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additional O(4n3=3) ops if the orthogonal matrix is accumulated at the same time. This algorithmemploys mainly matrix-vector multiplications and symmetric rank-one updates, which require morememory references than the matrix-matrix operations [9,8,14].The block tridiagonalization algorithm in [5,15] combines sets of p successive symmetric rank-1 updates into one symmetric rank-p update, at the cost of O(2pn2) extra ops. As a result,this algorithm exhibits improved data locality and hence is likely to be preferable on cache-basedarchitectures. This block algorithm has been incorporated into the LAPACK library of portablelinear algebra codes for high-performance architectures [1, 2]. Parallel versions for distributed-memory machines of the standard algorithm and of the block algorithm are described in [12] andin [13], respectively. A di�erent approach to tridiagonalization is the so-called successive bandreduction (SBR) method, which completes the tridiagonal reduction through a sequence of bandreductions [10,7]. This approach leads to algorithms that exhibit an even greater degree of memorylocality, among other desirable features.In this paper we show that if the number k (say) of distinct eigenvalues of a symmetric matrixA is small, considerable scope exists for further savings in tridiagonalization algorithms. As will bedemonstrated, A can be cheaply reduced to a block diagonal banded form through a slightly modi�edSBR approach. The �nal tridiagonal form is then achieved by applying the algorithm recursivelyon the subblocks on the diagonal. Compared with the conventional approach, this approach has thefollowing advantages.Improved data locality: The tridiagonalization process can employ mainly matrix-matrix oper-ations, both in the reduction of A and in the update of the transformation matrix Q (seealso [10,7]).Enhanced scope for parallelism: In the traditional algorithm, the scope for the exploitationof parallelism in the reduction of A is limited to the application of the rank-1 update (forthe unblocked algorithm) or the rank-p update (for the blocked algorithm), and the scopefor parallelism decreases as subproblems become smaller. In contrast, our algorithm generatesindependent subproblems during the reduction ofA, which can be worked on independently andwhose number increases as the iteration proceeds. Thus, a shift occurs from data parallelism(updates of large matrices) to functional parallelism (several independent subproblems), butat any stage there is su�cient parallelism to exploit.Reduced complexity: Depending on the number of distinct eigenvalues, we may almost halve thenumber of oating-point operations. In addition, the need for data movement is reduced.One particular situation where repeated eigenvalues arise is in the context of invariant-subspacemethods for eigenvalue problems [3,19,6,4], where a matrix with only two distinct, predetermined,eigenvalues is generated either by repeated application of incomplete beta functions [19] or thematrix sign function [4]. In exact arithmetic, our tridiagonalization procedure would result in a blockdiagonal matrix with diagonal blocks of order no larger than 2. Hence the eigenvalue decompositioncould be computed easily by independently diagonalizing the 2�2 blocks on the diagonal. In thepresence of roundo� errors, the computed tridiagonal matrix may not have this desirable structure.However, we can prove that such a tridiagonal matrix can be diagonalized as reliably as with anyother method by two \cleanup sweeps," where each sweep solves at most n=2 independent 2�2eigenvalue problems. 2



