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1 IntroductionVideo applications have emerged as one of the most important user of the upcomingbroadband integrated and ATM networks. Due to the nature of video data, asigni�cant amount of bits are required to represent and to transport the signals. Avideo codec encodes and compresses the otherwise huge amount of data down to amanageable level, which then requires smaller bandwidth to transmit.It has been noted that the statistical properties of such encoded video are quitedi�erent from those of the computer data and voice. In order to better understandthe behavior of such video data, it is important to study its characteristics. Basedon the study, an analytical model can be developed and represent a video sourceas part of the multimedia integrated networks. The data modeling then providesthe possibilities of designing and implementing e�ective rate control schemes at theend node of a network, of further studying the behavior and performance of suchaggregated video tra�c, etc.In this paper, we investigate the encoded output of a wavelet-based video codec.Such codecs provide a hierarchical structure for the encoded data, which can caterto a wide variety of applications such as multimedia systems. We will try to addressthe behavior of a hierarchical codec by characterizing the output of the codec whendi�erent bands/subimages are dropped. We will also carefully study the statisticalcharacteristics of this data. A composite model is then proposed to model and cap-ture the tra�c behavior of its output video data. The composite model is 
exibleenough such that when certain bands are dropped, only minor modi�cation to theanalytical model is required to re
ect the e�ect of dropping. For the subimage con-taining the most signal energy, we adopt a three-state Markov model to describe itstra�c characteristics, while the remaining ones are then obtained through estima-tion, based on the correlations between subimages at di�erent level of the pyramidstructure.2 Motion-adaptive Wavelet-based Video CodecIn this study, we consider the encoded data, generated by a motion-adaptive wavelet-based (MAW) video codec [4]. The MAW video codec employs wavelet decompo-sition for signal representation rather than utilizing the traditional Discrete CosineTransform (DCT) as speci�ed in the Motion Picture Expert Group (MPEG) stan-dards [2]. In addition, multi-resolution motion estimation techniques are incorpo-rated to improve the coding e�ciency. It has been shown that the MAW videocodec either outperforms the MPEG-based video codec or provides equal perfor-mance quality, in terms of complexity, bit rate o�ered and the signal-to-noise ratio2



at that rate [3].2.1 Encoding Schemes for a Full-motion Video SequenceFull-motion video implies that there are various motion activities present in thesequence, ranging from high to low, as opposed to only very low to meduim motionin video conferencing setup. High motion activities refer to either relatively largetranslation of objects between consecutive frames, scene changes, or signi�cant vari-ation in luminance from one frame to the next. Low motion activities refer to smallchanges of translation or in luminance. Identi�cation of these motion activites leadsto an e�cient tool for motion estimation and compensation.Each frame of the incoming video is �rst hierarchically represented by applyingthe wavelet transform as opposed to partitioning the picture into small blocks andapplying DCT on these blocks as done in the MPEG or any small-block transformed-based video codec. In doing so, the blocky e�ect occuring at low bit rates afterreconstruction is eliminated because wavelet decomposition is a global transforma-tion. The hierarchical representation of this transformation allows us to capitalizeon the correlation among di�erent subbands or subimages, which was previously notconsidered due to independent nature of transformtion of each block in DCT-basedschemes.After wavelet decomposition, multiresolution motion estimation is performed onthe hierarchical structure using block-based search scheme [1]. Since in a waveletdecomposed video there is no concept of blocks, we de�ne a motion block by par-titioning the decomposed subimages into small squares similar to what is done ina DCT-based scheme. Note that these are just motion blocks and will go througha global transformation during the reconstruction process, thus eliminating anyblockiness introduced by the block-based motion compensation. Motion estimationmay or may not be carried out at all the subimages but all are motion compen-sated, except for the reference frames (I-frames). All the subimages are individuallyquantized and entropy coded, regardless what types of motion activities they maycontain. That is, motion activities in subimages of a frame will not a�ect the se-lection of encoding schemes for that particular frame. The motion block still servesas the basic unit in the motion estimation process and when a matching block isdiscovered within a designated searching area, associated displacement and residualare quantized and encoded. Nevertheless, when a matching block cannot be foundwithin the searching area, we encounter a high motion situation and the motionblock itself is quantized and encoded for transmission.To categorize motion activities and subsequently determine whether a motionblock should be motion compensated or not, a minimum criteria di�erence function3



is de�ned as follows:�(x; y) = min( pXk=1 qXl=1 jIi(k; l)j;arg minx2
x;y2
yn pXk=1 qXl=1 jIi(k; l)� Ii�1(k + x; l+ y)jo) ; (1)where
x 2 f1,2, : : : ,mg, 
y 2 f1,2, : : : ,ngx; y: displacements and x 2 f�m, : : : ,0, : : : ,mg, y 2 f�n, : : : ,0, : : : ,ng,k; l: coordinates within a motion block,p; q: dimensions of a motion block,m;n: dimensions of a searching area,I: Pixel intensity, andi: frame sequence number.The di�erence function � �nds the minimal energy of a particular block withina searching area with associated displacements in the horizontal and vertical direc-tions, x and y. If the minimal energy is generated from the motion block itself, i.e.from the �rst argument of equation (1), no matching block is actually discovered,and a high-motion situation is declared and x and y are irrelevant. On the otherhand, if some other block in the searching area gives the minimal energy, the motionblock is classi�ed as having low to medium activity and the resulting motion vectoris encoded and subsequently transmitted.It is possible for the MAW video codec to match video images in a forward,backward, or bi-directional manner. Backward prediction allows the assessmentof a video frame based on the knowledge of a previous frame, whereas forwardprediction does so by using the next frame as a reference. Bi-direction precidtioncombines the previous two schemes. In our motion-adaptive codec we choose theminimum energy obtained by either the block itself or, the minimum of forward,backward and bi-directional compensation. Therefore, the term motion-adaptiveis used speci�cally in this context of motion estimation and compensation. It hasbeen shown that motion-adaptive bi-directional motion compensation (B-frames inMPEG terminology) actually results in a lower data rate [3] than one without thebidirectional scheme.In this study, we only focus on backward prediction for simplicity reasons: asmaller bu�er is su�cient for the decoding and the encoded data need not be sentout of order. Therefore, our video sequence consists of a collection of I- and P-type frames, where I and P indicate corresponding encoding scheme. P frames referto the aforementioned predicted frames which employ interframe coding, whereasI frames refer to refresh frames. The includion of I frames periodically provides a4



