectures (sequential or parallel) which uses the example of matrix
multiplication. We apply the same techniques to the SCF problem and present our cur-
rent algorithm. A simple performance model of the algorithm is discussed and results are

presented.

2 Self-Consistent Field (SCF) — basic theory

A very brief summary of the non-relativistic SCF method in the Born-Oppenheimer ap-
proximation is given here, for more detailed references please refer to [16]. The restricted
Hartree-Fock wavefunction for a closed-shell N-electron system is an antisymmetric product
of N/2 doubly-occupied, orthonormal, molecular orbitals (MO-s). Each molecular orbital
(¢;) is expanded in a finite basis set (x,) usually chosen as atomic centered functions (or

atomic orbitals, AO-s) :
Npasis

$i(r) = > xi(r)C, (1)
n=1
where C; are the coefficients that transform between the AO and MO basis sets, usually

referred to as the MO coefficients. For simplicity we limit consideration to real MO coeffi-

cients.
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The MO coefficients are chosen to minimize the energy subject to the orthonormality
constraints. With the MO coefficients as parameters the SCF problem is a non-linear opti-
mization problem with constraints. Alternatively [17], the parameters may be chosen to be
orbital rotations, which results in an unconstrained non-linear optimization problem. The
MO coetlicients C,; are specified as a rotation of some initial orthonormal set of orbitals

c,

i
C =COek, (2)
The matrix K is antisymmetric which ensures the rotation is unitary. The energy is invariant
to rotation of either the occupied or unoccupied orbitals among themselves, so only the
occupied-unoccupied block of A is determined by the minimization procedure.
We use letters a,b,... to denote unoccupied MO-s, 2,7,... to denote occupied MO-s,
P,q, ... to denote arbitrary MO-s, and Greek letters to label AO-s. The energy and its
derivative with respect to the orbital-rotation parameters k,; may be expressed in terms of

integrals over the molecular orbitals

B(K) = _(hi+ Fi), (3)
and
ob
= 4F,;, (4)
akai K=0

where h;; are integrals over the one-electron operators in the Hamiltonian (e.g., kinetic energy
and nuclear attraction operators) in the MO representation. Here F' denotes the Fock matrix

which elements are given by,
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The two-electron integrals, (pg|rs), arise from the electron-electron repulsion operator in the

Hamiltonian and are defined as

(palrs) = [ dridrad,(r)6, (073 0, (2)64(12) (6)

The MO-based equations are not very useful since the one- and two-electron integrals are

computed in the AO basis. Defining the AO density matrix (D) as
D, =25 CuCu, (7)
2

the following equations are obtained for the energy

R 1
E(K) =53 (b + Fu) Dy, (8)
uy
and the Fock matrix
1
Fou = b + 5 3 (o) — (el )] Do )
WA

The two-electron integrals possess an eight-fold symmetry; interchange of the labels p « v,
or w <> A, or ur « wA leave the value of (pur|wA) unchanged. Use of these symmetries
to avoid redundant computation results in each AQO integral potentially contributing to six
Fock matrix elements (F,, Fun, Fuw, Fun, Fow, Fu))-

An algorithm for the optimization of the SCF wavefunction is as follows.
1. Generate an initial set of orthonormal orbitals.

2. Generate the AO density from the orbitals.

3. Construct the Fock matrix.

4. From the Fock matrix or energy gradient determine improved orbitals.
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5. Repeat from step 2 until converged.

The third step is the computational bottleneck on sequential computers. A conventional
SCF program implements the fourth step by obtaining the new MO-s as the eigenvectors of
the Fock matrix (possibly also employing damping, level-shifting and other methods [18]).

For Ny, basis functions there are O(N}} . ) two-electron integrals. Locality in the AO
basis causes the number of integrals to decrease to approximately O(NZ,,;,) with the use of
screening for very large, spatially-extended systems. Calculations with O(10?) basis functions
are quite routine on scientific workstations and the largest calculations to date use O(10?%)
basis functions for systems with high symmetry on supercomputers.

The input/output (I/O) problem of storing and repetitively processing the two-electron
integrals is avoided by computing the integrals as required [1]. Each integral may take
several hundred or more floating point operations (FLOPs) to compute. This is particularly
pertinent to current MPP architectures which generally provide very high computation rates

and very poor 1/O rates.

