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Abstract. We describe a divide-and-conquer tridiagonalization approach for matrices with repeated eigenvalues. Our
algorithm hinges on the fact that, under easily constructively verifiable conditions, a symmetric matrix with bandwidth
b and k distinct eigenvalues must be block diagonal with diagonal blocks of size at most bk. A slight modification
of the usual orthogonal band-reduction algorithm allows us to reveal this structure, which then leads to potential
parallelism in the form of independent diagonal blocks. Compared with the usual Householder reduction algorithm,
the new approach exhibits improved data locality, significantly more scope for parallelism, and the potential to reduce
arithmetic complexity by close to 50% for matrices that have only two numerically distinct eigenvalues. The actual
improvement depends to a large extent on the number of distinct eigenvalues and a good estimate thereof. However,
at worst the algorithm behaves like a successive bandreduction approach to tridiagonalization. Moreover, we provide
a numerically reliable and effective algorithm for computing the eigenvalue decomposition of a symmetric matrix
with two numerically distinct eigenvalues. Such matrices arise, for example, in invariant subspace decomposition
approaches to the symmetric eigenvalue problem.

1 Introduction

Let A be an nxn symmetric matrix. Our goal is to compute an orthogonal-tridiagonal decom-
position of A, AQ=QT, where @ is orthogonal and 7" is tridiagonal. Reduction to tridiagonal form
is a standard preprocessing step in dense eigensolvers based on QR iteration, bisection, or Cuppen’s
method [16]. The conventional tridiagonalization procedure [16, p. 419] reduces A one column at a
time through a Householder transformation at a cost of O(4n®/3) flops for the reduction of A, and an
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additional O(4n3/3) flops if the orthogonal matrix is accumulated at the same time. This algorithm
employs mainly matrix-vector multiplications and symmetric rank-one updates, which require more
memory references than the matrix-matrix operations [9,8,14].

The block tridiagonalization algorithm in [5,15] combines sets of p successive symmetric rank-
1 updates into one symmetric rank-p update, at the cost of O(2pn?) extra flops. As a result,
this algorithm exhibits improved data locality and hence is likely to be preferable on cache-based
architectures. This block algorithm has been incorporated into the LAPACK library of portable
linear algebra codes for high-performance architectures [1, 2]. Parallel versions for distributed-
memory machines of the standard algorithm and of the block algorithm are described in [12] and
in [13], respectively. A different approach to tridiagonalization is the so-called successive band
reduction (SBR) method, which completes the tridiagonal reduction through a sequence of band
reductions [10,7]. This approach leads to algorithms that exhibit an even greater degree of memory
locality, among other desirable features.

In this paper we show that if the number k (say) of distinct eigenvalues of a symmetric matrix
A 1s small, considerable scope exists for further savings in tridiagonalization algorithms. As will be
demonstrated, A can be cheaply reduced to a block diagonal banded form through a slightly modified
SBR approach. The final tridiagonal form is then achieved by applying the algorithm recursively
on the subblocks on the diagonal. Compared with the conventional approach, this approach has the
following advantages.

Improved data locality: The tridiagonalization process can employ mainly matrix-matrix oper-
ations, both in the reduction of A and in the update of the transformation matrix @ (see
also [10,7]).

Enhanced scope for parallelism: In the traditional algorithm, the scope for the exploitation
of parallelism in the reduction of A4 is limited to the application of the rank-1 update (for
the unblocked algorithm) or the rank-p update (for the blocked algorithm), and the scope
for parallelism decreases as subproblems become smaller. In contrast, our algorithm generates
independent subproblems during the reduction of A, which can be worked on independently and
whose number increases as the iteration proceeds. Thus, a shift occurs from data parallelism
(updates of large matrices) to functional parallelism (several independent subproblems), but
at any stage there is sufficient parallelism to exploit.

Reduced complexity: Depending on the number of distinct eigenvalues, we may almost halve the
number of floating-point operations. In addition, the need for data movement is reduced.

One particular situation where repeated eigenvalues arise is in the context of invariant-subspace
methods for eigenvalue problems [3,19,6,4], where a matrix with only two distinct, predetermined,
eigenvalues is generated either by repeated application of incomplete beta functions [19] or the
matrix sign function [4]. In exact arithmetic, our tridiagonalization procedure would result in a block
diagonal matrix with diagonal blocks of order no larger than 2. Hence the eigenvalue decomposition
could be computed easily by independently diagonalizing the 2 x 2 blocks on the diagonal. In the
presence of roundoff errors, the computed tridiagonal matrix may not have this desirable structure.
However, we can prove that such a tridiagonal matrix can be diagonalized as reliably as with any
other method by two “cleanup sweeps,” where each sweep solves at most n/2 independent 2 x 2
eigenvalue problems.



