
Quasi-ENO Schemes for Unstructured MeshesBased on Unlimited Data-Dependent Least-SquaresReconstructionCarl F. Ollivier-GoochMathematics and Computer Science DivisionArgonne National LaboratoryAbstractA crucial step in obtaining high-order accurate steady-state solutions to the Euler and Navier-Stokes equations is the high-order accurate reconstruction of the solution from cell-averagedvalues. Only after this reconstruction has been completed can the ux integral around acontrol volume be accurately assessed.In this work, a new reconstruction scheme is presented that is conservative, uniformlyaccurate with no overshoots, easy to implement on arbitrary meshes, has good convergenceproperties, and is computationally e�cient. The new scheme, called DD-L2, uses a data-dependent weighted least-squares reconstruction with a �xed stencil. The weights are chosento strongly emphasize smooth data in the reconstruction. Because DD-L2 is designed in theframework of k-exact reconstruction, existing techniques for implementing such reconstruc-tions on arbitrary meshes can be used. The new scheme satis�es a relaxed version of theENO criteria. Local accuracy of the reconstruction is optimal except in the case on functionsthat are continuous but have discontinuous low-order derivatives. The total variation of thereconstruction is bounded by the total variation of the function to within O (�x).The asymptotic behavior of the scheme in reconstructing smooth and piecewise smoothfunctions is demonstrated. DD-L2 produces uniformly high-order accurate reconstructions,even in the presence of discontinuities. Two-dimensional ow solutions obtained using DD-L2reconstruction are compared with solutions using limited least-squares reconstruction. Thesolutions are virtually identical. The absence of a limiter reduces the CPU time required forDD-L2 solutions by 15-20% as compared to limited reconstruction, even though the DD-L2gradient computation is slightly more expensive than ordinary least-squares reconstruction.
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1 IntroductionA crucial step in obtaining high-order accurate steady-state solutions to the Euler and Navier-Stokes equations is the high-order accurate reconstruction of the solution from cell-averagedvalues. Only after this reconstruction has been completed can the ux integral around acontrol volume be accurately assessed. Ideally, the reconstruction should conserve the meanvalue of the function in each cell, be uniformly accurate with no overshoots, be easy toimplement on arbitrary meshes, have good convergence properties, and be computationallye�cient.Both limited k-exact reconstruction and essentially non-oscillatory (ENO) reconstructionhave many of these properties. For example, design criteria for k-exact reconstruction givenby Barth and Frederickson [1] ensure conservation of the mean, good accuracy for smoothfunctions, and computational e�ciency. A �xed stencil is used, allowing precomputation ofcertain purely geometric quantities used in the reconstruction, with a corresponding improve-ment in e�ciency. Accuracy near discontinuities is poor, however, and limiting is requiredto prevent overshoots of O (1). Limiters that retain good convergence properties (e.g., [2])are often computationally expensive.By design, the ENO reconstruction schemes of Harten et al. [3, 4, 5] conserve the mean,are uniformly accurate at all points for which a smooth neighborhood exists, and guaranteethat overshoots will be no larger than the order of the truncation error of the reconstruction.Uniform high-order accuracy is obtained by using reconstruction stencils that vary in bothspace and time. Unfortunately, such stencils can hamper convergence to steady state. Also,ENO schemes are not easily implemented on unstructured meshes [6, 7].In this work, a new reconstruction scheme is presented that has the best properties ofboth limited k-exact reconstruction schemes and ENO schemes. The new scheme, calledDD-L2, uses a data-dependent least-squares weighted reconstruction with a �xed stencil.The weights are chosen to strongly emphasize smooth data in the reconstruction. BecauseDD-L2 is designed in the framework of k-exact reconstruction, existing techniques for im-plementing such reconstructions on arbitrary