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Abstract

A crucial step in obtaining high-order accurate steady-state solutions to the Euler and Navier-
Stokes equations is the high-order accurate reconstruction of the solution from cell-averaged
values. Only after this reconstruction has been completed can the flux integral around a
control volume be accurately assessed.

In this work, a new reconstruction scheme is presented that is conservative, uniformly
accurate with no overshoots, easy to implement on arbitrary meshes, has good convergence
properties, and is computationally efficient. The new scheme, called DD-L,, uses a data-
dependent weighted least-squares reconstruction with a fixed stencil. The weights are chosen
to strongly emphasize smooth data in the reconstruction. Because DD-L, is designed in the
framework of k-exact reconstruction, existing techniques for implementing such reconstruc-
tions on arbitrary meshes can be used. The new scheme satisfies a relaxed version of the
ENO criteria. Local accuracy of the reconstruction is optimal except in the case on functions
that are continuous but have discontinuous low-order derivatives. The total variation of the
reconstruction is bounded by the total variation of the function to within O (Ax).

The asymptotic behavior of the scheme in reconstructing smooth and piecewise smooth
functions is demonstrated. DD-Ly produces uniformly high-order accurate reconstructions,
even in the presence of discontinuities. Two-dimensional flow solutions obtained using DD- L,
reconstruction are compared with solutions using limited least-squares reconstruction. The
solutions are virtually identical. The absence of a limiter reduces the CPU time required for
DD-L; solutions by 15-20% as compared to limited reconstruction, even though the DD- L,
gradient computation is slightly more expensive than ordinary least-squares reconstruction.



1 Introduction

A crucial step in obtaining high-order accurate steady-state solutions to the Euler and Navier-
Stokes equations is the high-order accurate reconstruction of the solution from cell-averaged
values. Only after this reconstruction has been completed can the flux integral around a
control volume be accurately assessed. Ideally, the reconstruction should conserve the mean
value of the function in each cell, be uniformly accurate with no overshoots, be easy to
implement on arbitrary meshes, have good convergence properties, and be computationally
efficient.

Both limited k-exact reconstruction and essentially non-oscillatory (ENO) reconstruction
have many of these properties. For example, design criteria for k-exact reconstruction given
by Barth and Frederickson [1] ensure conservation of the mean, good accuracy for smooth
functions, and computational efficiency. A fixed stencil is used, allowing precomputation of
certain purely geometric quantities used in the reconstruction, with a corresponding improve-
ment in efficiency. Accuracy near discontinuities is poor, however, and limiting is required
to prevent overshoots of O (1). Limiters that retain good convergence properties (e.g., [2])
are often computationally expensive.

By design, the ENO reconstruction schemes of Harten et al. [3, 4, 5] conserve the mean,
are uniformly accurate at all points for which a smooth neighborhood exists, and guarantee
that overshoots will be no larger than the order of the truncation error of the reconstruction.
Uniform high-order accuracy is obtained by using reconstruction stencils that vary in both
space and time. Unfortunately, such stencils can hamper convergence to steady state. Also,
ENO schemes are not easily implemented on unstructured meshes [6, 7].

In this work, a new reconstruction scheme is presented that has the best properties of
both limited k-exact reconstruction schemes and ENO schemes. The new scheme, called
DD-L,, uses a data-dependent least-squares weighted reconstruction with a fixed stencil.
The weights are chosen to strongly emphasize smooth data in the reconstruction. Because
DD-L; is designed in the framework of k-exact reconstruction, existing techniques for im-
plementing such reconstructions on arbitrary meshes [1, 8] can be used with only slight
modification. The new scheme satisfies a relaxed version of the ENO criteria. Local ac-
curacy of the reconstruction is optimal except in the case of functions that are continuous
but have discontinuous low-order derivatives. The total variation of the reconstruction is
bounded by the total variation of the function to within O (Az).