The paper is organized as follows. We show in Section 2 that, under certain conditions that
can be verified easiliy, a banded symmetric matrix with bandwidth & and % distinct eigenvalues
is block diagonal with diagonal blocks of order at most bk. In Section 3, we present a reduction
algorithm to achieve the desired banded block-diagonal structure, through a slight modification of
the conventional band reduction procedure. This approach is then employed to develop a divide-and-
conquer tridiagonalization algorithm. An inexpensive algorithm for decoupling invariant subspaces of
matrices with eigenvalue clusters at 0 and 1 is given and verified in Section 4. Numerical experiments
with a Matlab implementation are reported in Section 5. Lastly, we summarize our results.

2 The Structure of Band Matrices with Repeated Eigenvalues

A tridiagonal matrix whose off-diagonal entries are all nonzero is called unreduced. It is well
known [18, p. 66] that an unreduced tridiagonal matrix does not have multiple eigenvalues. Conse-
quently, if an nxn tridiagonal matrix has only k& < n distinct eigenvalues, it must be block diagonal,
and the largest block cannot be larger than kxk. The generalization of this fact to banded matrices
underpins the algorithm we propose, yet it is not as straightforward as it might seem.

Assuming that A is an n xn symmetric matrix, we define the ith row bandwidth of A, denoted
by band_row(i), as

band_row(¢) def max{i—j|j=iorj<ianda;; #0}, 1<i<n. (1)
j

That is, band_row(7) is the distance of the first nonzero element in row ¢ from the ith diagonal
element. Further, we say that A is nonincreasing in row bandwidth from b if

a(b,1) # 0 and band_row(é) < bandrow(i — 1), b+ 1< i< n. (2)

In particular, a banded matrix that is all zero below the bth subdiagonal, and all nonzero on the bth
subdiagonal is nonincreasing in row bandwidth from b.
With these definitions, we can now prove the following theorem.

Theorem 1 Let T be symmetric matriz with k distinct eigenvalues. If T is block diagonal, with
each diagonal block nonincreasing in bandwidth from at most b, the size of the largest block cannot

exceed kb.

Proof. Assume T has a diagonal block D of size p > kb. By assumption, D is nonincreasing in
bandwidth from &; that is, D has p—b rows with their first nonzero elements in different columns to
the left of the diagonal. Thus, for any A, rank(D—AT) is not less than p—b.

On the other hand, since p> kb and D has at most k distinct eigenvalues, D has an eigenvalue
p with multiplicity greater than b. Hence, rank(D—pl) is less than p—b. The contradiction verifies
the result of the theorem. [

The following example shows the necessity of the “nonincreasing bandwidth” restriction in The-
orem 1. Let
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where v2+u?+a? =1, €249? =a?, and ?++42+6? =1. Then @ has orthonormal columns and
A=QQT is symmetric with only 0 and 1 as eigenvalues. In fact,
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We see that A is banded with semi-bandwidth =3, but it is not block diagonal with blocks of size at
most 2bx2b = 66, since the “nonincreasing bandwidth condition” is violated by a(5,2)=a(7,4)=0.

3 A Divide-and-Conquer Tridiagonalization Approach

The example in the preceding section showed that the standard Householder band reduction
algorithm will not necessarily reveal the block-diagonal structure. For example, if we had applied
the standard algorithm for reduction to bandwidth 3 to the matrix of example (3), the matrix would
have remained unchanged. Fortunately, a minor modification of the standard algorithm enforces
nonincreasing row-bandwidth, and hence the prerequisites of Theorem 1.

Let us consider the conventional reduction approach, where the matrix is reduced one column at
a time to semibandwidth b. In each reduction, the pivot row is always b rows below the diagonal,
whether the reduction of the previous column was skipped (i.e., the transformation was an identity)
or not. For example, if we reduce the matrix A in (3) to semibandwidth 3, row number 4 is the pivot
row for the reduction of the second column, and, since a(4:8,2)=0, this reduction is skipped. We
then proceed to column 3, using row 5 as pivot row, and the row-bandwidth increases. If, instead,
we employ a Householder transformation acting on a(4:8,3) to eliminate a(5:8,3), keeping row 4
as pivot row, we obtain

ey
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Now, A is decoupled into two diagonal blocks of size at most 6 x6.