meshes [1, 8] can be used with only slightmodi�cation. The new scheme satis�es a relaxed version of the ENO criteria. Local ac-curacy of the reconstruction is optimal except in the case of functions that are continuousbut have discontinuous low-order derivatives. The total variation of the reconstruction isbounded by the total variation of the function to within O (�x).Sections 2 and 3 describe least-squares reconstruction and reconstruction-by-primitive(RP) ENO schemes, respectively. Section 4 presents the new data-dependent least-squaresreconstruction and discuss its properties. Section 5 shows results for reconstruction of smoothand nonsmooth functions, providing numerical evidence for the properties of the DD-L2 re-construction. In Section 6, some sample ow solutions are shown, with attention paid toaccuracy, steady-state convergence behavior, and computational expense. Section 7 revis-its the data-dependent reconstruction and describes a weighting scheme that dramaticallyimproves the performance of DD-L2 reconstruction for functions that are C0 but not C1.Finally, Section 8 presents some conclusions and directions for future work.2



2 k-exact Least-Squares ReconstructionThe fundamental feature of k-exact reconstruction schemes is the exact reconstruction ofpolynomials of degree no more than k [1]. Smooth functions that cannot be described bykth -order polynomials are reconstructed with a local error of O ��xk+1�. For example, ifk = 1, the reconstruction will exactly reproduce linear functions and make no local errorslarger than O (�x2) for smooth functions. Such reconstructions can be designed to havecompact support, conserve the mean, and be implemented e�ciently on arbitrary meshes.Mathematically, if the reconstruction is exact, then for all vertices i in the support stencilfor a vertex j, �ui = �xiux +�yiuy + (�xi)22 uxx+ � � � + (�yi)kk! @ku@yk (1)where �ui � ui � uj, �xi � xi � xj, and �yi � yi � yj and all derivatives are evaluatedat j. Since the reconstruction will not be exact for functions that cannot be described bypolynomials of degree k or lower, an optimization problem must be solved to �nd the bestchoice for the derivatives of u to �t the data. This optimization problem often is solved in aweighted least-squares sense, giving a data-independent least-squares reconstruction (DI-L2).The following set of equations must be solved approximately:2666664 �wx1 �wy1 (�wx1)22 � � � (�wy1)kk!�wx2 �wy2 (�wx2)22 � � � (�wy2)kk!... ... ... . . . ...�wxn �wyn (�wxn)22 � � � (�wyn)kk! 3777775�0BBBBBBB@ uxuyuxx...@ku@yk 1CCCCCCCA = 0BBBB@ �wu1�wu2...�wun 1CCCCAor equivalently �~L1 ~L2 ~L3 ::: ~L k(k+3)2 �0BBBBBBB@ uxuyuxx...@ku@yk 1CCCCCCCA = �~f� (2)The weighted di�erences are de�ned as �w(�) � wi�(�). The wi often are chosen to be1=j~xi � ~x0jt, with t = 0; 1; 2 [9]. While the choice of t does not a�ect the order of accuracyof the reconstruction, higher values of t typically give lower coe�cients for the error termsby weighting data from more distant vertices less heavily.3



If the system in Equation 2 is well conditioned, it can be solved by using normal equations.This approach involves multiplying from the left by �~L1 ~L2 ~L3 ::: ~L k(k+3)2 �T , resulting in thefollowing square system of equations.[L] � 0BBBBBBB@ uxuyuxx...@ku@yk 1CCCCCCCA = 0BBBBBBB@ f1f2f3...f k(k+3)2 1CCCCCCCA (3)where Li;j � ~Li � ~Lj and fi � ~f � ~Li. When only �rst neighbors are involved|as for piecewiselinear reconstruction|the use of normal equations requires only a single loop over edges inan unstructured mesh to accumulate the coe�cients and right-hand side for the system.For the case of piecewise quadratic reconstruction, Barth reports [8] that the normalequations are ill-conditioned or high-aspect ratio cells. A more robust solution techniquefor the least-squares problem, such as singular-value decomposition, should be used for suchcases.The sums required to solve Equation 2 by using normal equations for the piecewise-linear (k = 1) reconstruction of a function u on an unstructured mesh can be computed inthe following single loop over the edges of the mesh.Algorithm 1Least-Squares Linear Reconstruction! loop over all edgesdo i_edge = 1, num_edges! vertex at edge originvert1 = edge_to_vert(1, i_edge)! vertex at edge destinationvert2 = edge_to_vert(2, i_edge)dx = x(vert2) - x(vert1)dy = y(vert2) - y(vert1)du = u(vert2) - u(vert1)! geometric weightweight = 1 / (dx*dx + dy*dy)**(t/2)wdx = weight * dxwdy = weight * dywdu = weight * duL11(vert1) = L11(vert1) + wdx * wdxL12(vert1) = L12(vert1) + wdx * wdyL22(vert1) = L22(vert1) + wdy * wdy 4



