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1 INTRODUCTION 21 IntroductionIn this paper we are concerned with the standard eigenvalue problemAz = �z; (1.1)whereA is a large sparse real nonsymmetric matrix. The past few years haveseen considerable research into numerical methods for computing selectedeigenvalues and eigenvectors of (1.1). This has led to the development of newsoftware and to papers and reports describing the usefulness of the softwarefor solving practical problems (see, for example, Du� and Scott, 1993; Baiand Stewart, 1992; Braconnier, 1993; Sorensen, 1995; Scott, 1995). How-ever; the published numerical results are extremely limited, and, in general,authors of software have provided few results comparing the performance oftheir software with that of rival software. The recent books by Saad (1992)and Chatelin (1993) consider the state-of-the-art of large eigenproblem tech-niques, and the progress report by Bai (1995) provides a useful review ofthe origins of eigenvalue problems and algorithmic techniques. In the midstof all this activity, there remains a lack of comparative numerical resultsfor current software, and this motivates our current study. We aim to re-view, compare, and evaluate software for sparse nonsymmetric eigenvalueproblems in terms of the following criteria:� the user interface,� storage requirements,� performance,� accuracy and stability, and� reliability and robustness.To keep the current study to a reasonable length, we restrict our attentionto algorithms that require only matrix-vector products with A; we do notexamine methods that require linear equations involving A to be solved.This focus allows us to examine the quality of the underlying algorithm andassociated software. We refer the reader to the survey by Meerbergen andRoose (1994) for a review of methods that use spectral transformations thatrequire the solution of linear equations involving A.Three methods have received signi�cant attention by the numerical anal-ysis community. These are subspace (or simultaneous) iteration, Arnoldi's



1 INTRODUCTION 3method, and the (nonsymmetric) Lanczos method. Our intention is to pro-vide a comprehensive comparative study of these three methods, along withthe recent Jacobi-Davidson method of Sleijpen and Van der Vorst (1995).In this paper we consider only subspace iteration and Arnoldi methods,for which several high-quality codes have been written. The scope of ourstudy is restricted to software that is available either in the public domainor under licence. For the Lanzcos method, there is currently only a verylimited amount of such software. As far as we are aware, the only codethat falls within the criteria for inclusion in this study is the code EIGLALof Freund, Gutknecht and Nachtigal (1993). Recent work on Lanzcos al-gorithms has been published by Cullum (1994), and a new Lanzcos code,ABLE, is currently under development (Bai, Day and Ye, 1995b). At present,there is no software implementing the Jacobi-Davidson method that meetsour criteria. As software for these methods becomes available, however, weplan to evaluate and compare it with subspace iteration and Arnoldi-basedsoftware.This paper is organized as follows. We briey review subspace iterationin Section 2 and Arnoldi's method in Section 3. The main features of theavailable software are discussed in Section 4. In Section 5 we compare thesoftware in terms of how matrix-vector products are performed, the use ofBLAS and LAPACK, the stopping criteria, storage requirements, and userinterfaces. The design of our experiments to compare the performance ofthe software is the subject of Section 6. We explain how we veri�ed thecomputed results and present numerical results for our test matrices. Basedon our experiences with the di�erent codes, we consider in Section 7 thefeatures that we would like to see incorporated in new software to computeeigenvalues of nonsymmetric matrices. General conclusions are also drawn.We end this section by introducing the notation that is used throughoutthis paper.� The eigenvalues of A are denoted by �1; �2; : : : ; �n, with associatedeigenvectors z1; z2; : : : ; zn. The eigenvalues are assumed to be orderedaccording to which eigenvalues are sought. For example, if the right-most eigenvalues are required, the eigenvalues are ordered in decreasingorder of their real parts. Subscripts are dropped when no confusionwill result.� n denotes the order of A.� r denotes the number of sought-after eigenvalues of A.



2 SUBSPACE ITERATION 4� m denotes the dimension of the subspace used in the subspace iterationand Arnoldi algorithms.� Xm = h Xr �Xm�r i denotes the matrix representation of this sub-space.� (s; �) denotes an eigenpair of the projection matrix of order m of Aonto the column space of Xm:� The approximate eigenpairs for A are called Ritz pairs if Ay � y�,where y = Xms.� Tm denotes the quasi-triangular Schur matrix associated with the pro-jection of A.� XTmAXm � Tm is an approximate real partial Schur form if XTmXm �Im:� u denotes relative machine precision.� � denotes the user-prescribed convergence tolerance.� ej denotes the j-th canonical basis vector.In this paper we are concerned with the case r < m� n:2 Subspace IterationWe briey recall the main ideas behind the subspace iteration algorithm.Subspace iteration was originally introduced by Bauer (1957), who calledthe method Treppeniteration (staircase iteration). It is a straightforwardmethod for computing the eigenvalues of largest modulus of a real non-symmetric matrix and is a generalization of the power method. It hasbeen widely used and remains particularly popular in structural engineer-ing. Starting with an initial n � m matrix Xm with linearly independentnormalized columns x1;x2; : : : ;xm (called the \trial" vectors), the subspaceiteration method generates a sequence of n�m matrices as follows:1. Start: Choose an initial set of normalized vectorsXm  h x1 x2 � � � xm i.2. Iteration: Until convergence do



3 ARNOLDI'S METHOD 5� Choose l > 1 and compute Xm  AlXm.� qr factorization: QmRm = Xm and set Xm  Qm.� Projection: form Bm = XTmAXm.� Schur form: compute the real Schur form Tm = VTmBmVm, andset Xm  XmVm.In some variations of the algorithm, the qr factorization is not performed(see, for example, Stewart and Jennings, 1981b). In place of the aboveprojection, Bm = (XTmXm)�1XTmAXm is computed.If one assumes the eigenvalues are ordered so that j�1j � j�2j � : : : �j�nj, if j�mj > j�m+1j, it may be shown (under mild restrictions on theinitial set of trial vectors) that the columns of Xm converge to a basis forthe invariant subspace of A corresponding to the m dominant eigenvalues.Convergence is linear with the rate j�m+1=�ij for the ith column of Xm:Further details and discussion of subspace iteration may be found, forexample, in Stewart (1976b), in Watkins and Elsner (1991), and in the recentbooks by Chatelin (1993) and Saad (1992).3 Arnoldi's MethodArnoldi's method (1951) is an orthogonal projection method for approxi-mating a subset of the eigensystem of a general square matrix. Startingwith a vector x1, the method builds, step by step, an orthogonal basis forthe Krylov space of A:Km(A;x1) � Spanfx1;Ax1; : : : ;Am�1x1g:The original algorithm was designed to reduce a dense matrix to upper Hes-senberg form. However, because the method requires knowledge only of Athrough matrix-vector products, its value as a technique for approximating afew eigenvalues of a large sparse matrix was soon realized. When the matrixA is symmetric, the procedure reduces to the method of Lanczos (1950).Over a decade of research was devoted to understanding and overcomingthe numerical di�culties of the method for the case when A is symmetric(see, for example, Parlett, 1980, and Grimes, Lewis and Simon, 1994). De-velopment of the Arnoldi method for nonsymmetric matrices lagged behindbecause of the inordinate computational and storage requirements if a largenumber of steps are required for convergence. Not only is more storage



