Stable and Unstable Singularities
in the Unforced Hele-Shaw Cell

Robert Almgren,*Andrea Bertozzi, Tand Michael P. Brenner?

December 6, 1995

Abstract

We study singularity formation in the lubrication model for the unforced
Hele-Shaw system, describing the breaking in two of a fluid droplet con-
fined between two narrowly spaced glass plates. By varying the initial
data, we exhibit four different scenarios: (1) the droplet breaks in finite
time, with two pinch points moving toward each other and merging at the
singular time; (2) the droplet breaks in finite time, with two asymmetric
pinch points propagating away from each other; (3) the droplet breaks in
finite time, with a single symmetric pinch point; or (4) the droplet relaxes
to a stable equilibrium shape without a finite time breakup. Each of the
three singular scenarios has a self similar structure with different scaling
laws; the first scenario has not been observed before in other Hele-Shaw
studies. We demonstrate instabilities of the second and third scenarios,
in which the solution changes its behavior at a thickness that can be arbi-
trarily small depending on the initial condition. These transitions can be
identified by examining the structure of the solution in the intermediate
scaling region.
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1 Introduction

Singularity formation in physical systems, and in the partial differential equa-
tions that describe them, is a topic of great scientific interest. Breakdown of the
mathematical model gives information on its limits, and extending the model
often requires introduction of new and interesting physical ideas. Further, near
the singularity, the solution often has a “universal” character, the same regard-
less of the initial conditions or the outer geometry. Thus by understanding
the singularity, one obtains information about structural features of the model
rather than specific predictions for a particular case. Singularities provide a
unique “microscope” for understanding interesting systems.

One example is the breaking of a three-dimensional fluid drop into two pieces
driven by the Rayleigh instability: breakup corresponds to singularity forma-
tion in the fluid velocity field. It has recently been shown that for breakup of
an axisymmetric droplet in vacuum, the shape of the interface is described by a
similarity solution [Egg93, ED94] which is unstable to finite amplitude pertur-
bations [BSN94, SBN94]. The dynamics near the breaking point is completely
independent of the outer flow field. This universality is a reflection of the fact
that length and time scales near the pinch point are much smaller than any
external scales near the breaking point. One might hope that this would be
a general property of singularities in systems of interest, for example, velocity
singularities in the three-dimensional Euler equations [Ker93, PS92, Maj86] or
other singularities [CP93a].

A Hele-Shaw cell is a quasi two dimensional system in which two immiscible
fluids (air and water) interact through their boundary in the narrow gap between
two closely spaced glass plates. There are two types of stable equilibrium shapes
for liquid trapped in this configuration: isolated circular drops [CP93b] and
perfectly flat, infinitely long necks [BP95]. In the former case, the curvature
on the interface is a positive constant; in the latter case, it is zero. For either
equilibrium shape, interfaces close to equilibrium relax to the equilibrium state
in infinite time. However, for initial shapes far from equilibrium, the end state 1s
unclear. Will an initial shape that is topologically equivalent to an infinite thin
neck but closely approximating an array of droplets relax to a flat infinite neck
or will it break up into an array of droplets? If it breaks, how many satellite
drops will form?

Note the important distinction between the present problem and the prob-
lem of a three-dimensional cylinder of fluid with surface tension controlling the
liquid/air interface. Although the latter is unstable by the classical Rayleigh
instability, a flat neck of liquid in the unforced Hele-Shaw cell is completely sta-
ble. However, it is still true that an initially perturbed neck in the Hele-Shaw
cell has an infinite number of states, including the flat neck and various arrays
of circular droplets. Whether the system chooses the flat neck or many droplets
depends on whether there exist mechanisms that allow topology changes.

For breakup of a two-dimensional fluid droplet in a forced Hele-Shaw cell,
several different types of local similarity solutions (with different scaling prop-
erties) can occur: an “infinite-time singularity” [CDG193]; a finite-time singu-



larity in which the pinch point moves with constant velocity [DGKZ93]; and a
finite-time singularity in which the pinch point is stationary [BBDK94, Ber95].
Varying the initial and boundary conditions leads to the different singular be-
haviors. Moreover, the same array of singularity structures is observed in a
two-dimensional layer forced by density stratification in gravity [GPS93].

This paper addresses rupture of a thin neck in a Hele-Shaw cell in the absence
of forcing. Based on the general principles of universality outlined above, one
would expect that the local nature of singularities should be no different in
the unforced case than in the forced case. However, our study reveals some
qualitative features of the singularities that have not previously been observed
in the forced case. Most strikingly, we discover through numerical simulations
that two of the three similarity solutions can destabilize at an arbitrarily small
time distance from the singularity for appropriate initial conditions. After the
instability the solution develops a singularity at a later time, by a different
similarity solution. We also find a new similarity solution that has never been
observed in the forced Hele-Shaw cell. This mechanism appears to be more
stable than the other two.

Our investigation of the unforced Hele-Shaw cell uses a one parameter fam-
ily of initial conditions where the parameter w corresponds to the width of
the “thread” connecting the larger drops in the initial interface shape. For
sufficiently large w the “blobby” neck relaxes to a flat neck without breaking.
However, for smaller values of w the neck tries to break up by a complex se-
quence of similarity solutions. In this paper, we discuss the scaling and stability
of each of these solutions through highly resolved numerical simulations; many
features of the simulations are explained through asymptotic analysis.

2 Review of Governing Equations

In a Hele-Shaw cell, a thin layer of viscous fluid moves between two narrowly
spaced glass plates. Typically, the fluid does not fill the entire gap; the remain-
ing space is filled by a fluid of negligible viscosity such as air. The fluid and
the interface move under the influence of surface tension and a possible external
forcing; viscosity in the fluid resists motion via the no-slip condition on the plate
surfaces. The full system 1s described by the three-dimensional incompressible
Navier-Stokes equations within the fluid layer, together with the Laplace pres-
sure condition at the fluid/air interface, coupling the mean curvature of the
interface surface with the pressure drop across the interface.