L1f(vert1) = L1f(vert1) + wdx * wduL2f(vert1) = L2f(vert1) + wdy * wduL11(vert2) = L11(vert2) + wdx * wdxL12(vert2) = L12(vert2) + wdx * wdyL22(vert2) = L22(vert2) + wdy * wdyL1f(vert2) = L1f(vert2) + wdx * wduL2f(vert2) = L2f(vert2) + wdy * wduenddoThe purely geometric parts of this loop|the summations for L11, L12, L22|can be pre-computed as a one-time preprocessing step and stored. Once the sums L11, L12, L22,L1f, and L2f have been computed, gradients are found by solving Equation 3. The recon-structed solution in the control volume surrounding a vertex j isuj(x; y) = �uj + rujj � (~x� ~xj) (4)3 ENO ReconstructionThe criteria set forth by Harten et al. [5] for essentially non-oscillatory reconstructionplace a greater emphasis on accuracy than do the k-exact criteria, in that ENO schemesobtain high-order accurate reconstructions for all vertices having a smooth neighborhood.Also, ENO reconstruction conserves the mean and guarantees that the total variation of thereconstruction will not exceed that of the original function by more than O ��xk+1�.One approach to ENO reconstruction is reconstruction via a primitive function (RP-ENO) [5]. In one dimension, this approach integrates cell-averaged data �uj to get the prim-itive function Uj+ 12 . Uj+ 12 = jX0 �uj�xj (5)The primitive function is interpolated by using a continuous, piecewise polynomial inter-polation with polynomials of degree k + 1. The support for interpolation in cell j alwaysincludes j� 12 and j+ 12. The stencil is built by adding one vertex at a time, with the choiceof which direction to extend the stencil being made to minimize the highest-order divideddi�erence that can be formed on the new stencil. That is, the piecewise quadratic interpo-lation is chosen to have minimum curvature, and so on. Once the interpolation is complete,the reconstruction of u in cell j is found by di�erentiating the interpolating function U inthe range (j � 12; j + 12).As described above, RP-ENO is applicable to nonuniform meshes, and the approach canbe extended to multiple dimensions and curvilinear meshes [10]. Extension of ENO schemesto unstructured meshes is more di�cult, especially the task of �nding smooth stencils forthe reconstruction [6, 7]. 5



4 Data-Dependent Least-Squares ReconstructionLeast-squares and ENO reconstruction schemes in one dimension can be analyzed in auniform framework by writing the reconstructed derivative in cell j asdudx �����j = 1 + sj2 �+uj�+xj + 1� sj2 ��uj��xj (6)With the de�nition �j � ��uj ��+uj��uj +�+uj (7)a step discontinuity between j � 1 and j gives �j = �1, and a step discontinuity between jand j + 1 gives �j = 1. Smooth functions have �j = O (�x).In this context, data-independent least-squares reconstruction corresponds to choosingsj to be a constant depending only on the local geometry; uniform meshes give sj = 0. Thisapproach can lead to unphysical slopes near discontinuities.ENO reconstruction results from setting sj = sign (�j ), because ENO reconstructionalways chooses a one-sided derivative with the lowest possible magnitude. For evolution ofsmooth solutions, such a reconstruction has a distinct disadvantage, in that sj can arbitrarilyip from 1 to �1; this behavior inhibits full convergence to steady state unless steps are takento prevent binary switching for small changes sj.The approach taken here is to design weighting schemes for a data-dependent least-squares reconstruction scheme that will give the behavior of data-independent least-squaresreconstruction for smooth functions and that of ENO reconstruction for discontinuous func-tions. That is, for smooth functions, the weightings should be asymptotically the same assome reasonable data-independent weights, and for discontinuous functions, the weights fornonsmooth data within the stencil should go to zero fast enough to ensure that reconstruc-tion errors for a k-exact reconstruction will be uniformly of O ��xk+1�. This amounts torequiring lim�j!