Sections 2 and 3 describe least-squares reconstruction and reconstruction-by-primitive
(RP) ENO schemes, respectively. Section 4 presents the new data-dependent least-squares
reconstruction and discuss its properties. Section 5 shows results for reconstruction of smooth
and nonsmooth functions, providing numerical evidence for the properties of the DD-L; re-
construction. In Section 6, some sample flow solutions are shown, with attention paid to
accuracy, steady-state convergence behavior, and computational expense. Section 7 revis-
its the data-dependent reconstruction and describes a weighting scheme that dramatically
improves the performance of DD-L, reconstruction for functions that are C° but not C!.
Finally, Section 8 presents some conclusions and directions for future work.



2 k-exact Least-Squares Reconstruction

The fundamental feature of k-exact reconstruction schemes is the exact reconstruction of
polynomials of degree no more than & [1]. Smooth functions that cannot be described by

k1) For example, if

k™-order polynomials are reconstructed with a local error of O (A:L'
k = 1, the reconstruction will exactly reproduce linear functions and make no local errors
larger than O (Az?) for smooth functions. Such reconstructions can be designed to have
compact support, conserve the mean, and be implemented efficiently on arbitrary meshes.
Mathematically, if the reconstruction is exact, then for all vertices 7 in the support stencil

for a vertex j,
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where Au; = w; —uj, Az; = x; — z;, and Ay; = y; — y; and all derivatives are evaluated
at j. Since the reconstruction will not be exact for functions that cannot be described by
polynomials of degree k or lower, an optimization problem must be solved to find the best
choice for the derivatives of u to fit the data. This optimization problem often is solved in a
weighted least-squares sense, giving a data-independent least-squares reconstruction (DI-Ls).
The following set of equations must be solved approximately:
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The weighted differences are defined as A,(-) = w;A(-). The w; often are chosen to be
1/|#; — Zo|, with ¢ = 0,1,2 [9]. While the choice of ¢ does not affect the order of accuracy
of the reconstruction, higher values of ¢ typically give lower coefficients for the error terms
by weighting data from more distant vertices less heavily.



If the system in Equation 2 is well conditioned, it can be solved by using normal equations.
T

This approach involves multiplying from the left by Ly Ly Ly ... Zk£k+32 , resulting in the
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following square system of equations.
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where £, ; = Li- [_:j and f; = f L;. When only first neighbors are involved—as for piecewise
linear reconstruction—the use of normal equations requires only a single loop over edges in
an unstructured mesh to accumulate the coefficients and right-hand side for the system.

For the case of piecewise quadratic reconstruction, Barth reports [8] that the normal
equations are ill-conditioned or high-aspect ratio cells. A more robust solution technique
for the least-squares problem, such as singular-value decomposition, should be used for such
cases.

The sums required to solve Equation 2 by using normal equations for the piecewise-
linear (k = 1) reconstruction of a function v on an unstructured mesh can be computed in
the following single loop over the edges of the mesh.

Algorithm 1
Least-Squares Linear Reconstruction

! loop over all edges

do i_edge = 1, num_edges
! vertex at edge origin
vertl = edge_to_vert(l, i_edge)
! vertex at edge destination
vert2 = edge_to_vert(2, i_edge)

dx = x(vert2) - x(vertl)
dy = y(vert2) - y(vertl)
du = u(vert2) - u(vertl)

! geometric weight
weight = 1 / (dxxdx + dy*dy)**x(t/2)

wdx = weight * dx
wdy = weight * dy

welight * du

wdu

Li1(vertl) = Lii(vertl) + wdx * wdx
L12(vertl) = Li2(vertl) + wdx * wdy
L22(vertl) = L22(vertl) + wdy * wdy



Lif(vertl) Lif(vertl) + wdx * wdu
L2f (vertl) L2f (vertl) + wdy * wdu
L11(vert?2) Li11(vert2) + wdx * wdx
L12(vert?2) L12(vert2) + wdx * wdy
L22(vert?2) L22(vert2) + wdy * wdy
Li1f(vert?2) Lif(vert2) + wdx * wdu
L2f (vert?2) L2f (vert2) + wdy * wdu
enddo

The purely geometric parts of this loop—the summations for L11, L12, L22—can be pre-
computed as a one-time preprocessing step and stored. Once the sums L11, L12, L22,
L1f, and L2f have been computed, gradients are found by solving Equation 3. The recon-
structed solution in the control volume surrounding a vertex j is

uj(w,y) = u; + Vul, - (¥ — 7))

(4)

3 ENO Reconstruction

The criteria set forth by Harten et al. [5] for essentially non-oscillatory reconstruction
place a greater emphasis on accuracy than do the k-exact criteria, in that ENO schemes
obtain high-order accurate reconstructions for all vertices having a smooth neighborhood.
Also, ENO reconstruction conserves the mean and guarantees that the total variation of the
reconstruction will not exceed that of the original function by more than O (A$k+1).