If the plate separation b is much smaller than any transverse dimension,
then the well-known Hele-Shaw two-dimensional model system is a very good
approximation. By Darcy’s law, the depth-averaged fluid velocity v(z, y,t) is the
gradient of a nondimensionalized velocity potential ¢, proportional to negative
pressure and defined in the two-dimensional fluid region. By incompressibility,
¢ 1s harmonic in ¢ and y at each time: A¢ = 0. The Laplace pressure condition
becomes (Z>|F = —K, in which K is the two-dimensional curvature of the fluid/air
interface curve I'. This Dirichlet problem is solved at each instant of time, and



material consistency requires that the interface normal velocity V,, = 3¢/3n|r.
For more details, see review articles such as [BKL186, KKL88].

We are interested in changes of topology in the unforced system. For exam-
ple, we take a fluid droplet of finite size, surrounded by air, and ask whether
for some initial shapes the droplet can break into two or more droplets. It has
been proven [CP93b] that if the initial shape is close to a circle, then the droplet
shape relaxes to a circle in infinite time. Recent numerical work [Alm96] indi-
cates that if the initial droplet has the form of a dumbbell with a thin neck, it
can break apart simply as a result of surface tension.

In the region of the thin neck, a lubrication approximation reduces the two-
dimensional Hele-Shaw system to a one-dimensional model. We denote by h(z, 1)
the half-width of the neck; then assuming that |h;| < 1, and that A < 1 so
that the pressure p & p(z), yields the “lubrication equation” [CDG%93]

ht + (hhges)s = 0. (1)

This equation also follows from a systematic asymptotic expansion in A [Alm96,
GPS93]. We are interested in the rupture of thin necks, when h(z,¢) — 0in (1)
at a finite time. In the lubrication model (2) the fourth-order term is degenerate
and plays an interesting role in the formation of singularities. Simple reasoning
[CDGT93] shows that such vanishing of h requires that at least the fourth spatial
derivative of A must become infinite; thus we are justified in calling such events
singularities.

For circular droplets, the lubrication equation (1) is not uniformly valid over
the whole liquid region; it breaks down where the ends close off. In [Alm96], the
lubrication model was used in the center of the neck, with boundary conditions
taken from an outer solution. The model can be extended to handle closed
ends, as in [ED94] for three-dimensional liquid columns. Alternatively, special
physical boundary conditions can force the entire neck to be thin and flat, as in
[CDG193, DGKZ93].

To avoid these complications, we consider periodic geometry, rather than a
closed finite drop. That is, in place of a dumbbell [Alm96], we consider an initial
configuration in which the liquid forms an infinite sequence of bulges separated
by thin necks. In order for the lubrication approximation to hold throughout
the breaking of the neck, it must remain thin and flat for all time. We believe,
and the numerical results of [Alm96] provide partial confirmation, that the local
dynamics of the thin neck are the same in this geometry as for a closed droplet.
In periodic geometry, the neck of constant thickness is a global attractor for the
lubrication approximation [BP95].

Besides the intrinsic elegance and simplicity of the Hele-Shaw model, part
of its appeal comes from the fact that the mathematical formulation describes
several different physical problems, including solidification in the one-sided low-
undercooling limit [KKL88] and population density in herbivore/plant dynamics
[Lew94]. Thus, for example, the singularities studied here describe not only the
pinching of a fluid neck in a Hele-Shaw cell, but also the singularities produced
between two particles growing together in Ostwald ripening [VMBMS8].



The approximations that permit reduction from the original problem to the
two-dimensional, and then to the one-dimensional, model systems break down as
the neck becomes very thin and the singularity is formed. Hence 1t is natural to
question the relevance of the singularities studied here to the original problem.
Based both on our asymptotic solutions near the singularity and numerical com-
putations of the full equations [Alm96], the lubrication approximation, that is,
the reduction of the two-dimensional Hele-Shaw system to the one-dimensional
lubrication model, appears to remain valid as pinchoff occurs. However, the
construction of the Hele-Shaw model itself breaks down when the neck width A
becomes smaller than the plate spacing b due to the effect of the second com-
ponent of curvature. We do not address this question in this paper, except for
the few remarks in Section 7.

The lubrication equation (1) is naturally generalized to

in which n = 1 1s the thin-neck limit of Hele-Shaw flow, and the case n = 3 is
obtained from the dynamics of a thin liquid layer on a rigid surface. Varying n
varies the nature of the degeneracy as A — 0. The dynamics of solutions may
then be explored as a function of n [BBDK94], and it appears that n = 1 is an
especially difficult borderline case.

3 Simple Initial Data

This paper examines the behavior of solutions to Equation (1) with a one pa-
rameter family of initial conditions

h(z,0)=1-(1- w)(1.5 coste — 0.6 cos2ma + 0.1 cos37rx), (3)

w > 0 (Figure 1). This data is periodic in #, and thus the solution h(z,?)
remains periodic. Alternatively, we could impose “neutral” boundary conditions
hy = heee = 0 at the ends of a finite domain; in the Hele-Shaw system these
conditions correspond to no transport of mass in or out of the domain and to
normal contact angle.

We chose the initial data (3) to be completely smooth, with a single mini-
mum of height w, at which the first four spatial derivatives of A vanish. These
conditions produce an array of bulges with a very flat interconnecting regions
of thickness w. The curvature takes a positive maximum value at r = 1 —
(1/m) cos™(1/9) ~ 0.535.

As a consequence of the above conditions, fizzze > 0 for  near to but greater
than zero; hence, under the dynamics (1), hy < 0 on the same region. Thus, at
least for short times, the fourth-order dynamics will drive the neck thickness to
decrease below its initial value. It is this mechanism that permits singularity
formation, and that would be absent in a second-order equation.

We believe that the phenomena we observe in this paper for initial data (3)
are generic, in the sense that they would be observed for a variety of initial



Figure 1: The initial condition (3) for parameter value w = 0.1. If no singularity
forms in finite time, the solution must relax to its average h = 1.

conditions. It is necessary that the initial data be extremely flat; previous
explorations with similar data containing only two Fourier modes exhibited no
singularity.

Our numerical simulations use a finite-difference discretization [CDG193]
with a dynamically evolving adaptive mesh [BBDK94, Ber95]. The codes are
well tested and can fully resolve many decades of behavior in the approach to
the singularity.

