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AbstractWe describe an infeasible-interior-point algorithm for monotone variational inequal-ity problems and prove that it converges globally and superlinearly under standard con-ditions plus a constant rank constraint quali�cation. The latter condition represents ageneralization of the two types of assumptions made in existing superlinear analyses;namely, linearity of the constraints and linear independence of the active constraintgradients.1 IntroductionWe consider the monotone variational inequality over a closed convex set C � IRN :Find z 2 C such that (z0 � z)T�(z) � 0; for all z0 2 C. (1)The mapping � : IRN ! IRN is assumed to be continuously di�erentiable (C1) and monotone;the latter property means that(z0 � z)T (�(z0)� �(z)) � 0 for all z0; z 2 IRN .We assume that C is de�ned as an intersection of �nitely many algebraic inequalities; thatis, C = fz 2 IRN j g(z) � 0g; (2)where g : IRN ! IRP is a C2 function for which each component function gi, i = 1; 2; : : : ; P ,is convex.�Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia. Thework of this author was supported by the Australian Research Council.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439, U.S.A. This work was supported by the Mathematical, Information, and Com-putational Sciences Division subprogram of the O�ce of Computational and Technology Research, U.S.Department of Energy, under Contract W-31-109-Eng-38.



2The mixed nonlinear complementarity (NCP) formulation of this problem is: Find thevector triple (z; �; y) such that" 0y # = " f(z; �)�g(z) # ; (�; y) � 0; �Ty = 0; (3)where f : IRN ! IRN is the C1 function de�ned byf(z; �) = �(z) +Dg(z)T�: (4)Note that f is monotone with respect to z 2 IRN for all vectors � 2 IRP with nonnegativecomponents (that is, � 2 IRP+). The mapping(z; �)! " f(z; �)�g(z) # (5)is monotone because monotonicity of � and of each function Dgi means that its Jacobianmatrix " Dzf DgT�Dg D�h # = " D�(z) +PPi=1 �iD2gi(z) Dg(z)T�Dg(z) 0 # (6)is positive semide�nite for all (z; �) 2 IRN � IRP+.It is well known [2] that, under suitable conditions on g such as the famous Slater con-straint quali�cation, z solves (1) if and only if there exists a multiplier � such that (z; �)solves (3).We solve (1) by a method based on the interior-point algorithm of Wright and Ralph [10].Besides being easier to adapt to the case of mixed NCP (3), it is also considerably simplerthan the algorithm in [10], in fact, closer in spirit to the method of Wright [8] for monotonelinear complementarity problems. We show that under certain assumptions the methodconverges globally and superlinearly to the solution set of (3), even in some situations inwhich the solution does not satisfy a strong uniqueness and nondegeneracy condition.Superlinear convergence for interior-point methods was discussed �rst by Zhang, Tapia,and Dennis [15]; see also Zhang and Tapia [14] and Ye, G�uler, Tapia, and Zhang [13].Infeasible-interior-point methods for the latter class were described by Wright in [9], withimprovements in [7, 8]. For nonlinear monotone complementarity problems, Wright andRalph [10] describe a superlinearly convergent method that requires invertibility of the prin-cipal submatrix of the Jacobian corresponding to basic rows and columns. This conditionactually guarantees uniqueness of the solution point (z�; ��), that is, uniqueness of the mul-tiplier �� in (3). Similar assumptions almost always are made in the asymptotic analysisof nonlinear programming algorithms. The main point of this paper is to show that super-linear convergence also occurs under weaker assumptions that allow the multiplier � to benonunique. In fact, the algorithm here is the only one we know of for nonlinear programswith nonlinear constraints and nonunique multipliers for which convergence is superlinear.Loosening of degeneracy assumptions has practical importance for large-scale problems,where degeneracy or near-degeneracy at solution points is typical. In this paper, we assume



3that the active constraint gradients satisfy a constant rank constraint quali�cation at thesolution. This condition can be thought of as an interpolation between the two most com-monly made assumptions, namely, linear independence of the active constraint gradients andlinearity of the constraint function g(z).Possibly the best known application of (1) is the convex programming problem de�nedby minz �(z) subject to z 2 C; (7)where � : IRN ! IR is C2 and convex. Let � = D�. It is easy to show that the NCPformulation (3),(4) is equivalent to the standard Karush-Kuhn-Tucker (KKT) conditions for(7). If a constraint quali�cation holds, the solutions of (1) and (7) coincide.The paper is developed as follows. In the remainder of this section, we summarize thenotation and terminology to be used in the paper. (Because of the technical nature of ouranalysis, it is useful to have this material gathered in one place.) In Section 2, we describethe algorithm for solving (3), but omit some of the details because of the similarity to Wrightand Ralph [10]. In Section 3, we prove the global convergence result for this algorithm andstate the local superlinear convergence result. The analysis in this section is quite similar tothat of [10], but it di�ers in some of the details. The rest of the paper is devoted to outliningand proving the superlinear convergence theorem. In Section 4 we state and discuss theassumptions that are used in this theorem. Section 5 shows that the steps generated by thealgorithm during its �nal stages satisfy the estimate required by the proof of the superlinearconvergence theorem. We divide Section 5 into subsections and provide ample motivatingdiscussion so that readers can see the thrust of our argument without our going into thedetails. Section 6 describes conditions under which one of our key assumptions|existenceof a limit point|is satis�ed, and also proves some auxiliary results that follow from theassumptions of Section 4.Notation and TerminologyUnless otherwise speci�ed, k � k denotes the Euclidean norm of a vector, whileIRP+ = fy 2 IRP j y � 0g; IRP++ = fy 2 IRP j y > 0g:For any two vectors c and d, we frequently use (c; d) as shorthand for (cT ; dT )T . The vector(1; 1; : : : ; 1) is denoted by e, while z+ is obtained by replacing all negative components inthe vector z by zero. The closed unit ball is denoted by IB. Derivatives are indicated by D,or Dz for a partial derivative with respect to z.Iteration indices (usually k) appear as superscripts on vectors and matrices and as sub-scripts on scalars. Subscripts are used to indicate components of vectors and matrices.If  is a function mapping IR+ to IR+, we write  (� ) = O(� ) if there are constants �� > 0and C > 0 such that  (� ) � C� for � 2 (0; �� ].The kernel or null space of a matrix H 2 IRp�q iskerH = fd 2 IRq jHd = 0g;



