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Abstract

The past few years have seen a significant increase in research into
numerical methods for computing selected eigenvalues of large sparse
nonsymmetric matrices. This research has begun to lead to the devel-
opment of high-quality mathematical software. The software includes
codes that implement subspace iteration methods, Arnoldi-based algo-
rithms, and nonsymmetric Lanczos methods. The aim of the current
study 1s to evaluate this state-of-the-art software. In this study we
consider subspace iteration and Arnoldi codes. We look at the key
features of the codes and their ease of use. Then, using a wide range
of test problems, we compare the performance of the codes in terms
of storage requirements, execution times, accuracy, and reliability. We
also consider their suitability for solving large-scale industrial prob-
lems. Based on our findings, we suggest how improved software should

be designed.
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1 Introduction

In this paper we are concerned with the standard eigenvalue problem
Az = )z, (1.1)

where A is a large sparse real nonsymmetric matrix. The past few years have
seen considerable research into numerical methods for computing selected
eigenvalues and eigenvectors of (1.1). This has led to the development of new
software and to papers and reports describing the usefulness of the software
for solving practical problems (see, for example, Duff and Scott, 1993; Bai
and Stewart, 1992; Braconnier, 1993; Sorensen, 1995; Scott, 1995). How-
ever; the published numerical results are extremely limited, and, in general,
authors of software have provided few results comparing the performance of
their software with that of rival software. The recent books by Saad (1992)
and Chatelin (1993) consider the state-of-the-art of large eigenproblem tech-
niques, and the progress report by Bai (1995) provides a useful review of
the origins of eigenvalue problems and algorithmic techniques. In the midst
of all this activity, there remains a lack of comparative numerical results
for current software, and this motivates our current study. We aim to re-
view, compare, and evaluate software for sparse nonsymmetric eigenvalue
problems in terms of the following criteria:

e the user interface,

¢ storage requirements,

e performance,

e accuracy and stability, and
e reliability and robustness.

To keep the current study to a reasonable length, we restrict our attention
to algorithms that require only matrix-vector products with A; we do not
examine methods that require linear equations involving A to be solved.
This focus allows us to examine the quality of the underlying algorithm and
associated software. We refer the reader to the survey by Meerbergen and
Roose (1994) for a review of methods that use spectral transformations that
require the solution of linear equations involving A.

Three methods have received significant attention by the numerical anal-
ysis community. These are subspace (or simultaneous) iteration, Arnoldi’s
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method, and the (nonsymmetric) Lanczos method. Our intention is to pro-
vide a comprehensive comparative study of these three methods, along with
the recent Jacobi-Davidson method of Sleijpen and Van der Vorst (1995).

In this paper we consider only subspace iteration and Arnoldi methods,
for which several high-quality codes have been written. The scope of our
study is restricted to software that is available either in the public domain
or under licence. For the Lanzcos method, there is currently only a very
limited amount of such software. As far as we are aware, the only code
that falls within the criteria for inclusion in this study is the code EIGLAL
of Freund, Gutknecht and Nachtigal (1993). Recent work on Lanzcos al-
gorithms has been published by Cullum (1994), and a new Lanzcos code,
ABLE, is currently under development (Bai, Day and Ye, 1995b). At present,
there is no software implementing the Jacobi-Davidson method that meets
our criteria. As software for these methods becomes available, however, we
plan to evaluate and compare it with subspace iteration and Arnoldi-based
software.

This paper is organized as follows. We briefly review subspace iteration
in Section 2 and Arnoldi’s method in Section 3. The main features of the
available software are discussed in Section 4. In Section 5 we compare the
software in terms of how matrix-vector products are performed, the use of
BLAS and LAPACK, the stopping criteria, storage requirements, and user
interfaces. The design of our experiments to compare the performance of
the software is the subject of Section 6. We explain how we verified the
computed results and present numerical results for our test matrices. Based
on our experiences with the different codes, we consider in Section 7 the
features that we would like to see incorporated in new software to compute
eigenvalues of nonsymmetric matrices. General conclusions are also drawn.

We end this section by introducing the notation that is used throughout
this paper.

e The eigenvalues of A are denoted by Ay, As, ...  A,, with associated
eigenvectors 2y, %o, ..., %,. 1he eigenvalues are assumed to be ordered
according to which eigenvalues are sought. For example, if the right-
most eigenvalues are required, the eigenvalues are ordered in decreasing
order of their real parts. Subscripts are dropped when no confusion
will result.

e n denotes the order of A.

o 1 denotes the number of sought-after eigenvalues of A.
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m denotes the dimension of the subspace used in the subspace iteration
and Arnoldi algorithms.

X,, = [ X, X,._, | denotes the matrix representation of this sub-
space.

(s,0) denotes an eigenpair of the projection matrix of order m of A
onto the column space of X,,.

The approximate eigenpairs for A are called Ritz pairs if Ay ~ y#@,
where y = X,;;s.

T,, denotes the quasi-triangular Schur matrix associated with the pro-
jection of A.

XTI AX,, ~ T,, is an approximate real partial Schur form if X’ X,,, ~
I,..

u denotes relative machine precision.
¢ denotes the user-prescribed convergence tolerance.

e; denotes the j-th canonical basis vector.

In this paper we are concerned with the case r < m < n.

2 Subspace Iteration

We briefly recall the main ideas behind the subspace iteration algorithm.
Subspace iteration was originally introduced by Bauer (1957), who called
the method Treppeniteration (staircase iteration). It is a straightforward

method for computing the eigenvalues of largest modulus of a real non-

symmetric matrix and is a generalization of the power method. It has

been widely used and remains particularly popular in structural engineer-
ing. Starting with an initial n x m matrix X,, with linearly independent

normalized columns x1, X3, ..., X, (called the “trial” vectors), the subspace

iteration method generates a sequence of n x m matrices as follows:

1.

2.

Start: Choose an initial set of normalized vectors
XmH[Xl X2 e Xy

Iteration: Until convergence do
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o Choose [ > 1 and compute X, — A!X,,,.
e QR factorization: Q,,R,, = X,, and set X,, — Q,,.
e Projection: form B,, = XL AX,,.

e Schur form: compute the real Schur form T, = VgBme, and
set X,, — X,, V..

In some variations of the algorithm, the QR factorization is not performed
(see, for example, Stewart and Jennings, 1981b). In place of the above
projection, B,, = (XI X, )7'XT AX,, is computed.

If one assumes the eigenvalues are ordered so that |[Ay| > [Ag| > ... >
[Anl, if [Am] > |[Apmg1l, it may be shown (under mild restrictions on the
initial set of trial vectors) that the columns of X,, converge to a basis for
the invariant subspace of A corresponding to the m dominant eigenvalues.
Convergence is linear with the rate |A,,41/);| for the ith column of X,,.

Further details and discussion of subspace iteration may be found, for
example, in Stewart (19760), in Watkins and Elsner (1991), and in the recent

books by Chatelin (1993) and Saad (1992).

3 Arnoldi’s Method

Arnoldi’s method (1951) is an orthogonal projection method for approxi-
mating a subset of the eigensystem of a general square matrix. Starting
with a vector x1, the method builds, step by step, an orthogonal basis for
the Krylov space of A:

Kn(A,x1) = Span{x;, Axy,...,A" 'x}.