4 AVAILABLE SOFTWARE 6needed when A is nonsymmetric, but, in general, more steps are requiredto compute the desired eigenvalue approximations. An explicitly restartedArnoldi iteration (era-iteration) was introduced by Saad (1980) in an at-tempt to overcome these di�culties. The restarted Arnoldi method may besummarized as follows:1. Start: Choose an initial normalized vector x1.2. Iteration: Until convergence do� Compute the Arnoldi reduction AXm = XmHm+fmeTm of lengthm with starting vector Xme1 � x1:� Using the length m Arnoldi factorization, select a new startingvector x1.Hm is anm�m upper Hessenberg matrix,XTmXm = Im, and the residualvector fm is orthogonal to the columns of Xm. The matrix Hm = XTmAXmis the orthogonal projection ofA onto the column space ofXm � Km(A;x1):The idea of restarting is based on similar approaches used for the Lanc-zos process by Paige (1971), Cullum and Donath (1974), and Golub andUnderwood (1977). The �rst example of a restarted iteration is attributedto Karush (1951). A relatively recent variant was developed by Sorensen(1992) as a more e�cient and numerically stable way to implement restart-ing. One of the bene�ts of this implicitly restarted Arnoldi iteration (ira-iteration) is that it avoids the need to restart the reduction from scratch ateach iteration.4 Available SoftwareNumerous research codes for solving the sparse nonsymmetric eigenproblemhave been developed over the years. In addition, there are implementa-tions of the subspace iteration and Arnoldi methods embedded within muchlarger codes, for example, within the MSC engineering application software(Komzsik, 1995). However, very little library-quality software has been de-veloped. As discussed in Section 1, in this study we aim to evaluate softwarethat is available through the public domain or under commercial license. Thesoftware must also have been designed by its authors for use by a nonexpert.Speci�cally, it must not demand that the user have a detailed knowledge of



4 AVAILABLE SOFTWARE 7the underlying numerical algorithm. In addition, the software must be sup-plied with documentation and must be implemented by using either the Cor Fortran programming languages.In Table 1 we list all the subspace iteration and Arnoldi codes we areaware of that appear to meet the above criteria. These are the codes thatwill be evaluated in our current study. (We apologize if we have failed toinclude in our evaluation study any other codes that meet our criteria.)Table 1: Subspace iteration and Arnoldi software for the sparse nonsymmet-ric eigenproblem (era denotes explicitly restarted Arnoldi, and ira denotesimplicitly restarted Arnoldi)Code Method Authors Year AvailabilityLOPSI Subspace Stewart and Jennings 1981 TOMSSRRIT Subspace Stewart and Bai 1993 ftpEB12 Subspace Du� and Scott 1991 HSLARNCHEB era Braconnier 1993 ftpEB13 era Scott 1993 HSLARPACK ira Sorensen, Lehoucq, and Vu 1995 netlibIn Table 1, TOMS denotes the ACMTransactions on Mathematical Soft-ware; ftp indicates that the code is available by anonymous ftp; HSL denotesthe Harwell Subroutine Library (1996); and, �nally, netlib indicates that thecode may be obtained through a software repository (Dongarra and Grosse,1987) on the Internet. Full details of how to obtain the codes are given inSection 8.In the remainder of this section, we briey discuss each of the codeslisted in Table 1. Further details may be found in Lehoucq and Scott (1995a,1995b). Note that all the codes are written in Fortran 77.4.1 LOPSIThe code LOPSI of Stewart and Jennings (1981a), which is based on workdone in the 1970s by Clint and Jennings (1971) and Jennings and Stewart(1975), has been available for more than a decade. It uses subspace iterationcombined with a lopsided oblique projection to compute the eigenvalues of



4 AVAILABLE SOFTWARE 8A of largest modulus together with the corresponding eigenvectors.After the �rst iteration, the number l of premultiplications byA betweenprojections is chosen to avoid both the dominant eigenvector components\swamping" the predictions for the lower eigenvectors and unnecessary workbeing performed by carrying the iteration beyond the stage at which conver-gence is achieved. The restriction 1 � l � lmax; where lmax is a user-de�nedparameter, is also imposed. The value of lmax recommended by Stewart andJennings is 10:To increase e�ciency when more than one eigenvalue is required, LOPSIincorporates a deation strategy whereby a column of Xm is locked as soonas it has converged. Locking means that no further computations are carriedout with this vector.Matrix-vector products Ax are performed within LOPSI by an internalsubroutine PREMULT. The matrix A must be passed to LOPSI by using thecoordinate storage scheme; that is, the matrix must be held as an unorderedset of triples (aij ; i; j) using a real array and two integer arrays, of lengthequal to the number of (nonzero) entries in A. To ensure �nite termina-tion, the user is required to specify the maximum number of matrix-vectorproducts that may be performed.4.2 SRRITThe recent subspace iteration code SRRIT of Bai and Stewart (1992) is arevised version of a code by Stewart (1978) of the same name. It com-putes an orthonormal basis for the invariant subspace corresponding to theeigenvalues of largest modulus.As in the code LOPSI, e�ciency is increased by locking columns as soonas they have converged. SRRIT also gives the user the option of supplying theinitial basis Xm. The user must supply a subroutine ATQ to perform matrixproducts AXm. A user-de�ned parameter limits the number of calls to thissubroutine and ensures �nite termination of the code. The subroutine ATQdoes not include the matrix A in its argument list, so A need not be heldexplicitly|only the action of A on vectors is necessary.An iterated modi�ed Gram-Schmidt algorithm with possible reorthog-onalization is used to maintain the orthogonality of the columns of Xm:An internal parameter controls the maximum number of reorthogonaliza-tions that may be performed; this is set to 5: At each iteration, the codecomputes the value of l so that the columns of AlXm remain linearly inde-pendent and orthogonalizations are minimized. SRRIT also determines the



4 AVAILABLE SOFTWARE 9number of iterations before a Schur{Rayleigh{Ritz projection is performed.A projection is performed only when it is anticipated that one or more ofthe columns of Xm satisfy the convergence criterion (see Section 5.3).4.3 EB12The Harwell Subroutine Library code EB12 (Du� and Scott, 1993) is themost general subspace iteration package considered in this study, since it isdesigned to calculate either the right-most or the left-most eigenvalues ofA, or the eigenvalues that are of largest modulus. EB12 computes the right-most (or left-most) eigenvalues by replacing the power Al in the subspaceiteration algorithm by a Chebychev polynomial pl(A) on an ellipse contain-ing the unwanted Ritz values. The idea of using a Chebychev polynomialto accelerate convergence was proposed by Saad (1984). The evaluation ofpl(A)x is carried out by using the three-term recurrence relation for Cheby-chev polynomials.In EB12, the columns of Xm are orthonormalized by using the modi�edGram-Schmidt algorithm. On each iteration, the degree l of the iterationpolynomial is chosen to try to ensure that the columns ofXm remain linearlyindependent. If Chebychev acceleration is employed, l is also chosen toensure the ellipse is updated su�ciently often. Furthermore, l is limitedclose to convergence to prevent unnecessary work from being performed.As in the other codes, EB12 incorporates locking techniques to reducethe computational e�ort if more than one eigenvalue has been requested.EB12 also allows the user to supply the initial basis vectors.The code EB12 uses reverse communication. Each time a set of vectorsis required to be multiplied by A, control is returned to the user. Theadvantages of this approach are discussed in Section 5.1. The maximumnumber of matrix-vector products Ax is limited by a parameter that is heldin a COMMON block.Once EB12 has successfully computed the required eigenvalues of A, theuser may call a separate subroutine, EB12B, to compute the corresponding(normalized) eigenvectors and, optionally, the scaled eigenvector residualskAy� �yk2=kAyk2:4.4 ARNCHEBThe ARNCHEB package of Braconnier (1993) provides subroutine ARNOL thatimplements an explicitly restarted Arnoldi method. The code is based on