This example shows that nonincreasing bandwidth can be obtained easily if we do not increase
the pivot row when the previous reduction was skipped. For computational purposes, we define the
row bandwidth with respect to a threshold 7:

band_row(i, 7) def max{i—j|j=torj<iand ||a(@:n,j)lla>7}, 1<i<n. (4)
j



That is, given a tolerance threshold 7, a column a(i : n) is considered numerically zero if its 2-
norm is at most 7. The Matlab function bred in Figure 3 shows the conventional bandreduction
algorithm augmented with (1) a threshold criterion for the generation of a Householder vector and
(2) a modified pivot row selection strategy, which does not change the pivot row if a transformation
1s skipped.

The subroutines gen_hh, pre_hh, post_hh, and sym_hh generate a Householder vector and apply it
from the left, right, and symmetrically, respectively. Note that for simplicity the algorithm presented
here does not exploit the symmetry of A. However, if we wish to do so, we have sym_hh work only
with a triangular part of A and omit the post_hh (pre_hh) call when working only with the lower
(upper) triangle. We also note that all the algorithms presented in this paper are available via
anonymous ftp from the pub/prism directory at ftp.super.org.

If no transformations are skipped, the procedure is identical to the conventional band reduction
procedure; otherwise, it may terminate earlier when the reduction reaches the last column of the
first diagonal block, and the problem is decoupled. Since we drop pivot columns whose norm is
O(1), the decomposition will be accurate up to a residual of order .

For simplicity we omitted an optimization in Figure 3. If the reduction of the first column of A
results in a bandwidth I;, say, where b < b, due to the small size of entries a(INJ +1:n,1), we can
directly pursue a reduction of the trailing block to nonincreasing bandwidth I;, in the same fashion
as shown above.

If the parameter b is chosen such that kb < n, where k is the number of distinct eigenvalues
of A, Theorem 1 predicts a decoupling of the problem, with the leading block being of size no
larger than kb. In particular, if b is chosen such that kb =n/2, we can expect bred to generate
two decoupled subproblems of about the same size. We can then recursively divide the problem
until the transformed matrix becomes tridiagonal (i.e., b=1). Figure 3 is a serial implementation
of tridiagonalization based on this approach. Note that the various subproblems can be dealt with
independently and simultaneously. The subroutine blk_diag, which is called in tri_sbr, is shown
in Figure 3 and reduces a matrix to block diagonal form with a given bandwidth.

For example, if we reduce a 12 x 12 matrix A with only two eigenvalues to bandwidth 3, no
diagonal block can be larger than 6x6. Thus, if a(4, 1), a(5,2), and (6, 3) are all nonzero after the
reductions in the first three columns have been completed, the next three columns must already be
reduced, and the (partially reduced) matrix A is of the form

X x x x 0 0 0 0 0 0 0 O
X X x x x 0 0 0 0 0 0 0
X X x x x x 0 0 0 0 0 0
X X x x x x 0 0 0 0 0 0
0 x x x x x 0 0 0 0 0 O
0 0 x x x x 0 0 0 0 00
0 00 0 0 0 x x x x x X
0 00 0 0 0 x x x x x X
0 00 0 0 0 x x x x x X
0 00 0 0 0 x x x x x X
0 00 0 0 0 x x x x x X
L0 0 0 0 0 0 x x x x x X |




As a result, we do not need to perform the reductions that would otherwise have occurred in
columns 4 through 6. The complexity of the algorithm for the case k = 2 is 0(0.55n3) for the
reduction of A, and O(1.25n3) for the update of Q, as compared with O(4n3/3) for both these
operations in the usual approach. The savings for () are minor, since updates at later stages still
involve vectors of length n, whereas only diagonal subblocks are affected in A. In addition, we can
work in parallel on independent problems. If the estimate k& of the number of distinct eigenvalues
is inaccurate, the algorithm becomes either the standard eigenvalue algorithm (for k& > n/2) or the
SBR tridiagonalization procedure suggested in [10], but in either case, it will return numerically
accurate results.

4 Invariant Subspace Splitting

The computational cost and the degree of parallelism in the algorithm depend on &, the number
of distinct eigenvalues. One particularly intriguing case is matrices that have only two eigenvalues,
which arise in eigensolvers based on variant subspace decompositions [3,19,4]. We may assume
without loss of generality that the eigenvalues are at 1 and 0 (any other two eigenvalues can be
mapped to 0 and 1 by shifting and scaling). The following corollary is a special case of Theorem 1.
Corollary 2 Let A be a matriz with two distinct eigenvalues, and let A=QTTQ be a tridiagonal-
wzation of A. Then T is block diagonal with diagonal blocks of size at most 2x2.

Corollary 2 implies that one can determine the range space, R(A), and the null space, N'(4), in
essence by tridiagonalizing A. Let AQ=QT be the orthogonal-tridiagonal decomposition of A. For
a 1x1 diagonal block T'(j, j),

QU eERA)ITT(,))=1, and Q(,5) eN(A)ITT(,5) =0.

