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Abstract

Wavelet-based video codecs provide a hierarchical structure for the encoded
data, which can cater to a wide variety of applications such as multimedia sys-
tems. The characteristics of such an encoder and its output, however, have
not been well examined. In this paper, we investigate the output characteris-
tics of a wavelet-based video codec and develop a composite model to capture
the traffic behavior of its output video data.

Wavelet decomposition transforms the input video in a hierarchical struc-
ture with a number of subimages at different resolutions and scales. The
top-level wavelet in this structure contains most of the signal energy. We first
describe the characteristics of traffic generated by each subimage and the ef-
fect of dropping various subimages at the encoder on the signal-to-noise ratio
at the receiver.

We then develop an N-state Markov model to describe the traffic behavior
of the top wavelet. The behavior of the remaining wavelets are then obtained
through estimation, based on the correlations between these subimages at the
same level of resolution and those wavelets located at an immediate higher
level. In our paper, a three-state Markov model is developed. The resulting
traffic behavior described by various statistical properties, such as moments
and correlations, etc., are then utilized to validify our model.
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1 Introduction

Video applications have emerged as one of the most important user of the upcoming
broadband integrated and ATM networks. Due to the nature of video data, a
significant amount of bits are required to represent and to transport the signals. A
video codec encodes and compresses the otherwise huge amount of data down to a
manageable level, which then requires smaller bandwidth to transmit.

It has been noted that the statistical properties of such encoded video are quite
different from those of the computer data and voice. In order to better understand
the behavior of such video data, it is important to study its characteristics. Based
on the study, an analytical model can be developed and represent a video source
as part of the multimedia integrated networks. The data modeling then provides
the possibilities of designing and implementing effective rate control schemes at the
end node of a network, of further studying the behavior and performance of such
aggregated video traffic, etec.

In this paper, we investigate the encoded output of a wavelet-based video codec.
Such codecs provide a hierarchical structure for the encoded data, which can cater
to a wide variety of applications such as multimedia systems. We will try to address
the behavior of a hierarchical codec by characterizing the output of the codec when
different bands/subimages are dropped. We will also carefully study the statistical
characteristics of this data. A composite model is then proposed to model and cap-
ture the traffic behavior of its output video data. The composite model is flexible
enough such that when certain bands are dropped, only minor modification to the
analytical model is required to reflect the effect of dropping. For the subimage con-
taining the most signal energy, we adopt a three-state Markov model to describe its
traffic characteristics, while the remaining ones are then obtained through estima-
tion, based on the correlations between subimages at different level of the pyramid
structure.

2 Motion-adaptive Wavelet-based Video Codec

In this study, we consider the encoded data, generated by a motion-adaptive wavelet-
based (MAW) video codec [4]. The MAW video codec employs wavelet decompo-
sition for signal representation rather than utilizing the traditional Discrete Cosine
Transform (DCT) as specified in the Motion Picture Expert Group (MPEG) stan-
dards [2]. In addition, multi-resolution motion estimation techniques are incorpo-
rated to improve the coding efficiency. It has been shown that the MAW video
codec either outperforms the MPEG-based video codec or provides equal perfor-
mance quality, in terms of complexity, bit rate offered and the signal-to-noise ratio
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at that rate [3].

2.1 Encoding Schemes for a Full-motion Video Sequence

Full-motion video implies that there are various motion activities present in the
sequence, ranging from high to low, as opposed to only very low to meduim motion
in video conferencing setup. High motion activities refer to either relatively large
translation of objects between consecutive frames, scene changes, or significant vari-
ation in luminance from one frame to the next. Low motion activities refer to small
changes of translation or in luminance. Identification of these motion activites leads
to an efficient tool for motion estimation and compensation.

Each frame of the incoming video is first hierarchically represented by applying
the wavelet transform as opposed to partitioning the picture into small blocks and
applying DCT on these blocks as done in the MPEG or any small-block transformed-
based video codec. In doing so, the blocky effect occuring at low bit rates after
reconstruction is eliminated because wavelet decomposition is a global transforma-
tion. The hierarchical representation of this transformation allows us to capitalize
on the correlation among different subbands or subimages, which was previously not
considered due to independent nature of transformtion of each block in DCT-based
schemes.

After wavelet decomposition, multiresolution motion estimation is performed on
the hierarchical structure using block-based search scheme [1]. Since in a wavelet
decomposed video there is no concept of blocks, we define a motion block by par-
titioning the decomposed subimages into small squares similar to what is done in
a DCT-based scheme. Note that these are just motion blocks and will go through
a global transformation during the reconstruction process, thus eliminating any
blockiness introduced by the block-based motion compensation. Motion estimation
may or may not be carried out at all the subimages but all are motion compen-
sated, except for the reference frames (I-frames). All the subimages are individually
quantized and entropy coded, regardless what types of motion activities they may
contain. That is, motion activities in subimages of a frame will not affect the se-
lection of encoding schemes for that particular frame. The motion block still serves
as the basic unit in the motion estimation process and when a matching block is
discovered within a designated searching area, associated displacement and residual
are quantized and encoded. Nevertheless, when a matching block cannot be found
within the searching area, we encounter a high motion situation and the motion
block itself is quantized and encoded for transmission.

To categorize motion activities and subsequently determine whether a motion
block should be motion compensated or not, a minimum criteria difference function
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is defined as follows:

®(z,y) = min {Z > 1Lk, 1),
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where
Q. e {1,2,... m},Q, €{1,2,... n}
z,y: displacements and © € {—m, ... .0, ... m},y € {—n,....0,... n},
k,l: coordinates within a motion block,
p, ¢: dimensions of a motion block,
m,n: dimensions of a searching area,
I: Pixel intensity, and
2: frame sequence number.