The paper is organized as follows. We show in Section 2 that, under certain conditions thatcan be veri�ed easiliy, a banded symmetric matrix with bandwidth b and k distinct eigenvaluesis block diagonal with diagonal blocks of order at most bk. In Section 3, we present a reductionalgorithm to achieve the desired banded block-diagonal structure, through a slight modi�cation ofthe conventional band reduction procedure. This approach is then employed to develop a divide-and-conquer tridiagonalization algorithm. An inexpensive algorithm for decoupling invariant subspaces ofmatrices with eigenvalue clusters at 0 and 1 is given and veri�ed in Section 4. Numerical experimentswith a Matlab implementation are reported in Section 5. Lastly, we summarize our results.2 The Structure of Band Matrices with Repeated EigenvaluesA tridiagonal matrix whose o�-diagonal entries are all nonzero is called unreduced. It is wellknown [18, p. 66] that an unreduced tridiagonal matrix does not have multiple eigenvalues. Conse-quently, if an n�n tridiagonal matrix has only k�n distinct eigenvalues, it must be block diagonal,and the largest block cannot be larger than k�k. The generalization of this fact to banded matricesunderpins the algorithm we propose, yet it is not as straightforward as it might seem.Assuming that A is an n�n symmetric matrix, we de�ne the ith row bandwidth of A, denotedby band row(i), asband row(i) def= maxj fi� j j j = i or j < i and aij 6= 0g; 1 � i � n: (1)That is, band row(i) is the distance of the �rst nonzero element in row i from the ith diagonalelement. Further, we say that A is nonincreasing in row bandwidth from b ifa(b; 1) 6= 0 and band row(i) � band row(i� 1); b+ 1 < i � n: (2)In particular, a banded matrix that is all zero below the bth subdiagonal, and all nonzero on the bthsubdiagonal is nonincreasing in row bandwidth from b.With these de�nitions, we can now prove the following theorem.Theorem 1 Let T be symmetric matrix with k distinct eigenvalues. If T is block diagonal, witheach diagonal block nonincreasing in bandwidth from at most b, the size of the largest block cannotexceed kb.Proof. Assume T has a diagonal block D of size p > kb. By assumption, D is nonincreasing inbandwidth from b; that is, D has p�b rows with their �rst nonzero elements in di�erent columns tothe left of the diagonal. Thus, for any �, rank(D��I) is not less than p�b.On the other hand, since p>kb and D has at most k distinct eigenvalues, D has an eigenvalue� with multiplicity greater than b. Hence, rank(D��I) is less than p�b. The contradiction veri�esthe result of the theorem.The following example shows the necessity of the \nonincreasing bandwidth" restriction in The-orem 1. Let QT = 0@ � � � �� 0 0 0 00 0 0 0 � 0  �0 0 � � 0 � 0 0 1A ;3



where �2+�2+�2 = 1, �2+�2 = �2, and �2+2+�2 = 1. Then Q has orthonormal columns andA=QQT is symmetric with only 0 and 1 as eigenvalues. In fact,A = 266666666664 � � � � 0 0 0 0� � � � 0 0 0 0� � � 0 0 � 0 0� � 0 � 0 � 0 00 0 0 0 � 0 � �0 0 � � 0 � 0 00 0 0 0 � 0 � �0 0 0 0 � 0 � � 377777777775 : (3)We see that A is banded with semi-bandwidth b=3, but it is not block diagonal with blocks of size atmost 2b�2b = 6�6, since the \nonincreasing bandwidth condition" is violated by a(5; 2)=a(7; 4)=0.3 A Divide-and-Conquer Tridiagonalization ApproachThe example in the preceding section showed that the standard Householder band reductionalgorithm will not necessarily reveal the block-diagonal structure. For example, if we had appliedthe standard algorithm for reduction to bandwidth 3 to the matrix of example (3), the matrix wouldhave remained unchanged. Fortunately, a minor modi�cation of the standard algorithm enforcesnonincreasing row-bandwidth, and hence the prerequisites of Theorem 1.Let us consider the conventional reduction approach, where the matrix is reduced one column ata time to semibandwidth b. In each reduction, the pivot row is always b rows below the diagonal,whether the reduction of the previous column was skipped (i.e., the transformation was an identity)or not. For example, if we reduce the matrix A in (3) to semibandwidth 3, row number 4 is the pivotrow for the reduction of the second column, and, since a(4 : 8; 2)=0, this reduction is skipped. Wethen proceed to column 3, using row 5 as pivot row, and the