The original algorithm was designed to reduce a dense matrix to upper Hes-
senberg form. However, because the method requires knowledge only of A
through matrix-vector products, its value as a technique for approximating a
few eigenvalues of a large sparse matrix was soon realized. When the matrix
A is symmetric, the procedure reduces to the method of Lanczos (1950).
Over a decade of research was devoted to understanding and overcoming
the numerical difficulties of the method for the case when A is symmetric
(see, for example, Parlett, 1980, and Grimes, Lewis and Simon, 1994). De-
velopment of the Arnoldi method for nonsymmetric matrices lagged behind
because of the inordinate computational and storage requirements if a large
number of steps are required for convergence. Not only is more storage
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needed when A is nonsymmetric, but, in general, more steps are required
to compute the desired eigenvalue approximations. An explicitly restarted
Arnoldi iteration (ERA-iteration) was introduced by Saad (1980) in an at-
tempt to overcome these difficulties. The restarted Arnoldi method may be
summarized as follows:

1. Start: Choose an initial normalized vector x;.
2. Iteration: Until convergence do

e Compute the Arnoldi reduction AX,, = X,,H,, —I—fmeg of length
m with starting vector X,,e; = xy.

e Using the length m Arnoldi factorization, select a new starting
vector xq.

H,, is an m xm upper Hessenberg matrix, X! X, = I,,, and the residual
vector f,, is orthogonal to the columns of X,,,. The matrix H,, = X?HAXm
is the orthogonal projection of A onto the column space of X,,, = K, (A, x1).

The idea of restarting is based on similar approaches used for the Lanc-
zos process by Paige (1971), Cullum and Donath (1974), and Golub and
Underwood (1977). The first example of a restarted iteration is attributed
to Karush (1951). A relatively recent variant was developed by Sorensen
(1992) as a more efficient and numerically stable way to implement restart-
ing. One of the benefits of this implicitly restarted Arnoldi iteration (IRA-
iteration) is that it avoids the need to restart the reduction from scratch at
each iteration.

4 Available Software

Numerous research codes for solving the sparse nonsymmetric eigenproblem
have been developed over the years. In addition, there are implementa-
tions of the subspace iteration and Arnoldi methods embedded within much
larger codes, for example, within the MSC engineering application software
(Komzsik, 1995). However, very little library-quality software has been de-
veloped. As discussed in Section 1, in this study we aim to evaluate software
that is available through the public domain or under commercial license. The
software must also have been designed by its authors for use by a nonexpert.
Specifically, it must not demand that the user have a detailed knowledge of
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the underlying numerical algorithm. In addition, the software must be sup-
plied with documentation and must be implemented by using either the C
or Fortran programming languages.

In Table 1 we list all the subspace iteration and Arnoldi codes we are
aware of that appear to meet the above criteria. These are the codes that
will be evaluated in our current study. (We apologize if we have failed to
include in our evaluation study any other codes that meet our criteria.)

Table 1: Subspace iteration and Arnoldi software for the sparse nonsymmet-
ric eigenproblem (ERA denotes explicitly restarted Arnoldi, and 1RA denotes
implicitly restarted Arnoldi)

Code Method Authors Year Availability
LOPSI Subspace Stewart and Jennings 1981 TOMS
SRRIT Subspace Stewart and Bai 1993 ftp

EB12 Subspace Duff and Scott 1991 HSL
ARNCHEB ERA Braconnier 1993 ftp

EB13 ERA Scott 1993 HSL
ARPACK  IRA Sorensen, Lehoucq, and Vu 1995 netlib

In Table 1, TOMS denotes the ACM Transactions on Mathematical Soft-
ware; ftp indicates that the code is available by anonymous ftp; HSL denotes
the Harwell Subroutine Library (1996); and, finally, netlib indicates that the
code may be obtained through a software repository (Dongarra and Grosse,
1987) on the Internet. Full details of how to obtain the codes are given in
Section 8.

In the remainder of this section, we briefly discuss each of the codes
listed in Table 1. Further details may be found in Lehoucq and Scott (19954,
1995b). Note that all the codes are written in Fortran 77.

4.1 LOPSI

The code LOPSI of Stewart and Jennings (1981a), which is based on work
done in the 1970s by Clint and Jennings (1971) and Jennings and Stewart
(1975), has been available for more than a decade. It uses subspace iteration
combined with a lopsided oblique projection to compute the eigenvalues of
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A of largest modulus together with the corresponding eigenvectors.

After the first iteration, the number [ of premultiplications by A between
projections is chosen to avoid both the dominant eigenvector components
“swamping” the predictions for the lower eigenvectors and unnecessary work
being performed by carrying the iteration beyond the stage at which conver-
gence is achieved. The restriction 1 <1 < 1,4, where [,,,,.. is a user-defined
parameter, is also imposed. The value of [,,,,, recommended by Stewart and
Jennings is 10.

To increase efficiency when more than one eigenvalue is required, LOPSI
incorporates a deflation strategy whereby a column of X, is locked as soon
as it has converged. Locking means that no further computations are carried
out with this vector.

Matrix-vector products Ax are performed within LOPSI by an internal
subroutine PREMULT. The matrix A must be passed to LOPSI by using the
coordinate storage scheme; that is, the matrix must be held as an unordered
set of triples (a;;,¢,7) using a real array and two integer arrays, of length
equal to the number of (nonzero) entries in A. To ensure finite termina-
tion, the user is required to specify the maximum number of matrix-vector
products that may be performed.

4.2 SRRIT

The recent subspace iteration code SRRIT of Bai and Stewart (1992) is a
revised version of a code by Stewart (1978) of the same name. It com-
putes an orthonormal basis for the invariant subspace corresponding to the
eigenvalues of largest modulus.

As in the code LOPSI, efficiency is increased by locking columns as soon
as they have converged. SRRIT also gives the user the option of supplying the
initial basis X,,. The user must supply a subroutine ATQ to perform matrix
products AX,,. A user-defined parameter limits the number of calls to this
subroutine and ensures finite termination of the code. The subroutine ATQ
does not include the matrix A in its argument list, so A need not be held
explicitly—only the action of A on vectors is necessary.

An iterated modified Gram-Schmidt algorithm with possible reorthog-
onalization is used to maintain the orthogonality of the columns of X,,.
An internal parameter controls the maximum number of reorthogonaliza-
tions that may be performed; this is set to 5. At each iteration, the code
computes the value of [ so that the columns of A'X,, remain linearly inde-
pendent and orthogonalizations are minimized. SRRIT also determines the
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number of iterations before a Schur—Rayleigh—Ritz projection is performed.
A projection is performed only when it is anticipated that one or more of
the columns of X, satisfy the convergence criterion (see Section 5.3).

4.3 EB12

The Harwell Subroutine Library code EB12 (Duff and Scott, 1993) is the
most general subspace iteration package considered in this study, since it is
designed to calculate either the right-most or the left-most eigenvalues of
A, or the eigenvalues that are of largest modulus. EB12 computes the right-
most (or left-most) eigenvalues by replacing the power Al in the subspace
iteration algorithm by a Chebychev polynomial p;(A) on an ellipse contain-
ing the unwanted Ritz values. The idea of using a Chebychev polynomial
to accelerate convergence was proposed by Saad (1984). The evaluation of
pi(A)x is carried out by using the three-term recurrence relation for Cheby-
chev polynomials.

In EB12, the columns of X,,, are orthonormalized by using the modified
Gram-Schmidt algorithm. On each iteration, the degree [ of the iteration
polynomial is chosen to try to ensure that the columns of X,,, remain linearly
independent. If Chebychev acceleration is employed, [ is also chosen to
ensure the ellipse is updated sufficiently often. Furthermore, [ is limited
close to convergence to prevent unnecessary work from being performed.

As in the other codes, EB12 incorporates locking techniques to reduce
the computational effort if more than one eigenvalue has been requested.
EB12 also allows the user to supply the initial basis vectors.