4while the range space is denoted byranH = fHd j d 2 IR qg:Given ; 6= I � f1; 2; : : : ; pg and ; 6= J � f1; 2; : : : ; qg, we de�ne three submatrices of H asfollows: HIJ = [Hij]i2I;j2J ; H�J = [Hij]i=1;:::;p;j2J ; HI� = [Hij ]i2I;j=1;:::;q:If w 2 IRp and I � f1; 2; : : : ; pg, then wI denotes the subvector [wi]i2I. In dealing with thefunction g : IRN ! IRP in (2), we use DgI (z) to denote the jIj � N Jacobian of gI withrespect to z.Often the arguments are omitted from the functions and Jacobians f(z; �), g(z),Dzf(z; �),and so on. In such cases, the arguments should be assumed to be z, �, and y, or any appli-cable combination thereof.We use S to denote the solution set for (3) and SZ to denote its projection onto its �rstN + P components; that is,S = f(z; �; y) j (z; �; y) solves (3)g; SZ = f(z; �) j (z; �;�g(z)) 2 Sg: (8)We can partition f1; 2; : : : ; Pg into two index sets B and N such that��N = 0; y�B = 0; all (z�; ��; y�) 2 S. (9)The solution (z�; ��; y�) is strictly complementary if ��+ y� > 0; that is, ��B > 0 and y�N > 0.We also use this term when referring to just the z and � components of the solution. Thatis, we say (z�; ��) is strictly complementary if ��B > 0 and gi(z�) < 0 for i 2 N .The distance of a vector w 2 IRp to a set T � IRp isdistT (w) = inffkw � w�k jw� 2 T g:GivenH � IRp�q, we say H has constant column rank (CCR) if for each sequence fHkg �H converging to some H 2 IRp�q and each ; 6= J � f1; 2; : : : ; qg, we haverankHk�J ! rankH�J :Given the current point (z; �; y) and a search direction (�z;��;�y), we de�ne thecomplementarity measure � as � = �Ty=P;and the intermediate quantities (z(�); �(�); y(�)) and �(�) by(z(�); �(�); y(�)) = (z; �; y) + �(�z;��;�y); �(�) = �(�)Ty(�)=P:



52 An Algorithm for Mixed NCPWe now outline an infeasible-interior-point algorithm for mixed NCP that synthesizes twoearlier methods: the algorithm described by Wright and Ralph [10] for monotone NCPand the algorithm of Wright [8] for linear complementarity problems. Neither of theseformulations applies explicitly to the mixed problem. In the case of linear problems, amixed framework is unnecessary in any case, since there are strong equivalence relationshipsbetween mixed problems and nonmixed problems.Our description is terse because much of the motivation can be found in the papers citedabove.Given a starting point (z0; �0; y0) with (�0; y0) > (0; 0), the algorithm generates a se-quence of iterates (zk; �k; yk) that satis�es this same positivity condition. For each vectortriple (z; �; y) for which (�; y) > 0, we de�ne the residuals rf and rg by" rf(z; �)rg(z; y) # = " �f(z; �)y + g(z) # : (10)Another useful quantity is the vector e, de�ned by e = (1; 1; : : : ; 1)T . As is usual in descrip-tions of interior-point methods, we turn positive vectors into diagonal matrices by capitalizingtheir names; that is,� = diag(�1; �2; : : : ; �m); Y = diag(y1; y2; : : : ; ym):When (z; �; y) = (zk; �k; yk), we sometimes attach a subscript or superscript k to the quan-tities �, r, �, Y to make the dependence on (zk; �k; yk) explicit.The algorithm can be thought of as a modi�ed Newton algorithm applied to the followingsystem of constrained nonlinear equations.264 �f(z; �)y + g(z)��Y e 375 = 264 rf (z; �)rg(z; y)��Y e 375 = 0; (�; y) � 0: (11)The \modi�cations" are needed to keep �k and yk from prematurely approaching the bound-ary of the feasible region de�ned by the conditions y � 0 and � � 0. Line searches are usedand, on some iterates, the search direction is skewed toward the interior of the positive or-thant, so that longer steps can be taken without violating positivity. Near the solution, thealgorithm reverts to pure Newton steps, allowing the rapid local convergence properties ofthis method to take e�ect.The major computational operation in the algorithm is the repeated solution of 2P +N -dimensional linear systems of the form264 Dzf DgT 0�Dg 0 �I0 Y � 375264 �z���y 375 = 264 rf (z; �)rg(z; y)��Y e+ ~��ke 375 ; (12)