row-bandwidth increases. If, instead,we employ a Householder transformation acting on a(4 : 8; 3) to eliminate a(5 : 8; 3), keeping row 4as pivot row, we obtain ~A = 266666666664 � � � � 0 0 0 0� � � � 0 0 0 0� � � 0 � 0 0 0� � 0 � � 0 0 00 0 � � � 0 0 00 0 0 0 0 � � �0 0 0 0 0 � � �0 0 0 0 0 � � � 377777777775 :Now, ~A is decoupled into two diagonal blocks of size at most 6�6.This example shows that nonincreasing bandwidth can be obtained easily if we do not increasethe pivot row when the previous reduction was skipped. For computational purposes, we de�ne therow bandwidth with respect to a threshold � :band row(i; � ) def= maxj fi � j j j = i or j < i and ka(i : n; j)k2 > �g; 1 � i � n: (4)4



That is, given a tolerance threshold � , a column a(i : n) is considered numerically zero if its 2-norm is at most � . The Matlab function bred in Figure 3 shows the conventional bandreductionalgorithm augmented with (1) a threshold criterion for the generation of a Householder vector and(2) a modi�ed pivot row selection strategy, which does not change the pivot row if a transformationis skipped.The subroutines gen hh, pre hh, post hh, and sym hh generate a Householder vector and apply itfrom the left, right, and symmetrically, respectively. Note that for simplicity the algorithm presentedhere does not exploit the symmetry of A. However, if we wish to do so, we have sym hh work onlywith a triangular part of A and omit the post hh (pre hh) call when working only with the lower(upper) triangle. We also note that all the algorithms presented in this paper are available viaanonymous ftp from the pub/prism directory at ftp.super.org.If no transformations are skipped, the procedure is identical to the conventional band reductionprocedure; otherwise, it may terminate earlier when the reduction reaches the last column of the�rst diagonal block, and the problem is decoupled. Since we drop pivot columns whose norm isO(� ), the decomposition will be accurate up to a residual of order � .For simplicity we omitted an optimization in Figure 3. If the reduction of the �rst column of Aresults in a bandwidth ~b, say, where ~b < b, due to the small size of entries a(~b + 1 : n; 1), we candirectly pursue a reduction of the trailing block to nonincreasing bandwidth ~b, in the same fashionas shown above.If the parameter b is chosen such that kb < n, where k is the number of distinct eigenvaluesof A, Theorem 1 predicts a decoupling of the problem, with the leading block being of size nolarger than kb. In particular, if b is chosen such that kb = n=2, we can expect bred to generatetwo decoupled subproblems of about the same size. We can then recursively divide the problemuntil the transformed matrix becomes tridiagonal (i.e., b= 1). Figure 3 is a serial implementationof tridiagonalization based on this approach. Note that the various subproblems can be dealt withindependently and simultaneously. The subroutine blk diag, which is called in tri sbr, is shownin Figure 3 and reduces a matrix to block diagonal form with a given bandwidth.For example, if we reduce a 12�12 matrix A with only two eigenvalues to bandwidth 3, nodiagonal block can be larger than 6�6. Thus, if a(4; 1), a(5; 2), and a(6; 3) are all nonzero after thereductions in the �rst three columns have been completed, the next three columns must already bereduced, and the (partially reduced) matrix A is of the form26666666666666666664 � � � � 0 0 0 0 0 0 0 0� � � � � 0 0 0 0 0 0 0� � � � � � 0 0 0 0 0 0� � � � � � 0 0 0 0 0 00 � � � � � 0 0 0 0 0 00 0 � � � � 0 0 0 0 0 00 0 0 0 0 0 � � � � � �0 0 0 0 0 0 � � � � � �0 0 0 0 0 0 � � � � � �0 0 0 0 0 0 � � � � � �0 0 0 0 0 0 � � � � � �0 0 0 0 0 0 � � � � � �
37777777777777777775 :5