Since the eigenvalues of A and T are the same, a 2x 2 diagonal block T'(j:j+1,7:54+1) must have
eigenvalues 0 and 1. Since the trace is the sum of the eigenvalues, and the offdiagonal entry is
nonzero, we have

L 1—
T(J:J+1,J:J+1)=< pr 5)

where 1 # 0 and 0 <y <1. Since
T
(hrr)=s (206G 3
By v\ v —H 00 vy w7

QGii+n (1) erta, and Qi+ ( 1, ) e Nt

we conclude

One can see that the separation of the range and null subspaces of A, and in fact its eigenvalue
decomposition, can be affected by diagonalizing (potentially in parallel) the 2x 2 subproblems still
occurring in the block tridiagonal decomposition.

In the presence of rounding errors, a computed tridiagonal matrix may, however, not exhibit the
block structure we could expect from Corollary 2, because of perturbations in the eigenvalues. That
is, A(T) C {[-v,v]U[l — v,1 4+ v]}, and a repeated eigenvalue numerically manifests itself as an
eigenvalue cluster.
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function [A, blockl, Q] = bred( A, b, tau, Q );

% Given a symmetric matrix A, a bandwidth b, and a threshold tau, bred
% computes an orthogonal-banded matrix decomposition,

% A_input # W = W * A_output + 0(taw)

% where 0(tau) denotes a matrix with a two-norm of order tau, and

% W is an orthogonal matrix.

% The output matrix A_output will be a 2x2 block diagonal matrix,

% where the first diagonal block A_output(1:blockl,1:blockl)

% is banded with bandwidth nonincreasing from b, and the second block
% may be empty.

[ m, n] = size(d); if (m"=n) error(’nonsquare A’); end
piv_row = min(b+1l,n); % current pivot row
if (piv_row == n) blockl = n; return; end;

for j = 1:n-b
% matrix is decoupled, stop
if (piv_row == j), break, end
% row and column sets involved in current transformation
rows = (piv_row : n); cols = (j+l:piv_row-1);
% generate HH matrix to annihilate A(piv_row+l:m,j)
[ v, beta, gamma ] = gen_hh( A( rows, j), tau );
% update jth row and column of A
A(C rows, j) = zeros(size(rows’)); A(piv_row, j) = gamma;
AC j, rows) = zeros(size(rows)); A(j, piv_row) = gamma;
% if the reduction is not "skipped", perform symmetric
% update of A, update Q if required, and shift the pivot row
if ( beta "= 0)
if( cols™= [] )
A(rows, cols) = pre_hh( beta, v, A(rows, cols) );
A(cols, rows) post_hh( beta, v, A(cols, rows) );
end

A( rows, rows ) = symm_hh( beta, v, A(rows, rows) );
if(Q "= [1 ), Q(:, rows) = post_hh( beta, v, Q(:, rows ) ); end
end % beta
% increase pivot row if A(piv_row,j) is not negligible
if (abs(A(j,piv_row)) > tau), piv_row = piv_row + 1; end
end % j-loop
if (j ==n - b)
if (piv_row == j+1), blockl = piv_row - 1; else, blockl = n; end
else
blockl = piv_row-1;
end
return; end

Figure 1: Nonincreasing Row—Bandwidth—Preserving Bandreduction Algorithm
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function [A, Q] = tri_sbr( A, k, tau, Q )

% produces an orthogonal-tridiagonal decomposition of
% a symmetric matrix A such that

5% A_old*Q = Q*A_new + 0(tau)
% where A_new is tridiagonal and Q is orthogonal.

% The number k is a guess at the number of numerically distinct
% eigenvalues of A.

% Matrices are successively reduced to smaller bandwidth in an

% attempt to exploit the divide-and-conquer nature becoming

% apparent in the successive bandreduction algorithm when the number

% k chosen is a good guess at the actual number of numerically distinct
15 % eigenvalues.