The difference function ® finds the minimal energy of a particular block within
a searching area with associated displacements in the horizontal and vertical direc-
tions, x and y. If the minimal energy is generated from the motion block itself, i.e.
from the first argument of equation (1), no matching block is actually discovered,
and a high-motion situation is declared and = and y are irrelevant. On the other
hand, if some other block in the searching area gives the minimal energy, the motion
block is classified as having low to medium activity and the resulting motion vector
is encoded and subsequently transmitted.

It is possible for the MAW video codec to match video images in a forward,
backward, or bi-directional manner. Backward prediction allows the assessment
of a video frame based on the knowledge of a previous frame, whereas forward
prediction does so by using the next frame as a reference. Bi-direction precidtion
combines the previous two schemes. In our motion-adaptive codec we choose the
minimum energy obtained by either the block itself or, the minimum of forward,
backward and bi-directional compensation. Therefore, the term motion-adaptive
is used specifically in this context of motion estimation and compensation. It has
been shown that motion-adaptive bi-directional motion compensation (B-frames in
MPEG terminology) actually results in a lower data rate [3] than one without the
bidirectional scheme.

In this study, we only focus on backward prediction for simplicity reasons: a
smaller buffer is sufficient for the decoding and the encoded data need not be sent
out of order. Therefore, our video sequence consists of a collection of I- and P-
type frames, where I and P indicate corresponding encoding scheme. P frames refer
to the aforementioned predicted frames which employ interframe coding, whereas
I frames refer to refresh frames. The includion of 1 frames periodically provides a
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clean and more appropriate reference for the frames that will follow. It also prevents
prediction errors from being propagated beyond one refresh cycle (GOP in MPEG
terminology). In order to remain as a reference, an entire picture is intraframe coded
as it is without relying on any other frame. That is, the encoded video data along
is sufficient to reconstruct that picture. A resulting video sequence is thus formed
by a collection of IPPP..PPIPPP..PP.. frames arranged in a repetitive pattern.

2.2 MAW Codec Configuration

A block diagram of the MAW video codec is shown in Figure 1. Its functional com-
ponents perform wavelet decomposition, quantization/dequantization, frame store,
motion estimation, as well as DPCM and entropy codings. An incoming video frame
may travel through these functional modules of the video codec via two different
routes. When a video frame arrives at the input node of the codec, it is first wavelet
decomposed into several subimages of different scales and resolutions. The num-
ber of levels and the number of subimages in each level depend on the transform
parameters that have been chosen at the time of encoding.
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Figure 1: Configuration of the Motion-adaptive Wavelet-based Video Codec



The frames are categorized in a similar fashion as the MPEG standard. The
first frame is an I-frame and therefore no motion compensation will be performed.
After decomposition, every subimage of an I frame is quantized, entropy coded, and
transmited. Meanwhile, the quantized image is dequantized and stored in frame
memory (FM) for motion prediction of the next frame. Since an I frame is processed
without referencing to previous frames, switches 57 and S, remain open and thus
disable the interframe functional components.

The next couple of frames are P-frames and their encoding require a slightly
different scenario involving all the functional blocks in the MAW video codec. Both
of the switches S; and S, are closed thereby activating the motion estimation in
the feedback loop. After an incoming image is wavelet decomposed, each subimage
is treated as follows; A current subimage is motion compensated against the corre-
sponding subimage in the frame memory which is actually a reconstructed previous
frame. The residual subimages after motion compensation are quantized and trans-
mitted. The motion vectors obtained, are DPCM coded and sent along with the
quantized residual frame difference information coming from the upper branch of
the video codec. In order to update the information stored in the FM, the quantized
residual is dequantized, motion compensated, and combined with the contents of the
frame memory, updating it to the current frame again.

2.3 Hierarchical Structure of the Encoded Video

Wavelet decomposition tranforms an image into several lower resolution subimages
which actually correspond to different spatial frequency bands. These sunimages
can be further decomposed by repeating the transformation process into another
set of subimages with even lower resolution, and thus generating a hierarchical
representation of the encoded data. The number of resolutions and levels can vary
from one application to another.

In this study, we have three levels of resolution, and, within each level, four
subimages are generated with one of them been subsequently filtered into another
four. Figure 2 illustrates a composite filter structure, which produces hierarchical
results as such. This figure provides a detailed view of the wavelet-transform com-
ponent of the codec shown in Figure 1. The decomposition is performed by using
1D filters separately in the horizontal and the vertical directions. An incoming im-
age is first horizontally filtered by a low pass (L) and a high pass (H) filter. The
two resultant images, one smoothed and the other detail image, respectively, are
downsampled by a factor of two in the horrizontal direction and next filtered by
the pair (L and H), this time along the vertical direction. The resulting subimages
are now downsampled in the vertical direction. While focusing on one single level
of decomposition, the double low-passed subimage is expected to contain most of

6



1
L W,
H 1
JE— H Wz
H 1
L W, Level 2
horizontal L = L Wz
vertical
H 2
H W,
Level 1
W, H w’
0 L L : Level 3
: L 3
horizontal L W3
vertical
H — 3
H W,
we H 3
0 W,
L —
3
horizontal L W,
vertical

Figure 2: Filter Configuration of Wavelet Decomposition

the original signal energy, whereas the remainder contains high-frequency detail of
different spatial orientations.

Three identical horizontal/vertical filter structures (or levels) are cascaded in
Figure 2, since there are three iterations of decomposition in our study. Various
output and components are denoted by the following notations. W/ refers to a

transformed subimage and its associated superscript [ and subscript ¢ indicate what
level and which subimage it is in the pyramid structure of Figure 3.