clean and more appropriate reference for the frames that will follow. It also preventsprediction errors from being propagated beyond one refresh cycle (GOP in MPEGterminology). In order to remain as a reference, an entire picture is intraframe codedas it is without relying on any other frame. That is, the encoded video data alongis su�cient to reconstruct that picture. A resulting video sequence is thus formedby a collection of IPPP..PPIPPP..PP.. frames arranged in a repetitive pattern.2.2 MAW Codec Con�gurationA block diagram of the MAW video codec is shown in Figure 1. Its functional com-ponents perform wavelet decomposition, quantization/dequantization, frame store,motion estimation, as well as DPCM and entropy codings. An incoming video framemay travel through these functional modules of the video codec via two di�erentroutes. When a video frame arrives at the input node of the codec, it is �rst waveletdecomposed into several subimages of di�erent scales and resolutions. The num-ber of levels and the number of subimages in each level depend on the transformparameters that have been chosen at the time of encoding.
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The frames are categorized in a similar fashion as the MPEG standard. The�rst frame is an I-frame and therefore no motion compensation will be performed.After decomposition, every subimage of an I frame is quantized, entropy coded, andtransmited. Meanwhile, the quantized image is dequantized and stored in framememory (FM) for motion prediction of the next frame. Since an I frame is processedwithout referencing to previous frames, switches S1 and S2 remain open and thusdisable the interframe functional components.The next couple of frames are P-frames and their encoding require a slightlydi�erent scenario involving all the functional blocks in the MAW video codec. Bothof the switches S1 and S2 are closed thereby activating the motion estimation inthe feedback loop. After an incoming image is wavelet decomposed, each subimageis treated as follows; A current subimage is motion compensated against the corre-sponding subimage in the frame memory which is actually a reconstructed previousframe. The residual subimages after motion compensation are quantized and trans-mitted. The motion vectors obtained, are DPCM coded and sent along with thequantized residual frame di�erence information coming from the upper branch ofthe video codec. In order to update the information stored in the FM, the quantizedresidual is dequantized, motion compensated, and combined with the contents of theframe memory, updating it to the current frame again.2.3 Hierarchical Structure of the Encoded VideoWavelet decomposition tranforms an image into several lower resolution subimageswhich actually correspond to di�erent spatial frequency bands. These sunimagescan be further decomposed by repeating the transformation process into anotherset of subimages with even lower resolution, and thus generating a hierarchicalrepresentation of the encoded data. The number of resolutions and levels can varyfrom one application to another.In this study, we have three levels of resolution, and, within each level, foursubimages are generated with one of them been subsequently �ltered into anotherfour. Figure 2 illustrates a composite �lter structure, which produces hierarchicalresults as such. This �gure provides a detailed view of the wavelet-transform com-ponent of the codec shown in Figure 1. The decomposition is performed by using1D �lters separately in the horizontal and the vertical directions. An incoming im-age is �rst horizontally �ltered by a low pass (L) and a high pass (H) �lter. Thetwo resultant images, one smoothed and the other detail image, respectively, aredownsampled by a factor of two in the horrizontal direction and next �ltered bythe pair (L and H), this time along the vertical direction. The resulting subimagesare now downsampled in the vertical direction. While focusing on one single levelof decomposition, the double low-passed subimage is expected to contain most of6
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Figure 2: Filter Con�guration of Wavelet Decompositionthe original signal energy, whereas the remainder contains high-frequency detail ofdi�erent spatial orientations.Three identical horizontal/vertical �lter structures (or levels) are cascaded inFigure 2, since there are three iterations of decomposition in our study. Variousoutput and components are denoted by the following notations. W li refers to atransformed subimage and its associated superscript l and subscript i indicate whatlevel and which subimage it is in the pyramid structure of Figure 3.The term level implies how many iterations take place and how many folds theresolution and scale of an original image are reduced to. The subimage that is locatedat the top of the pyramid is the result of the lowpass of all the levels. Therefore,in our example, level 1 is the �rst iteration which produces four subimages, eachof which is one fourth in resolution and in size of their original. W 13 is the thirdsubimage with horizontal detail generated after level 1. Our subimages for oneparticular frame can then be represented by the set fW li , i=0,1,2,3 and l=1,2,3gand later refered to as W1 through W10 with W 30 as W1, W 31 as W2 and W 13 as7