6where the centering parameter ~� lies in the range [0; 12 ]. These equations are simply theNewton equations for the nonlinear system mentioned earlier, except for the ~� term. Thealgorithms searches along the direction obtained from (12).In the algorithm of Wright and Ralph [10] (which applies to nonmixed NCP), the searchfor � takes place along a curved arc rather than a straight line. The curvature on this arcensures that the residual term decreases linearly with �. It is not clear how to extend thisstrategy to the mixed case, so the algorithm in this paper uses a simpler straight-line search.The global and local convergence properties are essentially the same as in [10].At each iteration, the algorithm computes a fast step|a pure Newton step for which~� = 0 in (12). If the fast step fails to give a su�ciently large decrease in �, we revert toa safe step by assigning a positive value to ~�. This modi�cation allows a longer step to betaken, so that a certain minimal amount of progress toward the solution can be made. Inchoosing the step length �, we require not only that all iterates (zk; �k; yk) remain strictlypositive, but also that they satisfy�ki yki � k�k; i = 1; 2; : : : ; P; (13)for positive values of k bounded away from zero. This condition ensures that the pairwiseproducts �iyi stay roughly in balance as they approach zero, so that no single one of themvanishes much faster than the others. On fast steps, we expand this region by decreasing slightly, to allow steps of length near 1 to be taken.The algorithm is parametrized by a variety of positive scalar constants, which we specifynow for easy reference. Their roles are explained as they arise in subsequent discussions:� 2 (0; 1); �� 2 (0; 12); �� 2 (0; 1]; � 2 (0; 1); �̂ 2 (0; 1);�min > 0 such that kr0fk � �min�0 and kr0gk � �min�0; �max = �mine3=2; (14)0 < min < max � 12; � 2 (0; 12); � 2 (0;min((12�)1=�̂ ; 1� �)):The starting point (z0; �0; y0) is assumed to satisfy�0i y0i � max�0: (15)The main algorithm can now be speci�ed.t0  0; 0 max; �0 �min;for k = 0; 1; 2; : : :,if �k = 0,terminate with solution (zk; �k; yk);(zk+1; �k+1; yk+1) fast(zk; �k; yk; tk; k; �k);if �k+1 � ��kk+1  min + �tk(max � min); �k+1  (1 + �tk+1)�k;tk+1  tk + 1 ;



7else (zk+1; �k+1; yk+1) safe(zk; �k; yk; tk; k; �k);k+1  k; �k+1 �k;tk+1  tk;end for.The fast step is taken only if it decreases the complementarity gap � by at least a factor of�. The counter tk keeps track of the number of successful fast steps prior to iteration k. Aswe see in the de�nitions of the subroutines fast and safe below, the value of tk indirectlygoverns the distance �k that we move along the current search direction.The coe�cient matrix in (12) is the same for both fast and safe steps, so only one matrixfactorization is required per iteration.The safe-step procedure is de�ned as follows.safe(z; �; y; t; ; �):choose ~� 2 [��; 12], �0 2 [��; 1];solve (12) to �nd (�z;��;�y);choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,such that the following conditions are satis�ed:�i(�)yi(�) �  �(�); (16a)krf (z(�); �(�))k � ��(�); (16b)krg(z(�); y(�))k � ��(�); (16c)�(�) � [1 � ��(1 � ~�)]� (16d)return (z(�); �(�); y(�)).A nonzero centering term is used, allowing us to move a nontrivial distance along the searchdirection while staying in the set de�ned byf(z; �; y) j�iyi � �g: (17)The second and third acceptance conditions (16b), (16c) ensure that the infeasibility re-mains bounded by a multiple of the complementarity. The infeasibility is \squeezed" tozero at least as rapidly as the complementarity measure. Similar conditions are enforcedin infeasible-interior-point algorithms for linear complementarity and linear programming;see, for example, Wright [8]. The fourth condition (16d) is a \su�cient decrease" conditionof the kind often found in algorithms for nonlinear optimization. Its purpose is to ensurethat the decrease in objective function (in this case, �) achieves at least a fraction � of thedecrease promised by the linearized model (12).Fast-step calculations are a little more complicated. Since they use no centering (~� = 0),it may not be possible to satisfy the acceptance criteria (16) regardless of how small we choose