�1 sj ! �1 (8)More will be said later about functions that are continuous but have discontinuous deriva-tives.4.1 Second-Order Accurate Data-Dependent Least-SquaresReconstructionThe appropriate behavior in the smooth and discontinuous limits can be obtained byusing a simple weighting that takes advantage of the behavior of second di�erences. If acell j is separated from one or more of its neighbors by a discontinuity of O (1), the seconddi�erence will go as O (�x�2). In computing the gradient at vertex j, data from neighborswhere the di�erence in function value between j and the neighbor is of O (�x) should begiven a weight of O (1), whereas data di�ering from data at j by O (1) should have a weight6



of no more than O (�x2) to ensure a second-order accurate reconstruction. The followingsimple weighting function has this behavior.wj;i = 11 + c ���D2j (u)��� (uj � ui)2w0 (9)Here, w0 is the geometric weighting factor used previously, and D2(u) is a numerical secondderivative. In multiple dimensions, any reasonable norm of the Hessian matrix is acceptablebecause all such norms will be of O (�x�2) if there is a discontinuity in the neighborhoodof j.� For a one-dimensional, constant-spacing case, the equivalent value of sj is comparedwith those for DI-L2 and ENO schemes in Figure 1.By design, the implementation of this scheme for unstructured meshes requires only minormodi�cations to Algorithm 1 given in Section 2.Algorithm 2Data-dependent least-squares reconstruction! loop over all edgesdo i_edge = 1, num_edges! vertex at edge originvert1 = edge_to_vert(1, i_edge)! vertex at edge destinationvert2 = edge_to_vert(2, i_edge)dx = x(vert2) - x(vert1)dy = y(vert2) - y(vert1)! geometric weightweight = 1 / (dx*dx + dy*dy)**(t/2)du = u(vert2) - u(vert1)! data-dependent weightweight1 = weight /(1 + c * abs(LaplU(vert1)) * du**2)! data-dependent weightweight2 = weight /(1 + c * abs(LaplU(vert2)) * du**2)wdx = weight1 * dxwdy = weight1 * dywdu = weight1 * duL11(vert1) = L11(vert1) + wdx * wdxL12(vert1) = L12(vert1) + wdx * wdyL22(vert1) = L22(vert1) + wdy * wdy�Note that the denominator of Equation 9 must be nondimensionalized for applications other than purefunction reconstruction; this will be discussed further in Section 6.7



L1f(vert1) = L1f(vert1) + wdx * wduL2f(vert1) = L2f(vert1) + wdy * wduwdx = weight2 * dxwdy = weight2 * dywdu = weight2 * duL11(vert2) = L11(vert2) + wdx * wdxL12(vert2) = L12(vert2) + wdx * wdyL22(vert2) = L22(vert2) + wdy * wdyL1f(vert2) = L1f(vert2) + wdx * wduL2f(vert2) = L2f(vert2) + wdy * wduenddoHere, LaplU is a numerical Laplacian. Note particularly that the weights used at oppositeends of the same edge are not the same. This approach has no e�ect on the conservation ofthe mean for the scheme, which is ensured by the form of the reconstruction, just as in thedata-independent k-exact case.4.2 Third-Order Accurate Data-Dependent Least-SquaresReconstructionA third-order accurate (k = 2) data-dependent reconstruction can be formulated byanalogy to the second-order case just described. The weighting function uses numericalthird derivatives to detect nonsmoothness.wj;i = 11 + c ���D3j (u)(uj � ui)3���w0 (10)Here D3j (u) is some appropriate norm of the numerical third derivatives of u in the neighbor-hood of j. As for second order, the choice of norm is not critical. Smooth data is used in thereconstruction (weight of O (1)), while discontinuous data is ignored (weight of O (�x�3)).The stencil used for third-order reconstruction includes second neighbors.y Although forsmooth functions it is possible to compute a piecewise-quadratic reconstruction by usingonly �rst neighbors, there are two reasons why this approach is inadvisable in the presentcontext. First, the third derivatives needed to compute the weight require a larger stencilin one dimension. Second, near discontinuities, small weights will eliminate data that is notsmooth. The number of �rst neighbors in a two-dimensional unstructured mesh averagessix. At least �ve neighbors are required for quadratic reconstruction. The presence ofa discontinuity is almost certain to result in fewer than �ve vertices with high weights,leading to a seriously degraded reconstruction. The number of �rst and second neighbors intwo dimensions is eighteen on average, so the presence of a discontinuity is unlikely to beyThe following assumes that no mid-side nodes have been added to the cells; that is, to use �nite elementterminology, linear elements are assumed. 8