2.1 Replicated Data Parallel Algorithm

The replication of the Fock and density matrices within each processor of a distributed-
memory parallel computer eliminates all communication during the two-electron Fock matrix
contribution. Each processor computes part of the integral list adding them into its own
local matrix. Subsequently, the complete Fock is obtained by combining the partial matrices
with a global summation operation. The algorithm is perfectly parallel (assuming some
rudimentary load balancing [8, 12, 19]) and the global summation of the Fock matrix can

be done efficiently (e.g., on the Intel Touchstone Delta a global summation of 10° numbers
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takes about 3 seconds).

The poor scaling inherent in this approach is readily apparent. To hold two symmetric
matrices of dimension N on each of P processors requires approximately 8PN? bytes of
memory. The size of calculation is constrained by the memory on each processor and the cost
of the machine is dominated by memory rather than processors. By abandoning replicated
data algorithms, we remove the rigid constraint on problem size and enable the usage of
machines with a far more cost-effective ratio of processors to memory, a point raised by
Hillis [20] in justifying the design of the CM-2.

Burkhardt et al [9] distributed the integral computation across many small Transputer-
based nodes, keeping the Fock matrix on just one processor with a large memory. While
this addresses the cost issue the algorithm is intrinsically not scalable, since accumulation
of the integrals into the Fock matrix is a sequential bottleneck. Fully distributed algorithms
[13, 14, 15] are required.

One key to understanding the design and performance of fully distributed algorithms is
an understanding of how to manage efficiently the memory hierarchy of parallel computers.

We consider such issues in the next section.

3 NUMA — Non Uniform Memory Access

NUMA refers to some regions of memory being more expensive to access than others. Con-
sider for instance a standard RISC workstation. Its high performance stems from reliance
on algorithms and compilers that optimize usage of the memory hierarchy formed by reg-
isters, on-chip cache, off-chip cache, main-memory and virtual memory. The programming

of MIMD parallel computers (either shared or distributed memory) is united with the pro-
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gramming of sequential computers by the concept of NUMA. By focusing on NUMA, instead
of the details of the programming model, parallel computation is seen to be different from
sequential computation only in the essential difference of concurrent execution, rather than

in nearly all aspects.

3.1 Stripmining or blocked algorithms

Consider the multiplication of two N *x N matrices

N

Cij = Cij + > AuBy;. (10)

k=1
A traditional vector supercomputer can fetch data from memory as fast as it can compute
(which is why super computers are expensive — again it is the memory for which you are
paying). Thus, it is not too ridiculous to use the simplest loop structure to implement the
matrix multiplication (Figure 1).

The total number of memory references in the inner loop is 2/V3, which is the same as
the operation count. With the slower memory of low-cost workstations it is necessary to
modify the algorithm so that most memory references are to blocks of the matrix kept in
the fast cache. The blocking is achieved by partitioning or stripmining each loop (Figure 2)
into Nyoer blocks.

The traffic between the cache and processor is still 2N, but the traffic between the cache
and memory is now just 2Ny, N2, a reduction by a factor of N/Nyjer. If Nyoer is adjusted
so that this ratio significantly exceeds the ratio of the bandwidths processor to cache, and
cache to memory, then the matrix multiply can proceed essentially un-hindered by the slow
memory (the cache must be big enough to hold the necessary block size). The issues are

identical in parallel computation, except interprocessor bandwidth is compared with local-
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memory bandwidth, and the latencies associated with memory reference are more significant
and must be incorporated into performance models.
The method we use to reduce communication in the parallel Fock matrix construction is

identical to that used for this simple matrix multiplication example.

3.2 Omne-sided memory access

No emerging standards for parallel programming languages (notably just High Performance
Fortran, HPF-1 [21]) provide extensive support for MIMD programming. The only truly
portable MIMD programming model is message passing, for which a standard interface has
been recently proposed [22] . It is, however, very hard to develop applications with fully
distributed data structures using the message-passing model [13, 14]. What is needed is
support for one-sided access to data structures (here limited to one- and two-dimensional
arrays) in the spirit of shared memory. With some effort this can be done portably [23] and
in return for this investment we gain a much easier programming environment that speeds
code development and improves extensibility and maintainability.

We also gain a significant performance enhancement from increased asynchrony of execu-
tion of processes [24]. Message passing forces processes to cooperate (e.g., by responding to
requests for a particular datum). Inevitably, this involves waiting for a collaborating process
to reach the same point in the algorithm, which is only partially reduced by the use of com-
plex buffering and asynchronous communication strategies. With a one-sided communication
mechanism, where each process can access what it needs without explicit participation of
another process, all processes can operate independently. This eliminates unnecessary syn-

chronization and naturally leads to interleaving of computation and communication.
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Most programs contain multiple algorithms some of which may naturally be task parallel
(e.g., Fock matrix construction), and others that may be efficiently and compactly expressed
as data parallel operations (e.g., evaluating the trace of a matrix product). Both types of

parallelism must be efficiently supported.