One approach to ENO reconstruction is reconstruction via a primitive function (RP-
ENO) [5]. In one dimension, this approach integrates cell-averaged data u; to get the prim-
itive function Uj+;_.

j
Uppr = ;A (5)
0

The primitive function is interpolated by using a continuous, piecewise polynomial inter-
polation with polynomials of degree & + 1. The support for interpolation in cell j always
includes j — % and 7+ % The stencil is built by adding one vertex at a time, with the choice
of which direction to extend the stencil being made to minimize the highest-order divided
difference that can be formed on the new stencil. That is, the piecewise quadratic interpo-
lation is chosen to have minimum curvature, and so on. Once the interpolation is complete,
the reconstruction of w in cell j is found by differentiating the interpolating function U in
the range (j — 3,7 + 3)-

As described above, RP-ENO is applicable to nonuniform meshes, and the approach can
be extended to multiple dimensions and curvilinear meshes [10]. Extension of ENO schemes
to unstructured meshes is more difficult, especially the task of finding smooth stencils for
the reconstruction [6, 7].



4 Data-Dependent Least-Squares Reconstruction

Least-squares and ENO reconstruction schemes in one dimension can be analyzed in a
uniform framework by writing the reconstructed derivative in cell j as

du B 1+ s; A"’uj 1 —s; A7u;

bkl 6
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a step discontinuity between j — 1 and j gives ¢; = —1, and a step discontinuity between j

and j + 1 gives ¢; = 1. Smooth functions have ¢; = O (Ax).

In this context, data-independent least-squares reconstruction corresponds to choosing
s; to be a constant depending only on the local geometry; uniform meshes give s; = 0. This
approach can lead to unphysical slopes near discontinuities.

ENO reconstruction results from setting s; = sign (¢;), because ENO reconstruction
always chooses a one-sided derivative with the lowest possible magnitude. For evolution of
smooth solutions, such a reconstruction has a distinct disadvantage, in that s; can arbitrarily
flip from 1 to —1; this behavior inhibits full convergence to steady state unless steps are taken
to prevent binary switching for small changes s;.

The approach taken here is to design weighting schemes for a data-dependent least-
squares reconstruction scheme that will give the behavior of data-independent least-squares
reconstruction for smooth functions and that of ENO reconstruction for discontinuous func-
tions. That is, for smooth functions, the weightings should be asymptotically the same as
some reasonable data-independent weights, and for discontinuous functions, the weights for
nonsmooth data within the stencil should go to zero fast enough to ensure that reconstruc-
tion errors for a k-exact reconstruction will be uniformly of O (A$k+1). This amounts to
requiring

%li_{ril s; — £1 (8)

More will be said later about functions that are continuous but have discontinuous deriva-

tives.

4.1 Second-Order Accurate Data-Dependent Least-Squares
Reconstruction

The appropriate behavior in the smooth and discontinuous limits can be obtained by
using a simple weighting that takes advantage of the behavior of second differences. If a
cell j is separated from one or more of its neighbors by a discontinuity of O (1), the second
difference will go as O (Ax~?). In computing the gradient at vertex j, data from neighbors
where the difference in function value between j and the neighbor is of O (Az) should be
given a weight of O (1), whereas data differing from data at j by O (1) should have a weight



of no more than O (Az?) to ensure a second-order accurate reconstruction. The following
simple weighting function has this behavior.