problematic. The presence of nearby boundaries will, of course, severely restrict the stencil,and the combination of boundaries and discontinuities may reduce the stencil su�cientlythat the quality of the reconstruction su�ers. Variable-stencil ENO schemes can avoid thisdegradation by extending the stencil to include more distant neighbors.5 Function ReconstructionDemonstration of the properties of the DD-L2 scheme begins by comparing the behaviorof DD-L2 with that of DI-L2 and RP-ENO reconstruction on nonuniform meshes in onedimension. The locations of the mesh vertices are randomly perturbed by as much as 10%of the nominal mesh spacing. Results will be given for each of the following three classes offunctions:Smooth functions, shown in the upper part of Figure 2. For smooth functions, allderivatives will be O (1) while �u always will be O (�x). An example of such a functionis exp (�5x2), shown in the top half of Figure 3. The bottom half of the �gure shows themaximum error for second- and third-order accurate reconstructions using both DD-L2 andRP-ENO techniques. The di�erence between DI-L2 and DD-L2 for smooth functions isinsigni�cant. The table included with the �gure demonstrates that DD-L2 and RP-ENOreconstruction attain their nominal order of accuracy in all norms for smooth functions.Piecewise smooth functions with step discontinuities of O (1), shown in themiddle of Figure 2. For cell j, adjacent to the discontinuity, data-independent least-squareswill give a gradient that is O (�x�1). This gradient error implies an O (1) error in thereconstructed function, which can be reduced to O (�x) through use of a limiter. ENOreconstruction will give a one-sided gradient based on data from cells j and j � 1; this is a�rst-order accurate approximation of the derivative. For the data-dependent reconstruction,the weights for cells j + 1 and j � 1 will be O (�x�2) and O (1), respectively. The gradientwill be a one-sided gradient plus a �rst-order error term; the gradient will be �rst-orderaccurate. Because DD-L2 and RP-ENO give �rst-order accurate gradients, the solution isreconstructed to second-order accuracy. For higher-order reconstructions, DI-L2 remains�rst-order accurate, while DD-L2 and RP-ENO are expected to retain their nominal orderof accuracy.The function sign (x ) exp (�5x 2 ), a member of this class, is shown in Figure 4, alongwith the maximum error in the reconstruction for DD-L2 and RP-ENO. The numericalexperiments indicate that both schemes maintain their nominal accuracy in all norms, assummarized in the table accompanying Figure 4.Piecewise smooth C0 functions that are not C1, shown in the bottom part of Fig-ure 2. The function in this �gure is actually piecewise linear; the slopes to the left andright of the corner are a and b, respectively. For cell j, a data-independent reconstructiongives a slope of 3a+b4 , which is a zero-order accurate slope. If jbj < jaj, an RP-ENO schemeconstructs its slope by using cell j+1 rather than j�1, giving a zero-order accurate slope ofa+b2 . Finally, a data-dependent reconstruction gives weights of 1+O (�x) to both cells j+1and j � 1; the slope computed is 3a+b4 +O (�x) and is zero-order accurate. For this case,each approach gives, in general, a zero-order accurate slope and therefore a �rst-order accu-rate reconstruction near discontinuous changes in slope. This result holds for higher-orderreconstruction schemes as well. 9



The di�erence in these schemes lies not in their order of accuracy but in the change in thetotal variation of the reconstructed solution relative to that of the underlying function. TheRP-ENO scheme is known to have total variation that is the same as the original functionto within O ��xk+1�. The least-squares schemes, on the other hand, allow an increase inthe total variation for this class of functions that is of O (�x), regardless of the order of thereconstruction.As an example, consider a function u = x(2 + sign (x )), shown in Figure 5. Here, thebottom half of the �gure shows the increase in total variation for both DI-L2 and DD-L2schemes of second- and third-order