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Setup:Permutation vector: perm(j) = j; j = 1 : nColumn norm vector: colnorms(j) = kAej jj22; j = 1 : nReduction Steps:For j = 1 : n1. Pivoting: Choose p such that colnorms(p) = max(colnorms(j : n))If (colnorms(p) == 0) STOPIf (j 6= p) then % interchangeperm([j; p]) = perm([p; j]), A(: ; [j; p]) = A(: ; [p; j])colnorms([j; p]) = colnorms([p; j])Endif2. Reduction: Determine a Householder matrix Hj such thatHjA(j : m; j) = �kA(j : m; j)k2 e1.3. Matrix Update:A(j : m; j + 1 : n) = Hj A(j : m; j + 1 : n)4. Norm Downdate:colnorms(j + 1 : n) = colnorms(j + 1 : n)� A(j; j + 1 : n) :̂ 2EndforFig. 1. Traditional Algorithm for the QR Factorization with Column PivotingThe LINPACK [13] subroutine xQRDC and the LAPACK [1, 2] subroutine xGEQPFboth implement the Businger/Golub scheme by using Level 1 and 2 BLAS [24, 14],respectively. As a rule of thumb, Level 2 BLAS perform better than Level 1 BLAS.However, on cache-based architectures, this rule of thumb must be used with cautionsince an implementation based on Level 1 BLAS may exhibit better cache data localitythan a Level 2 BLAS implementation.This paper introduces a variant of the QR factorization with column pivoting thatallows the use of Level 3 BLAS kernels [12], thus increasing cache data locality whileenabling the use of the most e�cient BLAS kernels. The paper is structured as follows:In Section 2 we describe the basic QRP algorithm and the pertinent features of theLevel 1 and 2 BLAS implementation. In Section 3 we present a block algorithm forimplementingQRP, allowing for the use of Level 3 BLAS kernels while maintaining thebehavior of the QRP algorithm. Experimental results on IBM RS/6000, SGI R8000,and DEC Alpha/AXP platforms are presented in Section 4. Lastly, we summarizeour work and outline potential avenues of further improvement.2. TraditionalQR Factorization with ColumnPivoting. The basic schemefor the QR factorization with column pivoting as proposed by Businger and Golub [9]can be described as shown in Figure 2, using MATLAB notation. We assume thatthe reader is familiar with Householder transformations and their application in thecontext of a QR factorization (see, for example, [16, pp. 195{197,211{212]). The no-tation e1 is used to denote the �rst canonical unit vector (1; 0; : : : ; 0)T of appropriatelength.The LINPACK routine xQRDC and the LAPACK routine xGEQPF di�er substan-tially only in the implementation of the matrix update. Since a Householder matrixH is a rank-1 modi�cation of the identityH = I � �vvT ;2



its application requires the computationHA = A� �vvTA:xQRDC is column oriented in the sense that the matrix update is done column bycolumn. For each column j, j = 1 : n, it uses xDOT, a Level 1 BLAS kernel, tocompute vTAej and then updates Aej by using a xAXPY call. In contrast, LAPACK'sxGEQPF is matrix-vector oriented. It �rst computes the row vector vTA by using theLevel 2 BLAS routine xGEMV for a matrix-vector product, and then applies a rank-1update with the Level 2 BLAS routine xGER.Hence, while xQRDC fetches and touches each column of A only once, xGEQPFhas to fetch and touch twice, for both the matrix-vector multiply and the rank-1update. If the cache is big enough that the second fetch is from the cache and notfrom memory, this does not matter, but otherwise the Level 2 BLAS implementationrequires roughly twice the number of main memory accesses. Even though mostassembler implementations of BLAS 2 kernels would exploit architectural featuresand the known and regular data access pattern of a BLAS 2 kernel, the memoryaccess penalty may outweigh these factors. The experimental results for the DECAlpha platform in Section 4 illustrate this point.3. A Block Algorithm for the QR Factorization with Column Pivoting.We describe in this section a new variant of the QRP algorithm that can employLevel 3 BLAS kernels. What seems to have kept the QRP procedure (Figure 2) fromusing Level 3 BLAS is the norm downdate scheme (step 4) | at every step we mustdowndate all column norms before we can select the next pivot column among theremaining ones. The formula for the norm downdate we used in Figure 2 obviously isnot numerically reliable. G. W. Stewart developed a robust scheme for LINPACK thatwas also adopted in LAPACK. This scheme monitors the accuracy of the downdateand recomputes the column norms only when serious cancellation occurs. The normdowndate scheme has at least two noticeable features: (1) it makes the computationof column norms a�ordable and hence makes the column pivoting scheme practical,and (2) it governs the numerical aspects of the QRP procedure. For example, itensures that the diagonal elements of the upper triangular matrix R be arranged innonincreasing order. This property is important, for instance, for graded matrices.Given the practical reliability of the QR factorization with column pivoting, weseek to design a block algorithm that maintains the same norm downdating and piv-oting scheme, and