[m, n] = size(A); if( m "= n ) error(’non-square A’); end

b = max( floor(n/(2*k)), 1 );

[A, blockl, Q] = bred( A, b, tau, Q );

if (blockl == n) % If problem didn’t decouple, just reduce to

20 % tridiagonal form
[A,blkvec,Q] = blk_diag(A,1,tau,Q); return;
else
if(b>1) % first subproblem is not tridiagonal yet

sub = 1:blockl; V = eye(blockl);
25 [ A(sub,sub), V] = tri_sbr( A( sub, sub), k, tau, V );
QC:,sub) = Q(:,sub) * V;
end;
if( n-blockl > 2 ) % second subproblem is nontrivial
sub = (blockl+1):n; V = eye(n-blockl);
30 [ A(sub, sub), V] = tri_sbr( A(sub, sub), k, tau, V );
QC:,sub) = Q(:,sub) * V;
end
end

return;
35 end

Figure 2: Divide-and-Conquer Tridiagonalization
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function [ A, blkvec, Q ] = blk_diag( A, b, tau, Q )

% Given a symmetric matrix A, a desired bandwidth b, and a threshold tau,
% [ A, bvec, Q 1 = blk_diag( A, b, tau, Q )

% produces an orthogonal-block-diagonal decomposition

% A_input # W = W * A_output + 0(taw)

% where 0(tau) denotes a matrix whose norm is of order tay, and

% W is an orthogonal matrix.

% A_output will be a block diagonal matrix with each block banded with
nonincreasing bandwidth b. The i-th diagonal block starts
at (blkvec(i), blkvec(i)).

% If Q is not the empty matrix on input, Q is postmultiplied by W,
% i.e.,, Q_output = Q_input * W.

[m, n] = size(A); if( m "= n ) error(’non-square A’); end

j = 1; blkvec = [1;

while( j < n )
blkvec = [ blkvec j ]; rows = j:n; cols = j:n;
[A(rows, cols), dj, Q(:,cols) ] = bred( A(rows,cols), b, tau, Q(:,cols);
j=3+4dj;

end

return; end

Figure 3: Reduction to Block Diagonal Form




Example 3 The matriz

€1 0 €2
€9 1 €3

1 €n—-1
€n—_1 0

where e; = O(\/¢), has eigenvalues A\(T) C {[—v,v]U [l — v, 1+ v]} with v = O(e).

Hence, it seems that, for numerically relevant computations, we now would be faced with com-
puting the eigenvalue decomposition of a tridiagonal matrix. This is not the case, however. By
exploiting the special structure of the tridiagonal matrix, we can diagonalize it in two “sweeps” that
compute the eigendecomposition of all “even” or “odd” 2x2 blocks on the diagonal (simultaneously),
respectively. As we show below, the fill-ins generated by these sweeps are of the same order as the
perturbation in the eigenvalues and hence can be considered negligible.

Lemma 4 Let T be a symmetric tridiagonal matriz with
/\(T) C [_Va V] U [1_1/’ 1+V]a
, where v Lt maxye () {min(|]A—1|, [A})} < 1. Then |[T?=T||; < v where

vy 2 (5)
Proof. Let @ be orthogonal and £ = diag(F7, Fy) be diagonal, respectively, such that

T:Q<I+E1 EO)QT~

Then, ||F||2 = v, and

ro= T+Q<< " —Ez)+E2)QT'

Thus, (|T?=T|]2 < || |[E|+E?||2 = . ]
The next lemma gives bounds on the elements of the Givens rotation we will choose to diagonalize
a 2x2 block and minimize the size of fill-ins.

Lemma 5 Let G = ¢ i ) be a Givens rotation that diagonalizes a 2x2 symmetric matriz

( Og aﬁ ) Assume without loss of generality that > 0, and define o > 0 by
2

2
g (20 0

10



Then, s and ¢ can be chosen such that

B

0<|s| < —=— and

V2o

Proof. Let ¢ = cos(f) and s = sin(f). Since we wish

G ( Og f ) G, we obtain
2

<c<1.

Sl

—

o eliminate the off-diagonal elements in

0= (¢ — 52)8 + 2cs (“2 ; ‘”) _ B eos(26) — (‘” = ‘”) sin(20).

If we choose
| — as|

20) = ———— 7
cos(20) = 222l ©
with o as defined in (6), then

2 1 — cos(26) _ 32

2 20(0 + |ay — as|/2)’
and
2 14 cos(26) _o+ |op — ap]/2
2 20

as claimed. [

In the following theorem we now show that, employing these Givens rotations, we can limit
the size of the fill-in entries generated when applying these rotations to a tridiagonal matrix with
eigenvalue clusters around 0 and 1.

Theorem 6 Let T and v be as in Lemma 4. Let G = diag(], ( _CS i ) , 1) be the Givens rotation
that diagonalizes one 2 x 2 diagonal block of T', namely,

8 *

g o B T *oap 0

G -G = -
B ax B v 0 as ’

5 ' 6«

where we assume 3 > 0 without loss of generality. If > \/Tv and ¢ and s are chosen as suggested
m Lemma 5, then

v<NVTD and §<T0.