The term level implies how many iterations take place and how many folds the
resolution and scale of an original image are reduced to. The subimage that is located
at the top of the pyramid is the result of the lowpass of all the levels. Therefore,
in our example, level 1 is the first iteration which produces four subimages, each
of which is one fourth in resolution and in size of their original. WJ is the third
subimage with horizontal detail generated after level 1. Our subimages for one
particular frame can then be represented by the set {W!, 1=0,1,2,3 and [=1,2,3}
and later refered to as W1 through W10 with W3 as W1, W} as W2 and W, as
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Figure 3: Hierachical Structure of Wavelet-decomposed Data

W10, respectively.

Based on the decomposition level and spatial detail orientations, Figure 3 shows
the hierarchical arrangement of the wavelet-transformed subimages. Those located
at the bottom level have the highest resolution and contain high-frequency detail of
the original image in various directions, denoted by V (vertical), D (diagonal) and
H (horizontal). After moving up one level in the pyramid structure, corresponding
resolution and scale decrease.

Subimages which are decomposed by filters with identical spatial orientations are
expected to exhibit relatively large correlation among each other. That is, strong
correlation is anticipated to exist among W/!’s, which locate in the same column
of the hierarchy. For instance, Figure 2 illustrates that W}, W2 and W} are the
results of a horizontal lowpass and vertical highpass of an arriving subimage. In
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the subsequent sections, our data will support that they are indeed more correlated
to each other than to other subimages such as W3 or W3. Moreover, within each
column of the hierarchy, subimages of immediate adjacent levels are expected to
exhibit stronger correlation, as opposed to those distanced by more than one level.
This is due to the fact that further decompositions will simply uncorrelate data
more. Therefore, W and W} pair is more correlated than W' and W} pair. For the
remaining sections, whenever statistics of subimages are to be presented altogether,
they will be arranged in this pyramid format.

3 Characteristics of the Hierarchical Codec

The charcteristics of a video codec are very important in determining its robustness
in an environment which does not guarantee a perfect channel of transmission. In an
ATM environment, the most important factor for any application is the behaviour
under cell loss and excessive delay. In the case of video, the latter can be treated
as cell loss because delayed video cannot be used in a real-time environment. It is
envisioned that there will be some prioritization scheme built in the network and
packets will be dropped according to some priority, but rate control at the access
point will still be needed to provide a graceful degradation in the quality of service.

In case of video codecs, it is necessary to reduce the output bit rate as the
network becomes congested. For a traditional non-hierarchical codec, this can be
achieved by increasing the quantization of the DCT coefficients thus decreasing the
effective output rate. In a hierarchical codec like the MAW, there is an extra degree
of freedom available due to the structure of the codec. Higher bands, which carry
mostly details can be dropped at the encoder without changing the quantization.

Another scenario where it is important to know the behavior of the codec without
transmiting all the subimages is an example of a hierarchical database of video
sequences. A user may first browse through a video sequence at a much lower
resolution and when the desired video has been selected, view it at full resolution.

In the following sections we will discuss the performance of the MAW codec when
one or more of its subimages are dropped at the encoder to reduce the bit rate. We
will first study the effect of dropping individual subimages and then study the SNR
and effective bit rate after excluding multiple subbands from transmission.

3.1 Single Dropped Subimages

The signal-to-noise ratio for dropping off a single band for the football sequence is
shown in Figure 4 and the corresponding output bit rate of the encoder is shown in
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Figure 4: SNR with Single Dropped Band (Football Sequence)

Figure 5. The figures give an insight to the perceptual importance of the individual
subimages. The subbands which have the biggest impact on SNR are W5 and W2
as we can observe that there is a drop of 4 dB with any of these subbands excluded
from taking part in the transmission and reconstruction process. The impact on
bit rate is not clearly visible from Figure 5, so we plotted the time-averged bit rate
over the entire sequence and is shown in Figure 6. It is clear from this figure that
dropping W5 also has the highest impact on the bit rate but the same is not true for
W2. Although both the subimages result in equal degradation of the video quality,
their impact on the bit rate is different. The average bit rate with all the subbands
intact is 3.8986 Mbps and decreases by 800 Kbps for W5 but only 445 Kbps when
W2 is dropped. It will therefore be better to drop W5 instead of W2 if the 4 dB
decrease in video quality is acceptable. Note that the number of samples in W5 are
four times as those of W2 therefore producing such an impact on bit rate while W2
is definately perceptually more important because it is higher in the hierarchy.

It can also be observed from the figures that W10 and W9 are not important at
all and there seems to be an insignificant drop in SNR with them. The average bit
rate is not affected by dropping W10 since there seems to be little or no contribution
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Instantaneous Output Rate with Single Dropped Bands (Football Sequence)
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Figure 5: Bit Rate with Single Dropped Band (Football Sequence)

from this subimage in the whole process. Although dropping W9 decreases the
average bit rate by almost 110 Kbps the insignificant effect on SNR shows that the
perceptual contribution of this band is negligible.

Observe that dropping out W8 is the best choice when it comes to dropping a
single subimage as it achieves a reduction of more than 550 Kbps with a lowering
of only 1.5 dB in SNR. In general, we see that the bands which are most visually
important are also the ones containing more energy and therefore contribute more
to the bit rate. It is well known that the actual distribution of energy in differ-
ent subimages of the multiresolution motion compensated video depends on many
factors including the wavelet filter-bank, the video sequence itself, the motion com-
pensation scheme used, and, the amount and direction of motion present in the
video [4].

The legend in the above figures show the correct order in which the signal-to-
noise ratio and the bit rate deteriorates as it is a little hard to judge without colored
lines. We see that the order of increasing importance in terms of video quality for the
football sequenceis W10 — W9 — W7 — W4 - W8 —- W6 — W3 — W2 — W5,
while for the bit rate the order is W10 — W9 — W7 — W4 — W3 — W2 —
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Time-averaged Output Rate with Single Dropped Bands (Football Sequence)
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Figure 6: Time-averaged Bit Rate with Single Dropped Band (Football Sequence)

W6 — W8 — Wh.