Although the singularities have structures that locally have a simple self-
similar form h(x,t) ~ 7(t)H((x — a(t))/€), the time dependent quantities 7 and
¢ cannot be determined by dimensional analysis. Moreover, unlike the typical
scenario in such “second type” scaling [Bar79], the analysis of the similarity
solution does not involve solving a nonlinear eigenvalue problem but instead
involves solving matching conditions between different regions of the solution
each of which has its own similarity scaling. Tt is this matching (or lack thereof)
that we focus on in analyzing the instabilities described in the following sections.
As w is varied, the simulations show several different possible behaviors of the
solution, three of which lead to finite time singularities with these kind of well-
defined self-similar scaling structures.

Imploding Singularity For initial conditions with 0 < w < w} & 0.0665,
the solution developes two local minima that are mirror images of each other.
They move towards each other at roughly constant speed, coalescing at « = 0
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Figure 2: Phase diagram of singularity formation for solutions of (1) with initial
data (3). The shaded bars indicate “instabilities”: ranges of values of w in which
the solution exhibits many decades of scaling characteristic of the neighboring
singularity, before changing to the true singularity behavior.

at the singular time. This singularity is reported on for the first time here.
The example exhibits three different scaling regions, the region around a local
minimum, the central region between the two pinch points, and the outer region
away from the singularity. We present a matching argument in the next section
to predict the time dependences of the three regions.

Exploding Singularity For values of w greater than w} but less than w} =
0.0825, the solution developes two minima that move apart with roughly con-
stant speed, with the pinchoff h — 0 occurring at two locations ¢ = x.. This
behavior was first observed in [DGKZ93] for pressure boundary conditions. As
discussed in that paper, this singularity has an inner self-similar region and an
intermediate region. A consistent match between these two regions is necessary
for the singularity to persist. We argue that the breakdown of this match is
responsible for its destabiliation.

Symmetric Singularity For values of w greater than w} but less than w}
0.09, a symmetric singularity forms: the solution is symmetric about a sin-
gle minimum at # = 0, and ~(0,¢) — 0. This solution was first discussed in
[BBDK94] and later in [Ber95]. This behavior also possesses an intermediate
length-scale.

No Singularity If the initial height w is not small, then the initial blobby
neck simply relaxes to a constant flat neck as ¢ — oo, as expected based on
theoretical results [CP93b, BP95].

This behavior is summarized in the phase diagram of Figure 2.

The transitions between different singularity behaviors are more complicated
than those found in previous studies. On one side of each critical parameter
value, the solution appears to exhibit the neighboring behavior, showing clear
self-similar scaling over many decades. However, at some critical neck thickness,
the solution changes behavior into the true behavior for that parameter value.
The neck thickness at which this transition occurs becomes arbitrarily small,



and the number of decades of deceptive self-similarity increases as the value of
w moves closer to the critical value.

Thus, as illustrated in Figure 2, when w is just smaller than w7, the solution
initially exhibits the behavior characteristic of the “exploding singularity” until
the minimum thickness h,,;, reaches a very small value A¢presp, at which the
behavior changes to the imploding singularity. This changeover is seen dramat-
ically in the fact that the distance between the two minima ceases to increase
and starts to decrease. Similarly, for w just smaller than w3, the symmetric
singularity behavior is observed for many decades before the minimum bifur-
cates into two exploding singularities. For w just larger than w3, the solution
initially exhibits the features of the symmetric singularity, before reversing itself
and rising toward the uniform state.

The evidence for our arguments is based only on numerical simulation; hence
we cannot exclude the possibility that further surprises occur at even thinner
neck widths. However, a major point of this paper is identification of the differ-
ences between the deceptive self-similar behavior and the ultimate singularity
structure that emerges upon enhanced resolution. In many instances, the only
observed difference between an apparently stable structure and an unstable one
is that of different behavior in the intermediate matching regions. A remain-
ing major challenge is to construct a general explanation of why these different
scalings ultimately destabilize.

In the following three sections, we discuss each of the finite-time singularity
mechanisms. In Section 4 we present numerical evidence for the “imploding”
singularity mechanism and derive a similarity solution that reproduces its scaling
properties. We have never observed instability of this solution and transition to
a different behavior.

In Section 5, we discuss the “exploding” singularity and generalize the known
similarity solution [DGKZ93] to a one-parameter family of solutions with differ-
ent scaling exponents. Three members of this family appear in our calculations:
(a) the solution of [DGKZ93], with pinch points moving apart at a constant
velocity; (b) a solution with accelerating pinch points; (c) a solution with decel-
erating pinch points. The latter two cases apparently suffer an instability at a
finite (but arbitrarily small, depending on initial data) neck thickness. We pro-
vide a partial explanation of the instability of the new members of this family,
based on a mismatch in velocities between the intermediate regions on the two
sides.

In Section 6 we discuss the symmetric singularity mechanism. Here we dis-
tinguish between two types of solution, only one of which appears to be stable,
and we provide a partial explanation of the destabilization and transition to the
exploding singularity.

4 Imploding Singularity

In this section we discuss numerical observations and a scaling analysis for the
imploding singularity.
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Figure 3: Imploding singularity at w = 0.01. The solid, dotted, dashed and
long dashed curves correspond to times t = 0, 3.3, 3.4, 3.9 x 1073 respectively.

4.1 Numerical Observation and Scaling Relationships

When the initial minimum thickness w is very small, the solution approaches a
singularity in which two pinch points propagate toward each other, merging at
the singular time. This is a new type of singularity; it has not been seen in the
forced geometry and is reported here for the first time. Figure 3 illustrates this
behavior for w = 0.01.

The initial condition, with a single local minimum, bifurcates into two min-
ima, which then propagate toward the origin, merging at the singular time.
Several nontrivial scaling laws are associated with this singular behavior. Fig-
ure 4 shows the height at the pinch points, hpmn(t), as a function of their position
FZmin(t). As the thickness approaches zero, hmin(t) — 0, the pinch points prop-
agate toward the origin, £2min(t) — 0. The data is consistent with the scaling
law

hmm ~ Lmin-

Another relevant quantity is ~£(0) = A(0,t), the thickness of the interface at
the center # = 0. As the pinch points propagate toward the origin, mass flows
away from the neighborhood of the origin, so that h(0) decreases. Figure 4 also
shows h(0) as a function of the pinch location #,:,(t). The data is consistent
with the scaling law
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Figure 5: Pinch length scale £ vs. minimum thickness A, for the imploding
singularity of Figure 3. The dotted line represents the scaling law hyy, ~ 2.