4 AVAILABLE SOFTWARE 10the algorithms of Saad (1980, 1984) and may be used to compute either theeigenvalues of largest or smallest real parts, or those of largest imaginaryparts.In ARNCHEB, the computation of the restart vector is a two-step process.First, a linear combination of the r Ritz vectors associated with the r Ritzvalues of interest is formed. Then, a �xed-degree Chebychev polynomialpl(A) on an ellipse containing the unwanted Ritz values is applied to thelinear combination. As in EB12, the evaluation of pl(A)x is carried out byusing the three-term recurrence relation for Chebychev polynomials. Thepolynomial is �xed in the sense that the degree is chosen by the user and isnot varied from iteration to iteration.An iterated classical Gram-Schmidt algorithm is used to maintain or-thogonality of the Arnoldi basis vectors. As for SRRIT, the user must supplya subroutine to form Ax. The package o�ers the user the option of usingWielandt deation (see Wilkinson, 1965, and Saad, 1992, for further de-tails). As the individual Ritz values converge, the code forms the rank jmodi�cation Aj = A �UjSjUTj , where Sj is a diagonal matrix of order jrepresenting the dimension of the approximate invariant subspace that hasalready converged. The idea is to choose Sj so that Aj will converge tothe remainder of the invariant subspace desired. Unfortunately, the eigen-vectors of Aj are not those of A. We remark that the column space Uj isinvariant for A, and thus it is possible for ARNOL to compute Ritz vectorswhen using Wielandt deation. The extra computation is not trivial andmust be carried out by the user. Moreover, there is no documentation toguide the user on how this could be done.14.5 EB13The Harwell Subroutine Library code EB13 (Scott, 1995) also implementsan explicitly restarted Arnoldi method. It allows the user to compute theeigenvalues of A that are right-most, of largest modulus, or of largest imag-inary parts. By working with �A in place of A, the code may also be usedto compute the left-most eigenvalues.EB13 incrementally computes a partial Schur form for A, locking Schurvectors corresponding to Ritz values that converge. At each iteration, therestart vector is taken to be the �rst unconverged approximate Schur vec-tor. A Chebychev polynomial pl(A) on an ellipse containing the unwanted1In fact, the author of ARNCHEB was not aware that this was possible.



4 AVAILABLE SOFTWARE 11Ritz values is applied to the restart vector in an attempt to accelerate con-vergence. The code automatically selects the degree l of the Chebychevpolynomial on each iteration (although the user may override this value).An iterated classical Gram-Schmidt algorithm is used to orthogonalizethe Arnoldi basis vectors. As with EB12, a reverse communication mecha-nism is used for computing matrix-vector products with A.Unlike any of the other Arnoldi codes tested, EB13 optionally computesa block Arnoldi reduction. This option is designed for problems where thewanted eigenvalues are multiple or closely clustered. Another option is avail-able to perform Chebychev polynomial preconditioning on A.Finally, once the required eigenvalues of A are computed, subroutineEB13B may be used to compute the corresponding (normalized) eigenvectorsand, optionally, the scaled eigenvector residuals kAy� �yk2=kAyk2:4.6 ARPACKThe ARPACK software package (Lehoucq, Sorensen and Vu, 1995) providessubroutine DNAUPD that implements an implicitly restarted Arnoldi method.The scheme is called implicit because the starting vector is updated with animplicitly shifted qr algorithm on the Hessenberg matrix Hm.The method is motivated by the following observation. Suppose that  is a polynomial of degree m� r. A simple but tedious derivation shows that (A)Xr = Xm (Hm) h e1 e2 � � � er i : (4.1)Partitioning the qr factorization of  (Hm) asQmRm = h Qr �Qm�r i " Rr Mr0 �Rm�r #allows Equation (4.1) to be rewritten as  (A)Xr = XmQrRr: The col-umn space of XmQr is an orthogonal basis for  (A)Xr: In other words, anira-iteration is equivalent to performing subspace iteration with Xr|whileavoiding matrix-vectors products in A.Restarting the iteration involves post-multiplying the length m Arnoldifactorization with Qm and then retaining the �rst r columns. Thus, an ira-iteration may be viewed as a truncated qr algorithm (see Lehoucq, 1995,and Sorensen, 1995, for further details).DNAUPD computes the eigenvalues of A that are right-most, left-most,of largest or smallest modulus, or of largest or smallest imaginary parts.



5 SOFTWARE COMPARISON 12It uses approximate Schur vectors to restart. An iterated classical Gram-Schmidt algorithm is used to orthogonalize the Arnoldi basis vectors. Thestandard deation rules used by the qr algorithm are employed on Hm:Thus, if a subdiagonal element ofHm becomes small enough, it is set to zero,and the corresponding columns are locked. As in EB12 and EB13, reversecommunication is used when computing matrix-vector products with A: Anoption allows the user to de�ne a polynomial preconditioner on A throughits roots via the implicitly shifted qr iteration on Hm performed duringeach iteration. Spectral transformations are also available, as well as theability to solve the generalized eigenvalue problem, Az = �Bz, when B is asymmetric positive semi-de�nite matrix.Finally, analogous to the approach of EB12 and EB13, once the desiredRitz values have converged, subroutine DNEUPD optionally computes associ-ated approximate Ritz or Schur vectors. Moreover, if a spectral transfor-mation is employed, DNEUPD maps the computed Ritz values to those of theoriginal system.5 Software Comparison5.1 Matrix-Vector Products AXA major implementation di�erence is the way in which the software copeswith forming the product of A with sets of vectors. For large problems, thisprocess can represent the dominant cost. Thus, it is important to minimizethe number of times that A is applied and to ensure that the process isimplemented e�ciently.The code LOPSI is the most restrictive of the codes in our study becauseit requires the user to pass the matrix to the routine by using a de�nedstorage scheme. The matrix-vector products AXm are all performed by asingle subroutine within the code, and the authors comment in their paperthat considerable savings can be obtained by converting this subroutine tomachine code (see Stewart and Jennings, 1981b). Clearly this conversioninvolves intervention by the user. A user could also change the storagescheme used for A to one more suited to his or her problem, but this changewould involve some e�ort, and no documentation is provided to assist withthis.SRRIT and ARNCHEB adopt a somewhat more exible approach by requir-ing the user to supply the subroutine to perform the matrix-vector products.Even though A is not required to be held explicitly, for some problems it