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Pyramid StructureFigure 3: Hierachical Structure of Wavelet-decomposed DataW10, respectively.Based on the decomposition level and spatial detail orientations, Figure 3 showsthe hierarchical arrangement of the wavelet-transformed subimages. Those locatedat the bottom level have the highest resolution and contain high-frequency detail ofthe original image in various directions, denoted by V (vertical), D (diagonal) andH (horizontal). After moving up one level in the pyramid structure, correspondingresolution and scale decrease.Subimages which are decomposed by �lters with identical spatial orientations areexpected to exhibit relatively large correlation among each other. That is, strongcorrelation is anticipated to exist among W li 's, which locate in the same columnof the hierarchy. For instance, Figure 2 illustrates that W 11 , W 21 , and W 31 are theresults of a horizontal lowpass and vertical highpass of an arriving subimage. In8



the subsequent sections, our data will support that they are indeed more correlatedto each other than to other subimages such as W 22 or W 33 . Moreover, within eachcolumn of the hierarchy, subimages of immediate adjacent levels are expected toexhibit stronger correlation, as opposed to those distanced by more than one level.This is due to the fact that further decompositions will simply uncorrelate datamore. Therefore,W 21 and W 31 pair is more correlated than W 11 and W 31 pair. For theremaining sections, whenever statistics of subimages are to be presented altogether,they will be arranged in this pyramid format.3 Characteristics of the Hierarchical CodecThe charcteristics of a video codec are very important in determining its robustnessin an environment which does not guarantee a perfect channel of transmission. In anATM environment, the most important factor for any application is the behaviourunder cell loss and excessive delay. In the case of video, the latter can be treatedas cell loss because delayed video cannot be used in a real-time environment. It isenvisioned that there will be some prioritization scheme built in the network andpackets will be dropped according to some priority, but rate control at the accesspoint will still be needed to provide a graceful degradation in the quality of service.In case of video codecs, it is necessary to reduce the output bit rate as thenetwork becomes congested. For a traditional non-hierarchical codec, this can beachieved by increasing the quantization of the DCT coe�cients thus decreasing thee�ective output rate. In a hierarchical codec like the MAW, there is an extra degreeof freedom available due to the structure of the codec. Higher bands, which carrymostly details can be dropped at the encoder without changing the quantization.Another scenario where it is important to know the behavior of the codec withouttransmiting all the subimages is an example of a hierarchical database of videosequences. A user may �rst browse through a video sequence at a much lowerresolution and when the desired video has been selected, view it at full resolution.In the following sections we will discuss the performance of the MAW codec whenone or more of its subimages are dropped at the encoder to reduce the bit rate. Wewill �rst study the e�ect of dropping individual subimages and then study the SNRand e�ective bit rate after excluding multiple subbands from transmission.3.1 Single Dropped SubimagesThe signal-to-noise ratio for dropping o� a single band for the football sequence isshown in Figure 4 and the corresponding output bit rate of the encoder is shown in9
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Figure 4: SNR with Single Dropped Band (Football Sequence)Figure 5. The �gures give an insight to the perceptual importance of the individualsubimages. The subbands which have the biggest impact on SNR are W5 and W2as we can observe that there is a drop of 4 dB with any of these subbands excludedfrom taking part in the transmission and reconstruction process. The impact onbit rate is not clearly visible from Figure 5, so we plotted the time-averged bit rateover the entire sequence and is shown in Figure 6. It is clear from this �gure thatdropping W5 also has the highest impact on the bit rate but the same is not true forW2. Although both the subimages result in equal degradation of the video quality,their impact on the bit rate is di�erent. The average bit rate with all the subbandsintact is 3:8986 Mbps and decreases by 800 Kbps for W5 but only 445 Kbps whenW2 is dropped. It will therefore be better to drop W5 instead of W2 if the 4 dBdecrease in video quality is acceptable. Note that the number of samples in W5 arefour times as those of W2 therefore producing such an impact on bit rate while W2is de�nately perceptually more important because it is higher in the hierarchy.It can also be observed from the �gures that W10 and W9 are not important atall and there seems to be an insigni�cant drop in SNR with them. The average bitrate is not a�ected by dropping W10 since there seems to be little or no contribution10
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Figure 5: Bit Rate with Single Dropped Band (Football Sequence)from this subimage in the whole process. Although dropping W9 decreases theaverage bit rate by almost 110 Kbps the insigni�cant e�ect on SNR shows that theperceptual contribution of this band is negligible.Observe that dropping out W8 is the best choice when it comes to dropping asingle subimage as it achieves a reduction of more than 550 Kbps with a loweringof only 1:5 dB in SNR. In general, we see that the bands which are most visuallyimportant are also the ones containing more energy and therefore contribute moreto the bit rate. It is well known that the actual distribution of energy in di�er-ent subimages of the multiresolution motion compensated video depends on manyfactors including the wavelet �lter-bank, the video sequence itself, the motion com-pensation scheme used, and, the amount and direction of motion present in thevideo [4].The legend in the above �gures show the correct order in which the signal-to-noise ratio and the bit rate deteriorates as it is a little hard to judge without coloredlines. We see that the order of increasing importance in terms of video quality for thefootball sequence isW10! W9! W7! W4!W8! W6! W3!W2! W5,while for the bit rate the order is W10 ! W9 ! W7 ! W4 ! W3 ! W2 !11
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Figure 6: Time-averaged Bit Rate with Single Dropped Band (Football Sequence)W6!W8! W5.The same codec parameters were used to run another set of simulations on thecar sequence. The signal-to-noise ratio and time-averaged bit rate are shown inFigures 7(a) and 7(b), respectively. We have almost similar behavior of the codecwith this sequence as in the case of the football sequence. The di�erence is that thevisual importance ordering of the subbands has changed slightly. We now observethat excluding W10, W9, W7, W4 and W6 has very little e�ect on the SNR whichdrops less than 0:5 dB in all these cases. The bit rate reduction is more signi�cantthough, dropping from 3:3 Mbps to 3:1 Mbps, a di�erence of 185 Kbps in case ofW6 and less for others.The most signi�cant bands in the car sequence are again W2 and W5 but thierexclusion has a more serious e�ect on the SNR which drops by almost 7 dB ac-companied by a 830 Kbps drop in bit rate. For this sequence the increasing orderin which subimages can be visually prioritised is W10 ! W7 ! W9 ! W4 !W6 ! W3 ! W8 ! W5 ! W2 and regarding the bit rate, the ordering isW10! W9! W7!W6! W4! W3!W2! W5! W8.12