The final relevant scaling law 1s the characteristic width & around the pinch
point as a function of h,,;,. As we determine by the explicit construction below,
the singularity has a locally parabolic structure, so that

hmm ~ €2’ (4)

as verified in Figure 5.

4.2 Construction of Similarity Solution

Now we construct a one-parameter family of similarity solutions to equation
(1). At a special value of this parameter the similarity solution well describes
the behavior presented above, both in explaining the scaling laws and in pre-
dicting the shape of the interface close to the singular time. The singularity
has three different self-similar scaling regions, which we call the central region,
the pinch region, and the outer region. The scaling exponents, and hence the
time dependence, are determined by requiring that the solutions in the three
regions match. The construction is similar in spirit to the description of the
infinite-time singularity in the forced Hele-Shaw cell [CDGT93]. We proceed by
first describing the solution in each region separately, and then matching them
together to determine the scaling exponents.

10



4.2.1 Central Region

In the central region, we look for an exact similarity solution of the form

h(x,t):r(t)S( v ) (5)

(1)1

in which the time dependence 7(t), the profile function S(n), and the exponent
q are to be determined; here n = 2 /7% denotes the similarity variable. Substi-
tuting (5) into (1), and then separating the ¢ and n dependences, gives the two
equations

o= —ri % (6)
and

S—qns’ = (89" (7)
Equation (6) implies that
T(t) o (t. — 1)/ (49 Y)

whenever ¢ > 1/4. This is an example of an exact similarity solution to the
equation. Although it describes well the structure in the center of the imploding
singularity profile, such an exact solution has not been observed in the pinch
region of a singularity of the lubrication equation (2) for any n. Tt is not known
whether such a solution exists for any gq.

Solutions to (7) that describe the central region are known to exist and are
compactly supported in 7. These solutions satisfy the symmetry conditions

SQO)=1,  §(0)=S8"(0)=0.

If we consider all such solutions to (7) with S”(0) = ¢, when ¢ is large, the
solution is compactly supported on (—ng, 179) with S(n) ~ 1o —n near S(n) = 0.
These solutions are undesirable because they cannot be matched to the other
regions. However, there is a unique critical value ¢ = ¢g(g) such that the solution
touches down like S(5) ~ (0 — 1)%/? Tt is easy to construct such a solution
numerically for any ¢ by using a shooting method. Notice that, since SS” has
a finite positive limit at 7, a nonzero flux of fluid leaves the central region.

4.2.2 Pinch Region

In the pinch region around =& ,;,, our numerical evidence indicates that the
current J(t) is constant, so that we can write

hhowe = J(1).

This is consistent with the numerical and asymptotic studies of the infinite-time
[CDGT93] and the finite-time [DGKZ93] singularities in the forced geometry. As

11



described in detail in those references, this suggests that the pinch region may
be described by a scaling solution that to leading order, satisfies the constant
flux equation (that is, the time derivative hy is lower order than the flux term
(hhypz)p in the PDE. We look for solutions with the self-similar form A(z,t) =
aft) H(z/aP). With the special choice a(t) = J(t)1/(2=3) we have the time-
independent equation for the similarity spatial profile H

HH" = 1. 8)
Equation (8) has special solutions with [CDG93]
3 1= 0,
\/g(A —n)*?, = o,

where A is an arbitrary constant. The time dependence a(t), or equivalently
the current J(t), are determined by matching this solution to the central and
outer solutions.

H(n) ~

4.2.3 Outer Region

In the outer region, the solution is of the form h(z,t) = K(z — a(t)), where
@ = Lymin 18 the location of the minimum. Plugging into equation (1) gives

aK = KK" +C(t).

The relevant solution has the pinch region moving at constant velocity a = U,
and also C' = 0 independent of time. The solution is

K(y) = $Uy* + Ay* + By,

where A and B are arbitrary constants.

4.2.4 Matching Conditions

To complete the solutions it is necessary to match the three regions together.
There are matching conditions connecting the pinch region to both the outer
region and the central region. For the pinch solution to match onto the outer
solution, we require
S a(t) H () = lim K(y).
This matching condition requires that both the time dependences and the spatial
dependences balance. This balance is achieved by taking H(n) ~ An? as n — oo
and p = 1/2, for the pinch solution, and taking B = 0 for the outer solution.
Also, the pinch solution must move at the velocity dictated by the outer solution.
Matching the pinch solution onto the central solution requires that

lim «(t) H(np) = lim TS(i) .

n——00 S—0 T4

12



This condition can be satisfied by taking H(5) ~ |n|>/ as 5 — —oc. Also,

for the time dependences to match, the flux of fluid leaving the central region
must enter the pinch region. The flux leaving the central region is of order

72739 (tc _ t)(2—3<1)/(4<1—1).

The flux entering the pinch region is of order a'/2. Thus we have the scaling
law

a ~ 720 o (te — t)(4—6<1)/(4<1—1).

Finally, note that the minimum point moves toward the origin = 0 with
velocity (t, — ¢)32=1/(#4=1) " Demanding that the outer edge of the central
region moves with the same constant velocity as the inner edge of the outer
region fixes ¢ = 1/3.
Putting these conditions together give the scaling laws
hmm(t) ~ l‘6

min

hmm ~ €2
LTmin ™~ tc — 1.

These scaling laws agree quite well with the evidence from the numerics.

5 Exploding Singularity

For larger values of w, solutions approach a singularity in which there are two
minimum points that move away from each other as the singularity approaches.
An example of an exploding singularity is shown in Figure 6 for the initial
condition w = 0.07.

At early times the minimum thickness is at @ = 0. This single minimum
then bifurcates into two minima, which propagate away from each other, forming
simultaneous singularities at . Several different scaling laws are associated
with this singularity. Figure 7 shows the characteristic length scale £, defined
as the distance over which the thickness of the interface doubles, as a function
of the minimum thickness A, .