8�. Hence, these criteria must be relaxed but not abandoned. The amount of relaxation islarge enough to allow near-unit steps to be taken near the solution, but small anough tokeep the iterates inside a neighborhood of the central path. These opposing considerationsare balanced by making the amount of relaxation geometric in the fast step counter t.fast(z; �; y; t; ; �):solve (12) with ~� = 0 to �nd (�z;��;�y);set ~ = min + �t+1(max � min); set ~� = (1 + �t+1)�;de�ne �0 = 1 � ��̂�t ; (18)if �0 � 0 return(z; �; y);choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,such that the following conditions are satis�ed:�i(�)yi(�) � ~ �(�); (19a)krf(z(�); �(�))k � ~��(�); (19b)krg(z(�); y(�))k � ~��(�); (19c)return (z(�); �(�); y(�)).Note that a su�cient decrease condition is not needed in (19); the acceptance test �k+1 � ��kin the main algorithm performs this check.Before embarking on the convergence analysis, we note that the following conditions aresatis�ed by every iterate (zk; �k; yk):�ki yki � k�k � min�k; i = 1; 2; : : : ; P; (20a)max(krkfk; krkgk) � �k�k: (20b)Note too that �k is bounded. In fact,�min � �k = �min tkYj=1(1 + �j) � �min 1Yj=1(1 + (12)j) � �mine3=2 = �max; (21)where e in this case is Euler's constant and not the vector of 1s.3 ConvergenceIn this section we �rst prove global convergence and then discuss superlinear local conver-gence.



93.1 Global ConvergenceWe prove here a global convergence result: either the sequence of iterates terminates �nitelyat a solution, or all limit points are solutions of (3). To prove this result, we use a simpletechnique due to Polak [6, Chapter 1].We start by formalizing our assumptions on � and g.Assumption 1 � : IRN ! IRN is C1 and monotone; and each component function gi ofg : IRN ! IRP is C2 and convex.It follows immediately from this de�nition and (6) that" Dzf DgT�Dg 0 #is postive semide�nite for each (z; �) 2 IRN � IRP+.Recall that S is the solution set for (3). All iterates of the algorithm are con�ned to theset 
, de�ned by
 = f(z; �; y) j (�; y) � 0; (22)krf (z; �)k � �max�; krg(z; y)k � �max�; �iyi � min�; i = 1; 2; : : : ; Pg :We also de�ne 
++ = 
 \ (IRN � IRP++ � IRP++)and note that 
 = 
++ [ S; 
++ \ S = ;:In this de�nition, IRP++ is the strictly positive orthant in IRP and � = �Ty=P as before.The result that (zk; �k; yk) 2 
 for all k follows from (14) and (21).By monotonicity, we know that the submatrix Dzf in the Jacobian is positive semidef-inite. To ensure that the Newton-like equations (12) have a unique solution, we impose aslightly stronger condition.Assumption 2 The two sided projection of the matrixDzf(z; �) = D�(z) + PXi=1 �iD2gi(z)into kerDg(z) is positive de�nite for all z 2 IRN and � 2 IRP++.To verify that (12) has a unique solution, eliminate �y and �� from (12), and note that thecoe�cient matrix in the reduced system de�ned byhDzf + (Dg)T�Y �1(Dg)i�z = �f(z; �)� (Dg)T�Y �1(g(z) + �k~���1e)is positive de�nite.Assumptions 1 and 2 imply that the algorithm takes a nontrivial step �k along thecomputed search direction|and therefore makes a nontrivial amount of progress|at everyiteration. The �rst result indicates that this claim is true in the case of safe steps.



10Lemma 1 Suppose that Assumptions 1 and 2 hold. Let (ẑ; �̂; ŷ) 2 
nS. Then there arescalars �̂ > 0 and �̂ 2 (0; 1] such that if the algorithm takes a safe step from any point(z; �; y) satisfying (z; �; y) 2 B̂ 4= (ẑ; �̂; ŷ) + �̂IB; (23)the calculated step length � will satisfy � � �̂.Proof. We de�ne �̂ by �̂ = 12 mini=1;2;:::;P �min(�̂i; ŷi)� > 0:For (z; �; y) 2 B̂, we then have�iyi � (�̂i � �̂)(ŷi � �̂) � �̂2; � = �Ty=P � �̂2: (24)Note from (20a) that, if the safe step routine is called at the point (z; �; y), then�iyi � �; i = 1; 2; : : : ; P;for the value of  that is passed to the routine safe.Since � > 0 and y > 0 for all (z; �; y) 2 B̂, the coe�cient matrix in (12) is nonsingularand continuous in an open set containing B̂. The right-hand side in (12) is also continuouswith respect to (z; �; y) and ~�. Hence, there is a constant C6 > 0 such thatk(�z;��;�y)k � C6 (25)for all (z; �; y) 2 B̂, ~� 2 [��; 12 ].De�ne �̂(1) = �̂=(2C6). We then have for all � 2 [0; �̂(1)] that�i + ���i � �̂i � �̂ � �̂2C6 j��ij � 2�̂ � �̂ � 12 �̂ > 0;and similarly for yi + ��yi.Now de�ne �̂(2) = min �̂(1); ��(1 � max)�̂22C26 ! :We now show that the �rst acceptance criterion (16a) is satis�ed for all � 2 [0; �̂(2)]. Fromthe last block row in (12), we have�i(�)yi(�) = �iyi � ��iyi + �~�� + �2��i�yi� �(1 � �) + �~�� � �2C26 ;since �iyi � . Using (12) again, we also have�(�)Ty(�) = �Ty � �(1 � ~�)�Ty + �2��T�y� �Ty � �(1 � ~�)�Ty + �2C26 : (26)