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(b) Bit RateFigure 7: Performance of MAW Codec with Car SequenceFrom the above observations it can be deducted that the actual visual importanceof the subimages in the current environment depends largely on the input video, theamount of motion present, the direction of motion and also the prediction schemeused for motion compensation. But, in general, we can say that the lower subimagesand the ones with diagonal spatial orientation are the least important and theircontribution to the bit rate is also lower.3.2 Multiple Dropped SubimagesIn an integrated services network environment, as the network becomes more andmore congested, the output bit rate of the codec has to be further reduced. This canbe achieved either by increasing the quantization or by dropping more subbands fromtransmission. We will evaluate the second approach and study the performance ofthe codec when multiple subbands are dropped out from transmission at the encoderto reduce the e�ective bit rate.Figure 8 shows the SNR when di�erent sets of subbands are dropped from en-coding. The corresponding time-averaged bit rate is shown in Figure 9. The �guresreveal that if we drop W10, W9 and W7 altogeather, there is very little drop inthe signal-to-noise ratio which is about 0:5 dB. This is accompanied by a signi�cantdrop in the average bit rate of 400 Kbps as shown by Figure 9. The amount of de-crease in bit rate is almost the same if we add the reductions caused by individuallydropping each of the subimages from the encoder. The values would have exactly13
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Figure 8: SNR with Multiple Dropped Bands (Football Sequence)matched if there was no feedback loop in the encoder which tries to correct thedegradation caused by dropping the subimages. Note that W10, W9 and W7 arethe bands which cause the least amount of degradation in signal quality when theyare individually dropped (Figure 4). This clearly shows that these bands are notvisually important for this sequence.We now add the next three least visually important subimages to our list ofdropped subbands, and dropW4,W6, W7,W8, W9 andW10. This almost reducesthe bit rate to half the original value of 3:9 Mbps to 2:16 Mbps, with only 4 dB dropin SNR from the original �gure of 36 dB.Compare the above results to the case where we drop the whole of level 3 insteadof being selective. We see that the SNR drops by almost 2 dB and the bit rate fallsby 660 Kbps, with respect to the value when all the bands are kept, as comparedto values of 0:5 dB and 400 Kbps. This shows that inclusion of W8 was responsiblein greater degradation in SNR which is supported by our observation from previoussection of single dropped subimages.Observe also that if we drop both levels 2 and 3, the SNR drop is 5 dB and thebit rate drops to 1:66 Mbps. This is a reduction of 500 Kbps from the former caseof selective dropping (W4, W6, W7, W8, W9 and W10) with only a di�erence of14
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Figure 9: Time-averaged Bit Rate with Multiple Dropped Bands (Football Se-quence)1 dB. These di�erences in bit rates and signal-to-noise ratios remain almost constantover the entire length of the sequence except during the interval where there is verylittle motion and the bit rate drops and the signal-to-noise ratio increases for all thecases.We also considered the worst case in which all the subimages are dropped exceptfor W1. We observe that the codec still performs reasonably well giving an SNR ofabove 28 dB at an average bit rate of only 0:55 Mbps. Note that the SNR value iscalculated by reconstructing the image to the original resolution of the input video.Also note that when we say that a subband is dropped, it is true for all the colorcomponents Y, U and V. For example, when W10 is dropped for Y component, itis also dropped for U and V as well. Results obtained for the car sequence are verysimilar to those of the football sequence. The di�ernces are similar to the di�erncesobtained in the singly dropped band case.In this section we have tried to address the performance of a hierarchical codecby characterizing the behavior of the MAW codec when di�erent bands/subimagesare dropped from transmission. The study also helps us identify a general strategythat can be adopted to selectively drop bands as the network gets congested in order15



to provide a graceful degradation in the quality of the video at the recieving end. Italso helps to identify the selection of subimages for transmission in cases where thefull bandwidth is not available and is known prior to transmission.4 Characteristics of Multiscale Encoded VideoEach frame is a combination of 10 subimages. In this section, we'll start by discussingthe characteristics of the overall frame, followed by those of the subimages sinceboth important to our study due to the following reasons. Those observed andmeasured from the overall image represent part of the composite attributes of thevideo data and are one of the many factors to be considered while performing codecevaluation/design, network design, performance optimization, rate control, etc. Onthe other hand, the characteristics associated with each subimage can provide usinsights as to how the composite results are achieved and therefore bene�t themodeling of this type of data. By examining the properties of subimages, we canfurther understand the qualities and performance of the wavelet-based codec. Goingone step further, we have seen in section 3 that the hierarchical structure of thesubimages can be exploited to provide a 
exible rate control scheme. The excercisecarried out at a subimage level can be used to develop strategy to control theoutput rates at an end node, without compromising too much of the picture quality.Therefore, it is important to study the properties of the data at this level as well.The statistics of the output video that are of interest include 1) composite bitrates of Y, U, and V components of the individual subimages and also of the overallframe, 2) histograms of the above bit rates, 3) correlations between consecutivebit rates within each subimage and the overall frame, and 4) the cross correlationsamong various subimages.4.1 Characteristics of the Output VideoFor the overall frame, we are interested in its bit rate pro�le, histogram, and corre-lations between consecutive frames.4.1.1 Bit Rate Pro�leThe composite bit rate pro�le contains periodic and signi�cant jumps in magnitudeat every refresh points. Recall that an I frame is necessary to provide a clean ref-erence. Since an I frame is always intraframe encoded, data compression is onlyprovided by quantization and entropy coding, and thus the relatively high resultant16