This type of singularity was first discussed by [DGKZ93], in the context of a
thin neck squeezed by external pressure. It i1s also readily observed when fluid
is drained from the neck at a constant rate [BBDK94] or when the thin neck is
forced by Rayleigh-Taylor instability [GPS93, GPS95]. For details the reader is
referred to the above references.

A theory for this type of singularity was first proposed by [DGKZ93]. Be-
low we summarize the major features of the solution; our derivation is slightly
simpler and correspondingly less rigorous than that of [DGKZ93]. Our purpose
1s to expose the main features of the theoretical solution in order to extend the
solution to treat new phenomena in the next section.

13
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Three separate scaling regions are present, the pinch region (local minimum),
the intermediate region, and the outer region. In the pinch region the solution
obeys

hhypgy = J (1),
so that very close to the singularity the current does not depend on space.
Taking
h(z,t) :52H<“3_“)
3
gives

HH" =1 (9)

and & = J. Here a(¢) is the position of the pinch point.

As in the case of the previous example of the “imploding” singularity, the
solution in the pinch region does not determine the time dependence of §. This
time dependence results from a match to an intermediate region. The solution
H(n) to (9) has H(n) ~ n? as n — oo [BKOY3], or equivalently h(z,t) ~ (z—a)?.
Since this behavior is independent of £, it cannot determine the time dependence
of £. Thus we must analyze lower-order terms. A little algebra shows that

r—a

h(z,t) = Alx — a)® + &(x — a) log

o (10)

The second-largest term in the expansion must be matched to an intermediate
region.

The intermediate region has the leading order asymptotic behavior (z — a)
of the pinch region; that is, in the intermediate region, h has the form

2

h(z,t) = A(x — a)? + g(=,1). (11)

For the singularity to occur in finite time, ¢ must vanish in finite time.
We find the time dependence of ¢ by looking for a similarity solution

g(a:,t):ﬁrGCU;a), (12)

where £(t) is an intermediate length scale, and the similarity variable is { =
(z — a) /L. Plugging (11) and (12) into the original equation (1) gives

(G = CGTY — T aG — 244kl
4 AET_Z(CZG/“)/ 4 £2r—4(GG///)/ =0. (13)
We determine the asymptotic behavior of both G(¢) and £(t) by first identifying

leading terms in (13), and then separating ¢ and ¢ dependence.
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The balance chosen by [DGKZ93] takes r = 3, and
a@ = constant and £(t) ~ (t. — t)l/z. (14)

Then the leading-order terms of (13) for £ <« 1, that is, for ¢ — ., give the
ordinary differential equation for G(¢)

(3G — CG') + A(C2G") — 2A¢ = 0. (15)

1
2

Solutions to (15) have G(() ~ ¢ for small ¢.

Asymptotic matching requires that the small-¢ behavior of the intermediate
solution agree with the large-n behavior of the pinch solution (10). That is, we
must have

Oz —a) ~ E(x — a) logé

or

2 (te — 1)

&~ logg ~ log(t. —t)°

Thus, the decay of the intermediate region to a parabola determines the time
dependent scales in the pinch region. Note that an implicit assumption of these
scaling laws is that the intermediate regions on both sides of each minima have
the same time dependences. This is tested and shown to be true in Figure 8.
However, we will see in the next section that this assumption sometimes breaks
down, causing instabilities in the similarity solution.

For the simulation shown above, we can indeed see the nontrivial scaling of
the intermediate region. Figure 8 shows the length scale £ of the intermediate
region as a function of the minimum thickness f,,;,. Notice that before the
asymptotic behavior Ay, ~ €4 sets in, there is a transient behavior in which
only the inner side (smaller |x|) of the pinch regions satisfies the scaling law
Rmin ~ €3. At the thickness A, & 10719 there is a crossover in which (a) both
the outer (larger |#|) intermediate regions and the inner intermediate regions
obey the same scaling law, and (b) the scaling law agrees with that proposed
in [DGKZ93]. The behavior occurring before the crossover is interesting and is
discussed in the next section. Note that Figure 7 showing the dependence of
homin on & shows no evidence of this crossover.

Instability of the Exploding Singularity

Different initial conditions from those of the preceding section lead to an explod-
ing singularity that destabilizes, even after arbitrarily many decades of scaling
(the precise number depending on initial conditions). To illustrate this insta-
bility (which was never observed in simulations of the forced Hele-Shaw cell, or
in Figure 8), we condition the initial condition with w = 0.0662. At early times
the solution mimics the behavior shown in the previous example: the solution
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Figure 8: Intermediate length scale ¢ as a function of minimum thickness Ay,
for the stable exploding singularity of Figure 6: solid line, measured on the outer
side of the pinch points (larger x); dotted line, measured on the inner side of
the pinch points (smaller x). The dashed line shows the theoretical prediction
Romin ~ €4,

falls slightly in the center with two minima that propagate outward, attempting
to break at the points x,,;, & +0.016.

The solution in the pinch region follows the exploding behavior for many
decades: Figure 10 show the scaling laws for the characteristic length scale in
the pinch region, defined as the length scale over which the thickness doubles.
There is a large range of scales where the scaling behavior coincides with that
of the exploding singularity.

However, the data in the intermediate region tells a different story. Figure 11
shows Amin(t) versus £ for the present case. The solid line corresponds to the
measurement of £ on the inside of the pinch points. The dotted line corresponds
to a measurement of ¢ on the outside of the pinch points. The upper long-
dashed straight line corresponds to the law h,,;, ~ £3; the lower dashed straight
line corresponds to the scaling law h,;, ~ £°. This plot has several important
features: At h,i, ~ 1076 the outside intermediate scale begins to follow the
same hy,i, ~ £3 law noted above for early times. However, in this regime,
the inside intermediate scale does not satisfy any noticeable scaling law. At
a length scale of approximately 10710, there is a transition in both the inner
and outer intermediate regions. Beyond this transition, the outer intermediate
region seems to obey the scaling law h,,;,, ~ £%; however, the inner intermediate
region displays a sharper dependence, consistent with A, ~ £7.