1
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Here, w° is the geometric weighting factor used previously, and D*(u) is a numerical second
derivative. In multiple dimensions, any reasonable norm of the Hessian matrix is acceptable
because all such norms will be of O (Az~?) if there is a discontinuity in the neighborhood
of j.* For a one-dimensional, constant-spacing case, the equivalent value of s; is compared
with those for DI-L; and ENO schemes in Figure 1.

By design, the implementation of this scheme for unstructured meshes requires only minor
modifications to Algorithm 1 given in Section 2.

Algorithm 2
Data-dependent least-squares reconstruction

! loop over all edges

do i_edge = 1, num_edges
! vertex at edge origin
vertl = edge_to_vert(l, i_edge)
! vertex at edge destination
vert2 = edge_to_vert(2, i_edge)

dx = x(vert2) - x(vertl)

dy = y(vert2) - y(vertl)

! geometric weight

weight = 1 / (dxxdx + dy*dy)**x(t/2)

du = u(vert2) - u(vertl)
! data-dependent weight
weightl = weight /
(1 + ¢ * abs(LaplU(vertl)) * du**2)
! data-dependent weight
weight2 = weight /
(1 + ¢ * abs(LaplU(vert2)) * du**2)

wdx = weightl * dx
welghtl * dy

welghtl * du

wdy

wdu

Li11(vertl)
L12(vertl)
L22(vertl)

Li1(vertl) + wdx * wdx
L12(vertl) + wdx * wdy
L22(vertl) + wdy * wdy

*Note that the denominator of Equation 9 must be nondimensionalized for applications other than pure
function reconstruction; this will be discussed further in Section 6.



Lif(vertl)
L2f (vertl)

Lif(vertl) + wdx * wdu
L2f (vertl) + wdy * wdu

wdx = weight2 * dx

wdy = weight2 * dy
wdu = weight2 * du
Li11(vert2) = Lii(vert2) + wdx * wdx
L12(vert2) = L12(vert2) + wdx * wdy
L22(vert2) = L22(vert2) + wdy * wdy
Lif(vert2) = Lif(vert2) + wdx * wdu
L2f (vert2) = L2f(vert2) + wdy * wdu
enddo

Here, LaplU is a numerical Laplacian. Note particularly that the weights used at opposite
ends of the same edge are not the same. This approach has no effect on the conservation of
the mean for the scheme, which is ensured by the form of the reconstruction, just as in the
data-independent k-exact case.

4.2 Third-Order Accurate Data-Dependent Least-Squares
Reconstruction

A third-order accurate (k = 2) data-dependent reconstruction can be formulated by
analogy to the second-order case just described. The weighting function uses numerical
third derivatives to detect nonsmoothness.

1
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I{eﬂal)?(u)issonuaapproprhﬂxznornlofthe numerical third derivatives of u in the neighbor-
hood of j. As for second order, the choice of norm is not critical. Smooth data is used in the
reconstruction (weight of O (1)), while discontinuous data is ignored (weight of O (Az™?)).

The stencil used for third-order reconstruction includes second neighbors.? Although for
smooth functions it is possible to compute a piecewise-quadratic reconstruction by using
only first neighbors, there are two reasons why this approach is inadvisable in the present
context. First, the third derivatives needed to compute the weight require a larger stencil
in one dimension. Second, near discontinuities, small weights will eliminate data that is not
smooth. The number of first neighbors in a two-dimensional unstructured mesh averages
six. At least five neighbors are required for quadratic reconstruction. The presence of
a discontinuity is almost certain to result in fewer than five vertices with high weights,
leading to a seriously degraded reconstruction. The number of first and second neighbors in
two dimensions is eighteen on average, so the presence of a discontinuity is unlikely to be

TThe following assumes that no mid-side nodes have been added to the cells; that is, to use finite element
terminology, linear elements are assumed.



problematic. The presence of nearby boundaries will, of course, severely restrict the stencil,
and the combination of boundaries and discontinuities may reduce the stencil sufficiently
that the quality of the reconstruction suffers. Variable-stencil ENO schemes can avoid this
degradation by extending the stencil to include more distant neighbors.