As a result, we do not need to perform the reductions that would otherwise have occurred incolumns 4 through 6. The complexity of the algorithm for the case k = 2 is O(0:55n3) for thereduction of A, and O(1:25n3) for the update of Q, as compared with O(4n3=3) for both theseoperations in the usual approach. The savings for Q are minor, since updates at later stages stillinvolve vectors of length n, whereas only diagonal subblocks are a�ected in A. In addition, we canwork in parallel on independent problems. If the estimate k of the number of distinct eigenvaluesis inaccurate, the algorithm becomes either the standard eigenvalue algorithm (for k > n=2) or theSBR tridiagonalization procedure suggested in [10], but in either case, it will return numericallyaccurate results.4 Invariant Subspace SplittingThe computational cost and the degree of parallelism in the algorithm depend on k, the numberof distinct eigenvalues. One particularly intriguing case is matrices that have only two eigenvalues,which arise in eigensolvers based on variant subspace decompositions [3, 19, 4]. We may assumewithout loss of generality that the eigenvalues are at 1 and 0 (any other two eigenvalues can bemapped to 0 and 1 by shifting and scaling). The following corollary is a special case of Theorem 1.Corollary 2 Let A be a matrix with two distinct eigenvalues, and let A=QTTQ be a tridiagonal-ization of A. Then T is block diagonal with diagonal blocks of size at most 2�2.Corollary 2 implies that one can determine the range space, R(A), and the null space, N (A), inessence by tridiagonalizing A. Let AQ=QT be the orthogonal-tridiagonal decomposition of A. Fora 1�1 diagonal block T (j; j),Q(:; j) 2 R(A) if T (j; j) = 1; and Q(:; j) 2 N (A) if T (j; j) = 0:Since the eigenvalues of A and T are the same, a 2�2 diagonal block T (j:j+1; j:j+1) must haveeigenvalues 0 and 1. Since the trace is the sum of the eigenvalues, and the o�diagonal entry isnonzero, we have T (j:j+1; j:j+1)=� 1�  ��  � ;where � 6= 0 and 0<<1. Since� 1�  ��  � = 1 � �  �� �� 1 00 0 �� �  �� �T ;we conclude Q (:; j:j+1)� � � 2 R(A); and Q (:; j:j+1)� �� � 2 N (A):One can see that the separation of the range and null subspaces of A, and in fact its eigenvaluedecomposition, can be a�ected by diagonalizing (potentially in parallel) the 2�2 subproblems stilloccurring in the block tridiagonal decomposition.In the presence of rounding errors, a computed tridiagonal matrix may, however, not exhibit theblock structure we could expect from Corollary 2, because of perturbations in the eigenvalues. Thatis, �(T ) � f[��; �] [ [1 � �; 1 + �]g, and a repeated eigenvalue numerically manifests itself as aneigenvalue cluster. 6



function [A, block1, Q] = bred( A, b, tau, Q );% Given a symmetric matrix A, a bandwidth b, and a threshold tau, bred% computes an orthogonal-banded matrix decomposition,% A_input * W = W * A_output + O(tau)5 % where O(tau) denotes a matrix with a two-norm of order tau, and% W is an orthogonal matrix.% The output matrix A_output will be a 2x2 block diagonal matrix,% where the first diagonal block A_output(1:block1,1:block1)% is banded with bandwidth nonincreasing from b, and the second block10 % may be empty.[ m, n ] = size(A); if (m~=n) error('nonsquare A'); endpiv_row = min(b+1,n); % current pivot rowif (piv_row == n) block1 = n; return; end;for j = 1:n-b15 % matrix is decoupled, stopif (piv_row == j), break, end% row and column sets involved in current transformationrows = (piv_row : n); cols = (j+1:piv_row-1);% generate HH matrix to annihilate A(piv_row+1:n,j)20 [ v, beta, gamma ] = gen_hh( A( rows, j), tau );% update jth row and column of AA( rows, j) = zeros(size(rows')); A(piv_row, j) = gamma;A( j, rows) = zeros(size(rows)); A(j, piv_row) = gamma;% if the reduction is not "skipped", perform symmetric25 % update of A, update Q if required, and shift the pivot rowif ( beta ~= 0)if( cols~= [] )A(rows, cols) = pre_hh( beta, v, A(rows, cols) );A(cols, rows) = post_hh( beta, v, A(cols, rows) );30 endA( rows, rows ) = symm_hh( beta, v, A(rows, rows) );if( Q ~= [] ), Q(:, rows) = post_hh( beta, v, Q(:, rows ) ); endend % beta% increase pivot row if A(piv_row,j) is not negligible35 if (abs(A(j,piv_row)) > tau), piv_row = piv_row + 1; endend % j-loopif (j == n - b)if (piv_row == j+1), block1 = piv_row - 1; else, block1 = n; endelse40 block1 = piv_row-1;endreturn; endFigure 1: Nonincreasing Row{Bandwidth{Preserving Bandreduction Algorithm7