The same codec parameters were used to run another set of simulations on the
car sequence. The signal-to-noise ratio and time-averaged bit rate are shown in
Figures 7(a) and 7(b), respectively. We have almost similar behavior of the codec
with this sequence as in the case of the football sequence. The difference is that the
visual importance ordering of the subbands has changed slightly. We now observe
that excluding W10, W9, W7, W4 and W6 has very little effect on the SNR which
drops less than 0.5 dB in all these cases. The bit rate reduction is more significant
though, dropping from 3.3 Mbps to 3.1 Mbps, a difference of 185 Kbps in case of
W6 and less for others.

The most significant bands in the car sequence are again W2 and W5 but thier
exclusion has a more serious effect on the SNR which drops by almost 7 dB ac-
companied by a 830 Kbps drop in bit rate. For this sequence the increasing order
in which subimages can be visually prioritised is W10 — W7 — W9 — W4 —
W6 — W3 — W8 — W5 — W2 and regarding the bit rate, the ordering is
WI0 - W9 - W7 - W6 - W4 —-W3 - W2—-W5—- WS
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Figure 7: Performance of MAW Codec with Car Sequence

From the above observations it can be deducted that the actual visual importance
of the subimages in the current environment depends largely on the input video, the
amount of motion present, the direction of motion and also the prediction scheme
used for motion compensation. But, in general, we can say that the lower subimages
and the ones with diagonal spatial orientation are the least important and their
contribution to the bit rate is also lower.

3.2 Multiple Dropped Subimages

In an integrated services network environment, as the network becomes more and
more congested, the output bit rate of the codec has to be further reduced. This can
be achieved either by increasing the quantization or by dropping more subbands from
transmission. We will evaluate the second approach and study the performance of
the codec when multiple subbands are dropped out from transmission at the encoder
to reduce the effective bit rate.

Figure 8 shows the SNR when different sets of subbands are dropped from en-
coding. The corresponding time-averaged bit rate is shown in Figure 9. The figures
reveal that if we drop W10, W9 and W7 altogeather, there is very little drop in
the signal-to-noise ratio which is about 0.5 dB. This is accompanied by a significant
drop in the average bit rate of 400 Kbps as shown by Figure 9. The amount of de-
crease in bit rate is almost the same if we add the reductions caused by individually
dropping each of the subimages from the encoder. The values would have exactly

13



Signal-to—Noise Ratio with Multiple Dropped Bands (Football Sequence)
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Figure 8: SNR with Multiple Dropped Bands (Football Sequence)

matched if there was no feedback loop in the encoder which tries to correct the
degradation caused by dropping the subimages. Note that W10, W9 and W7 are
the bands which cause the least amount of degradation in signal quality when they
are individually dropped (Figure 4). This clearly shows that these bands are not
visually important for this sequence.

We now add the next three least visually important subimages to our list of
dropped subbands, and drop W4, W6, W7, W8 W9 and W10. This almost reduces
the bit rate to half the original value of 3.9 Mbps to 2.16 Mbps, with only 4 dB drop
in SNR from the original figure of 36 dB.

Compare the above results to the case where we drop the whole of level 3 instead
of being selective. We see that the SNR drops by almost 2 dB and the bit rate falls
by 660 Kbps, with respect to the value when all the bands are kept, as compared
to values of 0.5 dB and 400 Kbps. This shows that inclusion of W8 was responsible
in greater degradation in SNR which is supported by our observation from previous
section of single dropped subimages.

Observe also that if we drop both levels 2 and 3, the SNR drop is 5 dB and the
bit rate drops to 1.66 Mbps. This is a reduction of 500 Kbps from the former case
of selective dropping (W4, W6, W7, W8, W9 and W10) with only a difference of
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Figure 9: Time-averaged Bit Rate with Multiple Dropped Bands (Football Se-
quence)

1 dB. These differences in bit rates and signal-to-noise ratios remain almost constant
over the entire length of the sequence except during the interval where there is very
little motion and the bit rate drops and the signal-to-noise ratio increases for all the
cases.

We also considered the worst case in which all the subimages are dropped except
for W1. We observe that the codec still performs reasonably well giving an SNR of
above 28 dB at an average bit rate of only 0.55 Mbps. Note that the SNR value is
calculated by reconstructing the image to the original resolution of the input video.
Also note that when we say that a subband is dropped, it is true for all the color
components Y, U and V. For example, when W10 is dropped for Y component, it
is also dropped for U and V as well. Results obtained for the car sequence are very
similar to those of the football sequence. The differnces are similar to the differnces
obtained in the singly dropped band case.

In this section we have tried to address the performance of a hierarchical codec
by characterizing the behavior of the MAW codec when different bands/subimages
are dropped from transmission. The study also helps us identify a general strategy
that can be adopted to selectively drop bands as the network gets congested in order
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to provide a graceful degradation in the quality of the video at the recieving end. It
also helps to identify the selection of subimages for transmission in cases where the
full bandwidth is not available and is known prior to transmission.

4 Characteristics of Multiscale Encoded Video

Each frameis a combination of 10 subimages. In this section, we’ll start by discussing
the characteristics of the overall frame, followed by those of the subimages since
both important to our study due to the following reasons. Those observed and
measured from the overall image represent part of the composite attributes of the
video data and are one of the many factors to be considered while performing codec
evaluation/design, network design, performance optimization, rate control, etc. On
the other hand, the characteristics associated with each subimage can provide us
insights as to how the composite results are achieved and therefore benefit the
modeling of this type of data. By examining the properties of subimages, we can
further understand the qualities and performance of the wavelet-based codec. Going
one step further, we have seen in section 3 that the hierarchical structure of the
subimages can be exploited to provide a flexible rate control scheme. The excercise
carried out at a subimage level can be used to develop strategy to control the
output rates at an end node, without compromising too much of the picture quality.
Therefore, it is important to study the properties of the data at this level as well.