5 Function Reconstruction

Demonstration of the properties of the DD-L, scheme begins by comparing the behavior
of DD-L, with that of DI-Ly and RP-ENO reconstruction on nonuniform meshes in one
dimension. The locations of the mesh vertices are randomly perturbed by as much as 10%
of the nominal mesh spacing. Results will be given for each of the following three classes of
functions:

Smooth functions, shown in the upper part of Figure 2. For smooth functions, all
derivatives will be O (1) while Au always will be O (Axz). An example of such a function
is exp (—5x?), shown in the top half of Figure 3. The bottom half of the figure shows the
maximum error for second- and third-order accurate reconstructions using both DD-L5 and
RP-ENO techniques. The difference between DI-L, and DD-L,; for smooth functions is
insignificant. The table included with the figure demonstrates that DD-L, and RP-ENO
reconstruction attain their nominal order of accuracy in all norms for smooth functions.

Piecewise smooth functions with step discontinuities of O (1), shown in the
middle of Figure 2. For cell j, adjacent to the discontinuity, data-independent least-squares
will give a gradient that is O (Ax~'). This gradient error implies an O (1) error in the
reconstructed function, which can be reduced to O(Ax) through use of a limiter. ENO
reconstruction will give a one-sided gradient based on data from cells j and j — 1; this is a
first-order accurate approximation of the derivative. For the data-dependent reconstruction,
the weights for cells j + 1 and j — 1 will be O (Az~?) and O (1), respectively. The gradient
will be a one-sided gradient plus a first-order error term; the gradient will be first-order
accurate. Because DD-L, and RP-ENO give first-order accurate gradients, the solution is
reconstructed to second-order accuracy. For higher-order reconstructions, DI-L; remains
first-order accurate, while DD-L, and RP-ENO are expected to retain their nominal order
of accuracy.

The function sign (x)exp (—5z?), a member of this class, is shown in Figure 4, along
with the maximum error in the reconstruction for DD-L, and RP-ENO. The numerical
experiments indicate that both schemes maintain their nominal accuracy in all norms, as
summarized in the table accompanying Figure 4.

Piecewise smooth C° functions that are not C!, shown in the bottom part of Fig-
ure 2. The function in this figure is actually piecewise linear; the slopes to the left and
right of the corner are a and b, respectively. For cell j, a data-independent reconstruction
gives a slope of 22 which is a zero-order accurate slope. If [b] < |a|, an RP-ENO scheme
constructs its slope by using cell 7 +1 rather than 5 —1, giving a zero-order accurate slope of
“T""b. Finally, a data-dependent reconstruction gives weights of 1+ O (Ax) to both cells j + 1
and j — 1; the slope computed is B“T"'b + O (Az) and is zero-order accurate. For this case,
each approach gives, in general, a zero-order accurate slope and therefore a first-order accu-
rate reconstruction near discontinuous changes in slope. This result holds for higher-order

reconstruction schemes as well.



The difference in these schemes lies not in their order of accuracy but in the change in the
total variation of the reconstructed solution relative to that of the underlying function. The
RP-ENO scheme is known to have total variation that is the same as the original function
to within O (A$k+1). The least-squares schemes, on the other hand, allow an increase in
the total variation for this class of functions that is of O (Ax), regardless of the order of the
reconstruction.

As an example, consider a function u = x(2 4 sign (¢)), shown in Figure 5. Here, the
bottom half of the figure shows the increase in total variation for both DI-Ly and DD-L,
schemes of second- and third-order nominal accuracy. In each case, the total variation
increases by an amount of O (Ax).

6 Flow Solutions

To demonstrate the solution accuracy and convergence behavior of the new scheme for flows
with shocks, two inviscid flow results will be shown. For both cases, the flow solver is a
multigrid scheme using three coarse meshes. Multistage time advance is used, along with
local preconditioning [11, 12]. The CFL number is 0.8, and the multistage coefficients are
{0.5321, 1.3711, 2.7744}.

For function reconstruction, no normalization was done in the data-dependent weights for
least-squares reconstruction. In reconstruction of physical quantities, normalization becomes
more important. For piecewise-linear reconstruction, the weight is modified to be

1
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where L is a characteristic length scale of the physical problem, and u., is a characteristic
value for the physical variable being reconstructed; the freestream value is used in the work.
Conserved variables are reconstructed in each of the following examples, and each variable
is reconstructed independently.