11By combining these two estimates, we �nd that (16a) is satis�ed if�(1� �) + �~�� � �2C26 � �(1 � �) + �~��+ �2C26=P;which, in turn, is satis�ed if ~��(1 � )� � 2�2C26 :Since � � �̂2,  2 (min; max], and ~� � ��, this last condition holds for all � 2 [0; �̂(2)], sothe condition (16a) is satis�ed for � in this range.We now prove that the fourth condition (16d) holds for all � 2 [0; �̂(3)], where�̂(3) = min �̂(2); P (1 � �) �̂22C26 ! :For � in this range, we have from � � �̂2, in (24), and ~� � 12 that�2C26 � �P (1 � �) �̂22 � �(1 � �)(1 � ~�)�Ty:Hence, from (26), we have�(�)T y(�) � �Ty � �(1 � ~�)�Ty + �(1 � �)(1 � ~�)�Ty � [1� ��(1 � ~�)]�Ty;as required.We turn next to the second condition (16b). From Taylor's theorem and (12), we havef(z(�); �(�)) = f(z; �) + � h Dzf D�f i " �z�� #+� Z 10 [Df(z + ���z; � + ����)�Df(z; �)] " �z�� # d�= (1� �)f(z; �) + ��rf ; (27)where we have de�ned�rf = Z 10 [Df(z + ���z; � + ����)�Df(z; �)] " �z�� # d�: (28)By taking norms, we obtaink�rfk � max�2(0;1) kDf(z + ���z; � + ����)�Df(z; �)k k(�z;��)k: (29)Therefore, by continuity of Df (Assumption 1) and the bound (25), there is a scalar �̂(4) 2(0; �̂(3)] such that � 2 [0; �̂(4)] ) k�rfk � 12���min�̂2; (30)



12for all (z; �; y) 2 B̂ from which a safe step is calculated. By reducing �̂(4), if necessary, wecan also assert that � 2 [0; �̂(4)] ) �C26 � 12 ��P �̂2: (31)By taking norms in (27) and using (20b), we �nd thatkf(z(�); �(�))k � (1� �)kf(z; �)k + �k�rfk� (1� �)��+ �k�rfk: (32)Meanwhile, we have by a slight change to (26) (bounding below instead of above) that�(�)T y(�) � �Ty(1� �+ �~�)� �2C26 :Trivial rearrangement of this expression gives(1� �)� � �(�) � �~��+ �2C26=P:By substituting into (32), we obtainkf(z(�); �(�))k � ��(�)� ��~��+ ��2C26=P + �k�rfk= ��(�)� � h�~��� ��C26=P � k�rfki : (33)Since ~� � �� and � � �min, we have from (24), (30), and (31) thatk�rfk � 12~���; ��C26=P � 12~���;for all � 2 [0; �̂(4)]. Hence, the bracketed term in (33) is nonnegative, and we havekrf (z(�); �(�))k = kf(z(�); �(�))k � ��(�);for all � 2 [0; �̂(4)], as required.By an almost identical argument, we can show that the third condition (16c) holds for� 2 [0; �̂(4)], though we may have to choose �̂(4) smaller (but still positive).We have shown that the criteria (16) are satis�ed for all � 2 [0; �̂(4)]. Hence, the steplength selected by safe will be at least as long as the �rst value of � below �̂(4) that is triedby the Armijo backtracking strategy. We deduce that� � �̂ 4= min(��;��̂(4));and our proof is complete.The global convergence result and its proof are similar to Theorem 3.3 of Wright andRalph [10].Theorem 1 Suppose that Assumptions 1 and 2 hold. Then either



13(A) (zk; �k; yk) 2 S for some k <1, or(B) all limit points of f(zk; �k; yk)g belong to S.Proof. Suppose for contradiction that the sequence f(zk; �k; yk)g is in�nite, with a limitpoint (ẑ; �̂; ŷ) that does not belong to S. Since the sequence is contained entirely in theclosed set 
, we must have (ẑ; �̂; ŷ) 2 
nS. We must have (�̂; ŷ) > 0, since otherwise itwould follow from the de�nition of 
 that �̂ = �̂T ŷ=P = 0 and hence (ẑ; �̂; ŷ) 2 S. Hence,�̂ > 0.Let K be an in�nite subsequence such thatf(zk; �k; yk)gk2K! (ẑ; �̂; ŷ):Since f�kg is monotone decreasing, we have �k � �̂ for all k. If a safe step is taken from thek-th iterate, for some k 2 K, we have from (16d) and Lemma 1 that the (k + 1)-th iteratemust satisfy �k+1 � [1 � �k�(1 � �k)]�k � �k � �̂�2 �̂: (34)If a fast step is taken, we have from the acceptance test in the main algorithm that�k+1 � ��k = �k � (1 � �)�k � �k � (1 � �)2 �̂; (35)The estimates (34) and (35) show that, whatever kind of step is taken, the reduction in �from iterate k is at least a small constant. Therefore, since f�kg is monotone decreasing andK is in�nite, we have �k # �1. This is a contradiction, since �k is bounded below by zero,so the proof is complete.3.2 Superlinear Local ConvergenceBy making various assumptions about the functions � and g and about the solution setS (see the next section), we can show that the algorithm converges superlinearly. Thesequence of duality measures f�kg converges with Q-order at least 1 + �̂ , where �̂ 2 (0; 1) isthe parameter used to choose the initial step length for the fast step in (18).We state our main result here. The remainder of the paper lays the groundwork for itsproof, which is given at the end.Theorem 2 Suppose that Assumptions 1, 2, 3, 4, 5, 6, and 7 are satis�ed and that thesequence f(zk; �k; yk)g is in�nite, with a limit point (z�; ��; y�) (in the solution set S). Thenthe algorithm eventually always takes fast steps, and(i) the sequence f�kg converges superlinearly to zero with Q-order at least 1 + �̂ , and(ii) the sequence f(zk; �k; yk)g converges superlinearly to (z�; ��; y�) with R-order at least1 + �̂ .