function [A, Q] = tri_sbr( A, k, tau, Q )%% produces an orthogonal-tridiagonal decomposition of% a symmetric matrix A such that5 % A_old*Q = Q*A_new + O(tau)% where A_new is tridiagonal and Q is orthogonal.%% The number k is a guess at the number of numerically distinct% eigenvalues of A.10 %% Matrices are successively reduced to smaller bandwidth in an% attempt to exploit the divide-and-conquer nature becoming% apparent in the successive bandreduction algorithm when the number% k chosen is a good guess at the actual number of numerically distinct15 % eigenvalues.[m, n] = size(A); if( m ~= n ) error('non-square A'); endb = max( floor(n/(2*k)), 1 );[A, block1, Q] = bred( A, b, tau, Q );if (block1 == n) % If problem didn't decouple, just reduce to20 % tridiagonal form[A,blkvec,Q] = blk_diag(A,1,tau,Q); return;elseif( b > 1 ) % first subproblem is not tridiagonal yetsub = 1:block1; V = eye(block1);25 [ A(sub,sub), V ] = tri_sbr( A( sub, sub), k, tau, V );Q(:,sub) = Q(:,sub) * V;end;if( n-block1 > 2 ) % second subproblem is nontrivialsub = (block1+1):n; V = eye(n-block1);30 [ A(sub, sub), V ] = tri_sbr( A(sub, sub), k, tau, V );Q(:,sub) = Q(:,sub) * V;endendreturn;35 end Figure 2: Divide{and{Conquer Tridiagonalization8



function [ A, blkvec, Q ] = blk_diag( A, b, tau, Q )%% Given a symmetric matrix A, a desired bandwidth b, and a threshold tau,% [ A, bvec, Q ] = blk_diag( A, b, tau, Q )5 % produces an orthogonal-block-diagonal decomposition% A_input * W = W * A_output + O(tau)% where O(tau) denotes a matrix whose norm is of order tay, and% W is an orthogonal matrix.%10 % A_output will be a block diagonal matrix with each block banded with% nonincreasing bandwidth b. The i-th diagonal block starts% at (blkvec(i), blkvec(i)).%% If Q is not the empty matrix on input, Q is postmultiplied by W,15 % i.e.,, Q_output = Q_input * W.[m, n] = size(A); if( m ~= n ) error('non-square A'); endj = 1; blkvec = [];while( j < n )blkvec = [ blkvec j ]; rows = j:n; cols = j:n;20 [A(rows, cols), dj, Q(:,cols) ] = bred( A(rows,cols), b, tau, Q(:,cols);j = j + dj;endreturn; end Figure 3: Reduction to Block Diagonal Form
9



Example 3 The matrix T = 0BBBBBBBBB@ 1 e1e1 0 e2e2 1 e3e3 0 e4e4 . . . 1 en�1en�1 0 1CCCCCCCCCA ;where ej = O(p�), has eigenvalues �(T ) � f[��; �][ [1� �; 1 + �]g with � = O(�).Hence, it seems that, for numerically relevant computations, we now would be faced with com-puting the eigenvalue decomposition of a tridiagonal matrix. This is not the case, however. Byexploiting the special structure of the tridiagonal matrix, we can diagonalize it in two \sweeps" thatcompute the eigendecomposition of all \even" or \odd" 2�2 blocks on the diagonal (simultaneously),respectively. As we show below, the �ll-ins generated by these sweeps are of the same order as theperturbation in the eigenvalues and hence can be considered negligible.Lemma 4 Let T be a symmetric tridiagonal matrix with�(T ) � [��; �][ [1��; 1+�];, where � def= max�2�(T )fmin(j��1j; j�j)g � 1. Then kT 2�Tk2 � �� where�� def= � + �2: (5)Proof. Let Q be orthogonal and E = diag(E1; E0) be diagonal, respectively, such thatT = Q� I + E1 E0 �QT :Then, kEk2 = �, and T 2 = T + Q�� E1 �E2 �+ E2�QT :Thus, kT 2�T k2 � k jEj+E2k2 = ��.The next lemmagives bounds on the elements of the Givens rotation we will choose to diagonalizea 2�2 block and minimize the size of �ll-ins.Lemma 5 Let G = � c s�s c � be a Givens rotation that diagonalizes a 2�2 symmetric matrix� �1 �� �2 �. Assume without loss of generality that � > 0, and de�ne � � 0 by�2 def= ��1 � �22 �2 + �2: (6)10