The first test case is a high angle of attack flow around a NACA 0012 airfoil, at M = 0.302
and o = 9.86°. Figure 6 shows the fine mesh used for this case, which contains 3323 vertices.
The solution was computed by using unlimited DI-Ly, limited DI-Ly (Venkatakrishnan’s
limiter [2]), and unlimited DD-Ly. The solutions are virtually identical except near the
suction peak on the upper surface. A detail of the surface pressure coefficient in this region
is shown in Figure 7; the figure also includes a solution from INS2D to which the Karman-
Tsien pressure correction has been applied. The two unlimited reconstruction schemes give
identical results to plotting accuracy; the limited scheme comes slightly closer to capturing
the suction peak. The limited resolution near the leading edge prevents any of the three
solutions from matching the suction peak computed by INS2D on a fine mesh.

Figure 8 compares the convergence histories for the three solutions. CPU time has been
normalized so that the limited DI-L; solution reaches a residual of 107!2 in 100 time units.
As expected, the unlimited DI-L, solution is the fastest, at 71.5 time units. Not far behind
is the unlimited DD- L, solution, at 78.7 time units. The DD-L, solution is 20% faster than
the limited DI-L, solution for two reasons. First, the number of multigrid work units is
smaller for the DD- L, solution, which required a time equivalent to 1190 fine mesh residual
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evaluations as compared with 1290 for the DI-L, solution. Second, the time per residual
evaluation is about 15% less for the DD-L, reconstruction. This difference occurs because
the computational cost of the Laplacian calculation required by DD-L; reconstruction is
much less than that of the limiter.

AGARD test case 1 [13] was used to test the new scheme for flows with shock waves.
This case computes flow around a NACA 0012 airfoil at a Mach number of 0.8 and an angle
of attack of 1.25°. A mesh with 4156 vertices was used (see Figure 9).

The solution was computed by using both limited DI-L, reconstruction and DD-Ly re-
construction. The surface pressure coefficients for these two solutions and for the accepted
AGARD solution [13] are given in Figure 10. An inset shows a close-up of the upper-surface
shock, which is shifted by one mesh vertex between the two solutions. The quality of the
solutions using limited DI- Ly reconstruction and unlimited DD-Ls reconstruction are com-
parable.

Figure 11 compares the convergence rates for the two methods. The CPU time has again
been scaled so that the limited reconstruction method converged to a maximum residual of
107! in 100 time units, requiring 150 multigrid cycles. The DD-L, scheme reached the same
level of convergence in 85 time units and 137 cycles, an improvement of 15% in CPU time.
Again, the extra cost of computing gradients using DD- L, instead of DI-L, is offset by the
need for fewer multigrid cycles and the reduced computational cost for a complete cycle,
which is lower for DD- L5 because no limiting of gradients is required.

7 Discussion

The new family of DD-L, reconstruction schemes has been shown to perform well for
function reconstruction and for solution of the Euler equations. These schemes are uni-
formly high-order accurate for smooth functions and limit the magnitude of overshoots near
discontinuities to the order of the truncation error. The major drawback of these schemes in
comparison with ENO schemes — and this perhaps only from a mathematical viewpoint —
is the weaker bound placed on the increase in total variation for functions with discontinu-
ous low-order derivatives. This section outlines an approach to improving the total variation
behavior of DD-L4 reconstruction.

The accuracy of DD-Ly reconstruction away from discontinuous changes in derivatives
of the function ensures that the reconstructed and original functions differ by no more than
@) (A$k+1) at cell interfaces. There are no guarantees on the sign of the jump in the recon-
structed function at cell faces, however, implying that the total variation can increase by as
much as O (Al‘k) in these regions. While weaker than that provided by ENO schemes, this
bound on total variation would still be quite strong.