The statistics of the output video that are of interest include 1) composite bit
rates of Y, U, and V components of the individual subimages and also of the overall
frame, 2) histograms of the above bit rates, 3) correlations between consecutive
bit rates within each subimage and the overall frame, and 4) the cross correlations
among various subimages.

4.1 Characteristics of the Output Video

For the overall frame, we are interested in its bit rate profile, histogram, and corre-
lations between consecutive frames.

4.1.1 Bit Rate Profile

The composite bit rate profile contains periodic and significant jumps in magnitude
at every refresh points. Recall that an I frame is necessary to provide a clean ref-
erence. Since an I frame is always intraframe encoded, data compression is only
provided by quantization and entropy coding, and thus the relatively high resultant

16



x10° Total and motion vector bit rates

25 T T T T T
2,
150 7
)
IS
<
2
=
1, 4
0.5f 7
— Frame rate
- — MV rate
el el e e M R Sl A HEI S Mibciieeiicaliio Shodiiondiiie

O |
0 100 200 300 400 500 600 700 800 900 1000
Frame sequence number

Figure 10: Bit Rate Profile of the Overall Frame

rates. Compared to P frames, in addition to interframe coding, motion compensa-
tion is also introduced to further reduce the bit rates. It is therefore obvious that
the bit rate of an I frame will be greater than that of a P frame, and thus the
large magnitudes at the refreshes in a bit rate profile. Since such instances at which
some relatively large magnitudes occur are predictable, one possible approach to
characterize and analyze the encoded video data is to smooth out the profile by fil-
tering out the spikes and consider the slow varying data and the refreshes separately.
That is, output periodically generated at frames adapting only intraframe coding
can be independently examined. Intuitively, it is advantageous to do so because
different encoding schemes achieve different level of compression efficiency on the
output rates, which will most likely be reflected in their statistical characteristics as
well.

Two sets of data can be subsequently extracted from one composite bit rate
sequence: one has a magnitude centering around 150 kbits/frame as shown in Fig-
ure 10, whereas the refreshes generally have large rates, mostly ranging from 350 to

450 kbits/frame.

Although the refreshes have been removed, the total bit rates still exhibit a
periodicity property, with a cycle of every 20 frames. This is no surprise since the
refresh cycle for this data set is 20 frames. Assume there are no scene changes
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Figure 11: Sections of Bit Rate Profile with Scene Changes

within the refresh cycle for a moment, the first several frames immediately following
a refresh are encoded with lower rates, due to the fact that less errors have been
propagated. As more frame differences are computed and motion estimated, errors
accumulate and the frame rates are expected to show an increase for the next several
frames. Depending on the scene content in the next few frames, the rates can go up
or down, but gradually, until either the next refresh takes place or a scene change
occurs. This trend of periodic rate variation is generally anticipated to repeat itself
in each refresh cycle. When a scene change occurs, our codec switches to intraframe
coding and the aforementioned cycle is interrupted. Once the frame rate is brought
to another magnitude level, the cycle supposedly starts again until the next scene
change or refresh.

Two sections of the bit rate profile have been enlarged in Figure 11 to illustrate
the effect of a scene change on bit rates and the otherwise slow variations. Within
a 20-frame refresh cycle, both sections exhibit a relatively large increase right after
a refresh between the 60th and the 70th frames. An approximate 80 Kbits jump
occured for the first section, while a 50 Kbits jump did for the second section.
Considering the total bit rates are in the vicinity of 150 Kbits, these changes are
significant. Otherwise, the variations are gradual, with a magnitude significantly
small compared to the absolute bit rate itself at each frame.

Our data 1s, in fact, collected separately in terms of its Y, U, and V components
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of the encoded pixel differences as well as the Y, U, and V components of the motion
vectors. In the same token, it is a possible scenario to consider pixel and motion
information respectively. However, for this particular video data and the MAW
codec, the motion information constitutes a very small portion of the total bit rate
per frame, at an average ratio of 2 to 100. Thus, to investigate them individually
does not appear efficient. Figure 10 also illustrates the motion vector information.

4.1.2 Histogram and Correlations of Bit Rates

Figure 12 presents the histogram and correlation coefficients for the total bit rates.
The histogram suggests that the density function of the total bit rates appears to
be a composite result of several Gaussian densities. And the correlation coefficients
indicate that the encoded bit rates have a strong correlation between those of the
consecutive frames. Both observations can be explained based on the implemented
encoding algorithms in our video codec, the content of the frame sequence, etc.

A motion picture or a section of a motion picture usually consists of various
scenes which can be categorized by their motion content. These include scenes
with very few motions, with limited, moderate, or violent motions, or zooming and
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panning, etc. In our study, this categorization maps different scenes to low, medium,
and high motion classes for the encoding purpose. Although which encoding schemes
to be used depends on the picture content and the thresholds set in the video
encoder, we can still expect that three modes of encoding will all be adapted during
the entire encoding process of a frame sequence, assuming the number of frames is
a reasonable one.

In a very simplified manner, one anticipates that low, medium, and high motion
frames will result in a rate with a small, medium, and large magnitude, respectively,
and therefore a composite density function of three Gaussians. However, our video
codec produces results more complicated than the simplified case. In our codec
implementation, a basic encoding unit is a block which varies in size according to
the scale of the subimage, starting from 2 by 2 at the top level and increasing to
8 pixel by 8 pixel at the bottom. But each block is still individually categorized
as being a low, medium or high block and accordingly encoded. As a result, each
frame contains some numbers of blocks from each group and can not be directly
labeled as, for example, a low-motion frame. This block-based encoding scheme
makes the association of each Gaussian density in Figure 12 to a motion class more
difficult. Nevertheless, if a frame contains mostly low-motion blocks, its total bit
rate should be from the density function at the lower end of the axis. Similarly, for
a frame which is mainly composed of high-motion blocks, its bit rate is expected
to come from the density at the higher end. For our encoded data, the distinction
between the second and the third higher densities in the histogram curve is not that
obvious as shown in Figure 12. This implies that there may be quite a few frames
containing certain close numbers of medium-motion and high-motion blocks. The
resultant bit rates per frame are then of some close magnitudes and don’t necessary
indicate which density they are from.