4 Prototype support for distributed globally address-

able arrays

Consideration of the requirements of the SCF algorithm discussed below, and also the parallel
COLUMBUS configuration interaction program [25], second-order Mgller-Plesset Perturba-
tion theory and parallel Coupled-Cluster methods [26] led to the design and implementation
of some preliminary tools [23] to support one-sided access to distributed one- and two-
dimensional arrays. In this section we outline briefly the functionality provided by this

library.

4.1 Programming model

The current GA programming model can be characterized as follows:

o MIMD parallelism is provided using a multi-process approach, in which all non-GA

data, file descriptors, and so on are unique to each process.

o Processes can communicate with each other by creating and accessing GA distributed

matrices, and also (if desired) by conventional message-passing.
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e Matrices are physically distributed block-wise, either regularly or as the Cartesian

product of irregular distributions on each axis.

e Each process can independently and asynchronously access any 2-D patch of a GA
distributed matrix, without requiring cooperation by the application code in any other

process.

e Several types of access are supported, include ‘get’, ‘put’, ‘accumulate’ (floating point
sum-reduction), and ‘get and increment’ (integer). This list is expected to be extended

as needed.

e Each process is assumed to have fast access to some portion of each distributed matrix,
and slower access to the remainder. These speed differences define the data as being
‘local’ or ‘remote’, respectively. However, the numeric difference between ‘local’ and

‘remote’ access times is unspecified.

e Each process can determine which portion of each distributed matrix is stored ‘locally’.

Every element of a distributed matrix is guaranteed to be ‘local’ to exactly one process.

4.2 Supported operations

Each operation may be categorized as being either an implementation dependent primitive
operation or constructed in an implementation independent fashion from primitive opera-
tions. Operations also differ in their implied synchronization. A final category is provided
by interfaces to third party libraries.

The following are primitive, architecture dependent operations that are invoked syn-

chronously by all processes:
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e create an array, controlling alignment and distribution;

e destroy an array; and

e synchronize all processes.

The following are primitive operations that may be invoked in true MIMD style by any

process with no implied synchronization with other processes:
o fetch, store and accumulate into rectangular patch of a two-dimensional array;
o gather and scatter array elements;
e atomic read and increment of an array element;
e inquiry about the location and distribution of the data; and

e access to local data to support and/or improve performance of application specific

data-parallel operations.

The following are a set of BLLAS-like data-parallel operations that have been developed

on top of the primitive operations. Synchronization is included as a user convenience.

e vector operations (e.g., dot-product or scale) optimized to avoid communication by

direct access to local data;

e matrix operations (e.g., symmetrize) optimized to reduce communication by direct

access to local data; and

e matrix multiplication.
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The following is functionality that is provided by third party libraries made available by
using the GA primitives to perform necessary data rearrangement. The O(N?) cost of such
rearrangement is observed to be negligible in comparison to that of O(N?) linear-algebra
operations. These libraries may internally use any form of parallelism appropriate to the

computer system, such as cooperative message passing or shared memory.

o standard and generalized real symmetric eigensolver; and

e linear equation solver (interface to SCALAPACK [27].

4.3 Sample code fragment

This interface has been designed in the light of emerging standards. In particular HPF
[21] will certainly provide the basis for future standards definition of distributed arrays
in FORTRAN. The basic functionality described above (create, fetch, store, accumulate,
gather, scatter, data-parallel operations) all may be expressed as single statements using
FORTRAN-90 array notation and the data-distribution directives of HPF. What HPF does
not currently provide is random access to distributed arrays from within a MIMD parallel
subroutine call-tree, and reduction into overlapping regions of shared arrays.