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ected in their statistical characteristics aswell.Two sets of data can be subsequently extracted from one composite bit ratesequence: one has a magnitude centering around 150 kbits/frame as shown in Fig-ure 10, whereas the refreshes generally have large rates, mostly ranging from 350 to450 kbits/frame.Although the refreshes have been removed, the total bit rates still exhibit aperiodicity property, with a cycle of every 20 frames. This is no surprise since therefresh cycle for this data set is 20 frames. Assume there are no scene changes17
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Figure 11: Sections of Bit Rate Pro�le with Scene Changeswithin the refresh cycle for a moment, the �rst several frames immediately followinga refresh are encoded with lower rates, due to the fact that less errors have beenpropagated. As more frame di�erences are computed and motion estimated, errorsaccumulate and the frame rates are expected to show an increase for the next severalframes. Depending on the scene content in the next few frames, the rates can go upor down, but gradually, until either the next refresh takes place or a scene changeoccurs. This trend of periodic rate variation is generally anticipated to repeat itselfin each refresh cycle. When a scene change occurs, our codec switches to intraframecoding and the aforementioned cycle is interrupted. Once the frame rate is broughtto another magnitude level, the cycle supposedly starts again until the next scenechange or refresh.Two sections of the bit rate pro�le have been enlarged in Figure 11 to illustratethe e�ect of a scene change on bit rates and the otherwise slow variations. Withina 20-frame refresh cycle, both sections exhibit a relatively large increase right aftera refresh between the 60th and the 70th frames. An approximate 80 Kbits jumpoccured for the �rst section, while a 50 Kbits jump did for the second section.Considering the total bit rates are in the vicinity of 150 Kbits, these changes aresigni�cant. Otherwise, the variations are gradual, with a magnitude signi�cantlysmall compared to the absolute bit rate itself at each frame.Our data is, in fact, collected separately in terms of its Y, U, and V components18



of the encoded pixel di�erences as well as the Y, U, and V components of the motionvectors. In the same token, it is a possible scenario to consider pixel and motioninformation respectively. However, for this particular video data and the MAWcodec, the motion information constitutes a very small portion of the total bit rateper frame, at an average ratio of 2 to 100. Thus, to investigate them individuallydoes not appear e�cient. Figure 10 also illustrates the motion vector information.4.1.2 Histogram and Correlations of Bit RatesFigure 12 presents the histogram and correlation coe�cients for the total bit rates.The histogram suggests that the density function of the total bit rates appears tobe a composite result of several Gaussian densities. And the correlation coe�cientsindicate that the encoded bit rates have a strong correlation between those of theconsecutive frames. Both observations can be explained based on the implementedencoding algorithms in our video codec, the content of the frame sequence, etc.A motion picture or a section of a motion picture usually consists of variousscenes which can be categorized by their motion content. These include sceneswith very few motions, with limited, moderate, or violent motions, or zooming and
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panning, etc. In our study, this categorization maps di�erent scenes to low, medium,and high motion classes for the encoding purpose. Although which encoding schemesto be used depends on the picture content and the thresholds set in the videoencoder, we can still expect that three modes of encoding will all be adapted duringthe entire encoding process of a frame sequence, assuming the number of frames isa reasonable one.In a very simpli�ed manner, one anticipates that low, medium, and high motionframes will result in a rate with a small, medium, and large magnitude, respectively,and therefore a composite density function of three Gaussians. However, our videocodec produces results more complicated than the simpli�ed case. In our codecimplementation, a basic encoding unit is a block which varies in size according tothe scale of the subimage, starting from 2 by 2 at the top level and increasing to8 pixel by 8 pixel at the bottom. But each block is still individually categorizedas being a low, medium or high block and accordingly encoded. As a result, eachframe contains some numbers of blocks from each group and can not be directlylabeled as, for example, a low-motion frame. This block-based encoding schememakes the association of each Gaussian density in Figure 12 to a motion class moredi�cult. Nevertheless, if a frame contains mostly low-motion blocks, its total bitrate should be from the density function at the lower end of the axis. Similarly, fora frame which is mainly composed of high-motion blocks, its bit rate is expectedto come from the density at the higher end. For our encoded data, the distinctionbetween the second and the third higher densities in the histogram curve is not thatobvious as shown in Figure 12. This implies that there may be quite a few framescontaining certain close numbers of medium-motion and high-motion blocks. Theresultant bit rates per frame are then of some close magnitudes and don't necessaryindicate which density they are from.The correlation coe�cient curve in Figure 12 suggests that the frame rates arehighly correlated between consecutive frames. As previously discussed, within oneparticular scene, an object translates some distance from one frame to another.Most likely an object moves along in the same direction with a similar rate, from aprevious frame to the current one and then to the next. The motions are predictableto some extend and thus present high correlation between consecutive frames.4.2 Characteristics of the SubimagesOne unique feature about the wavelet-based video codec is that an input image isdecomposed into several subimages and separately encoded, either intraframely orinterframely. To understand the impact and bene�t of this decomposition in tra�cmodeling and rate control, it is important to study the characteristics of thesesubimages. We ahve already seen that we can take advantage of this hierarchical20