The code EB12 uses reverse communication. Fach time a set of vectors
is required to be multiplied by A, control is returned to the user. The
advantages of this approach are discussed in Section 5.1. The maximum
number of matrix-vector products Ax is limited by a parameter that is held
in a COMMON block.

Once EB12 has successfully computed the required eigenvalues of A, the
user may call a separate subroutine, EB12B, to compute the corresponding
(normalized) eigenvectors and, optionally, the scaled eigenvector residuals

Ay = 0yll2/l|Ayll2-
4.4 ARNCHEB

The ARNCHEB package of Braconnier (1993) provides subroutine ARNOL that
implements an explicitly restarted Arnoldi method. The code is based on
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the algorithms of Saad (1980, 1984) and may be used to compute either the
eigenvalues of largest or smallest real parts, or those of largest imaginary
parts.

In ARNCHEB, the computation of the restart vector is a two-step process.
First, a linear combination of the r Ritz vectors associated with the r Ritz
values of interest is formed. Then, a fixed-degree Chebychev polynomial
pi(A) on an ellipse containing the unwanted Ritz values is applied to the
linear combination. As in EB12, the evaluation of p;(A)x is carried out by
using the three-term recurrence relation for Chebychev polynomials. The
polynomial is fixed in the sense that the degree is chosen by the user and is
not varied from iteration to iteration.

An iterated classical Gram-Schmidt algorithm is used to maintain or-
thogonality of the Arnoldi basis vectors. As for SRRIT, the user must supply
a subroutine to form Ax. The package offers the user the option of using
Wielandt deflation (see Wilkinson, 1965, and Saad, 1992, for further de-
tails). As the individual Ritz values converge, the code forms the rank j
modification A; = A — U; SjUjT, where S; is a diagonal matrix of order j
representing the dimension of the approximate invariant subspace that has
already converged. The idea is to choose S; so that A; will converge to
the remainder of the invariant subspace desired. Unfortunately, the eigen-
vectors of A; are not those of A. We remark that the column space Uj; is
invariant for A, and thus it is possible for ARNOL to compute Ritz vectors
when using Wielandt deflation. The extra computation is not trivial and
must be carried out by the user. Moreover, there is no documentation to
guide the user on how this could be done.!

4.5 EB13

The Harwell Subroutine Library code EB13 (Scott, 1995) also implements
an explicitly restarted Arnoldi method. It allows the user to compute the
eigenvalues of A that are right-most, of largest modulus, or of largest imag-
inary parts. By working with —A in place of A, the code may also be used
to compute the left-most eigenvalues.

EB13 incrementally computes a partial Schur form for A, locking Schur
vectors corresponding to Ritz values that converge. At each iteration, the
restart vector is taken to be the first unconverged approximate Schur vec-
tor. A Chebychev polynomial p;(A) on an ellipse containing the unwanted

n fact, the author of ARNCHEB was not aware that this was possible.
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Ritz values is applied to the restart vector in an attempt to accelerate con-
vergence. The code automatically selects the degree [ of the Chebychev
polynomial on each iteration (although the user may override this value).

An iterated classical Gram-Schmidt algorithm is used to orthogonalize
the Arnoldi basis vectors. As with EB12, a reverse communication mecha-
nism is used for computing matrix-vector products with A.

Unlike any of the other Arnoldi codes tested, EB13 optionally computes
a block Arnoldi reduction. This option is designed for problems where the
wanted eigenvalues are multiple or closely clustered. Another option is avail-
able to perform Chebychev polynomial preconditioning on A.

Finally, once the required eigenvalues of A are computed, subroutine
EB13B may be used to compute the corresponding (normalized) eigenvectors
and, optionally, the scaled eigenvector residuals ||[Ay — 0y||2/||Ay]|2.

4.6 ARPACK

The ARPACK software package (Lehoucq, Sorensen and Vu, 1995) provides
subroutine DNAUPD that implements an implicitly restarted Arnoldi method.
The scheme is called smplicit because the starting vector is updated with an
implicitly shifted QR algorithm on the Hessenberg matrix H,,.

The method is motivated by the following observation. Suppose that
is a polynomial of degree m —r. A simple but tedious derivation shows that

GAX, = Xpp(Hy) e e - e | (4.1)

Partitioning the Qr factorization of ¥(H,,) as

QR = [ Q- Qu-, ] [ I({)T Rl\:;, ]
allows Equation (4.1) to be rewritten as ¥(A)X, = X,,Q,R,. The col-
umn space of X,,,Q, is an orthogonal basis for 1/(A)X,. In other words, an
IRA-iteration is equivalent to performing subspace iteration with X,.—while
avoiding matrix-vectors products in A.

Restarting the iteration involves post-multiplying the length m Arnoldi
factorization with Q,, and then retaining the first » columns. Thus, an 1RA-
iteration may be viewed as a truncated QR algorithm (see Lehoucq, 1995,
and Sorensen, 1995, for further details).

DNAUPD computes the eigenvalues of A that are right-most, left-most,

of largest or smallest modulus, or of largest or smallest imaginary parts.
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It uses approximate Schur vectors to restart. An iterated classical Gram-
Schmidt algorithm is used to orthogonalize the Arnoldi basis vectors. The
standard deflation rules used by the QRr algorithm are employed on H,,.
Thus, if a subdiagonal element of H,,, becomes small enough, it is set to zero,
and the corresponding columns are locked. As in EB12 and EB13, reverse
communication is used when computing matrix-vector products with A. An
option allows the user to define a polynomial preconditioner on A through
its roots via the implicitly shifted QR iteration on H,, performed during
each iteration. Spectral transformations are also available, as well as the
ability to solve the generalized eigenvalue problem, Az = ABz, when B is a
symmetric positive semi-definite matrix.

Finally, analogous to the approach of EB12 and EB13, once the desired
Ritz values have converged, subroutine DNEUPD optionally computes associ-
ated approximate Ritz or Schur vectors. Moreover, if a spectral transfor-
mation is employed, DNEUPD maps the computed Ritz values to those of the
original system.

5 Software Comparison

5.1 Matrix-Vector Products AX

A major implementation difference is the way in which the software copes
with forming the product of A with sets of vectors. For large problems, this
process can represent the dominant cost. Thus, it is important to minimize
the number of times that A is applied and to ensure that the process is
implemented efficiently.

The code LOPSI is the most restrictive of the codes in our study because
it requires the user to pass the matrix to the routine by using a defined
storage scheme. The matrix-vector products AX,, are all performed by a
single subroutine within the code, and the authors comment in their paper
that considerable savings can be obtained by converting this subroutine to
machine code (see Stewart and Jennings, 198156). Clearly this conversion
involves intervention by the user. A user could also change the storage
scheme used for A to one more suited to his or her problem, but this change
would involve some effort, and no documentation is provided to assist with
this.

SRRIT and ARNCHEB adopt a somewhat more flexible approach by requir-
ing the user to supply the subroutine to perform the matrix-vector products.
Even though A is not required to be held explicitly, for some problems it
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can be inconvenient for the user to pass the matrix into this subroutine.
For example, since both SRRIT and ARNCHEB use the Fortran programming
language, the number of subroutine arguments is fixed. If a user needs addi-
tional descriptors to perform matrix-vector products, these must be passed
through a COMMON block.