The following code fragment uses the FORTRAN interface to create an n by m double
precision array, blocked in at least 10 by 5 chunks, which is zeroed and then has a patch filled
from a local array. Undefined values are assumed to be computed elsewhere. The routine
ga_create() returns in the variable g_a a handle to the global array with which subsequent

references to the array may be made.

integer g_a, n, m, ilo, ihi, jlo, jhi, 1ldim

double precision local(1l:1dim,*)
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call ga_create(MT_DBL, n, m, ’A’, 10, 5, g_a)
call ga_zero(g_a)

call ga_put(g_a, ilo, ihi, jlo, jhi, local, 1ldim)

The above code is very similar in functionality to the following HPF-like statements

integer n, m, ilo, ihi, jlo, jhi, 1ldim
double precision a(n,m), local(1:1dim,*)
'hpf$ distribute a(block(10),block(5))
c
a=20.0

a(ilo:ihi, jlo:jhi) = local(l:ihi-ilo+1, 1:jhi-jlo+1)

The difference is that this single HPF assignment would be executed in a data-parallel
fashion, whereas the global array put operation will execute in MIMD parallel mode such

that each process may reference different array patches.

5 The distributed SCF algorithm

Our initial distributed SCF prototype code [15] parallelized only the two-electron contri-
bution to the Fock matrix construction. This effort was successful in that an acceptably
efficient parallel Fock matrix construction was achieved. It was apparent, however, that the
remainder of the program, which was still using replicated data methods, needed complete
rewriting. There were several problems: the distributed data tools we had used did not ac-

commodate efficient data-parallel operations; the distribution of tasks was overly complex,
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causing load balancing problems; excess data was being moved in sparse problems; and the
overall parallel scalability was not as good as desired.

The design of the current algorithm follows the analysis used for the matrix-multiply
algorithm above. The cost of accessing an element of the global density or Fock matrices
must be offset by using this element multiple times. To achieve this re-use of data we simply
stripmine the four-fold loop over basis functions. Since the computation is a quartic function
of the block size while the communication is only a quadratic function, small block sizes
suffice to make the computation time dominate the communication time. This is the same
principle independently used by Furlani and King [14], but, in constrast to the complexities
of their message-passing algorithm, the support for “one-sided” access to distributed arrays
enables a very simple, efficient and readily modified implementation.

We presently stripmine by grouping basis functions according to their (usually atomic)
centers. While this has the disadvantage that the granularity is fixed, the granularity is
sufficient for our initial target machines (Intel Touchstone Delta, Kendall Square Research
and IBM SP1), and the scheme has the advantage that the sparsity may be used in the outer
stripmining loops. The simplest parallel loop structure is presented in Figure 3.

The four loops over iat, jat, kat, and lat determine unique quartets of atoms, and
the outermost two IF blocks take advantage of sparsity using the Schwarz inequality (the
screening information is compressed and may be distributed). Parallelism with full dynamic
load-balancing is introduced by comparing a sequential count of interacting atomic quartets
(1jk1) against the value of a shared counter accessed by calling the function next_task().
Each task requires fetching up to six blocks of the density matrix and accumulating into the
corresponding blocks of the Fock matrix.

Following our previous analysis [15], communication may be reduced by up to a factor of
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two by defining a task as all 1at for given iat, jat, and kat. With this task definition the
ij, ik, and jk blocks of the matrices are common to all atomic quartets in a task. Caching
of the blocks is preferred to pre-fetching for both its simplicity, and so that communication
takes full advantage of sparsity. The larger tasks also eliminate a potential bottleneck access-
ing the shared counter. However, the available parallelism is limited by this choice and the
largest task size increases linearly with the number of atoms in the molecule which causes
load-balancing problems. Thus, we actually define a task to be for given iat, jat, and
kat up to five values of 1at, five being a comprise between a large value for optimal caching
and a small value for fine grain load balance. Finally, contention for access to global array
elements is reduced and load-balancing is further improved by reversing the loop order and
randomizing the order of atoms in the input. The final algorithm is given in Figure 4.

Since the global-array tools provide direct support for both data-parallel and task-parallel
operations it was straightforward to parallelize the remainder of the SCF program. Thus, all
computational steps of complexity greater than O(N,.m) are parallelized (essentially only
the input and output phases are sequential). Efficient parallel matrix multiply operations
are implemented directly using the global-array tools, while other operations (e.g., matrix
diagonalization) internally convert to the data-layout required by the parallel linear algebra
routines. In contrast to the Fock matrix construction, the diagonalizer is parallelized by using
conventional message-passing instead of the global array routines. This strategy, which is
feasible because of the regularity of the linear algebra algorithms, produces somewhat higher
efficiency.

We emphasize that the combination of “asynchronous global array” access and conven-
tional message passing produces a hybrid communication strategy that allows optimizing

different parts of the application in different ways. Those portions of the application that
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are not communication intensive but have many different task sizes and unpredictable com-
munication patterns are best implemented with asynchronous arrays; conventional message
passing may be more appropriate to those portions that are communication-intensive but

regular. We anticipate that such hybrid schemes will become increasingly common.