5 SOFTWARE COMPARISON 13can be inconvenient for the user to pass the matrix into this subroutine.For example, since both SRRIT and ARNCHEB use the Fortran programminglanguage, the number of subroutine arguments is �xed. If a user needs addi-tional descriptors to perform matrix-vector products, these must be passedthrough a COMMON block.The reverse communication approach used by the remaining codes pro-vides the most exibility and gives the user the greatest degree of control.The user is able to exploit the sparsity and structure of the matrix and, byavoiding passing the matrix through a COMMON block, can take full advantageof parallelism and/or vectorization. Another obvious advantage of reversecommunication is that the user is able to incorporate di�erent precondi-tioning techniques in a straightforward way. For example, the user maywish to use a shift-and-invert transformation, in which a matrix of the form(A� �I)�1 is used in place of A. The eigenvalues close to the shift � willtend to converge most rapidly, since under the transformation they becomedominant. In this case, linear systems of the form (A��I)w = x are solvedin place of the matrix-vector products w = Ax. If a direct method of solu-tion is used, the lu factorization of (A� �I) need be performed only once.However, since reverse communication allows progress to be monitored, theuser may choose to update � as the computation progresses, thereby requir-ing a new factorization for each shift.5.2 The Use of BLAS and LAPACKApart from the matrix-vector products Ax, the subspace and Arnoldi algo-rithms require only dense linear algebra operations to be performed on ma-trices of order m: One way of achieving an e�cient implementation and as-sisting with robustness, portability, and readability of the software is throughthe use of BLAS (Basic Linear Algebra Subprograms) kernels (Lawson, Han-son, Kincaid and Krogh, 1979; Dongarra, DuCroz, Hammarling and Hanson,1988, and Dongarra, DuCroz, Du� and Hammarling, 1990). The codes inour study use the BLAS to very di�erent degrees. For instance, when LOPSIwas developed, only the Level 1 BLAS were available, and LOPSI, in fact,makes no use of these kernels.EB12, ARNCHEB, and EB13 employ mainly Level 1 and Level 2 BLAS ker-nels. In addition, they use some EISPACK routines (Smith, Boyle, Garbow,Ikebe, Klema and Moler, 1976). EB12 and EB13 use modi�ed versions of theEISPACK routines ORTHES and ORTRAN and of the routine HQR3 given byStewart (1976a).



5 SOFTWARE COMPARISON 14LAPACK (Anderson, Bai, Bischof, Demmel, Dongarra, Croz, Green-baum, Hammarling, McKenney, Ostrouchov and Sorensen, 1992) was de-signed to supersede EISPACK. The authors of LAPACK developed newroutines and restructured the EISPACK software to achieve much greatere�ciency, where possible, on modern high-performance computers. Thiswas accomplished by writing routines that call all three levels of the BLAS.The updating of the original 1978 version of SRRIT included using BLASkernels and replacing EISPACK routines with ones from LAPACK. ARPACKalso makes extensive use of BLAS and LAPACK, and we anticipate thatthis will be reected in its performance. The use of BLAS and LAPACKalso make the software potentially easier to maintain.5.3 The Stopping CriteriaThe codes all use di�erent stopping criteria, thereby complicating perfor-mance comparisons (see Section 6). A useful discussion of stopping criteriafor iterative eigensolvers is given by Scott (1995). Throughout this section,� denotes a user-de�ned tolerance.For subspace iteration, the dominant eigenvalues converge most rapidlyso the codes test only the (j+1)-st eigenvalue after the jth one has converged.In the code LOPSI, a column of Xm is accepted as an approximation to aneigenvector of A when it becomes nearly stationary. Speci�cally, if X(k)m isXm on the kth iteration (k � 0), the jth column of X(k)m is accepted if itsatis�es the inequality k(X(k)m �X(k�1)m )jk1 < �:Such a stopping criterion may fail in the case of A having equal, or nearlyequal, eigenvalues.In an attempt to overcome this problem, SRRIT, EB12, and EB13 followStewart (1978) and base their stopping criterion on demanding that AXr �XrTr: In SRRIT, the jth column of Xm is said to have converged ifk(AXm �XmTm)jk2 < j�j j�;where �j is the jth eigenvalue of Tm. At each iteration, the residualsk(AXm �XmTm)jk2 are computed for j = i+ 1; : : : ; r, where i+ 1 pointsto the �rst unconverged eigenvalue. The code groups eigenvalues that havenearly equal moduli. The eigenvalues computed on the previous iterationare also grouped. If the two groups have the same number of eigenvalues



5 SOFTWARE COMPARISON 15and the average value of the eigenvalues has settled down, the residuals areaveraged and tested against �.The convergence criterion used by EB12 for the jth column of X requiresk(AXm �XmTm)jk2 < k(AXm)jk2�: (5.1)The residual k(AXm �XmTm)jk2 is computed only if all the basis vectorsXi with 0 < i < j have already been accepted. EB12 monitors the residualsfor unacceptably slow convergence and, if necessary, terminates the com-putation with a warning that the requested accuracy was not achieved. Inthis event, the user is advised on how to modify the input parameters to tryto obtain the requested accuracy. Facilities are included for restarting thecomputation from the point at which the warning was issued.EB13 allows the user a choice of stopping criteria. In addition to o�ering( 5.1), the user has the choice of requiring that k(AXm�XmTm)jk2 < kAk�or < �: The advantage of using the norm of A is that the stopping criterionis based on the backward error. A disadvantage is that it requires kAk tobe known. EB13 requests the user to provide kAk (or an estimate of kAk).If the user is unable to do this, the code will compute the Frobenius normof A at the cost of n matrix-vector products.The most compelling reason for possibly not wishing to use a stoppingcriterion that involves the norm of A is that it can lead to accepting Ritzvalues that have no digits of accuracy. In some practical situations, eigenval-ues are used to study stability, and the interest is in whether the right-mosteigenvalue has a nonpositive real part. Since high precision in the computedeigenvalues may not be necessary, the user may be tempted to set the con-vergence tolerance � to be, for instance, 10�4. But if the norm of A is oforder 105, the stopping criterion may lead to a computed � being acceptedas converged when it actually has no accuracy. Thus, wrong conclusionsconcerning the stability of the system may be drawn. Clearly, if the normof A is to be used, the user should take its size into account when selectingthe convergence tolerance.In a similar manner to EB12, EB13 attempts to terminate the computa-tion if convergence appears to have stagnated.For Arnoldi's method, an inexpensive estimate of the norm of the eigen-vector residual is available. Let AXm = XmHm + fmeTm be an Arnoldifactorization of length m: If s is an eigenvector of Hm and y = Xms, itfollows thatkAy� y�k = kAXms�XmHmsk = kfmk jeTmsj:



5 SOFTWARE COMPARISON 16The bene�t of using the Ritz estimate kfmk jeTmsj is that it avoids explicitformation of the direct residual kAXms�Xms�k: ARPACK bases its stoppingcriterion on the Ritz estimate. Moreover, since only the last component ofs is needed, ARPACK does not compute the full eigenvectors of Hm at eachiteration. The computation is terminated on the �rst iteration that r Ritzvalues all satisfy kfmk jeTmsj < j�j�:We remark that since k(AXm)jk2 � jjAjj2 and j�j � jjAjj2, ARPACK,EB12, and SRRIT also base their stopping criterion on the backward error.Moreover, the user should consider the size of j�j when selecting � for thesecodes.Recent work by Chatelin (1993) and Bennani and Braconnier (1994) sug-gests that when A is highly non-normal, there can be a signi�cant di�erencebetween the Ritz estimate and the eigenvector residual. Because of this po-tential di�erence, ARNCHEB computes both the scaled Ritz estimate and thedirect backward error given bykfmk jeTmsjkAkF kyk2 and kAy� �yk2kAkF kyk2 ;respectively, where kAkF denotes the Frobenius norm of A. The currentversion of the code tests the direct backward errors for convergence. ARNCHEBdoes not o�er the user the option of supplying kAkF but computes kAkFwith n matrix-vector products.5.4 Storage RequirementsFor large problems, the amount of storage needed can be an importantconsideration when selecting a code. In Table 2 we compare the storagerequirements of the codes in our study. We observe that, for a given subspacedimension m, ARPACK uses the least amount of storage.Assuming a block size nb = 1, we see that EB12 and EB13 each need threearrays of length nm while SRRIT requires only two such arrays. There are tworeasons why EB12 and EB13 demand an extra array. First, to use the three-term recurrence relation for Chebychev polynomials to compute pl(A)X,three arrays of length nm are needed. Second, as already discussed, EB12and EB13 use reverse communication. To try to ensure against the user'soverwriting the latest approximationXm to the Schur vectors, the user forms