Then, s and c can be chosen such that0 � jsj � �p2� and 1p2 � c � 1:Proof. Let c = cos(�) and s = sin(�). Since we wish to eliminate the o�-diagonal elements inG� �1 �� �2 �GT, we obtain0 = (c2 � s2)� + 2cs��2 � �12 � = � cos(2�) ���2 � �12 � sin(2�):If we choose cos(2�) = j�1 � �2j2� ; (7)with � as de�ned in (6), thens2 = 1� cos(2�)2 = �22�(� + j�1 � �2j=2) ;and c2 = 1 + cos(2�)2 = � + j�1 � �2j=22�as claimed.In the following theorem we now show that, employing these Givens rotations, we can limitthe size of the �ll-in entries generated when applying these rotations to a tridiagonal matrix witheigenvalue clusters around 0 and 1.Theorem 6 Let T and �� be as in Lemma 4. Let G = diag(I;� c s�s c � ; I) be the Givens rotationthat diagonalizes one 2� 2 diagonal block of T , namely,G �0BBBB@ . . . �� �1 �� �2 �� . . . 1CCCCA �GT = 0BBBB@ . . . � * ~�1 0 � 0 ~�2 �� � . . . 1CCCCA ;where we assume � > 0 without loss of generality. If � > p7 �� and c and s are chosen as suggestedin Lemma 5, then  � p7 �� and � � p7 ��:Proof. Comparing corresponding entries in T 2 and T and invoking Lemma 4, we know that thereexist �, �, and �o, j�j ; j�j ; j�oj � ��, such that�(�1 + �2) = � + �o (8)�2 + �21 + �2 = �1 + � (9)�2 + �22 + �2 = �2 + � (10)�� � ��; �� � ��: (11)11



Using these identities, we have�2 � �1�2 = �1 + �22 (1� (�1 + �2)) + (�+ �)� (�2 + �2)2 ;and hence we can express �2 de�ned as in (6) as�2 = (�1 + �22 )2 + (�2 � �1�2)= 14(1� �2o�2 ) + �+ �2 � (��)2 + (��)22�2 :Thus, �2 � 14 � �� � 54( ��� )2:Now let � � 1 be chosen such that � > � ��. Then�2 � 14 � �� � 54( 1� )2: (12)Equations (11) together with s � �p2� imply = s� � ��p2� and � = s� � ��p2� :Using (12), we can easily show that � � p7 implies 1p2� � � and hence the result of the theorem.As a consequence of Theorem 6, we are able to compute the eigenvalue decomposition of a 2� 2diagonal block in a tridiagonal matrix T with eigenvalue clusters at 0 and 1 such that the generated�ll-in is negligible compared with the eigenvalue perturbation. Thus, the diagonalization of T canbe done by two sweeps of (potentially concurrent) 2 � 2 eigenvalue problems as shown in Figure 4.In the �rst sweep, we diagonalize an \odd-even" 2 � 2 problem if the o�-diagonal entry is not toosmall, and set the �ll-in entries to zero, or otherwise just set the o�-diagonal entry to zero to zero.In the second sweep, we diagonalize the \even-odd" blocks. Since no more rotations follow, there isno need to set the �ll-in entries to zero.Theorem 6 shows that the Frobenius norm of the �ll-in matrix introduced by the algorithmrr diagshown in Figure 4 is bounded by 3pn��, which is of the same order as the perturbation ineigenvalues. The subroutine diag2, which is not shown here, computes the diagonalizing rotationsas outlined in Lemma 5. Hence, Algorithm rr diag is as numerically reliable as any other approachfor diagonalizing T , albeit much cheaper because it exploits the special structure of T .5 Numerical ExperimentsIn this section we report on some numerical experiments with the algorithms presented in thispaper. All experiments were performed with Matlab Version 4.2a on a Sun Sparcstation iPX. For12



function [Q, D] = rr_diag( A, Q, tau )%% Given a tridiagonal matrix A with eigenvalues 1 and 0, with% lambda(A) contained in [1-tau,1+tau] or [-tau,tau]5 % rr_diag computes an approximate eigendecomposition% D = Q' * A * Q% where% || D - Q'* A * Q||_Frobenius <= sqrt(7*n)*tau*(1+tau)[m,n] = size(A); if( m~=n ) error('non-square A'); end10 drop_threshold = sqrt(7)*tau*(1+tau);for j = 1:2:floor(n/2)*2 % diagonalize all (odd-even)k = j:j+1; % diagonal 2x2 matricesif (abs(A(j+1,j)) > drop_threshold)[G A(k,k)] = diag2( A(k,k) );15 if( j+2 <= n )A(j+2,k) = A(j+2,k)*G; A(k,j+2) = G'*A(k,j+2);A(j+2,j) = 0; A(j,j+2) = 0; % zero out negligible fill-insendif( j-1 >= 1 )20 A(j-1,k) = A(j-1,k)*G; A(k,j-1) = G'*A(k,j-1);A(j-1,j+1) = 0; A(j+1,j-1) = 0;endQ(:,k) = Q(:, k)*G;end25 endfor j = 2:2:floor((n-1)/2)*2 % diagonalize all (even-odd)k = j:j+1; % diagonal 2x2 matricesif (abs(A(j+1,j)) > drop_threshold)[G A(k,k)] = diag2( A(k,k) );30 if( j+2 <= n )A(j+2,k) = A(j+2,k)*G; A(k,j+2) = G'*A(k,j+2);% no more need to zero fill-insendif( j-1 >= 1 )35 A(j-1,k) = A(j-1,k)*G; A(k,j-1) = G'*A(k,j-1);endQ(:,k) = Q(:, k)*G;endend40 D = diag(diag(A));return; endFigure 4: Diagonalization of a Tridiagonal Matrix with Eigenvalue Clusters at 0 and 113