hence computes the same numerical factorization. In the algorithmin the preceding section, we notice that in order to downdate the column norms afterthe jth step we need only know the updated jth row. This allows us to choose thenext pivot column p, say. To determine the next Householder transformation, it issu�cient to apply the previous Householder transformation only to the pth column.The update of elements in other rows and columns can be delayed. This analysisunderpins our block algorithm: for every consecutive nb steps, we update in each steponly one row and one column, leaving the rest to be updated at the end of the nbsteps with a block update, namely, a rank-nb update. If this scheme can be carriedout successfully for nb > 1, the number of memory accesses of A can be reduced byapproximately 50% compared with the Level 2 BLAS version, while opening up thepossibility of using the typically very e�cient Level 3 BLAS kernels.Let us now consider the details of the block update. Assume we use the so-calledcompact WY form [28] Q = I � Y TY T3



QP3Step ( m, n, nb, rowk, A )Setup:perm(j) = j; colnorms(j) = kAej jj22; j = 1 : nF (1:n; 1: nb) = 0Reduction Steps:For j = 1 : nb0. k = rowk + j � 1 % current row index1. Pivoting: Choose p such that colnorms(p) = max(colnorms(j : n))If (colnorms(p) == 0) STOPIf (j 6= p) then % interchangeperm([j; p]) = perm([p; j]), A(: ; [j; p]) = A(: ; [p; j])colnorms([j; p]) = colnorms([p; j]), F ([j; p]; : ) = F ([p; j]; : )end2. Update of pivot column:A(k : m; j)� = A(k : m; 1 : j � 1) � F (1 : j � 1; j)3. Reduction: Generate Hj = I � tau(j)Y (j)Y (j)T such thatHjA(k : m; j) = �k(k2A(k : m; j)e1.4. Incremental Computation of F :F (j + 1 : n; j) = tau(j)A(j : m; j + 1 : n)TY (j : m; j):F (1 : n; j)� = tau(j)F (1 : n; 1 : j � 1)Y (j : m; 1 : j � 1)TY (j : m; j):5. Update of pivot row:A(k; j + 1 : n)� = A(k; 1 : j) � F (j + 1 : n; 1 : j)T6. Norm downdate :colnorms(j + 1:n) = colnorms(j + 1 : n)� A(k; j + 1 : n) :2.End ForBlock update:A(k + 1 : m; nb +1 : n)� = A(k + 1 : m; 1 : nb) � F (nb +1 : n; 1 : nb)TFig. 2. Algorithm for Reduction of A(rowk :m; 1 : nb) and Update of A(rowk : m; 1 : n)to represent the product Q of nb Householder matrices Hi. Y is lower trapezoidalwith nb columns, and T is upper triangular of order nb. At �rst glance, the blockupdate A(nb+ 1 : m;nb+ 1 : n)�= Y (nb+ 1 : n; 1 : nb)TY TA(:; nb+ 1 : n)(where ��= � is shorthand for � = �� �) requires the values of the �rst nb rows ofA before the nb column reductions. Yet, owing to the need for the norm downdating,these rows must have been updated by the time that we want to compute the blockupdate.We solve this problem by computing and savingFT = TY TA(:; 1 : n)adaptively, row by row, along with the generation of Y and T and the update ofA(1 : nb :; nb + 1 : n). Notice that since Y T is upper trapezoidal and T uppertriangular, the computation of the �rst row of FT accesses all rows of A and it isneeded for updating the �rst row of A. The computation of the second row of FTaccesses all rows of A but the �rst one (which is already updated by now) and thesecond row of FT is needed for updating the second row of A, and so on. With4



Algorithm QP3 ( m;n; idealnb; A; � � � )Initialize vectors perm and colnorms and set j = 1While j � nnb = min(idealnb; n�j+1)QP3S ( m; n�j+1; j; nb; A(:; j : n); � � � );j = j + nbEnd WhileEnd AlgorithmFig. 3. Block QR Factorization with Column Pivotingcareful programming, the use of F causes no increase in the workspace requirementfor a block update. We summarize our discussion so far in the algorithm for one stepof a block reduction shown in Figure 2.The incremental update procedure for the auxiliary array F not only resolves thecoherence problem in the block update, but also makes the update of the pivot rowand the pivot column easy. The block update can be carried out by a call to theBLAS Level kernel xGEMM and we touch A only once in the update of F . Thus, byusing QP3Step, the QRP factorization can be computed block by block.We mentioned earlier that we aim to arrive at the same factorization as LIN-PACK and LAPACK by implementing the same norm downdate scheme and pivotingscheme. In particular, this means that if severe cancellation takes place in a normdowndate, the norm of the remaining column is computed from scratch. Thus, in theblock scheme, we must update the column in question with all previously generatedHouseholder transformations, even if we have not accumulated nb of them yet. Ifthis happens, we shortcircuit the block accumulation and update all columns withthe Householder transformations already generated. The actual number of reducedcolumns may be less than the given block size nb, but it is at least 1, not worse that theunblocked algorithm. So, unless we experience the (rare) case of frequent occurrencesof catastrophic cancellation, we should still be able to perform a signi�cant number ofblock updates. With this modi�cation, the subroutine parameter nb is both an inputand an output