This behavior in the intermediate region has an important consequence, as
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Figure 9: Approach to exploding similarity solution for w = 0.0662 at early
times. The solid, dotted, dashed, and dot-dashed lines correspond to times
t=2.3,2.42,2.427,2.43 x 1072, respectively,i seemingly leading to a finite time
singularity at @ = +0.016.
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Figure 10: Pinch length scale & as a function of minimum thickness f,;,, for the
unstable exploding singularity of Figure 9. The dotted line shows the theoretical
prediction Ay, ~ 2.
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Figure 11: Intermediate length scale ¢ as a function of h,, for the unsta-
ble exploding solution of Figure 9: dotted curve, measured on the inside of
the singularity; solid curve, measured on the outside. The upper dashed line
corresponds to Apin ~ €2, the lower dashed line to Ay, ~ £5.
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Figure 12: Transition behavior for w = 0.0662, for times following those of
Figure 9: solid line, ¢ = 0.00243; dashed line, ¢ = 0.0032. The nature of the
solution has changed dramatically, even at this extremely short time before the
(failed) singularity.

now shown: continuing the simulation beyond the last time shown in the previ-
ous figures (when A, ~ 10713)) the behavior changes dramatically. Figure 12
shows the minimum thickness immediately after Figure 9.

The temporal behavior of the solution is demonstrated by plotting the loga-
rithm of A, versus the logarithm of | ,,.,|, the distance from the origin of the
location of the minima (Figure 13). Beyond the critical thickness A, ~ 10-13
the minima turn around and propagate toward the origin. After turning around,
the solution approaches the new singularity mechanism, the imploding singular-
aty, discussed in the preceding section.

A potential source of the deviation in intermediate region from the scaling
solution discussed in the preceding section lies in the velocity & of the pinch
points. Figure 14 shows this velocity as a function of the minimum thickness,
hmin .

At early times (corresponding to when hp;, ~ £3) in Figure 11) the minima
are accelerating; at later times (corresponding to when hp, ~ €6 the minima
are decelerating. As shown in Figure 14, the scaling laws for the velocities in
the accelerating regime are given by A, ~ a~6.

Let us now reexamine equation (13) governing the dynamics in the interme-
diate region. Solutions to (13) different from (14) result by assuming that a is
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Figure 13: The minimum thickness h,;, as a function of the minima locations
+2 min, for the unstable exploding “singularity” of Figures 9 and 12. At b &
10713 the solution transitions to the imploding singularity.

100 1000
pinch velocity

Figure 14: Minimum thickness A, as a function of the velocity a of the pinch
point, for the unstable exploding “singularity” of Figures 9 and 12. Note the
presence of an accelerating and a decelerating regime. The dotted line represents

the scaling law A, ~ a6,
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not constant. These solutions obey the scaling laws
a o~ (73
0~ (te—1)Y*"

Er—l
&~ log £
&%

The only a priori requirement for the scaling exponent r is that the length
scale £ in the intermediate region be much smaller than the length scale & gov-
erning the pinch region; this implies » > 2. The solution » = 5/2 has the
scaling laws a ~ E‘l/z, homin ~ 675, and A ~ £3; this is consistent with the
measured scaling laws for the accelerating intermediate region discussed in both
this section and the preceding section. In the decelerating regime, Figure 11
shows that the outer intermediate length scale obeys the approximate scaling
law A, ~ £, suggesting © = 4 and hy,;, ~ a. However, as observed above,
Figure 14 shows a sharper decrease than this in the decelerating region, and
might not even obey a strict power law.

This discrepancy suggests a possible mechanism for instability of the “ex-
ploding” similarity solution solution: the inner intermediate regions obeys a
different scaling law than do the outer ones (see Figure 11). Denoting ¢; the
outer intermediate length scale and ¢, the inner intermediate length scale, we
have

£'7 ~ hmm ~ £6

k3 o

in the decelerating region. In the accelerating region, ki, ~ £2, and £; de-
creases much more slowly with decreasing h,p.

Recall that the intermediate region dictates the time dependence of the
singularity, as well as the velocity of the pinch point. The fact that there are
different time dependences on the two sides of the pinch point means that the
singularity is “frustrated:” should 1t move according to the directions of its left
hand or its right?

A heuristic way of estimating when the instability will set in is as follows:
We focus on the instability that occurs when the singularity is decelerating; a
similar argument applies to the accelerating phase. The velocity of the pinch
point dictated by the dynamics in the outer intermediate region is @, ~ £2; the
velocity of the pinch point dictated by the dynamics in the inner intermediate
region is @; ~ ¢*. When @, > a;, the dynamics of the outer flow pulls the
minima outward. However, eventually there is a transition in which the inner
flow has a stronger influence on the pinch points. At this point, the inner flow
becomes more important, and the singularity becomes unstable. This heuristic
argument suggests the instability criterion

a; o~

or
b o~ 3%
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At the time of the instability shown above, £, ~ 4.66 x 107 so the criterion
predicts that the transition should occur when ¢; ~ 5.6 x 10~%. This agrees
quite well with the actual value of ¢; at the transition, #; ~ 1.38 x 10=%. A
similar argument applied to the instability of the accelerating singularity gives
the same level of predictability.

In summary, we construct a one-parameter family of additional solutions
governing the intermediate region; at special parameter values the solutions are
observed in numerical simulations. The selection mechanism of these special
parameters is not understood; moreover, it is apparent that the observed so-
lutions have both have stable and unstable directions, as evidenced by initial
convergence to the solutions followed by an instability. However, the constant
velocity intermediate region appears to be robust, since we have never observed
a transition away from the constant velocity solution. The stability and instabil-
ity of these intermediate regions can be heuristically explained as a competition
between the fluid in the inner and outer intermediate regions.

Before proceeding to the next section, we address how the instability thresh-
old depends on the parameter w in the initial conditions. As the parameter w 1s
increased toward w. & 0.0664, the intermediate region converges to the constant
velocity solution and a stable exploding singularity. For w below this threshold,
there 1s always an instability. The minimum thickness at which the explod-
ing similarity suffers the instability depends on the initial condition. Figure 15
shows how the turnaround thickness h¢pqpns depends on w.

Near the critical value of wep;: & 0.0664, the critical thickness h¢pqns sSeems
to approach zero. Near zero hi,qns exhibits a power law as shown in Figure 16.
A fit to the power law gives the scaling

htrans ~ (wc - w)p’

with p &~ 3.5. An explanation of this power law behavior 1s currently lacking.