The correlation coefficient curve in Figure 12 suggests that the frame rates are
highly correlated between consecutive frames. As previously discussed, within one
particular scene, an object translates some distance from one frame to another.
Most likely an object moves along in the same direction with a similar rate, from a
previous frame to the current one and then to the next. The motions are predictable
to some extend and thus present high correlation between consecutive frames.

4.2 Characteristics of the Subimages

One unique feature about the wavelet-based video codec is that an input image is
decomposed into several subimages and separately encoded, either intraframely or
interframely. To understand the impact and benefit of this decomposition in traffic
modeling and rate control, it is important to study the characteristics of these
subimages. We ahve already seen that we can take advantage of this hierarchical
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structure to develop a rate control scheme at an end node of an integrated network.

4.2.1 Bit Rate Profiles of the Subimages

Figure 13 shows the profiles of average bits per pixel per frame for each subimage,
with refreshes removed. Note that here the hierarchical presentation of the statistical
curves of all subimages conform to the structure illustrated in both Figure 2 and
Figure 3. Most curves have been drawn to the same scale for clarification purpose,
except W10 whose average magnitude is significantly small compared to those of
the other nine wavelets. The unit along the y axis is bits/pizel, frame and x axis,
frame sequence number.

The average pixel rates in W1, W2, ... W8 basically exhibit a similar variation
pattern. This resemblance between certain subimages can also be observed, when
the data is presented in its actual rates, bits/frame, as well as in its composite profile
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Figure 13: Average Bit Rate Profiles of Subimages
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which is shown in Figure 10. The top four profiles, either the actual or average bit
rate, exhibit drops at around frame 350 and frame 550 and center around 7 or 8
bits/pixel,frame or 17 kbits/frame. This strong similarity among this group (or
level) of the hierarchy is due to the fact that they all are a filtered result of one
subimage, W (Figure 2). We can further break down the group and apply the
same argument to the pair of W1 and W2, or W3 and W4. Since W1 and W2 are
the results processed from the same low-passed W, we expect them to form a pair
whose statistical properties are more alike than to those of the W2 and W3 pair,
which is verified by our sample data here. Based on the same reasoning, we will also
show in the next section that the correlation within each pair is stronger than that
between subimages from different pairs.

4.2.2 Histograms and Correlations of Subimages

Probability densities of the average pixel rates for each subimage is illustrated in
Figure 14. The bottom-level densities are not drawn to the same scale as the oth-
ers. It’s noted that, for this football sequence, the means of subimages follow a
descending order. By observing Figure 2, we know that most of the signal energy is
preserved at the output of the third decomposition process. That is, W1, W2, W3,
and W4 contain most of the energy and thus have a higher bit rates than the lower
level ones. Preceded by W1, W2 is expected to contain more energy than W3 and
W4, since the former is a detail of a low-passed subimage, while the latters are the
details resulting from the highpass filter. Whether the mean of W3 is greater than
that of W4, or visa versa, largely depend on the content of a video sequence. In the
football sequence, for example, players run in a horizontal direction and balls fly in
the air in a diagonal direction. There appears to be less horizontal details. Thus
the mean of pixel rates in W3, which contains the diagonal details, are larger than
that in W4, which contains the horizontal details.

Not considering W1 for a moment, the density functions in the middle and the
right columns in Figure 14 show more resemblance graphically with each other, than
to those in the left column. This similarity results from that their source subimage,
from which they are generated, is identical, as anticipated from the previous section.
Qqplots between pixel rates of several subimages are included in Figure 15. The
qqplots provide information as to whether two datasets have the same distribution
or not. An approximately straight line indicates that the distribution from both
sets is the same. From Figure 15 we can verify that the pixel rates of two vertically
neighboring subimages within one column of the pyramid structure have the same
distribution. It is also true for the pixel rates of the adjacent subimages from the
diagonal and horizontal columns. For instance, for the first case, we show W1 wvs
W2 and W2 vs W5, while for the second case, we have W3 vs W4 and W6 vs WT.
It is also noted that the plots contain some S shape curves between W1, W3 and
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Figure 14: Probability Density Function of Subimages

W4, which implies that one distribution has longer tails than the other. When three
densities are plotted together, we can easily visualize that the density of W1 has
tails that are indeed longer than the other two.

We are also interested in learning cross correlation between bit rates of subimages
located in immediately adjacent levels, in the same column but not necessarily in
the adjacent levels, in the same level but adjacent columns, etc. A few selected
combinations of subimages are incorporated in Figure 16. The numbers along the
X axis represent the number of frames apart when the cross correlation coefficients
are computed. The y axis represents the coefficient itself. These graphs once again
verify some of the observations that we found in discussing rate profiles and density
functions. W1 and W2 have strong correlation with a coefficient greater than 0.95,
when there is no lagging. And the correlation continues to be strong even after the
10th frame. Although W5 is located in the same column as W2 in the pyramid
data structure, the correlation between W1 and W5 is significantly reduced due to
the skipping of one level. Skipping a level can be interpreted as going though one
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Figure 15: Qqplots of Pixel Rates between Selected Subimages

more transformation process, as demonstrated in Figure 2. The comparing data of
two subimages is further decomposed and therefore exhibits less correlation. We
can find this decrease in correlation phenomena in subplots W1 vs W5, W2 vs W8,
etc. When no levels have been skipped, two subimages demonstrate relatively strong
correlation as long as they are located in the same column in the pyramid structure.
For example, W2 vs W5, W3 vs W6, W4 vs WT, etc. are pairs as such. Earlier the
qqplots, in Figure 15, suggests that the pairs W3 and W4 as well as W6 and W7
have the same distributions. Here we also find them having very strong correlation
within each pair. It’s even more interesting to note that the correlation between W3
and W4 of the same level appears stronger than those between W3 vs W6 or W4
vs WT of the same column but adjacent levels. This phenomena is again due to the
increasing decorrelation as a subimage traveling down the transformation path in
Figure 2. Between W3 and W4, there is one decomposition process taking place in
the vertical direction and they are generated from an identical low-passed subimage.
On the other hand, there are more than one decomposition between W3 and W6.
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Figure 16: Selected Cross Correlation Coefficients of Bit Rates