The reverse communication approach used by the remaining codes pro-
vides the most flexibility and gives the user the greatest degree of control.
The user is able to exploit the sparsity and structure of the matrix and, by
avoiding passing the matrix through a COMMON block, can take full advantage
of parallelism and/or vectorization. Another obvious advantage of reverse
communication is that the user is able to incorporate different precondi-
tioning techniques in a straightforward way. For example, the user may
wish to use a shift-and-invert transformation, in which a matrix of the form
(A — oI)7! is used in place of A. The eigenvalues close to the shift o will
tend to converge most rapidly, since under the transformation they become
dominant. In this case, linear systems of the form (A — cI)w = x are solved
in place of the matrix-vector products w = Ax. If a direct method of solu-
tion is used, the LU factorization of (A — ¢I) need be performed only once.
However, since reverse communication allows progress to be monitored, the
user may choose to update o as the computation progresses, thereby requir-
ing a new factorization for each shift.

5.2 The Use of BLAS and LAPACK

Apart from the matrix-vector products Ax, the subspace and Arnoldi algo-
rithms require only dense linear algebra operations to be performed on ma-
trices of order m. One way of achieving an eflicient implementation and as-
sisting with robustness, portability, and readability of the softwareis through
the use of BLAS (Basic Linear Algebra Subprograms) kernels (Lawson, Han-
son, Kincaid and Krogh, 1979; Dongarra, DuCroz, Hammarling and Hanson,
1988, and Dongarra, DuCroz, Duff and Hammarling, 1990). The codes in
our study use the BLAS to very different degrees. For instance, when LOPSI
was developed, only the Level 1 BLAS were available, and LOPSI, in fact,
makes no use of these kernels.

EB12, ARNCHEB, and EB13 employ mainly Level 1 and Level 2 BLAS ker-
nels. In addition, they use some EISPACK routines (Smith, Boyle, Garbow,
Ikebe, Klema and Moler, 1976). EB12 and EB13 use modified versions of the
EISPACK routines ORTHES and ORTRAN and of the routine HQR3 given by
Stewart (19764).
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LAPACK (Anderson, Bai, Bischof, Demmel, Dongarra, Croz, Green-
baum, Hammarling, McKenney, Ostrouchov and Sorensen, 1992) was de-
signed to supersede EISPACK. The authors of LAPACK developed new
routines and restructured the EISPACK software to achieve much greater
efficiency, where possible, on modern high-performance computers. This
was accomplished by writing routines that call all three levels of the BLAS.
The updating of the original 1978 version of SRRIT included using BLAS
kernels and replacing EISPACK routines with ones from LAPACK. ARPACK
also makes extensive use of BLAS and LAPACK, and we anticipate that
this will be reflected in its performance. The use of BLAS and LAPACK
also make the software potentially easier to maintain.

5.3 The Stopping Criteria

The codes all use different stopping criteria, thereby complicating perfor-
mance comparisons (see Section 6). A useful discussion of stopping criteria
for iterative eigensolvers is given by Scott (1995). Throughout this section,
¢ denotes a user-defined tolerance.

For subspace iteration, the dominant eigenvalues converge most rapidly
so the codes test only the (j+1)-st eigenvalue after the jth one has converged.
In the code LOPSI, a column of X, is accepted as an approximation to an
eigenvector of A when it becomes nearly stationary. Specifically, if ng) is
X, on the kth iteration (k£ > 0), the jth column of ng) is accepted if it
satisfies the inequality

X = XGille < e

m m

Such a stopping criterion may fail in the case of A having equal, or nearly
equal, eigenvalues.

In an attempt to overcome this problem, SRRIT, EB12, and EB13 follow
Stewart (1978) and base their stopping criterion on demanding that AX, ~
X, T,. In SRRIT, the jth column of X,, is said to have converged if

[(AX = X T )jll2 - < [65]€,

where §; is the jth eigenvalue of T,,. At each iteration, the residuals
I(AX,, — X,,Tp,);l|2 are computed for j =i+ 1,...,r, where ¢ 4+ 1 points
to the first unconverged eigenvalue. The code groups eigenvalues that have
nearly equal moduli. The eigenvalues computed on the previous iteration
are also grouped. If the two groups have the same number of eigenvalues
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and the average value of the eigenvalues has settled down, the residuals are
averaged and tested against e.
The convergence criterion used by EB12 for the jth column of X requires

[(AX = X Tm)illz < [[(AXG)j]2€. (5.1)

The residual ||(AX,, — X,,, T}, );l2 is computed only if all the basis vectors
X; with 0 < ¢ < j have already been accepted. EB12 monitors the residuals
for unacceptably slow convergence and, if necessary, terminates the com-
putation with a warning that the requested accuracy was not achieved. In
this event, the user is advised on how to modify the input parameters to try
to obtain the requested accuracy. Facilities are included for restarting the
computation from the point at which the warning was issued.

EB13 allows the user a choice of stopping criteria. In addition to offering
( 5.1), the user has the choice of requiring that ||[(AX,, —X,,T,,);ll2 < [|A|le
or < €. The advantage of using the norm of A is that the stopping criterion
is based on the backward error. A disadvantage is that it requires ||A]| to
be known. EB13 requests the user to provide ||A]| (or an estimate of [|A][]).
If the user is unable to do this, the code will compute the Frobenius norm
of A at the cost of n matrix-vector products.

The most compelling reason for possibly not wishing to use a stopping
criterion that involves the norm of A is that it can lead to accepting Ritz
values that have no digits of accuracy. In some practical situations, eigenval-
ues are used to study stability, and the interest is in whether the right-most
eigenvalue has a nonpositive real part. Since high precision in the computed
eigenvalues may not be necessary, the user may be tempted to set the con-
vergence tolerance ¢ to be, for instance, 107%. But if the norm of A is of
order 10%, the stopping criterion may lead to a computed 6 being accepted
as converged when it actually has no accuracy. Thus, wrong conclusions
concerning the stability of the system may be drawn. Clearly, if the norm
of A is to be used, the user should take its size into account when selecting
the convergence tolerance.

In a similar manner to EB12, EB13 attempts to terminate the computa-
tion if convergence appears to have stagnated.

For Arnoldi’s method, an inexpensive estimate of the norm of the eigen-
vector residual is available. Let AX,, = X,,H,, + fmeTTn be an Arnoldi
factorization of length m. If s is an eigenvector of H,;, and y = X,;;s, it
follows that

|AY = y0l| = [AX s = X Hps|| = [[fn] lers].
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The benefit of using the Ritz estimate ||f,,|| |el s| is that it avoids explicit
formation of the direct residual ||AX,,s —X,,sf||. ARPACK bases its stopping
criterion on the Ritz estimate. Moreover, since only the last component of
s is needed, ARPACK does not compute the full eigenvectors of H,, at each
iteration. The computation is terminated on the first iteration that » Ritz
values all satisfy

I1£::l] lers| < [6]e.

EB12, and SRRIT also base their stopping criterion on the backward error.
Moreover, the user should consider the size of |f| when selecting € for these
codes.

Recent work by Chatelin (1993) and Bennani and Braconnier (1994) sug-
gests that when A is highly non-normal, there can be a significant difference
between the Ritz estimate and the eigenvector residual. Because of this po-
tential difference, ARNCHEB computes both the scaled Ritz estimate and the
direct backward error given by

We remark that since [|[(AX,,);]lz < ||A]lz and 6] < ||A]||2, ARPACK,

Al llyll2 Al llyll2

respectively, where ||A||r denotes the Frobenius norm of A. The current
version of the code tests the direct backward errors for convergence. ARNCHEB
does not offer the user the option of supplying ||A||r but computes |Al|x
with » matrix-vector products.