nominal accuracy. In each case, the total variationincreases by an amount of O (�x).6 Flow SolutionsTo demonstrate the solution accuracy and convergence behavior of the new scheme for owswith shocks, two inviscid ow results will be shown. For both cases, the ow solver is amultigrid scheme using three coarse meshes. Multistage time advance is used, along withlocal preconditioning [11, 12]. The CFL number is 0.8, and the multistage coe�cients aref0.5321, 1.3711, 2.7744g.For function reconstruction, no normalization was done in the data-dependent weights forleast-squares reconstruction. In reconstruction of physical quantities, normalization becomesmore important. For piecewise-linear reconstruction, the weight is modi�ed to bewi;j = 11 + C L2u31D2i (u)(uj � ui)2w0 (11)where L is a characteristic length scale of the physical problem, and u1 is a characteristicvalue for the physical variable being reconstructed; the freestream value is used in the work.Conserved variables are reconstructed in each of the following examples, and each variableis reconstructed independently.The �rst test case is a high angle of attack ow around a NACA 0012 airfoil, atM = 0:302and � = 9:86o. Figure 6 shows the �ne mesh used for this case, which contains 3323 vertices.The solution was computed by using unlimited DI-L2, limited DI-L2 (Venkatakrishnan'slimiter [2]), and unlimited DD-L2. The solutions are virtually identical except near thesuction peak on the upper surface. A detail of the surface pressure coe�cient in this regionis shown in Figure 7; the �gure also includes a solution from INS2D to which the Karman-Tsien pressure correction has been applied. The two unlimited reconstruction schemes giveidentical results to plotting accuracy; the limited scheme comes slightly closer to capturingthe suction peak. The limited resolution near the leading edge prevents any of the threesolutions from matching the suction peak computed by INS2D on a �ne mesh.Figure 8 compares the convergence histories for the three solutions. CPU time has beennormalized so that the limited DI-L2 solution reaches a residual of 10�13 in 100 time units.As expected, the unlimited DI-L2 solution is the fastest, at 71.5 time units. Not far behindis the unlimited DD-L2 solution, at 78.7 time units. The DD-L2 solution is 20% faster thanthe limited DI-L2 solution for two reasons. First, the number of multigrid work units issmaller for the DD-L2 solution, which required a time equivalent to 1190 �ne mesh residual10



evaluations as compared with 1290 for the DI-L2 solution. Second, the time per residualevaluation is about 15% less for the DD-L2 reconstruction. This di�erence occurs becausethe computational cost of the Laplacian calculation required by DD-L2 reconstruction ismuch less than that of the limiter.AGARD test case 1 [13] was used to test the new scheme for ows with shock waves.This case computes ow around a NACA 0012 airfoil at a Mach number of 0.8 and an angleof attack of 1.25o. A mesh with 4156 vertices was used (see Figure 9).The solution was computed by using both limited DI-L2 reconstruction and DD-L2 re-construction. The surface pressure coe�cients for these two solutions and for the acceptedAGARD solution [13] are given in Figure 10. An inset shows a close-up of the upper-surfaceshock, which is shifted by one mesh vertex between the two solutions. The quality of thesolutions using limited DI-L2 reconstruction and unlimited DD-L2 reconstruction are com-parable.Figure 11 compares the convergence rates for the two methods. The CPU time has againbeen scaled so that the limited reconstruction method converged to a maximum residual of10�13 in 100 time units, requiring 150 multigrid cycles. The DD-L2 scheme reached the samelevel of convergence in 85 time units and 137 cycles, an improvement of 15% in CPU time.Again, the extra cost of computing gradients using DD-L2 instead of DI-L2 is o�set by theneed for fewer multigrid cycles and the reduced computational cost for a complete cycle,which is lower for DD-L2 because no limiting of gradients is required.7 DiscussionThe new family of DD-L2 reconstruction schemes has been shown to perform well forfunction reconstruction and for solution of the Euler equations. These schemes are uni-formly high-order accurate for smooth functions