5 Modeling of Multiscale Encoded Video

Based on the observation on the data characteristics, a composite model is proposed
to capture the behavior of such video traffic. It was noted that the top subimage
located in the pyramid structure contains most of the remaining signal energy. This
top subimage thus should be modeled as accurately as possible, and can be utilized
to estimate the behavior of the remaining subimages. Our modeling approach can,
therefore, be grouped into several steps: 1) model the refreshes, 2) model the top
subimage, and 3) estimate the remainders as well as obtain the composite model for
total bit rates.
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5.1 Modeling of the Refreshes

Refreshes occur periodically with a significantly large magnitude. The time instances
at which refreshes take place are predictable. Their large magnitudes separate the
corresponding probability distribution from those of the relatively lower rates in the
density plot such as those shown in Figure 12. We therefore propose to individually
model the refreshes so that both the refreshes and the slow-varying video data can
be better explored and modeled.

The average pixel rates at refresh frames are first identified in our video sequence
and filtered. Its probability density is then plotted, which is shown in Figure 17. We
start by considering a Gaussian distribution to approximate that of the refreshes. It
is not unreasonable to assume a Gaussian distribution for this case. The density plot
itself approximates a normal one. Moreover, the encoded rates are actually content
dependent. Given a video sequence, such rates can have magnitudes that would
fall most likely anywhere on the bit rate axis. When there are sufficient number
of frames, they are then expected to result in a Gaussian distribution. Various
statistics of this data set, including mean, standard deviation, the third and the
fourth moments, are measured and presented in Table 1.

Two approaches were implemented to model the refreshes. The correlation coet-
ficient between two consecutive refresh frames has a value of 0.93. Taking correlation
into consideration, our first method thus models the data stream as a sequence from
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Figure 17: Probability Density Functions of Sample and Modeled Data
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‘ X H Sample Data ‘ Modeled Data ‘ % of Error ‘

Mean 44.95 44.90 0.11%
Std 9.692 9.704 0.12%
3rd Moment || 1.038 * 10° 1.032 * 10° 0.55%
4th Moment || 5.318 x 106 5.234 * 106 1.57%

Table 1: Statistics of Refreshes for Sample and Modeled Data

an autoregressive process, eqn. 2, with the expected correlation and a probability
distribution similar to the first one in Figure 17.

rin)=a*xr(n—1)+G (2)

where n is frame sequence number, r is refresh bit rate, a is correlation coefficient,
and G is Gaussian noise. We started by considering a first order autoregressive
model, because the density plot shows only one distribution. In spite that the
simulated results yield a good correlation coefficient, the remaining statistics do not
produce a good match as the second approach does. Our second method treats the
data as if it is coming from a Gaussian distribution with the mean, std, etc. as
stated in Table 1: mean = 44.95 and std = 9.692. Data points are then randomly
generated from such a Gaussian distribution: G(u, o) = G(44.95,9.692).

The associated statistics of our modeling data are presented in Table 1. The
percentage of error suggests that it is possible to utilize such a Gaussian model
to represent the refreshes with a fair statistical match. The modeling probability
distribution and its qgplot against the encoded samples are illustrated in Figure 17.
The linear qqplot further confirms that a reasonably good match between the sample
and the simulated refreshes can be achieved by using the proposed Gaussian model.
Although our video sequence contains a reasonable number of frames, after removing
the non-refresh frames, the resulting number of frames (i.e. refresh frames) are
dramatically reduced. This reduction in sample numbers could explain why the
statistical properties of the model are not as accurate as we would like them to be,
since they are simulated based on those measurements of the original samples. With
an increase in the amount of input data, the statistics measurements of the samples,
especially of refreshes, are expected to be more accurate and can possibly lead to
better simulation results: the means and std’s closer matched and the ”"peakness”
as reflected in the discrepancy of the 4th moment improved.

5.2 Modeling of the W1 Subimage

Recall that W1 is the last horizontally and vertically low-passed subimage in our
decomposition process and contains most of the signal energy. Also, other low-
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passed subimages at a different pyramid level exhibit strong correlation with this top
one, either directly or indirectly, as discussed with Figure 16 on cross correlations.
We therefore propose to first model this subimage and use its model as a base to
predict the behavior of other subimages. A distribution and correlation coefficients
of the average pixel rates of the W1 subimage, without refreshes, is depicted in
Figure 18. Similar to our previous discussion on the total bit rates, due to the
encoding schemes implemented in our wavelet-based codec, it is not surprising to
observe three partially overlapped densities for W1. In addition, we can also expect
that the correlation between two consecutive frames are high, since this subimage
preserves most of the characteristics of the composite image.

A Markov-modulated renewal process is proposed to model this particular set of
encoded video data. Fach density function in Figure 18 is associated with a Markov
state and the transition from one state to another is modulated by a Markov pro-
cess. The statistical characteristics of the data are state dependent. That is, data
at each state possesses different statistical properties from those of another state.
Our model starts at one particular state, simulates video traffic with correspond-
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‘ H Class 1 ‘ Class 2 ‘ Class 3 H Total ‘
mean || 5.022 8.589 10.86 9.364
Std 0.985 0.745 0.703 1.728
a 0.881 0.842 0.884 0.958

Table 2: Statistics of W1 with 3 Classes

ing characteristics, moves on to another state based on the Markov transitional
probability.