structure to develop a rate control scheme at an end node of an integrated network.4.2.1 Bit Rate Pro�les of the SubimagesFigure 13 shows the pro�les of average bits per pixel per frame for each subimage,with refreshes removed. Note that here the hierarchical presentation of the statisticalcurves of all subimages conform to the structure illustrated in both Figure 2 andFigure 3. Most curves have been drawn to the same scale for clari�cation purpose,except W10 whose average magnitude is signi�cantly small compared to those ofthe other nine wavelets. The unit along the y axis is bits/pixel,frame and x axis,frame sequence number.The average pixel rates in W1, W2, : : : W8 basically exhibit a similar variationpattern. This resemblance between certain subimages can also be observed, whenthe data is presented in its actual rates, bits/frame, as well as in its composite pro�le
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which is shown in Figure 10. The top four pro�les, either the actual or average bitrate, exhibit drops at around frame 350 and frame 550 and center around 7 or 8bits/pixel,frame or 17 kbits/frame. This strong similarity among this group (orlevel) of the hierarchy is due to the fact that they all are a �ltered result of onesubimage, W 20 (Figure 2). We can further break down the group and apply thesame argument to the pair of W1 and W2, or W3 and W4. Since W1 and W2 arethe results processed from the same low-passed W 20 , we expect them to form a pairwhose statistical properties are more alike than to those of the W2 and W3 pair,which is veri�ed by our sample data here. Based on the same reasoning, we will alsoshow in the next section that the correlation within each pair is stronger than thatbetween subimages from di�erent pairs.4.2.2 Histograms and Correlations of SubimagesProbability densities of the average pixel rates for each subimage is illustrated inFigure 14. The bottom-level densities are not drawn to the same scale as the oth-ers. It's noted that, for this football sequence, the means of subimages follow adescending order. By observing Figure 2, we know that most of the signal energy ispreserved at the output of the third decomposition process. That is, W1, W2, W3,and W4 contain most of the energy and thus have a higher bit rates than the lowerlevel ones. Preceded by W1, W2 is expected to contain more energy than W3 andW4, since the former is a detail of a low-passed subimage, while the latters are thedetails resulting from the highpass �lter. Whether the mean of W3 is greater thanthat of W4, or visa versa, largely depend on the content of a video sequence. In thefootball sequence, for example, players run in a horizontal direction and balls 
y inthe air in a diagonal direction. There appears to be less horizontal details. Thusthe mean of pixel rates in W3, which contains the diagonal details, are larger thanthat in W4, which contains the horizontal details.Not considering W1 for a moment, the density functions in the middle and theright columns in Figure 14 show more resemblance graphically with each other, thanto those in the left column. This similarity results from that their source subimage,from which they are generated, is identical, as anticipated from the previous section.Qqplots between pixel rates of several subimages are included in Figure 15. Theqqplots provide information as to whether two datasets have the same distributionor not. An approximately straight line indicates that the distribution from bothsets is the same. From Figure 15 we can verify that the pixel rates of two verticallyneighboring subimages within one column of the pyramid structure have the samedistribution. It is also true for the pixel rates of the adjacent subimages from thediagonal and horizontal columns. For instance, for the �rst case, we show W1 vsW2 and W2 vs W5, while for the second case, we have W3 vs W4 and W6 vs W7.It is also noted that the plots contain some S shape curves between W1, W3 and22
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Figure 14: Probability Density Function of SubimagesW4, which implies that one distribution has longer tails than the other. When threedensities are plotted together, we can easily visualize that the density of W1 hastails that are indeed longer than the other two.We are also interested in learning cross correlation between bit rates of subimageslocated in immediately adjacent levels, in the same column but not necessarily inthe adjacent levels, in the same level but adjacent columns, etc. A few selectedcombinations of subimages are incorporated in Figure 16. The numbers along thex axis represent the number of frames apart when the cross correlation coe�cientsare computed. The y axis represents the coe�cient itself. These graphs once againverify some of the observations that we found in discussing rate pro�les and densityfunctions. W1 and W2 have strong correlation with a coe�cient greater than 0:95,when there is no lagging. And the correlation continues to be strong even after the10th frame. Although W5 is located in the same column as W2 in the pyramiddata structure, the correlation between W1 and W5 is signi�cantly reduced due tothe skipping of one level. Skipping a level can be interpreted as going though one23
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Figure 15: Qqplots of Pixel Rates between Selected Subimagesmore transformation process, as demonstrated in Figure 2. The comparing data oftwo subimages is further decomposed and therefore exhibits less correlation. Wecan �nd this decrease in correlation phenomena in subplots W1 vs W5, W2 vs W8,etc. When no levels have been skipped, two subimages demonstrate relatively strongcorrelation as long as they are located in the same column in the pyramid structure.For example,W2 vs W5, W3 vs W6, W4 vs W7, etc. are pairs as such. Earlier theqqplots, in Figure 15, suggests that the pairs W3 and W4 as well as W6 and W7have the same distributions. Here we also �nd them having very strong correlationwithin each pair. It's even more interesting to note that the correlation betweenW3and W4 of the same level appears stronger than those between W3 vs W6 or W4vs W7 of the same column but adjacent levels. This phenomena is again due to theincreasing decorrelation as a subimage traveling down the transformation path inFigure 2. Between W3 and W4, there is one decomposition process taking place inthe vertical direction and they are generated from an identical low-passed subimage.On the other hand, there are more than one decomposition between W3 and W6.24