5.1 Performance Model

Let the basis functions on each atom overlap on average with functions on « other atoms.
The factor a (between 1 and Ngtop) is determined by the molecular geometry, diffuseness
of the basis set, and the integral screening thresholds. There will be ﬁa]v“%ﬁ interacting
atomic quartets. If each integral takes 3 seconds to compute, and perfect load balance (see

below) is achieved then the total computational cost on P processors is approximately

(aNutom ) B (Nbasis)éll

— 11
Natom ( )

Tcompute — 3 J2

On average, about four blocks of the density and Fock matrices must be accessed for each
quartet. The communication cost is thus approximately (neglecting possible contention and

queuing)

(Oé]\/vatom)2 8 (Nbasis)2
Teommunicate = —————5 | t t 5 12
¢ 3 D\l + 1 N (12)

where ty and ¢; are the latency in seconds and transmission cost in seconds per floating-point

number. The ratio of computation to communication is readily computed as

Npaaia )
asts
Tcompute _ 6(Natom)

Teommunicate 8 (to +14 (]]\\;Z(:o:n)z) |

(13)

Appropriate values for the Intel Touchstone Delta and a double-zeta plus polarization

basis set
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e 3 =10.0001 seconds/integral

Noasie —
. st — ]
Natom 0

e {3 = 0.0003 seconds
e {; = 107 seconds/word

Substituting these numbers we obtain

Tcompute . 1 . 312 5 (14)
Teommunicate  8(0.0003 4 0.0001) —

This high ratio of computation to communication predicts very high parallel efficiency inde-
pendent of sparsity up to O(NZ,,,) processors. With the current granularity the communi-
cation cost is primarily due to latency. The large ratio between computation and communi-
cation justifies the assumption that communication contention is not significant. Contention
will only become an issue if the number of processors approaches (on mesh architectures such
as the Delta) the square of this ratio. Queuing for data access is empirically observed to be
not significant for the algorithm of Figure 4. We have also investigated various strategies for
randomization of tasks which rigorously eliminated queuing, however we obtained slightly
degraded performance due to fluctuations in load balance. Excellent load balance is ensured
by arranging for large tasks to occur first, limiting the maximum task size and by using full

dynamic load balancing.

5.2 Performance

Several test calculations have been executed to demonstrate and explore the performance of

the new program. The molecules, which were near their equilibrium geometries, and basis
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sets are briefly described in Table 1. Full details of basis sets and geometries are available
from the authors upon request.

Figure 5 displays the speedups obtained for the two-electron Fock-matrix construction for
these systems on the Intel Touchstone Delta. The single processor times for all but the two
smallest systems were estimated by assuming that the calculations on the smallest number
of processors used were executing at 99% efficiency. We observe that the series of similar
molecules CyHg, CyHyg, CsHig demonstrate best speedups of 31, 81, and 367, respectively,
which are very close to N2_ /2. This finite speedup is due to the available parallelism being
exhausted. Speedup degrades before this number of processors are used because as the
number of tasks per processor diminishes the load balance worsens. For these small systems
better asymptotic performance could be obtained by varying the maximum task size with
the number of processors, so that in the limit of many processors each processor evaluates
the interactions of just one quartet of atoms.

Systems with more interactions (e.g., the 28 atom cluster SisO12Hsg, as opposed to the
chain CsHyg) or more atoms demonstrate excellent speedup. The largest system, Si16045H14
in a 6-31g* basis, obtains a speedup of 496 on 512 processors, an efficiency of 97%. It is
not yet apparent why the efficiency is not higher still, as would be expected from the simple
performance model above. One possible cause is that the model is too simplistic in its use
of a fixed average value of 10 for the number of basis functions per atom.

Next to the Fock-matrix construction, the other major step is the diagonalization, which
while running in parallel, obtains an effective speedup of only 6. It is this that results in the
speedup of the entire SCF calculation being only 438 on 512 processors, an efficiency of 86%.
The parallel efficiency of the diagonalization increases as the matrix size increases, however

the O(N?) scaling of the diagonalization is similar to the scaling of integral evaluation in
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DOi=1, N

DO j=1, N
sum = Cij
DOk=1, N

sum = sum + Aik * Bkj

ENDDO k
Cij = sum

ENDDO j

ENDDO 1

Figure 1: A simple matrix-multiplication algorithm.