The reasons such a model is considered are as follow. From our previous dis-
cussion, we noted that there are three encoding algorithms incorporated and the
outputs can be subsequently categorized into three major groups: low, medium,
and high motion classes. Since scene changes rarely occur, we usually do not an-
ticipate large changes in bit rate magnitudes. Therefore, the transition from one
class (i.e. state) to another is mostly predictable, i.e. mostly transferring from one
state to itself or its adjacent ones. The transition thus relies on the current state,
rather than any of the previous ones. Therefore, the transition can be described as
memoryless and possibly modeled by a first order Markov process. Depending on
the content of the video sequence, the encoded bit rates can remain in one state for
any period of duration. The length of stay does not appear related to a previous
visit at the same state. The time of which each visit to a state lasts then appears
as a random variable with a memoryless quality. As a result, we propose to model
the duration of a stay by a geometric process. In our early sections, we noted that
the bit rates between consecutive frames are highly correlated in each class. Their
distribution approximates some composite Gaussian densities. Therefore, a first-
order autoregressive model is considered in an attempt to model data with such
attributes.

To obtain the Markov transitional probability matrix, we first estimate the
thresholds which separate our data into three classes. The statistical qualities of
the data and each subset are then measured, as included in Table 2, where a is
the correlation coefficient. The transitional probability from state to state is next
obtained and presented in the transitional probability matrix, II.

0.900 0.100 0
= 0012 0918 0 (3)
0 0.081 0.929

To simulate the data in each state, we begin by using a first-order autoregressive
model:

yi(n) = a; *yi(n — 1) + G(p;, 0;) (4)
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where n is the frame sequence number, 7 is the state, y;(n) is the bit rate of state s
at frame n, a; is the measured correlation coefficient between consecutive frames for
state 7, and G is a Gaussian distribution with a mean of y; and std of ;. Numerical
results of our simulation will be presented in the next section.

By using the statistics measurements from our sample data, 10,000 data points
are generated. The probability distribution of our modeling results is then plotted
in Figure 19 We can see that the modeling densities are similar to the sample
ones, while the correlation coefficients are closely modeled as the sample coefficients
plotted in Figure 18. In addition, we classify the generated data with the same
threshold values as those for the sample data. The resulting statistics are shown in
Table 3 As the figures show, our Markov-modulated renewal process can generate
data with a reasonably good match in statistical attributes. The percentage of errors
appears small for most of the moments. The discrepancy reflected in the 4th moment
mostly is due to the slightly smaller value of modeling standard deviation then
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‘ H mean ‘ std ‘ a ‘ 3rd moment ‘ 4th moment ‘

sample 9.364 | 1.728 | 0.958 9.009 9.139
model 9.584 | 1.684 | 0.960 9.564 9.825
% of error || 2.3% | 2.5% | 0.2 % 6.1% 7.5%

Table 3: Statistics of Model W1

the sample standard deviation. To improve such differences, one can try another
estimation method to obtain a better set of measurements of the attributes, such
means, std’s for the three classes of our sample data.

5.3 Modeling of the Composite Video

Due to the highly correlated behavior between frames within each subimage and
among different subimages, we propose a model to take advantage of this character-
istics. The bit rates of the remaining subimages are than derived from those of the
one located in an upper level in the pyramid structure.

Xj(n) = cij x Xi(n) + G(uij, 04) (5)

where X;(n) is the bit rates of W7 at frame n, ¢;j is the correlation between subim-
ages ¢ and j, and (G is a Gaussian noise with mean p;j and std o;7, which can be
derived from the measurements of our sample.

Our composite model consists of the refresh model r, the Markov-modulated
renewal process model for W1, Y, and the estimation model for the remaining
subimages X. Let Y represent the total average pixel rate at frame n, we then have
the following analytical model for the composite bit rate:

Y=r+Y+X (6)

where Y, r, Y, and X are all column vectors.

Figure 20 shows the distributions of our modeling and sample data. We can ob-
serve from the linear line in the qqplot that we have obtained two similar composite
distributions. However, the modeling data appears to be closer towards the higher
end than our sample. This could be contributed by the discrepancies of the modeling
results of W1 subimage, propagated through estimation of other subimages. After
the summation of ten subimages, the supposedly minor differences can be enlarged.
Another possible explanation is that, besides W1, W5 and W8 also contain rela-
tively high signal energy, and merely an estimation approach may not be sufficient
enough to obtain the best results for these two subimages. In order to improve
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Figure 20: Probability Density Function of Sample and Modeling Data and their
Qqplot

the accuracy of the modeling of high-energy subimages, it may become necessary
to model the first three subimages, followed by the estimation of the remaining
low-energy subimages.

6 Conclusion

In this paper, we examine the statistical characteristics of the encoded data from a
wavelet-based video codec. The SNR analysis provides clues as to which subimages
have a strong impact on the performance in terms of SNR and prioritizes subim-
ages for possible band dropping. By analyzing the statistical characteristics of the
overall image and individual subimages, we propose an analytical composite model
to describe the traffic behavior of such encoded data. Our model can become usetul
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while performing rate control study at an end node, since each subimage has its
own entry in the final bit rate matrix. Our results, presented in terms of density
functions, various moment statistics, and qqplots, suggest that this analytical tool
can estimate such data to some reasonable extend. We note that by applying a
better estimation algorithm to the sample data while gathering measurements can
most likely improve the modeling results. We also find that by SNR analysis, we
can prioritize the signal level of each subimage and determine the modeling criteria
for the relatively high-energy subimages such that the resulting modeling can also
be improved.
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