5.4 Storage Requirements

For large problems, the amount of storage needed can be an important
consideration when selecting a code. In Table 2 we compare the storage
requirements of the codes in our study. We observe that, for a given subspace
dimension m, ARPACK uses the least amount of storage.

Assuming a block size n, = 1, we see that EB12 and EB13 each need three
arrays of length nm while SRRIT requires only two such arrays. There are two
reasons why EB12 and EB13 demand an extra array. First, to use the three-
term recurrence relation for Chebychev polynomials to compute p;(A)X,
three arrays of length nm are needed. Second, as already discussed, EB12
and EB13 use reverse communication. To try to ensure against the user’s
overwriting the latest approximation X,,, to the Schur vectors, the user forms
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matrix-vector products by using two arrays U and W of dimension nm and
then, within the code, copying into the appropriate part of the third array
X, is performed. Thus, even if Chebychev acceleration is not employed,
EB12 and EB13 demand three arrays of length nm.

Table 2: Storage requirements (n;, denotes the block size for EB13)

Code Storage
LOPSI 3n x m+ 4m? + O(m)
SRRIT 2n x m+2m? + O(m)
EB12 3n x m+2m? + O(m)
ARNCHEB | 3n X (m + 5) + 2m? + O(m)
EB13 3n X m X ny + 2m? + O(m)
ARPACK nx (m+4)+ 3m? + O(m)

5.5 User Interface

An important feature of any code written for general use is that it should
be accompanied by straightforward but comprehensive documentation that
allows the code to be used with a minimum of effort. The code and docu-
mentation should also offer assistance to the user in the event of the compu-
tation failing. Our numerical experiments have provided us with a feel for
how easy the software and its documentation are to use, and in this section
we comment briefly on our experience in using the software.
Our main findings are the following;:

e Comprehensive and self-explanatory documentation is supplied with
the codes SRRIT, EB12, EB13, and ARPACK.

e A particularly helpful feature of the documentation provided with EB12
and EB13 is that it includes simple sample programs. These sample
programs would be of particular value to users who are unfamiliar with
using reverse communication.
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e EB12, EB13, ARNCHEB, and ARPACK provide sample programs that il-
lustrate their use. In particular, ARPACK has an extensive set of pro-
grams illustrating the use of reverse communication and all its op-
tions. Both EB12 and EB13 are supplied with comprehensive testing
programs: each comes with a driver that is designed to execute each
line of the code at least once.

e ARNCHEB does not document all input and output parameters fully,
and the code itself does not include comments to explain each of the
parameters. Moreover, the code has no error flag and performs no
error checking.

e The LOPSI documentation provides no assistance in the event of an
error. LOPST has an error flag that, on exit, indicates success or failure.
If a failure is indicated, no help is given to the user as to what has
gone wrong or what might be tried to achieve success. Furthermore,
we found that the flag could be set to indicate all was well but when the
computed eigenvalues were checked, they could be totally inaccurate.
LOPSI does not check input parameters for errors.

e The codes SRRIT,EB12, EB13, and ARPACK all have error flags and check
the parameters supplied by the user for errors. If an error is detected,
EB12 and EB13 optionally print a message indicating what the error
is. Both SRRIT and ARPACK set a flag and provide documentation for
interpreting the flag.

e The codes ARNCHEB, EB13, SRRIT, and ARPACK have monitoring print-
ing; that is, at each iteration they print values of, for example, the
computed eigenvalues and the corresponding residuals. This infor-
mation allows the user to follow the convergence. It is particularly
useful for the reverse communication codes EB13 and ARPACK because,
if the convergence is not proceeding satisfactorily, the user is able to
intervene. For EB13, SRRIT, and ARPACK the monitoring printing is
optional. EB12 offers the option of printing error and/or warning mes-
sages, but users can monitor convergence only by exploiting the reverse
communication interface and displaying the information themselves.

o Our experiences suggest that LOPSI and ARNCHEB were not compre-
hensively tested. Both codes were found to contain bugs.?

2The authors of the respective codes were contacted with our findings.
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¢ The Fortran programming within ARNCHEB could be considerably im-
proved. The code uses nonstandard Fortran 77 (such as REAL*8 dec-
larations), which caused some of the compilers we used for testing the
codes to return error messages. When the code was checked with a
Fortran code analyzer,® a large number of errors messages were re-
turned. The analyzer passed the other codes as conforming to the
Fortran 77 standard.

5.6 Input Parameters

Good general-purpose software should make most decisions automatically
and not require the user to have a detailed understanding of the algorithm
being implemented. Fach of the codes in our study requires the user to
choose the number r of eigenvalues required, the subspace dimension m,
and the convergence tolerance €. In addition, some of the codes require the
user to decide which portion of the spectrum is to be computed.

Table 3: Input from the user

‘ Code Required Input

LOPSI Matrix A in standard sparse format
Maximum number of matrix-vector products
Maximum number [ matrix vector products
between the oblique projections

SRRIT Matrix-vector product routine
Maximum number of iterations

EB12 None

ARNCHEB Matrix-vector product routine
Type of ellipse
Degree of Chebychev polynomial
Amount of orthogonalization
Whether to perform deflation

EB13 Block size

ARPACK  Maximum number of iterations

Requiring the user to choose these parameters may appear reasonable

Spfort, ISTLA - Toolpack Static Analyser, Version 1.2
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because the user is likely to know how many eigenvalues are required and
how much accuracy is wanted. However, as discussed in Section 5.3, in order
to select an appropriate value for ¢, the user generally needs some knowledge
of the problem, such as the norm of A or the size of the sought-after eigen-
values. Furthermore, our experience with the codes has shown that selecting
r to be greater than the number of eigenvalues actually required can some-
times yield more rapid convergence. This can happen if the sought-after
eigenvalues are not well separated from the remaining ones and better sep-
aration is achieved by increasing r. Moreover, the efficiency of the software
depends strongly on the choice of m. For small m, convergence may not be
possible. On the other hand, if m is large, the amount of work per iteration
and the storage requirements may be prohibitively high. Some numerical
results illustrating the effects of different choices for m may be found in Duff
and Scott (1993).

All the codes, with the exception of EB12, require the user to supply
values for at least one other input parameter. These parameters are listed
in Table 3. Finite termination of the computation is ensured by specify-
ing the maximum number of iterations and/or the maximum number of
matrix-vector products. EB12 and EB13 avoid requiring the user to set these
parameters by having default values that the user is able to reset.

When using ARNCHEB, the user has a number of decisions to make. He or
she must decide which of the routines provided for computing an ellipse is
to be used and whether or not to use reorthogonalisation and/or deflation.
Making these decisions requires an understanding of Arnoldi’s method and
its implementation. The ability to experiment with different options is of
considerable value, and thus EB13 also offers different ellipse routines. The
difference is that EB13 has a default routine that is used unless the user
selects one of the alternatives. The use of default settings helps make EB12
and EB13 user friendly while at the same time providing flexibility.