5 SOFTWARE COMPARISON 17matrix-vector products by using two arraysU andW of dimension nm andthen, within the code, copying into the appropriate part of the third arrayXm is performed. Thus, even if Chebychev acceleration is not employed,EB12 and EB13 demand three arrays of length nm.Table 2: Storage requirements (nb denotes the block size for EB13)Code StorageLOPSI 3n�m+ 4m2 + O(m)SRRIT 2n�m+ 2m2 + O(m)EB12 3n�m+ 2m2 + O(m)ARNCHEB 3n� (m+ 5) + 2m2 +O(m)EB13 3n�m� nb + 2m2 + O(m)ARPACK n� (m+ 4) + 3m2 + O(m)5.5 User InterfaceAn important feature of any code written for general use is that it shouldbe accompanied by straightforward but comprehensive documentation thatallows the code to be used with a minimum of e�ort. The code and docu-mentation should also o�er assistance to the user in the event of the compu-tation failing. Our numerical experiments have provided us with a feel forhow easy the software and its documentation are to use, and in this sectionwe comment briey on our experience in using the software.Our main �ndings are the following:� Comprehensive and self-explanatory documentation is supplied withthe codes SRRIT, EB12, EB13, and ARPACK.� A particularly helpful feature of the documentation provided with EB12and EB13 is that it includes simple sample programs. These sampleprograms would be of particular value to users who are unfamiliar withusing reverse communication.



5 SOFTWARE COMPARISON 18� EB12, EB13, ARNCHEB, and ARPACK provide sample programs that il-lustrate their use. In particular, ARPACK has an extensive set of pro-grams illustrating the use of reverse communication and all its op-tions. Both EB12 and EB13 are supplied with comprehensive testingprograms: each comes with a driver that is designed to execute eachline of the code at least once.� ARNCHEB does not document all input and output parameters fully,and the code itself does not include comments to explain each of theparameters. Moreover, the code has no error ag and performs noerror checking.� The LOPSI documentation provides no assistance in the event of anerror. LOPSI has an error ag that, on exit, indicates success or failure.If a failure is indicated, no help is given to the user as to what hasgone wrong or what might be tried to achieve success. Furthermore,we found that the ag could be set to indicate all was well but when thecomputed eigenvalues were checked, they could be totally inaccurate.LOPSI does not check input parameters for errors.� The codes SRRIT, EB12, EB13, and ARPACK all have error ags and checkthe parameters supplied by the user for errors. If an error is detected,EB12 and EB13 optionally print a message indicating what the erroris. Both SRRIT and ARPACK set a ag and provide documentation forinterpreting the ag.� The codes ARNCHEB, EB13, SRRIT, and ARPACK have monitoring print-ing; that is, at each iteration they print values of, for example, thecomputed eigenvalues and the corresponding residuals. This infor-mation allows the user to follow the convergence. It is particularlyuseful for the reverse communication codes EB13 and ARPACK because,if the convergence is not proceeding satisfactorily, the user is able tointervene. For EB13, SRRIT, and ARPACK the monitoring printing isoptional. EB12 o�ers the option of printing error and/or warning mes-sages, but users can monitor convergence only by exploiting the reversecommunication interface and displaying the information themselves.� Our experiences suggest that LOPSI and ARNCHEB were not compre-hensively tested. Both codes were found to contain bugs.22The authors of the respective codes were contacted with our �ndings.



5 SOFTWARE COMPARISON 19� The Fortran programming within ARNCHEB could be considerably im-proved. The code uses nonstandard Fortran 77 (such as REAL*8 dec-larations), which caused some of the compilers we used for testing thecodes to return error messages. When the code was checked with aFortran code analyzer,3 a large number of errors messages were re-turned. The analyzer passed the other codes as conforming to theFortran 77 standard.5.6 Input ParametersGood general-purpose software should make most decisions automaticallyand not require the user to have a detailed understanding of the algorithmbeing implemented. Each of the codes in our study requires the user tochoose the number r of eigenvalues required, the subspace dimension m,and the convergence tolerance �: In addition, some of the codes require theuser to decide which portion of the spectrum is to be computed.Table 3: Input from the userCode Required InputLOPSI Matrix A in standard sparse formatMaximum number of matrix-vector productsMaximum number l matrix vector productsbetween the oblique projectionsSRRIT Matrix-vector product routineMaximum number of iterationsEB12 NoneARNCHEB Matrix-vector product routineType of ellipseDegree of Chebychev polynomialAmount of orthogonalizationWhether to perform deationEB13 Block sizeARPACK Maximum number of iterationsRequiring the user to choose these parameters may appear reasonable3pfort, ISTLA - Toolpack Static Analyser, Version 1.2



6 NUMERICAL EXPERIMENTS 20because the user is likely to know how many eigenvalues are required andhow much accuracy is wanted. However, as discussed in Section 5.3, in orderto select an appropriate value for �, the user generally needs some knowledgeof the problem, such as the norm of A or the size of the sought-after eigen-values. Furthermore, our experience with the codes has shown that selectingr to be greater than the number of eigenvalues actually required can some-times yield more rapid convergence. This can happen if the sought-aftereigenvalues are not well separated from the remaining ones and better sep-aration is achieved by increasing r. Moreover, the e�ciency of the softwaredepends strongly on the choice of m. For small m, convergence may not bepossible. On the other hand, if m is large, the amount of work per iterationand the storage requirements may be prohibitively high. Some numericalresults illustrating the e�ects of di�erent choices form may be found in Du�and Scott (1993).All the codes, with the exception of EB12, require the user to supplyvalues for at least one other input parameter. These parameters are listedin Table 3. Finite termination of the computation is ensured by specify-ing the maximum number of iterations and/or the maximum number ofmatrix-vector products. EB12 and EB13 avoid requiring the user to set theseparameters by having default values that the user is able to reset.When using ARNCHEB, the user has a number of decisions to make. He orshe must decide which of the routines provided for computing an ellipse isto be used and whether or not to use reorthogonalisation and/or deation.Making these decisions requires an understanding of Arnoldi's method andits implementation. The ability to experiment with di�erent options is ofconsiderable value, and thus EB13 also o�ers di�erent ellipse routines. Thedi�erence is that EB13 has a default routine that is used unless the userselects one of the alternatives. The use of default settings helps make EB12and EB13 user friendly while at the same time providing exibility.6 Numerical ExperimentsIn this section and in the Appendix, results are presented for a range ofproblems arising from scienti�c and industrial applications. Our aims areto compare the performance of the software discussed in this paper and toacquire a better understanding of the practical behavior of the methods andof the importance of di�erent implementation details.