The difficulty occurs near discontinuities in low-order derivatives; this problem can be
readily overcome for second-order accurate reconstruction. Consider a function with a dis-
continuous change in slope in the neighborhood of vertex j. Because the change in the
function is of the same order on both sides of the discontinuity, the weighting function in
Equation 9 cannot distinguish between the “right” and “wrong” data, asymptotically. The
only distinction between the two is that the “right” data has a slope that is lower in mag-
nitude than that of the slope determined by data-independent least-squares reconstruction,
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while the opposite is true for the “wrong” data. Therefore,

du Uy —Uy
dz | DI-Ly  |zi-a,
dz | DI-L,

is positive only for data that should be weighted heavily in the data-dependent reconstruc-
tion. In smooth regions, f = O (Ax), whereas near jumps in the first derivative, f = O (1).
To eliminate the total variation increase, a weighting function should give weights of O (1)
to smooth data and weights that go asymptotically to zero for f = O (1). One such function
is

wi; = w’exp (Af(ui,uj)Az="?) (13)

which implies that as Ax — 0
of 1 smooth "
Wiy W exp (:I:AA:L'I/Q) nonsmooth (14)

The sign of the exponential is such that the data chosen always yields the lowest possible
slope. In the nomenclature of Section 4,
A
s; = tanh F{/? (15)
for a one-dimensional, uniform mesh.

Numerical experiments with function reconstruction show that this weighting scheme
leads to uniformly second-order accurate reconstruction away from discontinuities in the
first derivative. Because data that would increase the total variation is weighted by a value
that goes exponentially to zero, the increase in total variation from slope discontinuities
goes to zero exponentially fast as well. This is reflected in the total variation increase for
the function of Figure 5, shown in Figure 12. This modified reconstruction scheme can
reasonably be referred to as quasi-ENO.

& Conclusions

A new method for function reconstruction has been described that combines the best features
of least-squares and ENO reconstructions. This new scheme, DD-1,, uses a data-dependent
weighting in least-squares reconstruction to satisfy a relaxed form of the ENO properties.
Like other ENO schemes, DD- L, is uniformly accurate, even in the presence of discontinuities,
and prevents overshoots from exceeding the order of the truncation error asymptotically.
The increase in total variation is bounded by O (Ax), and this increase occurs only in the
neighborhood of discontinuities in the first derivative. For function reconstruction, the bound
on total variation can be improved by using an exponential weighting function. Further
investigation of the properties of this particular type of DD- L, reconstruction will determine
its practical benefits.

Because DD-L; is a least-squares reconstruction procedure, existing efficient algorithms
for least-squares reconstruction can be easily modified for DD-1L,. An algorithm for com-
puting a linear DD- L, reconstruction on unstructured meshes is given. The data-dependent
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weights used in the scheme vary continuously with the data and consequently good con-
vergence behavior is obtained for steady-state calculations. The stencil for DD- L, is larger
than that required by conventional ENO schemes, but no larger than required by k-exact
least-squares reconstructions of the same order of accuracy.

The asymptotic behavior of the scheme in reconstructing smooth and piecewise smooth
functions has been demonstrated. DD-L5 produces uniformly high-order accurate reconstruc-
tions, even in the presence of discontinuities. Two-dimensional flow solutions using DD- L,
reconstruction were shown. Subsonic and transonic flow solutions were virtually identical
regardless of whether DD- L, or limited least-squares reconstruction was used. The absence
of a limiter reduced the CPU time required for DD-L, solutions by 15-20% as compared
with limited reconstruction, even though the DD- 1, gradient computation is slightly more
expensive than ordinary least-squares reconstruction.
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Figure 1: Influence of Forward Difference on First Derivative. Uniform Mesh in One Dimen-
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Function: u = exp(-5 x"2)
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Figure 3: Reconstruction of Smooth Function
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Function: u = exp(-5 x"2) sign(x)
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Scheme | Order Ly Lo | Lo
DD-L, 2 2.13 1 2.19 | 1.96
DD-L, 3 3.41 | 3.78 | 3.86
RP-ENO 2 2.02 | 2.01 | 1.91
RP-ENO 3 3.03 | 3.03 | 3.10
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Function: u = x (2 + sign(x))
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