readers wishing to experiment on their own, the Matlab �les employed to generate these results canbe retrieved via anonymous ftp from the pub/prism directory at ftp.super.org.First, we apply the bandreduction algorithm bred of Figure 3 recursively to the trailing subblockof a 200� 200 matrix with two eigenvalue clusters of size 50 each at � = f�1;�2; 0; 1g. The radiusof each cluster is � 1:0e3, where � is the machine precision. The drop threshold tau in bred is set top7 � 1:0e3, and at each step the bandwidth is chosen so as to decouple the problem in the middle.The succession of matrices generated is shown in Figure 5. The title of each picture shows thecurrent matrix size being worked on and the bandwidth to which it is to be reduced. At eachstep, we compute the residual � def= kAoriginal �Q �Q �Acurrentk2:We observe � � 7:2e�13, which, given a machine precision � = 2:2e�16, is consistent with our theory.The same experiment, employing a matrix with 100 eigenvalues at 0 and 1 each, with the sameeigenvalue perturbation and drop threshold, is shown in Figure 6. Note that it is su�cient to reducethe matrix to half the bandwidth chosen in Figure 5 to achieve decoupling. We observe � � 2:7e�13.We also note that in both cases, the �rst, third, and fourth splits occur at row (and column) 100,176, and 188, respectively. The second split occurs at row 152 for Figure 5 and at row 150 forFigure 6.To test the behavior of our rank-revealing tridiagonalization (RRDG), we compare it with thestandard eigenvalue decomposition (EIG) and the QR factorization with column pivoting (QR). Ourtest matrices are1. tridiagonal matrices with eigenvalue clusters of radius p � generated by inserting random o�-diagonal perturbations of the order pp � in the matrix shown in Example 3, and2. matrices generated by symmetricallymultiplying the matrices from Example 3 with orthogonalmatrices generated via the QR factorization of a random matrix.In the �rst case, we call rr diag shown in Figure 4, in the second case, we precede the call torr diag by a call to tri sbr as shown in Figure 3. The drop threshold for the divide-and-conquertridiagonalization is set to p7p �, which is the same threshold employed in the two �nal diagonaliza-tion sweeps. For each of p = 1; 10; 100, we run 50 test cases each with matrix sizes 125, 250, and 375.RRDG and EIG both compute an eigenvalue decomposition QTAQ = D, with D diagonal. We com-pute ~D def= round(D), that is, round each diagonal entry to the nearest integer, and we report boththe relative eigenvalue residual kQTA� ~DQkF=pn=2 as well as the relative orthogonality residualkQTQ� IkF=pn. Note thatpn=2 is an estimate of kAkF . In the case of the QR factorization withpivoting, which computes AP = QR for a permutation matrix P and an upper triangular matrix R,we compute the rank r def= maxi jriij > p7 p �and ~A def= QT �A �Q. We then reportj k ~A(1 : r; 1 : r)kF � kAkF j=pn=2;14
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Table 1: Relative Residual in Subspace SplittingTridiagonal Matricesn RRDGmax EIGmax QRmaxp = 1125 5.3e-16 1.6e-15 1.7e-15250 5.0e-16 1.6e-15 3.8e-15375 4.9e-16 1.5e-15 5.6e-15p = 10125 3.5e-15 4.2e-15 2.2e-15250 3.3e-15 4.9e-15 5.1e-15375 3.4e-15 4.5e-15 4.3e-15p = 100125 3.3e-14 3.3e-14 2.7e-15250 3.2e-14 3.2e-14 6.8e-15375 3.2e-14 4.4e-14 6.6e-15p = 1000125 3.3e-13 3.3e-13 2.5e-15250 3.2e-13 3.2e-13 4.1e-15375 3.2e-13 3.2e-13 6.2e-15
Full Matricesn RRDGmax EIGmax QRmaxp = 1125 5.3e-14 1.7e-14 1.4e-14250 1.5e-13 3.3e-14 3.7e-14375 2.4e-14 3.8e-14 5.5e-14p = 10125 5.0e-15 6.0e-15 1.6e-14250 5.5e-15 3.0e-14 4.0e-14375 6.1e-15 4.1e-14 4.8e-14p = 100125 4.6e-14 3.5e-14 1.4e-14250 4.5e-14 5.2e-14 3.9e-14375 4.2e-14 3.2e-14 4.9e-14p = 1000125 4.6e-13 3.5e-13 1.6e-14250 4.4e-13 3.4e-13 3.6e-14375 4.2e-13 3.2e-13 4.2e-14