6 NUMERICAL EXPERIMENTS 216.1 The Test MatricesTable 4: The matrices used for performance testing (� indicates matrix fromthe collection of Bai, Barratt, Day and Dongarra 1995a)Number ofIdenti�er Order Entries Description/DisciplinePORES2 1224 9613 Oil reservoir simulationPORES3 532 3474 Oil reservoir simulationGRE1107 1107 5664 Simulation studies incomputer systemsHOR131 434 4710 Flow network problemIMPCOLC 137 411 Ethylene plant modelIMPCOLD 425 1339 Nitric acid plant modelNNC666 666 4044 Nuclear reactor core modelingNNC1374 1374 8606 Nuclear reactor core modelingWEST0156 156 371 Chemical engineering plant modelWEST0167 167 507 Chemical engineering plant modelWEST02021 2021 7353 Chemical engineering plant modelCK400� 400 2860 Not availableCK656� 656 3884 Not availablePDE2961� 2961 14585 Model PDE eigenvalue problemRW5151� 5151 20199 Markov chain modeling:random walkCDDE� 2-D convection di�usion problemTOLOSA� Stability of aircraft in ightBW2000� 2000 7996 Chemical engineering modelThe matrices we have used to evaluate the performance of the softwareare taken either from the well-known Harwell-Boeing collection of sparsematrices (Du�, Grimes and Lewis, 1992) or from the collection of largeeigenvalue problems of Bai, Barrett, Day and Dongarra (1995a). Manyof the problems were chosen because they have appeared elsewhere in theliterature on solving large sparse nonsymmetric eigenvalue problems (for ex-ample, Sadkane, 1993, uses the matrices GRE1107 and PORES3 when test-ing his block Arnoldi-Chebychev method and Saad, 1984, uses the randomwalk problem in his tests on Arnoldi-based methods). The Harwell-Boeing



6 NUMERICAL EXPERIMENTS 22matrices arise from linear systems of equations and are not nonsymmetriceigenvalue problems. Nevertheless, computing eigenvalues for some of thematrices in the collection can provide useful tests for the software. Theproblems in the collection of Bai et al. are ideal for our study because theprimary purpose in developing the collection was to provide a testbed ofpractical problems for use in testing numerical algorithms for solving eigen-problems. However, this test set is still under development, and only partof the collection is currently available.6.2 Veri�cationIt is important when testing software that an attempt be made to check thecorrectness of the computed results. For example, an important consider-ation is whether any of the sought-after eigenvalues have been missed. Inthe symmetric case, a factorization is performed, and an inertia count thenprovides a check for missing eigenvalues (see Grimes et al., 1994, and Par-lett, 1980, for details). There is no analogous procedure for nonsymmetricmatrices.For our study, we may determine the reliability of the codes by using theexact eigenvalues. The forward error is de�ned to beFEmax = max1�i�r j�i � �ijj�ij ; (6.1)where �i and �i are the exact and computed eigenvalues, respectively, ofA. This tests the forward stability of the software. For the test problemsfor which the exact eigenvalues are not known, we compare the computedeigenvalues with those found by using the qr algorithm.We also check results by computing the r eigenvector residualskAy� �yk2 (6.2)and the real and imaginary portions of the Rayleigh quotient errorskyTAy� �yTyk2: (6.3)SRRIT does not compute the eigenvectors of A, but the code is designedso that it is straightforward to do this computation by using the LAPACKroutine DTREVC. We have done this in our tests with SRRIT.



6 NUMERICAL EXPERIMENTS 23For all the codes except ARNCHEB and LOPSI, we check the orthogonalityof the computed Schur basis and quality of the Schur projection by comput-ing kXTrXr � Irk1 and kXTrAXr �Trk1; (6.4)respectively.The checks (6.2){(6.4) are designed to test the backward stability of thesoftware.6.3 The Test EnvironmentThe numerical experiments were performed on an IBM RS/6000 3BT us-ing double-precision arithmetic and the vendor-supplied BLAS. As we havealready seen, the software in our study employs di�erent stopping critera.Therefore, even if we supply each code with the same convergence toleranceand if the computations all terminate successfully, the eigenvalues computedby each code may di�er. For the results reported in this section and in theAppendix, the codes each used a convergence tolerance that gave eigenval-ues with an accuracy of at least pu (for some of the test examples, di�erentcodes used di�erent convergence tolerances). The convergence tolerancesused were all in the range 10u to 10�4 (u denotes the relative machine pre-cision).In designing their software, the authors have all attempted to producecodes that can be used as black boxes. It should be recognized that, indoing so, the authors have had to make a number of ad hoc decisions andthere may be problems for which the choices that have been made are eitherpoor or completely unsuitable. To assess the usefulness of the choices thathave been made, we use only the default values (or values recommendedby the authors in their documentation) for all parameters in our numericalexperiments.As discussed in Section 5.6, given the use of default parameters, thereremain other parameters that must be chosen by the user. The choices madefor these parameters can signi�cantly a�ect the performance of the software.When testing the software on a particular problem, we use the same valuesof r and m for each code. This choice allows us to compare the relativeperformance of the codes.The code ARNCHEB requires the degree of the Chebychev polynomial tobe speci�ed by the user but provides no advice on how to do this. Weperformed some preliminary experiments with the code and, on the basis of



6 NUMERICAL EXPERIMENTS 24these experiments, selected a degree of m� r for all our reported results. Inour tests, doubling or even tripling this value generally increased the totaltime required for convergence.In the next two subsections we present detailed results for the TOLOSAmatrix and the two-dimensional convection-di�usion problem (CDDE). Fur-ther results for other matrices in our test set are given in the Appendix andin the reports by Lehoucq and Scott (1995a, 1995b).6.4 Results for the TOLOSA MatrixThe TOLOSA matrix arises from the stability analysis of a model of anairplane in ight. Its eigenvalues lie on a parabola in the left-half planethat opens to the left. The eigenvalues of interest are the eigenvalues oflargest imaginary part, which are also those of largest modulus. The matrixis non-normal, and its departure from normality increases with the order ofthe matrix.Table 5: CPU times (in seconds) and matrix-vector products for theTOLOSA matrix of order 1000 (� denotes that code did not converge within4000m matrix-vector products) Subspace dimension mAlgorithm 8 16 32SRRIT 33=20488 141=64016 �EB12 34=17719 120=35087 65=10271ARNCHEB 1:0=1867 2:4=2583 7:3=4294EB13 5:6=5545 0:8=625 8:2=3917ARPACK 15=5120 4:5=1082 3:2=482The code LOPSI was not used for this problem since the matrix is notstored explicitly. We employed each of the other codes discussed in Section 4to compute the eigenvalue of largest imaginary part and the correspondingeigenvector of the TOLOSA matrix with orders up to 2000. Our �ndingsfor n = 1000 and n = 2000 are summarized in Tables 5 and 6.We observe that, for this problem, the subspace iteration codes are muchslower to converge than the Arnoldi codes. With m = 16 and n = 1000,



6 NUMERICAL EXPERIMENTS 25Table 6: CPU times (in seconds) and matrix-vector products for theTOLOSA matrix of order 2000 (� denotes that code did not converge within4000m matrix-vector products) Subspace Dimension mAlgorithm 8 16 32SRRIT � � �EB12 117=26255 72=9919 341=26111ARNCHEB 5:0=4201 6:3=4100 15=5484EB13 2:8=1451 6:4=2468 7:1=1657ARPACK 16=2528 3:4=422 5:0=422SRRIT found 16 eigenvalues with the requested accuracy. We also see thatthe value of m giving the best ARPACK results is larger than that giving thebest ARNCHEB and EB13 reresult sults. This suggests that the �gures given inTable 2 for the storage requirements of the di�erent codes should be treatedwith caution. However, ifm is su�ciently large, the number of matrix-vectorproducts required by ARPACK is signi�cantly less than the numbers used bythe other codes.6.5 Results for a Convection-Di�usion ProblemThe second problem for which we present results is a two-dimensional modelconvection-di�usion problem��u(x; y) + �r � ru(x; y) = �u(x; y);on the unit square [0; 1] � [0; 1], with zero boundary data and � a realnumber. The problem is discretized using centered �nite di�erences. Theeigenvalues and eigenvectors of the resulting matrix are known explicitly(see, for example, Bai et al., 1995a). We have chosen this example becauseit has the following interesting properties:� Many of the eigenvalues have multiplicity two. It may be shown that, ifj�j � pn, the eigenvalues are all real and the matrix is diagonalizable.� As the mesh size decreases, the relative separation of all the eigenvaluesdecreases. All the eigenvalues are contained within the interval (0; 8).