6 Symmetric Singularity

The third type of singular behavior resulting from the simple initial data (3)
is the symmetric singularity. This type of scaling behavior results from initial
data with w slightly larger than that producing the exploding singularity; an
example of this solution for w = 0.085 is shown in Figure 17. The interface
breaks at the origin after the finite time ¢ = 0.002547266.

This singularity mechanism was first discovered by [BBDK94]. For equation
(2) with n < 1, they constructed a similarity solution that well describes solu-
tions from numerical simulations. However, their analysis breaks down for the
case of present interest where n = 1; moreover, it was pointed out in [Ber95]
that there is a second relevant length scale governing the singularity, neglected
in the analysis of [BBDK94].

The present results clarify the situation considerably, although we still lack
a complete theory for this type of singularity. We show below that there are
both stable and unstable symmetric singularities. The pinch region for both of
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Figure 15: The thickness of the interface when the exploding singularity goes
unstable as a function of the parameter w characterizing the initial conditions.
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Figure 16: The thickness of the interface when the exploding singularity goes
unstable as a function from the critical parameter w, = 0.0664.
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Figure 17: Symmetric singularity formation for w = 0.085. The neck of fluid
breaks in the center, symmetrically about the pinch point.

these solutions has a spatial dependence similar to that proposed by [BBDK94]
for equation (2) with n < 1, although the time dependence is more complicated.
The stable symmetric singularity is demonstrated to have an intermediate length
scale, with a nontrivial scaling law. The unstable symmetric singularity, on the
other hand, appears to be governed by a single length scale throughout. We
show that these behaviors in the intermediate region lead to destabilization of
the pinch region scaling followed by breakup of this singularity structure.

6.1 The Pinch Region

The solution in the pinch region is of the form

h(z,t) = 8(&) (1+4n0°) + v Gm) + .... (16)

Here £(t) is a characteristic length scale, which goes to zero as the singularity
occurs, and §(€) denotes the local minimum of the solution. The variable n =
x /€ is the similarity space variable. The expansion in (16) is in powers of £; we
have neglected terms of order &, which are smaller than the ones written for
the range of interest 7 < O(1).

25



Plugging (16) into (1) gives

—¢& [6'—1— ((5’— 1—6) %772—1-7/(?— %nGn—l—...] =
- %[(5(1 + 1) +9G + ) (G + - .)L (17)

(—E: > 0 since & is decreasing). We now compute the function G(5), which gives
the leading order correction to the parabolic shape, for small &. To do this, we
must identify the dominant terms on each side of (17).

For Eq. (2) with n < 1 [BBDK94], such symmetric singularities occur with
§ ~ &2, for which §’ —26/€ = 0. For n = 1, logarithmic-type corrections appear:
our numerics suggest that § ~ &2P(log€), where P has at most polynomial
growth at infinity. Then ¢" — 26/& = & P'(log€), which is smaller than ¢’ by a
factor of log&. We therefore argue that the dominant term is the leading one,
—£&4', and we look for a consistent balance under this assumption.

On the right-hand side, the leading term is the first one, y¢ =4 5(1—1— %7]2) Grann -
Balancing the dominant terms, and separating variables for the two dependences
on & and 7, we determine both

Figure 18 shows excellent agreement of the numerics with this similarity solu-
tion. The rescaled data has h,;, ranging from 1075 to 1073%. The rescaling
uses the maximum of h;., as a rescaling parameter.

Although we have found the correct functional form for the spatial depen-
dence in the pinch region, we have not determined the time dependence of the
solution. As in the exploding singularity above 1t is natural to imagine that
the time dependence might occur as a matching condition to an intermediate
region.

6.2 Intermediate Region

Indeed, the symmetric singularity for w = 0.85 also has structure on an in-
termediate length scale ¢, which is much larger than &. The existence of this
intermediate scale was first pointed out in [Ber95] for the forced Hele-Shaw cell
as the length scale over which O;h varies.

Figure 19 shows the minimum thickness as a function of both this intermedi-
ate length scale and the pinch region length scale (defined as above as the length
scale over which h varies), for the initial condition w = 0.085 shown above.

The data suggests the scaling laws

hmin ~ €2 ~ EZ.S.

There is a clear difference in size between the intermediate scale and the pinch
scale, with the intermediate scale always much larger than the pinch scale. Mea-
suring the intermediate scale as a function of time gives a power law consistent
with € ~ (t. —1)°5.
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Figure 18: Rescaled third derivative for approximately 15 decades in the char-
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Figure 19: Minimum thickness h,,;, as a function of both the intermediate
length scale ¢ and the pinch length scale &, measured as described in the text.
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Figure 20: The characteristic length scale in the intermediate region as a func-
tion of the time to the singularity, t. —¢. The dotted line shows the scaling law
O~ (e —1)05.

6.3 Destabilization of the Solution

Thus far we have presented numerical evidence for the existence of a locally
symmetric singularity. The simulation described above shows over ten decades
of scaling in the characteristic width of the solution. However, for slightly lower
values of the parameter w, the symmetric singularity becomes unstable. As in
the case of the “exploding” singularity instability described in the preceding
section, this instability can set in at an arbitrarily small thickness, depending
on the initial data. We illustrate the instability using initial data with w = 0.08
(see Figure 21).

At early times (the uppermost curve) the solution falls by ten orders of
magnitude, and seems to approach the symmetric singularity. However, the
solution eventually bifurcates into an exploding singularity, with two minima.

Evidence of the impending breakdown of the symmetric scaling structure
can be found well before it occurs in both the intermediate region and the pinch
region. Plotting the minimum thickness as a function of the intermediate length
scale and the pinch scale tells a dramatically different story from the stable
symmetric singularity discussed above. Figure 22 shows that the intermediate
scale and the pinch scale have essentially identical scaling laws (up to possible
logarithmic corrections). In fact, the intermediate scale seems to have a slightly
steeper slope. The instability occurs exactly when the characteristic scale of
the pinch region is equal to the characteristic scale of the intermediate region,
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Figure 21: Destabilization of the symmetric singularity for w = 0.08. The
uppermost curve corresponds to the earliest time, and the lower-most curve
corresponds to the latest time. Although the thickness at the origin initially
falls by almost ten orders of magnitude, this “symmetric singularity” eventually
bifurcates into an exploding singularity, with two minima.