and limit the magnitude of overshoots neardiscontinuities to the order of the truncation error. The major drawback of these schemes incomparison with ENO schemes | and this perhaps only from a mathematical viewpoint |is the weaker bound placed on the increase in total variation for functions with discontinu-ous low-order derivatives. This section outlines an approach to improving the total variationbehavior of DD-L2 reconstruction.The accuracy of DD-L2 reconstruction away from discontinuous changes in derivativesof the function ensures that the reconstructed and original functions di�er by no more thanO ��xk+1� at cell interfaces. There are no guarantees on the sign of the jump in the recon-structed function at cell faces, however, implying that the total variation can increase by asmuch as O ��xk� in these regions. While weaker than that provided by ENO schemes, thisbound on total variation would still be quite strong.The di�culty occurs near discontinuities in low-order derivatives; this problem can bereadily overcome for second-order accurate reconstruction. Consider a function with a dis-continuous change in slope in the neighborhood of vertex j. Because the change in thefunction is of the same order on both sides of the discontinuity, the weighting function inEquation 9 cannot distinguish between the \right" and \wrong" data, asymptotically. Theonly distinction between the two is that the \right" data has a slope that is lower in mag-nitude than that of the slope determined by data-independent least-squares reconstruction,11



while the opposite is true for the \wrong" data. Therefore,f(ui; uj) � ���dudx ���j;DI-L2 � ���ui�ujxi�xj ������dudx ���j;DI-L2 (12)is positive only for data that should be weighted heavily in the data-dependent reconstruc-tion. In smooth regions, f = O (�x), whereas near jumps in the �rst derivative, f = O (1).To eliminate the total variation increase, a weighting function should give weights of O (1)to smooth data and weights that go asymptotically to zero for f = O (1). One such functionis wi;j = w0 exp �Af(ui; uj)�x�1=2� (13)which implies that as �x! 0wi;j ! w0 ( 1 smoothexp��A�x1=2� nonsmooth (14)The sign of the exponential is such that the data chosen always yields the lowest possibleslope. In the nomenclature of Section 4,sj = tanh Af�x1=2 (15)for a one-dimensional, uniform mesh.Numerical experiments with function reconstruction show that this weighting schemeleads to uniformly second-order accurate reconstruction away from discontinuities in the�rst derivative. Because data that would increase the total variation is weighted by a valuethat goes exponentially to zero, the increase in total variation from slope discontinuitiesgoes to zero exponentially fast as well. This is reected in the total variation increase forthe function of Figure 5, shown in Figure 12. This modi�ed reconstruction scheme canreasonably be referred to as quasi-ENO.8 ConclusionsA new method for function reconstruction has been described that combines the best featuresof least-squares and ENO reconstructions. This new scheme, DD-L2, uses a data-dependentweighting in least-squares reconstruction to satisfy a relaxed form of the ENO properties.Like other ENO schemes, DD-L2 is uniformly accurate, even in the presence of discontinuities,and prevents overshoots from exceeding the order of the truncation error asymptotically.The increase in total variation is bounded by O (�x), and this increase occurs only in theneighborhood of discontinuities in the �rst derivative. For function reconstruction, the boundon total variation can be improved by using an exponential weighting function. Furtherinvestigation of the properties of this particular type of DD-L2 reconstruction will determineits practical bene�ts.Because DD-L2 is a least-squares reconstruction procedure, existing e�cient algorithmsfor least-squares reconstruction can be easily modi�ed for DD-L2. An algorithm for com-puting a linear DD-L2 reconstruction on unstructured meshes is given. The data-dependent12
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Figure 6: Mesh for High � Case. 3323 Vertices.20
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Figure 9: Mesh for AGARD Test Case 1. 4156 Vertices23
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