6 Numerical Experiments

In this section and in the Appendix, results are presented for a range of
problems arising from scientific and industrial applications. Qur aims are
to compare the performance of the software discussed in this paper and to
acquire a better understanding of the practical behavior of the methods and
of the importance of different implementation details.
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6.1 The Test Matrices

Table 4: The matrices used for performance testing (* indicates matrix from
the collection of Bai, Barratt, Day and Dongarra 1995a)

Number of

Identifier Order Entries Description/Discipline
PORES2 1224 9613 | Oil reservoir simulation
PORES3 532 3474 | Oil reservoir simulation
GRE1107 1107 5664 | Simulation studies in

computer systems
HOR131 434 4710 | Flow network problem
IMPCOLC 137 411 | Ethylene plant model
IMPCOLD 425 1339 | Nitric acid plant model
NNC666 666 4044 | Nuclear reactor core modeling
NNC1374 1374 8606 | Nuclear reactor core modeling
WEST0156 156 371 | Chemical engineering plant model
WEST0167 167 507 | Chemical engineering plant model
WEST02021 || 2021 7353 | Chemical engineering plant model
CK400x 400 2860 | Not available
CK656% 656 3884 | Not available
PDE2961x 2961 14585 | Model PDE eigenvalue problem
RW5151% 5151 20199 | Markov chain modeling;:
random walk

CDDEx* 2-D convection diffusion problem
TOLOSAx Stability of aircraft in flight
BW2000% 2000 7996 | Chemical engineering model

The matrices we have used to evaluate the performance of the software
are taken either from the well-known Harwell-Boeing collection of sparse
matrices (Duff, Grimes and Lewis, 1992) or from the collection of large
eigenvalue problems of Bai, Barrett, Day and Dongarra (1995a). Many
of the problems were chosen because they have appeared elsewhere in the
literature on solving large sparse nonsymmetric eigenvalue problems (for ex-
ample, Sadkane, 1993, uses the matrices GRE1107 and PORES3 when test-
ing his block Arnoldi-Chebychev method and Saad, 1984, uses the random
walk problem in his tests on Arnoldi-based methods). The Harwell-Boeing
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matrices arise from linear systems of equations and are not nonsymmetric
eigenvalue problems. Nevertheless, computing eigenvalues for some of the
matrices in the collection can provide useful tests for the software. The
problems in the collection of Bai et al. are ideal for our study because the
primary purpose in developing the collection was to provide a testbed of
practical problems for use in testing numerical algorithms for solving eigen-
problems. However, this test set is still under development, and only part
of the collection is currently available.

6.2 Verification

It is important when testing software that an attempt be made to check the
correctness of the computed results. For example, an important consider-
ation is whether any of the sought-after eigenvalues have been missed. In
the symmetric case, a factorization is performed, and an inertia count then
provides a check for missing eigenvalues (see Grimes et al., 1994, and Par-
lett, 1980, for details). There is no analogous procedure for nonsymmetric
matrices.

For our study, we may determine the reliability of the codes by using the
exact eigenvalues. The forward error is defined to be

A — 0.

FFEpee = 112?3)(7« %, (6.1)
where A; and 6; are the exact and computed eigenvalues, respectively, of
A. This tests the forward stability of the software. For the test problems
for which the exact eigenvalues are not known, we compare the computed
eigenvalues with those found by using the Qr algorithm.

We also check results by computing the r eigenvector residuals

Ay — 0yl (6.2)
and the real and imaginary portions of the Rayleigh quotient errors
ly" Ay — 0y "y 2. (6.3)

SRRIT does not compute the eigenvectors of A, but the code is designed
so that it is straightforward to do this computation by using the LAPACK
routine DTREVC. We have done this in our tests with SRRIT.
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For all the codes except ARNCHEB and LOPSI, we check the orthogonality
of the computed Schur basis and quality of the Schur projection by comput-
ing

IXIX, — L[l and [|XTAX, — T,||c, (6.4)

respectively.
The checks (6.2)—(6.4) are designed to test the backward stability of the
software.

6.3 The Test Environment

The numerical experiments were performed on an IBM RS/6000 3BT us-
ing double-precision arithmetic and the vendor-supplied BLAS. As we have
already seen, the software in our study employs different stopping critera.
Therefore, even if we supply each code with the same convergence tolerance
and if the computations all terminate successfully, the eigenvalues computed
by each code may differ. For the results reported in this section and in the
Appendix, the codes each used a convergence tolerance that gave eigenval-
ues with an accuracy of at least /u (for some of the test examples, different
codes used different convergence tolerances). The convergence tolerances
used were all in the range 10u to 10™* (u denotes the relative machine pre-
cision).

In designing their software, the authors have all attempted to produce
codes that can be used as black boxes. It should be recognized that, in
doing so, the authors have had to make a number of ad hoc decisions and
there may be problems for which the choices that have been made are either
poor or completely unsuitable. To assess the usefulness of the choices that
have been made, we use only the default values (or values recommended
by the authors in their documentation) for all parameters in our numerical
experiments.

As discussed in Section 5.6, given the use of default parameters, there
remain other parameters that must be chosen by the user. The choices made
for these parameters can significantly affect the performance of the software.
When testing the software on a particular problem, we use the same values
of r and m for each code. This choice allows us to compare the relative
performance of the codes.

The code ARNCHEB requires the degree of the Chebychev polynomial to
be specified by the user but provides no advice on how to do this. We
performed some preliminary experiments with the code and, on the basis of
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these experiments, selected a degree of m — r for all our reported results. In
our tests, doubling or even tripling this value generally increased the total
time required for convergence.

In the next two subsections we present detailed results for the TOLOSA
matrix and the two-dimensional convection-diffusion problem (CDDE). Fur-
ther results for other matrices in our test set are given in the Appendix and
in the reports by Lehoucq and Scott (19954, 19955).

6.4 Results for the TOLOSA Matrix

The TOLOSA matrix arises from the stability analysis of a model of an
airplane in flight. Its eigenvalues lie on a parabola in the left-half plane
that opens to the left. The eigenvalues of interest are the eigenvalues of
largest imaginary part, which are also those of largest modulus. The matrix
is non-normal, and its departure from normality increases with the order of
the matrix.

Table 5: CPU times (in seconds) and matrix-vector products for the
TOLOSA matrix of order 1000 (* denotes that code did not converge within
4000m matrix-vector products)

Subspace dimension m

Algorithm 8 16 32
SRRIT 33/20488 141/64016 *
EB12 34/17719 120/35087 65/10271
ARNCHEB 1.0/1867 2.4/2583  7.3/4294
EB13 5.6/5545  0.8/625 8.2/3917

ARPACK 15/5120  4.5/1082 3.2/482

The code LOPSI was not used for this problem since the matrix is not
stored explicitly. We employed each of the other codes discussed in Section 4
to compute the eigenvalue of largest imaginary part and the corresponding
eigenvector of the TOLOSA matrix with orders up to 2000. Our findings
for n = 1000 and » = 2000 are summarized in Tables 5 and 6.

We observe that, for this problem, the subspace iteration codes are much
slower to converge than the Arnoldi codes. With m = 16 and n = 1000,
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Table 6: CPU times (in seconds) and matrix-vector products for the
TOLOSA matrix of order 2000 (* denotes that code did not converge within
4000m matrix-vector products)

Subspace Dimension m

Algorithm 8 16 32
SRRIT * * *
EB12 117/26255 72/9919  341/26111
ARNCHEB 5.0/4201 6.3/4100 15/5484
EB13 2.8/1451 6.4/2468 7.1/1657

ARPACK 16/2528  3.4/422  5.0/422

SRRIT found 16 eigenvalues with the requested accuracy. We also see that
the value of m giving the best ARPACK results is larger than that giving the
best ARNCHEB and EB13 reresult sults. This suggests that the figures given in
Table 2 for the storage requirements of the different codes should be treated
with caution. However, if m is sufficiently large, the number of matrix-vector
products required by ARPACK is significantly less than the numbers used by
the other codes.