6 NUMERICAL EXPERIMENTS 26� As � increases, so does the non-normality of the matrix.We computed r = 6 eigenpairs of largest real part for a range of val-ues of � and for orders up to n = 10; 000. The eigenvalues of largest realpart are also those of largest modulus. Again, LOPSI was not used for thisproblem because the matrix is not held explicitly. Tables 7 to 10 illustratethat SRRIT can be much slower to converge than EB12 and may require anunacceptably large number of matrix-vector products. For the smaller val-ues of � and n used in the tests, EB12 can be competitive with the Arnoldisoftware. We also found that, as n was increased, EB13 and ARPACK requiredmuch smaller convergence tolerances than did the subspace iteration codes ifmissing multiple eigenvalues were to be avoided. In each of our tests on thisproblem, ARNCHEB failed to compute the required eigenvalues with the re-quested accuracy (although it was successful when used to compute a singleeigenpair).Table 7: CPU times (in seconds) and matrix-vector products for the 2-DLaplacian (� = 0) matrix of order 2500 (y denotes that one or more of therequested eigenvalues was missed)Subspace Dimension mAlgorithm 18 36SRRIT 83/29583 106/27465EB12 9:6=5312 27=14450ARNCHEB y yEB13 7:2=2116 8:2=1358ARPACK 8:7=639 9:1=532In addition to the tests reported in the tables, we ran the case � = 40with n = 10; 000. Since j�j � pn, the exact eigenvalues are all real. Allthe codes experienced di�culties for this example. SRRIT and EB12 did notconverge with the required accuracy within 4000m matrix-vector products.Using convergence tolerances of pu and 103u, ARPACK ran without an errorag being set, but complex eigenvalues were returned. When the accuracyof the computed eigenvalues was tested, the forward error was found to be0(10�2): However, the computed results were those of a nearby matrix: thefour residuals (6.2){(6.4) were suitably small. With the same convergencetolerances, EB13 returned real eigenvalues but missed the multiplicities.



6 NUMERICAL EXPERIMENTS 27Table 8: CPU times (in seconds) and matrix-vector products for the 2-DLaplacian (� = 0) matrix of order 10; 000. Note that with m = 36, SRRITfound 11 eigenvalues with the requested accuracy (� denotes that code didnot converge within 4000m matrix-vector products).Subspace Dimension mAlgorithm 18 36SRRIT � 2326/92196EB12 62=8631 153=20099ARNCHEB � �EB13 81=4781 115=4263ARPACK 171=2625 79=1081
Table 9: CPU times (in seconds) and matrix-vector products for the CDDEmatrix with � = 10 of order 2500. Note that with m = 36, SRRIT found 11eigenvalues with the requested accuracy (y denotes that one or more of therequested eigenvalues was missed).Subspace Dimension mAlgorithm 18 36SRRIT 127=46098 332=88356EB12 13=5971 33=9668ARNCHEB y yEB13 41=12178 46=3383ARPACK 8:3=602 11=613



6 NUMERICAL EXPERIMENTS 28Table 10: CPU times (in seconds) and matrix-vector products for the CDDEmatrix with � = 15 of order 10000 (� denotes that code did not convergewithin 4000m matrix-vector products)Subspace Dimension mAlgorithm 18 36SRRIT � �EB12 284=41857 292=34268ARNCHEB � �EB13 727=20004 436=7263ARPACK 61=991 80=10956.6 General FindingsIn this subsection we summarise our �ndings based on running the codes onall the test problems listed in Table 4.First, our conclusions for the subspace iteration codes are :� SRRIT can be much slower than EB12 and LOPSI. The reason appearsto be that, although SRRIT uses only a small number of iterations, itgenerally performs many more reorthogonalizations than do the othercodes. SRRIT also allows a large number of matrix-vector products tobe performed between projections.� An attractive feature of SRRIT is that it displays monotonic consis-tency; that is, as the convergence tolerance decreases, so does the sizeof the computed residuals.� LOPSI can be the fastest subspace iteration code for computing a singleeigenvalue, but if r > 1, it can return spurious eigenvalues. We believethere is probably a bug in the code, but we have not yet located thesource of the problem.� SRRIT has a useful property of being able to recognize clusters of eigen-values. This can lead to the code's returning more eigenvalues thanrequested. Our experience suggests that some adjustment to the val-ues of the (internal) parameters used in detecting a cluster may bebene�cial.



6 NUMERICAL EXPERIMENTS 29� Use of a Chebychev polynomial may improve the performance of EB12but it can also degrade it. This cannot be anticipated unless someknowledge of the distribution of the eigenvalues is already known.� All the subspace iteration codes are extremely slow when used to solvethe most di�cult test problems in our test set.Our �ndings for the Arnoldi codes are the following:� ARPACK is generally the fastest and most dependable of the codes stud-ied, especially for small convergence tolerances and large departuresfrom normality.� Like SRRIT, ARPACK displays monotonic consistency.� The code EB13 o�ers many options and, as these options are fullydocumented, they enable the user to experiment with di�erent choices.� ARNCHEB gives reasonable results for computing a single eigenpair butit can struggle on problems for which several eigenvalues are requested.� On some of the examples, ARPACK uses dramatically fewer matrix-vector products than the code. However, its restarting strategy canbe more expensive. This is typically the case when the cost of a matrix-vector product is inexpensive.� For some problems, EB13's blocking option gives disappointing resultsand appears to need further work. The results given in Sadkane (1993)reect a much larger subspace being constructed than was attemptedin our study.Comparing subspace iteration with Arnoldi's method and consideringthe suitability of the codes to solve industrial eigenproblems, we draw thefollowing general conclusions:� For many of the test problems, the best Arnoldi result is better thanthe best subspace iteration result.� There is a tendency of the Arnoldi methods to miss multiple eigen-values when the matrix is highly non-normal. The subspace iterationcode SRRIT was generally the most reliable code for problems withclustered and/or multiple eigenvalues, but it could be unacceptablyslow.