144 Assumptions for Superlinear ConvergenceWe have already shown in Section 3.1 that Assumptions 1 and 2 are enough to guaranteeglobal convergence of the kind described in Theorem 1. In the remainder of the paper, wefocus on case (B) of this theorem, in which the iterate sequence has a limit point in thesolution set S. In this section, we state and describe the assumptions that will be used inthe proof of Theorem 2.Assumption 3 is the Slater constraint quali�cation.Assumption 3 There is a vector �z 2 C such that g(�z) < 0.Assumption 4 concerns strict complementarity for at least one member of the solutionset.Assumption 4 There is a strictly complementary solution (z�; ��; y�), that is, (z�; ��; y�)satis�es (3) with �� + y� > 0.The next assumption concerns smoothness of � and Dg around the vector z� de�ned byAssumption 4.Assumption 5 The matrix-valued functions D� and D2gi, i = 1; 2; : : : ; P are Lipschitzcontinuous in a neighborhood of z�.We show in Lemma 3 below that the z� component of the solution is unique. This fact,together with Assumption 5 and the observation that Dzf(z; �) is linear in �, ensures thatDzf(z; �) and Dg(z) are Lipschitz continuous in a neighborhood of SZ.For the next assumption, we recall the de�nition of the index sets B andN from Section 1.All strictly complementary solutions (z�; ��; y�) have ��B > 0, ��N = 0, y�B = 0, and y�N > 0.This assumption concerns invertibility of the projection of Dzf(z�; �) onto the null space ofthe active constraints, which are the components gi(z) for i 2 B.Assumption 6 Let SZ and B be de�ned as in Section 1, and z� be as de�ned in Assump-tion 4. Let �� be the set of � 2 IRP such that (z�; �) 2 SZ . Then for each extreme point�e of ��, the two-sided projection of Dzf(z�; �e) onto ker(Dg�B) is invertible; that is, for anybasis Z of ker(Dg�B), the matrix ZTDzf(z�; �e)Z is invertible.This assumption looks similar to Assumption 2, but it applies to a di�erent set of points(z; �) and also refers to a di�erent subspace|that of the active constraint Jacobian, not ofthe entire constraint Jacobian.Assumption 6 appears to be weaker than the more usual condition, in the context ofnonlinear programming, that Dzf(z�; �) is positive de�nite on ker(Dg�B) for each � 2 ��.It is an easy exercise, however, to show that these two conditions are equivalent, thoughchecking the former is certainly more convenient in that it requires consideration of only�nitely many matrices.



15Lemma 2 Suppose that Assumptions 1, 2, 3, 4, and 6 are satis�ed. Then the set of multi-pliers �� de�ned in Assumption 6 is polyhedral, convex, and compact, hence is equal to theconvex hull of its extreme points.Proof. Clearly �� is a polyhedral, convex set. Boundedness follows from Gauvin [1] ifwe can show that the Mangasarian-Fromovitz constraint quali�cation holds at z�. Given theSlater point (�z; ��) from Assumption 3, we have for i 2 B thatgi(�z) � gi(z�) +Dgi(z�)(�z � z�) = Dgi(z�)(z � z�);so that Dgi(z�)(�z � z�) < 0 for all i 2 B, as required.We return to our earlier claim that the z� solution component is uniquely determined.Lemma 3 If Assumptions 1, 3, 4, and 6 hold, thenSZ = fz�g � ��;where �� � IRP+ is the set of multipliers referred to in Assumption 6.Proof. Convexity of SZ follows from Proposition 3.1 of Harker and Pang [2], since theNCP (3) is a equivalent to a monotone variational inequality over a closed convex set. Theinvertibility condition, Assumption 6, implies that for (z; �) in SZ near (z�; ��), we musthave z = z�.Suppose SZ contains (z; �), where z is remote from z�. By convexity, we also have(1 � �)(z�; ��) + �(z; �) 2 SZfor all � 2 [0; 1]. Since (1 � �)z� + �z ! z� as � # 0, it follows from local uniqueness thatz = z�.Note that Lemmas 2 and 3 together imply that SZ is compact.Finally, we state the constant rank assumption. See Pang and Ralph [5] for some discus-sion on this and related conditions.Assumption 7 The constant rank constraint quali�cation (CRCQ) holds for the systemg(z) � 0 at z�: For some neighborhood U of z�, the set of matrices fDgB(z) j z 2 Ug hasconstant column rank.Clearly the CRCQ holds if g is a�ne. It also holds if (Dg�B)T has full column rank (that is,if the linear independence constraint quali�cation holds).