6.5 Results for a Convection-Diffusion Problem

The second problem for which we present results is a two-dimensional model
convection-diffusion problem

—Au(ac, y) +pV- Vll($, y) = /\11($, y)v

on the unit square [0,1] x [0, 1], with zero boundary data and p a real
number. The problem is discretized using centered finite differences. The
eigenvalues and eigenvectors of the resulting matrix are known explicitly
(see, for example, Bai et al., 1995a). We have chosen this example because
it has the following interesting properties:

¢ Many of the eigenvalues have multiplicity two. It may be shown that, if
|p| < \/m, the eigenvalues are all real and the matrix is diagonalizable.

o Asthe mesh size decreases, the relative separation of all the eigenvalues
decreases. All the eigenvalues are contained within the interval (0, 8).
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o As p increases, so does the non-normality of the matrix.

We computed r = 6 eigenpairs of largest real part for a range of val-
ues of p and for orders up to n = 10,000. The eigenvalues of largest real
part are also those of largest modulus. Again, LOPSI was not used for this
problem because the matrix is not held explicitly. Tables 7 to 10 illustrate
that SRRIT can be much slower to converge than EB12 and may require an
unacceptably large number of matrix-vector products. For the smaller val-
ues of p and n used in the tests, EB12 can be competitive with the Arnoldi
software. We also found that, as n was increased, EB13 and ARPACK required
much smaller convergence tolerances than did the subspace iteration codes if
missing multiple eigenvalues were to be avoided. In each of our tests on this
problem, ARNCHEB failed to compute the required eigenvalues with the re-
quested accuracy (although it was successful when used to compute a single
eigenpair).

Table 7: CPU times (in seconds) and matrix-vector products for the 2-D
Laplacian (p = 0) matrix of order 2500 (} denotes that one or more of the
requested eigenvalues was missed)

Subspace Dimension m

Algorithm 18 36
SRRIT 83/29583 106/27465
EB12 9.6/5312  27/14450
ARNCHEB t t

EB13 7.2/2116  8.2/1358

ARPACK  8.7/639  9.1/532

In addition to the tests reported in the tables, we ran the case p = 40
with n = 10,000. Since |p| < v/n, the exact eigenvalues are all real. All
the codes experienced difficulties for this example. SRRIT and EB12 did not
converge with the required accuracy within 4000m matrix-vector products.
Using convergence tolerances of \/u and 10%u, ARPACK ran without an error
flag being set, but complex eigenvalues were returned. When the accuracy
of the computed eigenvalues was tested, the forward error was found to be
0(1072). However, the computed results were those of a nearby matrix: the
four residuals (6.2)-(6.4) were suitably small. With the same convergence
tolerances, EB13 returned real eigenvalues but missed the multiplicities.
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Table 8: CPU times (in seconds) and matrix-vector products for the 2-D
Laplacian (p = 0) matrix of order 10,000. Note that with m = 36, SRRIT
found 11 eigenvalues with the requested accuracy (* denotes that code did
not converge within 4000m matrix-vector products).

Subspace Dimension m

Algorithm 18 36
SRRIT * 2326,/92196
EB12 62/8631  153/20099
ARNCHEB * *

EB13 81/4781  115/4263

ARPACK 171/2625 79/1081

Table 9: CPU times (in seconds) and matrix-vector products for the CDDE
matrix with p = 10 of order 2500. Note that with m = 36, SRRIT found 11
eigenvalues with the requested accuracy ({ denotes that one or more of the
requested eigenvalues was missed).

Subspace Dimension m

Algorithm 18 36
SRRIT 127/46098  332/88356
EB12 13/5971 33/9668
ARNCHEB t t

EB13 41/12178  46/3383

ARPACK 8.3/602 11/613
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Table 10: CPU times (in seconds) and matrix-vector products for the CDDE
matrix with p = 15 of order 10000 (* denotes that code did not converge
within 4000/ matrix-vector products)

6.6

Subspace Dimension m

Algorithm 18 36
SRRIT * *
EB12 284 /41857  292/34268
ARNCHEB * *
EB13 727/20004 436/7263

ARPACK 61/991 80/1095

General Findings

In this subsection we summarise our findings based on running the codes on
all the test problems listed in Table 4.
First, our conclusions for the subspace iteration codes are :

SRRIT can be much slower than EB12 and LOPSI. The reason appears
to be that, although SRRIT uses only a small number of iterations, it
generally performs many more reorthogonalizations than do the other
codes. SRRIT also allows a large number of matrix-vector products to
be performed between projections.

An attractive feature of SRRIT is that it displays monotonic consis-
tency; that is, as the convergence tolerance decreases, so does the size
of the computed residuals.

LOPSI can be the fastest subspace iteration code for computing a single
eigenvalue, but if » > 1, it can return spurious eigenvalues. We believe
there is probably a bug in the code, but we have not yet located the
source of the problem.

SRRIT has a useful property of being able to recognize clusters of eigen-
values. This can lead to the code’s returning more eigenvalues than
requested. Qur experience suggests that some adjustment to the val-
ues of the (internal) parameters used in detecting a cluster may be
beneficial.
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Use of a Chebychev polynomial may improve the performance of EB12
but it can also degrade it. This cannot be anticipated unless some
knowledge of the distribution of the eigenvalues is already known.

All the subspace iteration codes are extremely slow when used to solve
the most difficult test problems in our test set.

Our findings for the Arnoldi codes are the following:

ARPACK is generally the fastest and most dependable of the codes stud-
ied, especially for small convergence tolerances and large departures
from normality.

Like SRRIT, ARPACK displays monotonic consistency.

The code EB13 offers many options and, as these options are fully
documented, they enable the user to experiment with different choices.

ARNCHEB gives reasonable results for computing a single eigenpair but
it can struggle on problems for which several eigenvalues are requested.

On some of the examples, ARPACK uses dramatically fewer matrix-
vector products than the code. However, its restarting strategy can
be more expensive. This is typically the case when the cost of a matrix-
vector product is inexpensive.

For some problems, EB13’s blocking option gives disappointing results
and appears to need further work. The results given in Sadkane (1993)
reflect a much larger subspace being constructed than was attempted
in our study.

Comparing subspace iteration with Arnoldi’s method and considering
the suitability of the codes to solve industrial eigenproblems, we draw the
following general conclusions:

For many of the test problems, the best Arnoldi result is better than
the best subspace iteration result.

There is a tendency of the Arnoldi methods to miss multiple eigen-
values when the matrix is highly non-normal. The subspace iteration
code SRRIT was generally the most reliable code for problems with
clustered and/or multiple eigenvalues, but it could be unacceptably
slow.
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7

None of the codes succeeds on all the test problems. In particular, all
the codes experience difficulties for problem BWM2000. This problem
is described in Saad (1992) and Bai et al. (1995a). The eigenval-
ues of practical importance are the right-most ones, but none of the
codes studied successfully computed them. However, overall, we found
ARPACK to be the most successful of the codes studied.

All the codes are sensitive to the choice of input parameters, and
they all leave important decisions, such as the choice of the subspace
dimension m, to the user.

The performance of the subspace iteration and Arnoldi methods is
extremely dependent on implementation details within the software.

Conclusions

We end our study by briefly discussing features found in the current software
that should be part of any revisions to existing software or should be incor-
porated in new attempts at high-quality software. Also addressed are new
areas of research for improved algorithms and the construction of software

implementing them.

The grouping of clustered eigenvalues appears to be an important fea-
ture for problems with equal or nearly equal eigenvalues. This is at-
tempted by SRRIT but needs further study.

A well-engineered strategy for detecting stagnating convergence may
prevent the code from performing unnecessary work. Although not
always successful, EB12 and EB13 attempt to do this; further investi-
gation is needed. More generally, as examined in Section 5.3, further
research and testing need to be undertaken to improve the ways in
which the software decides to terminate the computation.