7 CONCLUSIONS 30� None of the codes succeeds on all the test problems. In particular, allthe codes experience di�culties for problem BWM2000. This problemis described in Saad (1992) and Bai et al. (1995a). The eigenval-ues of practical importance are the right-most ones, but none of thecodes studied successfully computed them. However, overall, we foundARPACK to be the most successful of the codes studied.� All the codes are sensitive to the choice of input parameters, andthey all leave important decisions, such as the choice of the subspacedimension m, to the user.� The performance of the subspace iteration and Arnoldi methods isextremely dependent on implementation details within the software.7 ConclusionsWe end our study by briey discussing features found in the current softwarethat should be part of any revisions to existing software or should be incor-porated in new attempts at high-quality software. Also addressed are newareas of research for improved algorithms and the construction of softwareimplementing them.� The grouping of clustered eigenvalues appears to be an important fea-ture for problems with equal or nearly equal eigenvalues. This is at-tempted by SRRIT but needs further study.� A well-engineered strategy for detecting stagnating convergence mayprevent the code from performing unnecessary work. Although notalways successful, EB12 and EB13 attempt to do this; further investi-gation is needed. More generally, as examined in Section 5.3, furtherresearch and testing need to be undertaken to improve the ways inwhich the software decides to terminate the computation.� For codes implemented in Fortran 77, we recommend the use of re-verse communication for carrying out matrix-vector products. How-ever, perhaps the time has now come to consider a more modern pro-gramming language. This could remove the requirement for a reversecommunication interface.� Improved polynomial restarting methods are needed. The success ofARNCHEB, ARPACK, EB12, and EB13 depends upon such strategies. The



8 AVAILABILITY OF THE CODES AND TESTS 31latter two codes include mechanisms for tracking the polynomials con-structed as the iteration progresses. Such mechanisms should be in-corporated into new polynomial restarting methods. ARPACK allowsthe user to select shifts during each iteration and should prove usefulfor determining alternate or new polynomials.� The ability to deate a converged invariant subspace can substantiallyreduce the amount of work performed when more than one eigenpairis wanted. Deation strategies may also improve the reliability of theArnoldi-based software. The deation strategies proposed by Lehoucqand Sorensen (1995) need to be implemented in ARPACK and theire�ects studied.� Automatic veri�cation procedures are sorely needed. At present, nosoftware is available for determining whether the given eigenvalueproblem was solved. Successful convergence implies only that an eigen-value problem was solved. This situation is to be contrasted with thesituation when A is symmetric. Some work on a possible approachin the nonsymmetric case has been done by Meerbergen, Spence andRoose (1994).� The automated selection of software parameters is another area whereresearch is needed. For example, given that the user requests r eigen-values, the software should attempt to determine the appropriate sizem of the subspace needed during each iteration. There could be ad-vantages here in using, for example, the Fortran 90 programminglanguage, since it allows dynamic allocation of storage.Given the results of this study, we believe that an implicitly restartedArnoldi iteration appears a promising way forward.8 Availability of the Codes and TestsWe summarize how the interested reader may obtain the test matrices andsoftware reviewed in this study.� The test matrices of Bai et al. are available by anonymous ftp toftp.ms.uky.edu in the directory pub/misc/bai/Collection.� The Harwell{Boeing matrices of Du� et al. are available by anonymousftp to seamus.cc.rl.ac.uk in the directory pub/harwell boeing.
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A APPENDIX: TABLES OF RESULTS 38A Appendix: Tables of ResultsIn this section, the accuracy of the computed eigenvalues is at least pu. Asuperscript of the form (k�) indicates that the code actually found k (k > r)eigenvalues.Table A-1: CPU times (in seconds) and matrix-vector products for com-puting the eigenvalues of largest modulus of PORES2 (z denotes spuriouseigenvalues returned)Algorithm r = 1, m = 8 r = 4, m = 20LOPSI 0:2=121 zSRRIT 0:4=168 2:6=750(8�)EB12 0:2=111 1:0=246EB13 0:1=17 0:2=41ARPACK 0:1=16 0:3=34Table A-2: CPU times (in seconds) and matrix-vector products for comput-ing the right-most eigenvalues of PORES2Algorithm r = 1, m = 12 r = 4, m = 20EB12 0:6=423 9:1=2890ARNCHEB 3:4=1401 4:7=1712EB13 0:4=119 1:3=305ARPACK 0:5=90 1:3=151



A APPENDIX: TABLES OF RESULTS 39Table A-3: CPU times (in seconds) and matrix-vector products for comput-ing the eigenvalues of largest modulus of PORES3Algorithm r = 1, m = 8 r = 5, m = 20LOPSI 0:3=769 0:3=481SRRIT 0:4=648(4�) 1:3=1364(13�)EB12 0:6=1735 0:7=869EB13 0:2=113 0:8=325ARPACK 0:1=36 0:2=48Table A-4: CPU times (in seconds) and matrix-vector products for com-puting the right-most eigenvalues of PORES3 (� denotes convergence notreached within 2000m matrix-vector products)Algorithm r = 1, m = 8 r = 4, m = 20EB12 � �ARNCHEB � �EB13 � �ARPACK � 38=11684Table A-5: CPU times (in seconds) and matrix-vector products for com-puting eigenvalues of GRE1107 (the eigenvalues of largest modulus are alsothe right-most eigenvalues) (z denotes spurious eigenvalues returned, and �denotes convergence not reached within 2000m matrix-vector products)Algorithm r = 1, m = 8 r = 5, m = 20LOPSI 1:4=1761 zSRRIT 2:6=2032 4:5=2198EB12 1:6=2159 4:3=4774ARNCHEB 4:0=2204 �EB13 1:1=465 2:5=1449ARPACK 1:3=302 1:4=260



A APPENDIX: TABLES OF RESULTS 40Table A-6: CPU times (in seconds) and matrix-vector products for com-puting eigenvalues of NNC1374 (the eigenvalues of largest modulus are alsothe right-most eigenvalues) (y denotes one of the required eigenvalues wasmissed, and � denotes the code was not suitable because it was not designedto compute the requested portion of the spectrum)Algorithm r = 1, m = 8 r = 5, m = 20 r = 5, m = 20(largest modulus) (right-most)LOPSI 3:7=3457 7:9=5211 �SRRIT 8:2=5128 12=5600 �EB12 1:4=1151 5:4=5755 4:2=1633ARNCHEB 4:1=1758 � 140=37935yEB13 0:4=117 4:0=659 2:1=557ARPACK 0:6=112 1:4=167 1:2=145
Table A-7: CPU times (in seconds) and matrix-vector products for com-puting the right-most eigenvalues of WEST2021 (� denotes convergence notreached within 2000m matrix-vector products)Algorithm r = 1, m = 8 r = 5, m = 20EB12 � 98=20930ARNCHEB 8:6=3233 71=15921EB13 17=4869 18=4149ARPACK 3:7=401 2:1=167



A APPENDIX: TABLES OF RESULTS 41Table A-8: CPU times (in seconds) and matrix-vector products for comput-ing r = 8 eigenpairs of CK400 and CK656 with m = 20 (the eigenvaluesof largest modulus are also the right-most eigenvalues) (z denotes spuriouseigenvalues returned, and y denotes multiple eigenvalues were missed)Algorithm CK400 CK656LOPSI z zSRRIT 0:8=1008 1:3=994EB12 0:8=943 1:6=1035ARNCHEB y yEB13 0:3=228 0:6=238ARPACK 0:2=61 0:3=70
Table A-9: CPU times (in seconds) and matrix-vector products for comput-ing the right-most eigenvalues of PDE2961Algorithm r = 1, m = 8 r = 6, m = 30EB12 2:1=791 17=5225ARNCHEB 13=3161 14=3357EB13 0:8=119 3:9=405ARPACK 1:3=104 3:0=137