Proof. Comparing corresponding entries in 72 and T and invoking Lemma 4, we know that there
exist €, ¢, and ¢,, ||, |¢|, |€o] < 7, such that

Blar+ az) = f+ ¢ (8)
F4aitp=a +¢ (9)
62+a§+ﬁ2:a2+§ (10)

pB<w, BB<D. (11)

11



Using these identities, we have

a1 + s

2

ﬁz—alaz = (1—(a1+a2))+

and hence we can express o defined as in (6) as

02 = (IR (F - aia)
_ 1 2. E+e (BB +(88)
- Z(_Bﬁ+ 2 207
Thus, . .
2 _ V2
o ZZ_V_Z(B)'

Now let 7 > 1 be chosen such that 3 > 7. Then

1 5.1
2> _p— (=) 12
SRS BRI (12)
Equations (11) together with s < s imply
- \/§O'
v =s8< Y and 6 = s < Y

20 \/50.

Using (12), we can easily show that 7 > V7 implies < 7 and hence the result of the theorem. m

1
V20

As a consequence of Theorem 6, we are able to compute the eigenvalue decomposition of a 2 x 2
diagonal block in a tridiagonal matrix 7" with eigenvalue clusters at 0 and 1 such that the generated
fill-in is negligible compared with the eigenvalue perturbation. Thus, the diagonalization of T" can
be done by two sweeps of (potentially concurrent) 2 x 2 eigenvalue problems as shown in Figure 4.
In the first sweep, we diagonalize an “odd-even” 2 x 2 problem if the off-diagonal entry is not too
small, and set the fill-in entries to zero, or otherwise just set the off-diagonal entry to zero to zero.
In the second sweep, we diagonalize the “even-odd” blocks. Since no more rotations follow, there is
no need to set the fill-in entries to zero.

Theorem 6 shows that the Frobenius norm of the fill-in matrix introduced by the algorithm
rr_diagshown in Figure 4 is bounded by 3./nP, which is of the same order as the perturbation in
eigenvalues. The subroutine diag2, which is not shown here, computes the diagonalizing rotations
as outlined in Lemma 5. Hence, Algorithm rr_diag is as numerically reliable as any other approach
for diagonalizing T', albeit much cheaper because it exploits the special structure of 7T'.

5 Numerical Experiments

In this section we report on some numerical experiments with the algorithms presented in this
paper. All experiments were performed with Matlab Version 4.2a on a Sun Sparcstation iPX. For

12



function [Q, D] = rr_diag( A, Q, tau )
)
% Given a tridiagonal matrix A with eigenvalues 1 and 0, with
% lambda(A) contained in [1-tau,l+tau] or [-tau,tau]
5 % rr_diag computes an approximate eigendecomposition
) D=Q * Ax*Q
% where
% [ D- Q’# A # Q|| _Frobenius <= sqrt(7#n)*tau* (1+tau)

[m,n] = size(A); if( m"=n ) error(’non-square A’); end
10 drop_threshold = sqrt(7)*tau*(1l+tau);

for j = 1:2:floor(n/2)*2 % diagonalize all (odd-even)
k = j:j+1; % diagonal 2x2 matrices
if (abs(A(j+1,3j)) > drop_threshold)
6 ACk,k)] = diag2( Ak,k) );
15 if( j#2 <= n )
A(G+2,k) = A(j+2,k)*G; A(k,j+2) = G *A(k,j+2);
A(3+2,3) = 0; A(j,j+2) = 0; % zero out negligible fill-ins

end
if( -1 >= 1)
20 A(i-1,k) = A(j-1,k)*G; A(k,j-1) = G’ *A(k,j-1);
A(j-1,j+1) = 0; A(j+1,j-1) = 0;
end
QC:,k) = QC:, k)*G;
end
25 end
for j = 2:2:floor((n-1)/2)*2 % diagonalize all (even-odd)
k= j:j+1; % diagonal 2x2 matrices

if (abs(A(j+1,3j)) > drop_threshold)
6 ACk,k)] = diag2( Ak,k) );

30 if( j#2 <= n )
A(G+2,k) = A(j+2,k)*G; A(k,j+2) = G *A(k,j+2);
% no more need to zero fill-ins
end
if( j-1 >= 1)
35 A(j-1,k) = A(j-1,k)*G; A(k,j-1) = G’*A(k,j-1);
end
QC:,k) = QC:, k)*G;
end

end
40 D = diag(diag(d));
return; end

Figure 4: Diagonalization of a Tridiagonal Matrix with Eigenvalue Clusters at 0 and 1
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readers wishing to experiment on their own, the Matlab files employed to generate these results can
be retrieved via anonymous ftp from the pub/prism directory at ftp.super.org.