For codes implemented in Fortran 77, we recommend the use of re-
verse communication for carrying out matrix-vector products. How-
ever, perhaps the time has now come to consider a more modern pro-
gramming language. This could remove the requirement for a reverse
communication interface.

Improved polynomial restarting methods are needed. The success of
ARNCHEB, ARPACK, EB12, and EB13 depends upon such strategies. The
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latter two codes include mechanisms for tracking the polynomials con-
structed as the iteration progresses. Such mechanisms should be in-
corporated into new polynomial restarting methods. ARPACK allows
the user to select shifts during each iteration and should prove useful
for determining alternate or new polynomials.

e The ability to deflate a converged invariant subspace can substantially
reduce the amount of work performed when more than one eigenpair
is wanted. Deflation strategies may also improve the reliability of the
Arnoldi-based software. The deflation strategies proposed by Lehoucq
and Sorensen (1995) need to be implemented in ARPACK and their
effects studied.

e Automatic verification procedures are sorely needed. At present, no
software is available for determining whether the given eigenvalue
problem was solved. Successful convergence implies only that an eigen-
value problem was solved. This situation is to be contrasted with the
situation when A is symmetric. Some work on a possible approach
in the nonsymmetric case has been done by Meerbergen, Spence and
Roose (1994).

e The automated selection of software parameters is another area where
research is needed. For example, given that the user requests r eigen-
values, the software should attempt to determine the appropriate size
m of the subspace needed during each iteration. There could be ad-
vantages here in using, for example, the Fortran 90 programming
language, since it allows dynamic allocation of storage.

Given the results of this study, we believe that an implicitly restarted
Arnoldi iteration appears a promising way forward.

8 Availability of the Codes and Tests

We summarize how the interested reader may obtain the test matrices and
software reviewed in this study.

e The test matrices of Bai et al. are available by anonymous ftp to
ftp.ms.uky.eduin the directory pub/misc/bai/Collection.

¢ The Harwell-Boeing matrices of Duff et al. are available by anonymous
ftp to seamus.cc.rl.ac.uk in the directory pub/harwell boeing.
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e LOPSI is available by anonymous ftp to netlib.att.comin the direc-
tory netlib/toms as the compressed Fortran file 570.Z.

e SRRIT is available by anonymous ftp to ftp.ms.uky.edu in the direc-
tory pub/misc/bai/SRRIT.

e ARNCHEB is available by anonymous ftp to orion.cerfacs.fr in the
directory pub/algo/software/Qualcomp/Arncheb/Real.

e ARPACK is available by anonymous ftp to ftp.caam.rice.edu in the
directory pub/people/sorensen/ARPACK. The file README provides di-
rections on downloading the software.

e EB12 and EB13 are included in Release 12 of the Harwell Subrou-
tine Library, and anyone interested in using the code should contact
the HSL Manager: Dr. S. J. Roberts, Harwell Subroutine Library,
AFEA Technology, Building 552, Harwell, Oxfordshire, OX11 ORA,
England, tel. +44 (0) 1235 434714, fax +44 (0) 1235 434136, or e-
mail Scott.Roberts@aeat.co.uk, who will provide details of price
and conditions of use.
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A Appendix: Tables of Results

In this section, the accuracy of the computed eigenvalues is at least /u. A
superscript of the form (kA) indicates that the code actually found k (k > r)
eigenvalues.

Table A-1: CPU times (in seconds) and matrix-vector products for com-
puting the eigenvalues of largest modulus of PORES2 (i denotes spurious
eigenvalues returned)

Algorithm r=1,m=8 r=4, m=20

LOPSI 0.2/121 1
SRRIT 0.4/168 2.6/750(3Y
EB12 0.2/111 1.0/246
EB13 0.1/17 0.2/41
ARPACK 0.1/16 0.3/34

Table A-2: CPU times (in seconds) and matrix-vector products for comput-
ing the right-most eigenvalues of PORIS2

Algorithm r=1,m=12 r =4, m=20

EB12 0.6/423 9.1/2890
ARNCHEB  3.4/1401 4.7/1712
EB13 0.4/119 1.3/305

ARPACK  0.5/90 1.3/151
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Table A-3: CPU times (in seconds) and matrix-vector products for comput-
ing the eigenvalues of largest modulus of PORES3

Algorithm r=1,m =28

r=5m=20

LOPSI 0.3/769
SRRIT 0.4/648(4))
EB12 0.6/1735
EB13 0.2/113

ARPACK 0.1/36

0.3/481
1.3/1364(13Y)
0.7/869
0.8/325
0.2/48

Table A-4: CPU times (in seconds) and matrix-vector products for com-
puting the right-most eigenvalues of PORES3 (* denotes convergence not
reached within 2000/ matrix-vector products)

Algorithm r=1,m=8 r=4,m=20
EB12 * *
ARNCHEB * *

EB13 * *

ARPACK x 38/11684

Table A-5: CPU times (in seconds) and matrix-vector products for com-
puting eigenvalues of GRE1107 (the eigenvalues of largest modulus are also
the right-most eigenvalues) (I denotes spurious eigenvalues returned, and *
denotes convergence not reached within 2000m matrix-vector products)

Algorithm r=1,m=8 r=5 m=20
LOPSI 1.4/1761 i

SRRIT 2.6/2032 4.5/2198
EB12 1.6/2159 4.3/4774
ARNCHEB 4.0/2204 *

EB13 1.1/465 2.5/1449
ARPACK 1.3/302 1.4/260
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Table A-6: CPU times (in seconds) and matrix-vector products for com-
puting eigenvalues of NNC1374 (the eigenvalues of largest modulus are also
the right-most eigenvalues) ({ denotes one of the required eigenvalues was
missed, and ¢ denotes the code was not suitable because it was not designed
to compute the requested portion of the spectrum)

Algorithm r =1, m =8 r=5,m=20 r=5m=20
(largest modulus) (right-most)

LOPSI 3.7/3457 7.9/5211 o
SRRIT 8.2/5128 12/5600 o

EB12 1.4/1151 5.4/5755 4.2/1633
ARNCHEB  4.1/1758 o 140/379351
EB13 0.4/117 4.0/659 2.1/557
ARPACK  0.6/112 1.4/167 1.2/145

Table A-7: CPU times (in seconds) and matrix-vector products for com-
puting the right-most eigenvalues of WEST2021 (* denotes convergence not
reached within 2000/ matrix-vector products)

Algorithm r=1,m=8 r=5 m=20

EB12 * 98/20930
ARNCHEB 8.6/3233 71/15921
EB13 17/4869 18/4149

ARPACK 3.7/401 2.1/167
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Table A-8: CPU times (in seconds) and matrix-vector products for comput-
ing r = 8 eigenpairs of CK400 and CK656 with m = 20 (the eigenvalues
of largest modulus are also the right-most eigenvalues) (i denotes spurious
eigenvalues returned, and { denotes multiple eigenvalues were missed)

Algorithm  CK400 CK656

LOPSI i i
SRRIT 0.8/1008 1.3/994
EB12 0.8/943  1.6/1035
ARNCHEB i i
EB13 0.3/228  0.6/238

ARPACK 0.2/61  0.3/70

Table A-9: CPU times (in seconds) and matrix-vector products for comput-
ing the right-most eigenvalues of PDE2961

Algorithm r=1,m=8 r=6,m=30

EB12 2.1/791 17/5225
ARNCHEB  13/3161 14/3357
EB13 0.8/119 3.9/405

ARPACK 1.3/104 3.0/137