Molecule Basis Atoms Functions
C'yHg C(5s2pld)/H(2s1p)T 8 64
CyHyo C(5s2pld)/H(2s1p)T 14 118
CsHig C(5s2pld)/H(2s1p)T 26 226
SigOleg 6-31g¢ 28 228
SigOleg 6-31g*¢ 28 348
Si16025H14 6-31g¢ 55 461
Si16025H14 6-31g*¢ 55 707
t1

Table 1: Systems used to study performance of the SCF program.



High-Performance Comp. Chem. ... 21

DO iblock = 1, Nblock
DO jblock = 1, Nblock
Load block of C into cache
DO kblock = 1, Nblock

Load A and B blocks into cache

DO 1 in iblock
DO j in jblock
sum = C1ij
DO k in kblock

sum + Aik * Bkj

sum
ENDDO k
Cij = sum
ENDDO j
ENDDO 1
ENDDO kblock
ENDDO jblock

ENDDO iblock

Figure 2: A stripmined matrix-multiplication algorithm.
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task = next_task()
ijkl = 0
DO iat = 1, Natom
DO jat = 1, iat
IF (T(iat,jat) .gt. toll) then
DO kat = 1, iat
lat_hi = kat
IF (kat .eq. iat) lat_hi = jat
DO lat = 1, lat_hi
IF (T(iat,jat)*T(kat,lat) .gt. tol2) then
IF (ijkl1 .eq task) then

Fetch atomic blocks of density matrix
Dij, Dik, Dil, Djk, Djl, Dkl

Compute integrals and form Fock matrix

Update atomic blocks of Fock matrix
Fij, Fik, Fil, Fjk, Fjl, Fkl

task = next_task()

ENDIF
ijkl = ijkl + 1
ENDIF
ENDDO lat
ENDDO kat
ENDIF
ENDDO jat
ENDDO iat

Figure 3: Pseudo-code representing the loop structure of the simplest stripmined parallel

two-electron Fock matrix construction.
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task = next_task()
ijkl = 0
DO kat = Natom, 1, -1
DO iat = Natom, kat, -1
DO jat = 1at, 1, -1
IF (T(iat,jat) .gt. toll) then

lat_hi = kat

IF (kat .eq. iat) lat_hi = jat

DO lat_lo = 1, lat_hi, 5

IF (ijkl .eq task) then
DO lat = lat_lo, MIN(lat_lo+4, lat_hi)
IF (T(iat,jat)*T(kat,lat) .gt. tol2) then

Fetch only if changed Dij, Dik, Djk
(also storing corresponding Fock elements)

Fetch Dil, Djl, Dkl
Compute integrals and form Fock matrix
Update Fil, Fjl, Fkl

ENDIF
ENDDO lat
task = next_task()
ENDIF
ijk = ijk + 1
ENDDO 11lo
ENDIF
ENDDO jat
ENDDO iat
ENDDO kat

Figure 4: Pseudo-code representing the loop structure of the final stripmined parallel two-

electron Fock matrix construction.

Figure 5: Speedup of two-electron Fock matrix construction for the test systems versus

number of processors used on the Intel Touchstone Delta.
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large molecules. Once improved algorithms are adopted for the Fock matrix construction
[2, 3, 4, 5] the diagonalization will be dominant. Several approaches have been proposed
for eliminating this bottleneck [17, 28]. We are adopting a variation of the second-order
convergent approach proposed by Shepard [17], in part because of the wide range of properties

that may be computed from the orbital Hessian.

6 Conclusions

A simple and classical strip-mining algorithm suffices to achieve an efficient and scalable
Fock-matrix construction in which all matrices are fully distributed. Since the computation
is a quartic function of the block size while the communication is only a quadratic function,
small block sizes suffice to make the computation time dominate the communication time.
A simple performance model that takes into account the cost of integral evaluation, the
volume of communication, and the latency and bandwidth of communication predicts that a
constant efficiency of about 99% (for the Fock matrix construction) is achieved for the number
of processors less than approximately the square of the number of atoms. An efficiency of
97% is measured for a large molecular system on 512 processors. A production version of
this algorithm would include dynamic adjustment of the granularity in response to the basis
set size and machine performance parameters. Far greater gains are realizable, however, by
first pursuing alternative algorithms [2, 3, 4, 5].

The current programming model, mixing globally-addressable arrays with message pass-
ing is both portable and efficient. In particular, machines such as the Kendall Square Re-
search and the Cray T3D which have hardware support for shared memory should prove

particularly effective in this model.
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