-15

10

Figure 22: Intermediate length scale ¢ (dashed line) and pinch length scale £
(solid line) plotted against minimum thickness A p;p.
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Figure 23: Plot of R as a function of A, for the stable symmetric singularity
at w = 0.085. The ratio decreases monotonically as h ., — 0.
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The instability can also be predicted by studying the properties of the solu-
tion in the pinch region. In the above analysis of the pinch region, we computed
the first two terms in an expansion and showed that the second term has size

B 6:(5%4
1=

In order for this term to be lower order than the first term, of size §, the ratio
R = v/ must be small compared with 1. Figure 23 shows R versus h;, for
the stable symmetric singularity.

On the other hand, in the case where the singularity destabilized, R initially
decreases but then starts to increase very slowly (Figure 24). A rapid rise in R
then precedes the destabilization right before bifurcation of the minimum occurs
(Figure 25).

The fact that the unstable symmetric singularity and the stable symmet-
ric singularity have different time dependences of R and different intermediate
regions in the two cases indicates that we are observing two different singular
solutions of the PDE. Thus far we have not been able to construct an entirely
convincing similarity solution that recovers the scaling properties of either of
the two cases.
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Figure 24: Plot of R as a function of A, for the unstable symmetric singularity
at w = 0.08. In this case the ratio grows very slowly as A, — 0, again with a
logarithmic time dependence.
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Figure 25: Plot of R as a function of A, for the unstable symmetric singularity
at w = 0.08. The figure shows a closeup of the sharp increase right before
bifurcation occurs.
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7 Conclusions

This paper describes a set of complex phenomena associated with scaling and
singularity formation in a thin neck in the unforced Hele-Shaw cell. We show
several types of possible behavior associated with singularity formation, two
of which appear in previous work on the forced Hele-Shaw cell. We support
the evidence presented in the numerical simulations by constructing self-similar
local solutions to the governing equations that agree with the numerics; taken
together these results provide convincing evidence that there are several different
mechanisms for the formation of finite time singularities.

We emphasize that the observation of multiple similarity solutions depend-
ing on the details of the initial conditions and boundary conditions is quite
different from other physical situations. All of the similarity solutions in the
Hele-Shaw problem have scaling exponents unrelated to dimensional analysis;
this 1s in stark contrast to three-dimensional droplet breakup, where there 1s
a single similarity solution with dimensional exponents. The existence of so
many different similarity solutions is interesting because it means that argu-
ments about universality of the singularity become vacuous: slight changes in
initial conditions and boundary conditions can influence the singular behavior,
even though the singularity happens on a time scale arbitrarily faster than the
boundary forcing.

A particularly intriguing result of the present work is the observation that
similarity solutions can apparently destabilize at arbitrarily small thickness,
with the thickness at which instability occurs depending on the initial condi-
tion. Before the instability sets in, arbitrarily many decades of scaling can occur.
It is important to note that less well resolved numerics would miss the instabili-
ties and therefore provide an inaccurate description of the singularity behavior.
Instabilities have been previously observed in similarity solutions characterizing
three dimensional axisymmetric droplet breakup [BSN94, SBN94]; however in
that case the instabilities are manifestations of the Rayleigh instability, which
1s absent in the our two dimensional system. The instabilities observed here are
more subtle; and a complete understanding would require stability analysis of
the different matching regions.

The existence of unstable similarity solutions highlights our current lack
of understanding of the selection of scaling solutions near singularities. What
causes the selection of a particular singular behavior? Does the selection depend
on boundary conditions? Although stability analysis of a single similarity solu-
tion with a well defined asymptotic behavior is straightforward (see for example
[BSN94]), it is unknown how to perform stability analysis when there are sev-
eral matching regions with different time dependences. Even more important,
the time dependences are always determined by assuming a certain asymptotic
behavior away from the singularity; we do not know what determines the par-
ticular asymptotic behavior selected. Without understanding these issues, we
cannot rule out that any of the singular behaviors described to date in the Hele-
Shaw cell (or for that matter in any system where singularities form) may be
inherently unstable. For example, we do not observe instabilities of the con-
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stant velocity exploding singularity; however, this apparent stability could be a
remnant of our finite numerical resolution.

Many computational studies address scaling properties of singularities. In
more complex equations such as 3D Euler, one can only resolve a few decades
of scaling with current computational technology [Ker93]. It may be that such
destabilizations also occur in systems like this yet the numerical tools are not
refined enough to observe them. Our study shows that numerical calculations
of finite time singularities, even when many decades of scaling are present, may
not show the true end state of the system. We emphasize that this is even
true when the calculations are resolved well below all important physical length
scales, as instabilities can occur on scales determined by intermediate matching
regions, which can be arbitrarily small.

Another fundamental question reiterated by this study is why are the sin-
gularities of the lubrication approximation (1) not described by exact similar-
ity solutions, predicted by dimensional analysis? In three dimensional droplet
breakup, such dimensional similarity solutions are relevant [Egg93, SBN94] for
understanding rupture. However, although we have uncovered at least six dif-
ferent similarity solutions observed (either transiently or asymptotically) in the
simulations, none of them are exact similarity solutions.

Finally, we end with a plea to experimentalists: Other than the initial exper-
iments that prompted studies of droplet breakup in a Hele-Shaw cell [GMS], no
systematic experimental investigations have been carried out. The main reason
that such experiments are difficult because of the need to resolve a large range of
scales to test the detailed predictions and scaling laws. In a typical Hele-Shaw
experiment, the plate spacing b is around 1 mm, which in the best of circum-
stances could give only a decade of scaling, hardly sufficient to test theoretical
predictions. However, the present results suggest that there are qualitative pre-
dictions that would be both worthwhile and possible to test experimentally: we
suggest that it should be experimentally feasible to tune between the different
similarity solutions. Since the different singular behaviors have different qualita-
tive features (e.g. finite time versus infinite time, stationary pinch point versus
moving pinch point, symmetric versus asymmetric, imploding versus exploding).
Their qualitative features will be easily distinguishable, even by the number of
satellite drops that are left by this most interesting topological transition.
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