165 Proof of the Superlinear Convergence ResultIn this section, we prove the main result, Theorem 2. Most of the e�ort is spent in estimatingthe size of fast steps (�z;��;�y) that are calculated from points (z; �; y) 2 
 close to thelimit point (�z; ��; �y). The ultimate result, Corollary 1, shows that the estimatek(�z;��;�y)k � C0� (36)holds for all steps of this type. In Subsection 5.6, this estimate is used together with Lipschitzcontinuity to complete the proof of Theorem 2.The task of proving the estimate (36) turns out to be highly technical, so we haveorganized our argument into subsections and provided considerable motivating discussion.Readers should be able to follow the outline of our argument without delving into the details.The di�culty is due entirely to our wish to use weaker conditions than the usual nondegen-eracy conditions. When the latter hold, the condition (36) follows from a simple applicationof the implicit function theorem.Most results in this section follow from the same set of assumptions, which we de�ne hereto avoid repetition:Standing Assumptions: These are the assumptions of Theorem 2; namely, As-sumptions 1, 2, 3, 4, 5, 6, and 7, together with an assumption that the sequencehas a limit point but does not terminate �nitely.Assumption 7 is needed only from Subsection 5.4 onwards, but we include it among thestanding assumptions for simplicity.In Subsection 5.1, we de�ne a partition of the vector (�z;��;�y) into two compo-nents (t; u; v) and (t0; u0; v0). Subsection 5.2 gives a relatively easy part of the proof: show-ing that the components ��N and �yB are O(�k). Subsections 5.3 and 5.4 show that(t0; u0; v0) and (uB; vN ), respectively, are also O(�). All these results, taken together, estab-lish k(��;�y)k = O(�). We summarize this result in Subsection 5.5 and deduce that theremaining step component k�zk is also O(�).Throughout the section, we assume that the sequence (zk; �k; yk) has a limit point thatwe denote by (ẑ; �̂; ŷ). Of course, we know from Theorem 1 that (ẑ; �̂; ŷ) 2 S. WhenAssumption 4 and the result of Lemma 3 hold, all solutions have the vector z� as their zcomponent. In this case we have ẑ = z�, so we sometimes write the limit point as (z�; �̂; y�),where y� = �g(z�).Another quantity that appears repeatedly in the remaining analysis of this section is therestricted neighborhood 
(�) of the limit point de�ned by
(�) 4= f(z; �; y) 2 
 j k(z; �; y)� (z�; �̂; y�)k � �g: (37)



175.1 Computation of Fast StepsRecall that each fast step is obtained by solving (12) with ~� = 0; that is,264 Dzf (Dg)T 0�Dg 0 �I0 Y � 375264 �z���y 375 = 264 rfrg��Y e 375 : (38)For convenience, we restate the following notational de�nitions from Section 2:rf = �f(z; �); rg = y + g(z); � = �Ty=P:We are particularly interested in the fast step calculation when the current iterate (z; �; y)is close to the limit point (z�; �̂; y�). To establish bounds on the step (�z;��;�y) in thissituation, we split it into two pieces. The splitting is de�ned implicitly in terms of thefollowing minimization problem:(z�; ��) 2 argmin(z� ;�)2SZ " f(z�; �)� [f(z; �) +Dzf(z; �)(z� � z) +Dg(z)T (� � �)]g(z�)� [g(z) +Dg(z)(z� � z)] # : (39)Existence of the vector (z�; ��) follows from compactness of SZ. We use (z�; ��) to de�ne thevectors �f , �g, �f , �g as follows:�f = Dzf(z; �)(z� � z) +Dg(z)T (�� � �); (40a)�g = y �Dg(z)(z� � z) + g(z�) (40b)�f = �f(z; �)�Dzf(z; �)(z� � z)�Dg(z)T (�� � �); (40c)�g = g(z)� g(z�) +Dg(z)(z� � z): (40d)The right-hand side of (38) can now be partitioned as264 rfrg��Y e 375 = 264 �f�g�Y �e 375+ 264 �f�g0 375 ;and the splitting (�z;��;�y) = (t; u; v) + (t0; u0; v0) of the right-hand side follows accord-ingly: 264 Dzf (Dg)T 0�Dg 0 �I0 Y � 375264 tuv 375 = 264 �f�g��Y e 375 ; (41)264 Dzf (Dg)T 0�Dg 0 �I0 Y � 375264 t0u0v0 375 = 264 �f�g0 375 : (42)Because of Assumption 2, the systems (38), (41), and (42) all have unique solutions.