parameter. The overall block QRP algorithm is shown in Figure 3.4. Experimental Results. We report in this section experimental results com-paring the double precision codes DQRDC from LINPACK, DGEQPF from LAPACK,and our block algorithm DGEQP3. The tests were carried out on an IBM RS/6000-370, SGI R8000, and DEC Alpha 3000 Model 600. In each case, we employed thevendor-supplied BLAS in the ESSL, SGIMATH, and DXML libraries, respectively.We generated 18 di�erent matrix types to test the algorithms, with various singularvalue distributions and numerical rank ranging from 4 to full rank. The matrix col-lection was constructed to exercise column pivoting, and thus we expect that the needfor norm downdating might be, if anything, more pronounced than one experiencesin practice. Thus, we expect this collection to be representative of realistic pivotingbehavior. Single, double, complex, and double complex code for xGEQP3 as well asthe test and timing drivers used in these experiments are accessible via anonymousftp from ftp.super.org in pub/prism/qp3.tar.gz.We present results on matrices of size 150, 250, 500, and 1000, using a block size(idealnb in Figure 3) of 1, 5, 8, 12, 16, and 24. Figures 4 through 6 show the Mopperformance, averaged over the 18 matrix types, versus block size on the IBM, DEC,5
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Fig. 4. Average Performance (in Mops) versus Block Size on an IBM RS/6000-370and SGI platforms. In all cases, the dotted line denotes the performance of DQRDC,the solid one that of DGEQPF, and the dashed one that of DGEQP3.On the IBM, the BLAS hierarchy is intact, so to speak, in that performanceincreases with the BLAS level employed. The overall performance of the machine alsoincreases with matrix size, and so does the relative performance gain of DGEQP3 overDGEQPF: from 16% for matrices of size 150 to 40% for matrices of size 1000.The DEC Alpha presents quite a di�erent picture. First of all, the LINPACKcode always outperforms the LAPACK code. Second, the overall performance of themachine drops substantially for matrix size 1000. However, the relative gain of DGEQP3over DGEQPF is monotonically increasing: from 11% for matrices of size 150 to 53%for matrices of size 1000.The SGI presents a di�erent picture still. Of the machines tested, it has by far thelargest data cache memory: 4 MB. In contrast, the IBM and DEC platforms have onlya 32 KB data cache. Thus, matrices up to order 500 �t in cache, but matrices of order1000 do not. Therefore, for matrices of size 500 or less, we observe limited bene�tsfrom the better inherent data locality of the BLAS 3 implementation. However, thetransition from BLAS 1 to BLAS 2 makes a big di�erence. Nonetheless, for n = 500,DGEQP3 outperforms DGEQPF by about 25% and achieves a performance of almost 125Mops. For n = 1000, overall performance degrades, but the relative advantage ofDGEQP3 improves to about 38%.We also note that on all three machines, the performance of DGEQP3 is ratherrobust with respect to variations in the block size, and, except for smallmatrices on the6
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Fig. 5. Average Performance (in Mops) versus Block Size on an DEC Alpha 6000-300SGI, always superior to that of both the LINPACK and LAPACK implementations.Thus, while not being able to completely shield the user from machine peculiarities,DGEQP3 does signi�cantly better in this respect than the other two implementations.5. Concluding Remarks. We developed a new block variant of the QR factor-ization with column pivoting that allows the use of Level 3 BLAS. While maintainingthe numerical behavior of the LINPACK and LAPACK implementations, it consis-tently outperforms them on IBM RS/6000, DEC Alpha, and SGI R8000 workstationplatforms. Thus, it does a good job of insulating the user from the particulars ofa speci�c machine, especially the cache behavior. In contrast, the LINPACK codeactually outperforms the LAPACK code on the DEC Alpha platform.To achieve even better performance, we believe it necessary either to modifythe norm downdating scheme or to relax the global pivoting criterion. In our testswe observed cases where columns were involved quite a few times in \catastrophic"cancellation scenaria, prompting the recomputation of their norm. How to relaxthe downdating criterion causing dramatic change in numerical properties of the QRfactorization with column pivoting is an open question.A di�erent approach is to avoid the need for a global pivot search through theintroduction of a \pivot window" [4, 5]. The resulting algorithms have even higherdata locality, but the rank-revealing properties of the resulting orthogonal factoriza-tion deteriorate. Thus, such an approach is unlikely to be reliable unless coupledwith a post-processing step that tests, and, if necessary, improves the rank-revealingnature of the factorization. How the overall algorithm would perform is unclear at7
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