First, we apply the bandreduction algorithm bred of Figure 3 recursively to the trailing subblock
of a 200 x 200 matrix with two eigenvalue clusters of size 50 each at A = {—1,—2,0,1}. The radius
of each cluster is € 1.0e3, where ¢ is the machine precision. The drop threshold tau in bred is set to
V7¢e1.0e3, and at each step the bandwidth is chosen so as to decouple the problem in the middle.
The succession of matrices generated is shown in Figure 5. The title of each picture shows the
current matrix size being worked on and the bandwidth to which it is to be reduced. At each
step, we compute the residual

def
6 = ||A0Tiginal * Q - Q * Acurrent||2~

We observe § = 7.2¢~ '3 which, given a machine precision ¢ = 2.2¢ 7% is consistent with our theory.

The same experiment, employing a matrix with 100 eigenvalues at 0 and 1 each, with the same
eigenvalue perturbation and drop threshold, is shown in Figure 6. Note that it is sufficient to reduce
the matrix to half the bandwidth chosen in Figure 5 to achieve decoupling. We observe § a2 2.7¢7 13,
We also note that in both cases, the first, third, and fourth splits occur at row (and column) 100,
176, and 188, respectively. The second split occurs at row 152 for Figure 5 and at row 150 for
Figure 6.

To test the behavior of our rank-revealing tridiagonalization (RRDG), we compare it with the
standard eigenvalue decomposition (EIG) and the QR factorization with column pivoting (QR). Our
test matrices are

1. tridiagonal matrices with eigenvalue clusters of radius p e generated by inserting random off-
diagonal perturbations of the order ,/pe in the matrix shown in Example 3, and

2. matrices generated by symmetrically multiplying the matrices from Example 3 with orthogonal
matrices generated via the QR factorization of a random matrix.

In the first case, we call rr_diag shown in Figure 4, in the second case, we precede the call to
rr_diag by a call to tri_sbr as shown in Figure 3. The drop threshold for the divide-and-conquer
tridiagonalization is set to /7 p e, which is the same threshold employed in the two final diagonaliza-
tion sweeps. For each of p = 1,10, 100, we run 50 test cases each with matrix sizes 125, 250, and 375.
RRDG and EIG both compute an eigenvalue decomposition Q7 AQ = D, with D diagonal. We com-
pute DY round(D), that is, round each diagonal entry to the nearest integer, and we report both
the relative eigenvalue residual ||QT A — DQHF/\/n/Q as well as the relative orthogonality residual
QT Q — I||p/+/n. Note that 1/n/2 is an estimate of || A||p. In the case of the QR factorization with
pivoting, which computes AP = QR for a permutation matrix P and an upper triangular matrix R,
we compute the rank

r max |rgi| > VTpe
5 def
and A = Q' * Ax (). We then report
AL v, L)l = 11 Alle [/v/n/2,
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First Divide: n=200,b =25 Second Divide: n=100,b =13

50 100 150 200

Fourth Divide: n=24,b=3

100

120

140

160

180

200
50 100 150 200 50 100 150 200

Figure 5: Bandreduction Applied to Trailing Subblock of a 200 x 200 Matrix with Four
Distinct Eigenvalue Clusters
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First Divide: n =200, b =50 Second Divide: n=100,b =25

50 100 150 200
Fourth Divide: n=24,b=6

50 100 150 200

Figure 6: Bandreduction Applied to Trailing Subblock of a 200 x 200 Matrix with Two
Distinct Eigenvalue Clusters
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Tridiagonal Matrices

Table 1: Relative Residual in Subspace Splitting

Full Matrices

[" | RRDGumax | ElGuax | QRux | [ 7 | RRDGuax | ElGmax | QRpe
p=1 p=1
125 5.3e-16 1.6e-15 1.7e-15 125 5.3e-14 1.7e-14 1.4e-14
250 5.0e-16 1.6e-15 3.8e-15 250 1.5e-13 3.3e-14 3.7e-14
375 4.9e-16 1.5e-15 5.6e-15 375 2.4e-14 3.8e-14 5.5e-14
p=10 p=10
125 3.5e-15 4.2e-15 2.2e-15 125 5.0e-15 6.0e-15 1.6e-14
250 3.3e-15 4.9e-15 5.1e-15 250 5.5e-15 3.0e-14 4.0e-14
375 3.4e-15 4.5e-15 4.3e-15 375 6.1e-15 4.1e-14 4.8e-14
p = 100 p = 100
125 3.3e-14 3.3e-14 2.7e-15 125 4.6e-14 3.5e-14 1.4e-14
250 3.2e-14 3.2e-14 6.8e-15 250 4.5e-14 5.2e-14 3.9e-14
375 3.2e-14 4.4e-14 6.6e-15 375 4.2e-14 3.2e-14 4.9e-14
p = 1000 p = 1000
125 3.3e-13 3.3e-13 2.5e-15 125 4.6e-13 3.5e-13 1.6e-14
250 3.2e-13 3.2e-13 4.1e-15 250 4.4e-13 3.4e-13 3.6e-14
375 3.2e-13 3.2e-13 6.2e-15 375 4.2e-13 3.2e-13 4.2e-14