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W6 vs W7Figure 16: Selected Cross Correlation Coe�cients of Bit Rates5 Modeling of Multiscale Encoded VideoBased on the observation on the data characteristics, a composite model is proposedto capture the behavior of such video tra�c. It was noted that the top subimagelocated in the pyramid structure contains most of the remaining signal energy. Thistop subimage thus should be modeled as accurately as possible, and can be utilizedto estimate the behavior of the remaining subimages. Our modeling approach can,therefore, be grouped into several steps: 1) model the refreshes, 2) model the topsubimage, and 3) estimate the remainders as well as obtain the composite model fortotal bit rates. 25



5.1 Modeling of the RefreshesRefreshes occur periodically with a signi�cantly large magnitude. The time instancesat which refreshes take place are predictable. Their large magnitudes separate thecorresponding probability distribution from those of the relatively lower rates in thedensity plot such as those shown in Figure 12. We therefore propose to individuallymodel the refreshes so that both the refreshes and the slow-varying video data canbe better explored and modeled.The average pixel rates at refresh frames are �rst identi�ed in our video sequenceand �ltered. Its probability density is then plotted, which is shown in Figure 17. Westart by considering a Gaussian distribution to approximate that of the refreshes. Itis not unreasonable to assume a Gaussian distribution for this case. The density plotitself approximates a normal one. Moreover, the encoded rates are actually contentdependent. Given a video sequence, such rates can have magnitudes that wouldfall most likely anywhere on the bit rate axis. When there are su�cient numberof frames, they are then expected to result in a Gaussian distribution. Variousstatistics of this data set, including mean, standard deviation, the third and thefourth moments, are measured and presented in Table 1.Two approaches were implemented to model the refreshes. The correlation coef-�cient between two consecutive refresh frames has a value of 0:93. Taking correlationinto consideration, our �rst method thus models the data stream as a sequence from
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x Sample Data Modeled Data % of ErrorMean 44.95 44.90 0.11%Std 9.692 9.704 0.12%3rd Moment 1:038 � 105 1:032 � 105 0.55%4th Moment 5:318 � 106 5:234 � 106 1.57%Table 1: Statistics of Refreshes for Sample and Modeled Dataan autoregressive process, eqn. 2, with the expected correlation and a probabilitydistribution similar to the �rst one in Figure 17.r(n) = a � r(n� 1) +G (2)where n is frame sequence number, r is refresh bit rate, a is correlation coe�cient,and G is Gaussian noise. We started by considering a �rst order autoregressivemodel, because the density plot shows only one distribution. In spite that thesimulated results yield a good correlation coe�cient, the remaining statistics do notproduce a good match as the second approach does. Our second method treats thedata as if it is coming from a Gaussian distribution with the mean, std, etc. asstated in Table 1: mean = 44:95 and std = 9:692. Data points are then randomlygenerated from such a Gaussian distribution: G(�; �) = G(44:95; 9:692).The associated statistics of our modeling data are presented in Table 1. Thepercentage of error suggests that it is possible to utilize such a Gaussian modelto represent the refreshes with a fair statistical match. The modeling probabilitydistribution and its qqplot against the encoded samples are illustrated in Figure 17.The linear qqplot further con�rms that a reasonably good match between the sampleand the simulated refreshes can be achieved by using the proposed Gaussian model.Although our video sequence contains a reasonable number of frames, after removingthe non-refresh frames, the resulting number of frames (i.e. refresh frames) aredramatically reduced. This reduction in sample numbers could explain why thestatistical properties of the model are not as accurate as we would like them to be,since they are simulated based on those measurements of the original samples. Withan increase in the amount of input data, the statistics measurements of the samples,especially of refreshes, are expected to be more accurate and can possibly lead tobetter simulation results: the means and std's closer matched and the "peakness"as re
ected in the discrepancy of the 4th moment improved.5.2 Modeling of the W1 SubimageRecall that W1 is the last horizontally and vertically low-passed subimage in ourdecomposition process and contains most of the signal energy. Also, other low-27



passed subimages at a di�erent pyramid level exhibit strong correlation with this topone, either directly or indirectly, as discussed with Figure 16 on cross correlations.We therefore propose to �rst model this subimage and use its model as a base topredict the behavior of other subimages. A distribution and correlation coe�cientsof the average pixel rates of the W1 subimage, without refreshes, is depicted inFigure 18. Similar to our previous discussion on the total bit rates, due to theencoding schemes implemented in our wavelet-based codec, it is not surprising toobserve three partially overlapped densities for W1. In addition, we can also expectthat the correlation between two consecutive frames are high, since this subimagepreserves most of the characteristics of the composite image.A Markov-modulated renewal process is proposed to model this particular set ofencoded video data. Each density function in Figure 18 is associated with a Markovstate and the transition from one state to another is modulated by a Markov pro-cess. The statistical characteristics of the data are state dependent. That is, dataat each state possesses di�erent statistical properties from those of another state.Our model starts at one particular state, simulates video tra�c with correspond-