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Table 2: Relative Residual in OrthogonalityTridiagonal Matricesn RRDGmax EIGmax QRmaxp = 1125 2.3e-16 1.2e-15 1.1e-15250 2.2e-16 1.3e-15 1.3e-15375 2.1e-16 1.2e-15 1.3e-15p = 10125 3.0e-16 2.8e-15 1.1e-15250 2.8e-16 3.0e-15 1.4e-15375 2.8e-16 2.8e-15 1.6e-15p = 100125 3.4e-16 1.1e-14 1.3e-15250 3.2e-16 2.0e-14 1.4e-15375 3.1e-16 1.9e-14 1.7e-15p = 1000125 3.2e-16 1.0e-14 1.2e-15250 3.1e-16 2.3e-14 1.4e-15375 3.2e-16 3.3e-14 1.6e-15
Full Matricesn RRDGmax EIGmax QRmaxp = 1125 2.1e-15 1.2e-14 1.7e-15250 3.0e-15 2.4e-14 2.4e-15375 3.6e-15 2.7e-14 2.8e-15p = 10125 1.4e-15 1.1e-14 1.7e-15250 1.9e-15 2.1e-14 2.3e-15375 3.4e-15 2.9e-14 2.9e-15p = 100125 1.4e-15 1.1e-14 1.7e-15250 1.9e-15 2.2e-14 2.4e-15375 2.3e-15 2.6e-14 2.9e-15p = 1000125 1.4e-15 1.3e-14 1.8e-15250 1.9e-15 2.4e-14 2.4e-15375 2.3e-15 3.3e-14 2.9e-15
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which should be small, since Q(1 : r; :) is a basis for the range space of A. For each case, we reportthe worst residual.We see that the divide-and-conquer tridiagonalization, followed by the two cleanup sweeps overthe resulting tridiagonal matrix, performs just as well as a full-edged eigenvalue decomposition.In both cases, the residual in the subspace splitting is of O(p �), as expected. The residual for QRfactorization does not include the perturbation at the eigenvalue 1, as do the other two approaches,and therefore is smaller in all cases. In any case, the computed orthogonal matrices are orthogonalup to machine precision. The Q computed by the eig function in Matlab is slightly less orthogonal,since eig involves more transformations and as a result accumulates more rounding errors. Notethat all three approaches are worse for a full matrix in the case p = 1 because the roundo� errorsin the orthogonal reductions are of the same order of machine precision. When p is bigger, theroundo� errors are dominated by the perturbation in the eigenvalues, and hence RRDG and EIGbehave about the same for tridiagonal and full matrices.6 ConclusionsThis paper introduced an algorithm for reducing a symmetric matrix with repeated eigenvalues totridiagonal form. The algorithm progresses through a series of band reductions, each band reductionstage forcing a decoupling of the band matrix into independent subblocks. Compared with the usualHouseholder tridiagonalization procedure, this approach can save up to 50% of the oating-pointoperations. We also developed a robust and inexpensive numerical procedure for diagonalizing theresulting tridiagonal matrix in the case where the matrix has only two eigenvalue clusters aroundzero and one. This case arises in eigenvalue decomposition algorithms based on invariant subspaceapproaches. Taken together, these two algorithms allow for an e�cient diagonalization of suchmatrices.The algorithm can be generalized immediately to the reduction of unsymmetric matrices to Hes-senberg form. The same irreducibility argument underlying Theorem 1 goes through for Hessenbergmatrices. We also note that in exact arithmetic, conjugate transposed eigenvalue pairs would endup in the same block. However, since one triangle of a Hessenberg matrix is still full, the potentialfor computational savings is greatly reduced.Apart from its divide-and-conquer nature and the resulting potential for parallelism, as well asits reduced operation count, our divide-and-conquer algorithm has another attractive feature. Sinceour algorithm (at least in the early stages) reduces matrices to banded form with a relatively wideband, it is easy to block the Householder transformations by using the WY representation [11] orthe compact WY representation [20], as has, for example, been described in [17]. In this fashion,one can easily capitalize on the favorable memory transfer characteristics of block algorithms.
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