Table 2: Relative Residual in Orthogonality

Tridiagonal Matrices

Full Matrices

[" | RRDGumax | ElGuax | QRux | [ 7 | RRDGuax | ElGmax | QRpe
p=1 p=1
125 2.3e-16 1.2e-15 1.1e-15 125 2.1e-15 1.2e-14 1.7e-15
250 2.2e-16 1.3e-15 1.3e-15 250 3.0e-15 2.4e-14 2.4e-15
375 2.1e-16 1.2e-15 1.3e-15 375 3.6e-15 2.7e-14 2.8e-15
p=10 p=10
125 3.0e-16 2.8e-15 1.1e-15 125 1.4e-15 1.1e-14 1.7e-15
250 2.8e-16 3.0e-15 1.4e-15 250 1.9e-15 2.1e-14 2.3e-15
375 2.8e-16 2.8e-15 1.6e-15 375 3.4e-15 2.9e-14 2.9e-15
p = 100 p = 100
125 3.4e-16 1.1e-14 1.3e-15 125 1.4e-15 1.1e-14 1.7e-15
250 3.2e-16 2.0e-14 1.4e-15 250 1.9e-15 2.2e-14 2.4e-15
375 3.1e-16 1.9e-14 1.7e-15 375 2.3e-15 2.6e-14 2.9e-15
p = 1000 p = 1000
125 3.2e-16 1.0e-14 1.2e-15 125 1.4e-15 1.3e-14 1.8e-15
250 3.1e-16 2.3e-14 1.4e-15 250 1.9e-15 2.4e-14 2.4e-15
375 3.2e-16 3.3e-14 1.6e-15 375 2.3e-15 3.3e-14 2.9e-15




which should be small, since Q(1 : r,:) is a basis for the range space of A. For each case, we report
the worst residual.

We see that the divide-and-conquer tridiagonalization, followed by the two cleanup sweeps over
the resulting tridiagonal matrix, performs just as well as a full-fledged eigenvalue decomposition.
In both cases, the residual in the subspace splitting is of O(pe), as expected. The residual for QR
factorization does not include the perturbation at the eigenvalue 1, as do the other two approaches,
and therefore is smaller in all cases. In any case, the computed orthogonal matrices are orthogonal
up to machine precision. The ) computed by the eig function in Matlab is slightly less orthogonal,
since eig involves more transformations and as a result accumulates more rounding errors. Note
that all three approaches are worse for a full matrix in the case p = 1 because the roundoff errors
in the orthogonal reductions are of the same order of machine precision. When p is bigger, the
roundoff errors are dominated by the perturbation in the eigenvalues, and hence RRDG and EIG
behave about the same for tridiagonal and full matrices.

6 Conclusions

This paper introduced an algorithm for reducing a symmetric matrix with repeated eigenvalues to
tridiagonal form. The algorithm progresses through a series of band reductions, each band reduction
stage forcing a decoupling of the band matrix into independent subblocks. Compared with the usual
Householder tridiagonalization procedure, this approach can save up to 50% of the floating-point
operations. We also developed a robust and inexpensive numerical procedure for diagonalizing the
resulting tridiagonal matrix in the case where the matrix has only two eigenvalue clusters around
zero and one. This case arises in eigenvalue decomposition algorithms based on invariant subspace
approaches. Taken together, these two algorithms allow for an efficient diagonalization of such
matrices.

The algorithm can be generalized immediately to the reduction of unsymmetric matrices to Hes-
senberg form. The same irreducibility argument underlying Theorem 1 goes through for Hessenberg
matrices. We also note that in exact arithmetic, conjugate transposed eigenvalue pairs would end
up in the same block. However, since one triangle of a Hessenberg matrix is still full, the potential
for computational savings is greatly reduced.

Apart from its divide-and-conquer nature and the resulting potential for parallelism, as well as
its reduced operation count, our divide-and-conquer algorithm has another attractive feature. Since
our algorithm (at least in the early stages) reduces matrices to banded form with a relatively wide
band, it is easy to block the Householder transformations by using the WY representation [11] or
the compact WY representation [20], as has, for example, been described in [17]. In this fashion,
one can easily capitalize on the favorable memory transfer characteristics of block algorithms.
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