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Class 1 Class 2 Class 3 Totalmean 5.022 8.589 10.86 9.364Std 0.985 0.745 0.703 1.728a 0.881 0.842 0.884 0.958Table 2: Statistics of W1 with 3 Classesing characteristics, moves on to another state based on the Markov transitionalprobability.The reasons such a model is considered are as follow. From our previous dis-cussion, we noted that there are three encoding algorithms incorporated and theoutputs can be subsequently categorized into three major groups: low, medium,and high motion classes. Since scene changes rarely occur, we usually do not an-ticipate large changes in bit rate magnitudes. Therefore, the transition from oneclass (i.e. state) to another is mostly predictable, i.e. mostly transferring from onestate to itself or its adjacent ones. The transition thus relies on the current state,rather than any of the previous ones. Therefore, the transition can be described asmemoryless and possibly modeled by a �rst order Markov process. Depending onthe content of the video sequence, the encoded bit rates can remain in one state forany period of duration. The length of stay does not appear related to a previousvisit at the same state. The time of which each visit to a state lasts then appearsas a random variable with a memoryless quality. As a result, we propose to modelthe duration of a stay by a geometric process. In our early sections, we noted thatthe bit rates between consecutive frames are highly correlated in each class. Theirdistribution approximates some composite Gaussian densities. Therefore, a �rst-order autoregressive model is considered in an attempt to model data with suchattributes.To obtain the Markov transitional probability matrix, we �rst estimate thethresholds which separate our data into three classes. The statistical qualities ofthe data and each subset are then measured, as included in Table 2, where a isthe correlation coe�cient. The transitional probability from state to state is nextobtained and presented in the transitional probability matrix, �.� = 24 0:900 0:100 00:012 0:918 00 0:081 0:929 35 (3)To simulate the data in each state, we begin by using a �rst-order autoregressivemodel: yi(n) = ai � yi(n � 1) +G(�i; �i) (4)29
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Figure 19: Probability Density Function and Correlation Coe�cients of ModeledW1where n is the frame sequence number, i is the state, yi(n) is the bit rate of state iat frame n, ai is the measured correlation coe�cient between consecutive frames forstate i, and G is a Gaussian distribution with a mean of �i and std of �i. Numericalresults of our simulation will be presented in the next section.By using the statistics measurements from our sample data, 10; 000 data pointsare generated. The probability distribution of our modeling results is then plottedin Figure 19 We can see that the modeling densities are similar to the sampleones, while the correlation coe�cients are closely modeled as the sample coe�cientsplotted in Figure 18. In addition, we classify the generated data with the samethreshold values as those for the sample data. The resulting statistics are shown inTable 3 As the �gures show, our Markov-modulated renewal process can generatedata with a reasonably good match in statistical attributes. The percentage of errorsappears small for most of the moments. The discrepancy re
ected in the 4th momentmostly is due to the slightly smaller value of modeling standard deviation then30



mean std a 3rd moment 4th momentsample 9.364 1.728 0.958 9.009 9.139model 9.584 1.684 0.960 9.564 9.825% of error 2.3% 2.5% 0.2 % 6.1% 7.5%Table 3: Statistics of Model W1the sample standard deviation. To improve such di�erences, one can try anotherestimation method to obtain a better set of measurements of the attributes, suchmeans, std's for the three classes of our sample data.5.3 Modeling of the Composite VideoDue to the highly correlated behavior between frames within each subimage andamong di�erent subimages, we propose a model to take advantage of this character-istics. The bit rates of the remaining subimages are than derived from those of theone located in an upper level in the pyramid structure.Xj(n) = cij �Xi(n) +G(�ij ; �ij) (5)where Xi(n) is the bit rates of Wi at frame n, cij is the correlation between subim-ages i and j, and G is a Gaussian noise with mean �ij and std �ij, which can bederived from the measurements of our sample.Our composite model consists of the refresh model r, the Markov-modulatedrenewal process model for W1, Y , and the estimation model for the remainingsubimages X. Let Y represent the total average pixel rate at frame n, we then havethe following analytical model for the composite bit rate:Y = r+Y +X (6)where Y , r, Y , and X are all column vectors.Figure 20 shows the distributions of our modeling and sample data. We can ob-serve from the linear line in the qqplot that we have obtained two similar compositedistributions. However, the modeling data appears to be closer towards the higherend than our sample. This could be contributed by the discrepancies of the modelingresults of W1 subimage, propagated through estimation of other subimages. Afterthe summation of ten subimages, the supposedly minor di�erences can be enlarged.Another possible explanation is that, besides W1, W5 and W8 also contain rela-tively high signal energy, and merely an estimation approach may not be su�cientenough to obtain the best results for these two subimages. In order to improve31
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Figure 20: Probability Density Function of Sample and Modeling Data and theirQqplotthe accuracy of the modeling of high-energy subimages, it may become necessaryto model the �rst three subimages, followed by the estimation of the remaininglow-energy subimages.6 ConclusionIn this paper, we examine the statistical characteristics of the encoded data from awavelet-based video codec. The SNR analysis provides clues as to which subimageshave a strong impact on the performance in terms of SNR and prioritizes subim-ages for possible band dropping. By analyzing the statistical characteristics of theoverall image and individual subimages, we propose an analytical composite modelto describe the tra�c behavior of such encoded data. Our model can become useful32



while performing rate control study at an end node, since each subimage has itsown entry in the �nal bit rate matrix. Our results, presented in terms of densityfunctions, various moment statistics, and qqplots, suggest that this analytical toolcan estimate such data to some reasonable extend. We note that by applying abetter estimation algorithm to the sample data while gathering measurements canmost likely improve the modeling results. We also �nd that by SNR analysis, wecan prioritize the signal level of each subimage and determine the modeling criteriafor the relatively high-energy subimages such that the resulting modeling can alsobe improved.References[1] S. Bro�erio and F. Rocca, \Interframe redundancy reduction of video signalsg enerated by translating objects," IEEE Trans. on Communications, vol. 25,pp. 448 { 455, April 1977.[2] D. L. Gall, \MPEG: A Video Compression Standard for Multimedia Applica-tions," Communications of the ACM, vol. 34, pp. 46 { 58, April 1991.[3] S. Zafar, Motion Estimation and Encoding Algorithms for Hierarchical Repre-sentation of Digital Video. PhD thesis, George Mason University, 1994.[4] S. Zafar, Y.-Q. Zhang, and B. Jabbari, \Multiscale Video Representation Us-ing Multi-Resolution Motion Compensation and Wavelet Decomposition," IEEETransaction on Circuit and Systems for Video Technology, 1993.
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