185.2 Bounds for ��N and �yBIt is relatively easy to obtain size estimates for about ��N and �yB, which together makeup half the components of (��;�y). We start by deriving some upper and lower bounds onthe components of � and y for (z; �; y) in a neighborhood of the form (37), which will proveuseful throughout the remainder of this section.Lemma 4 Suppose that the standing assumptions hold. Then there is a constant C4 suchthat the following bounds hold for all (z; �; y) 2 
(1):�i � C4� (i 2 N ); yi � C4� (i 2 B); (43a)�i � min=C4 (i 2 B); yi � min=C4 (i 2 N ); (43b)yi � min�=C4 (i 2 B); �i � min�=C4 (i 2 N ): (43c)Proof. Let (z�; ��; y�) denote the strictly complementary solution from Assumption 4.By monotonicity of the mapping (5), (10), and the fact that g(z�) = �y�, we have0 � " f(z; �) � f(z�; ��)�g(z) + g(z�) #T " z � z��� �� # = " �rfy � rg � y� #T " z � z�� � �� # :By rearranging this expression, we have from (��)Ty� = 0, (20b), and (21) that(��)Ty + (y�)T� � �Ty + krfkkz � z�k+ krgkk� � ��k� P� + �max� (kzk+ kz�k+ k�k+ k��k) :Since (z; �; y) 2 
(1), we havek(z; �)k � k(z�; �̂)k+ k(z� � z; �̂� �)k � k(z�; �̂)k+ 1; (44)so we can bound the term in parentheses by a constant, giving(��)Ty + (y�)T� � �C4�;for some positive constant �C4. Since ��N = 0 and y�B = 0, this inequality implies thatXi2B ��i yi + Xi2N y�i �i � �C4�:Since (��B; y�N ) > 0 and (�; y) > 0, each term in the summations is positive, so we have�i � 1y�i �C4�; i 2 N ; yi � 1��i �C4�; i 2 B:From these bounds, we can de�ne C4 is an obvious way to satisfy (43a).For any i 2 B, we have from (22) and (43a) that�i � min�yi � min�C4� = minC4 ;



19giving the �rst part of (43b). The second part is proved similarly.For i 2 B, we have from (22) and our choice of (z; �; y) 2 
(1) thatyi � min��i � min��̂i + 1 :A similar lower bound can be proved for �i, i 2 N . Hence (43c) holds, for a suitable rede�-nition of C4.Lemma 5 Suppose that the standing assumptions are satis�ed. Then there are constants�1 2 (0; 1] and C9 > 0 such that for all (z; �; y) 2 
(�1), the solution of the linear system264 Dzf (Dg)T 0�Dg 0 �I0 Y � 3752664 d�zd��d�y 3775 = 264 rfrg0 375 (45)satis�es kd�zk � C9 �� + kd��Bk� :Proof. Because �1 � 1, the estimates (43) apply for points (z; �; y) 2 
(�1). Note toothat these points also satisfy � = O(�1), sinceP� = �Ty = �TByB + �TNyN � (k�̂Bk+ �1)�1 + �1(kyNk+ �1) = O(�1):By eliminating d�y and d��N from the system (45), we obtain" (Dzf) + (DgN )T�N (YN )�1DgN (DgB)T�DgB (�B)�1YB # " d�zd��B # = " rf � (DgN )T�N (YN )�1(rg)N(rg)B # :(46)From Lemma 4, we have k�N (YN )�1k = O(�) and k��1B YBk = O(�). Because of Lipschitzcontinuity (Assumption 5) and (z; �; y) 2 
(�1), we haveDg(z) �Dg(z�) = O(kz � z�k) = O(�1)Dzf(z; �)�Dzf(z�; �̂) = O(kz � z�k) +O(k� � �̂k) = O(�1):By perturbing the coe�cient matrix in (46) and substituting these estimates, along with� = O(�1), we obtain" Dzf(z�; �̂) DgB(z�)T�DgB(z�) 0 # " d�zd��B #= " rf � (DgN )T�N (YN )�1(rg)N(rg)B #+O(�1) " d�zd��B # : (47)



20By partitioning d�z into its components in kerDgB(z�) and ranDgB(z�)T , we have fromAssumption 6 that d�z is bounded in norm by the right-hand side of (47). Hence, since krfkand krgk are both O(�), and DgN is bounded on bounded sets, we can writekd�zk � �C9 ��+ �1(kd�zk+ kd��Bk)� ;for some constant �C9. By choosing �1 small enough that�C9�1 � 12;we can combine terms in kd�zk on the left-hand side and divide to obtainkd�zk � 2 �C9 ��+ �1kd��Bk� � 2 �C9�+ kd��Bk;proving the result.In subsequent results, we often will refer to the positive de�nite diagonal matrix Dkde�ned by D = ��1=2Y 1=2: (48)We can obtain bounds on kDk and kD�1k for points (z; �; y) 2 
(1) by applying Lemma 4.For kD�1k, we havekD�1k = maxi=1;:::;n �1=2iy1=2i � (�̂i + 1)1=2(minmin(�; 1)=C4)1=2 � C7��1=2; (49)for some constant C7. Similar logic shows thatkDk � C7��1=2; (50)after a possible rede�nition of C7.The next result is a bound on the scaled vectors D�� and D�1�y.Lemma 6 Suppose that the standing assumptions hold. Then for the constant �1 de�ned inLemma 5, there is a constant C3 > 0 such that the solution (�z;��;�y) of (38) satis�eskD��k � C3�1=2; kD�1�yk � C3�1=2; (51)for all (z; �; y) 2 
(�1).Proof. We break the solution into two pieces and prove that the required bounds holdfor each part. We write(�z;��;�y) = (�z;��;�y) + (d�z;d��;d�y);



21where264 Dzf DgT 0�Dg 0 �I0 Y � 375264 �z���y 375 = 264 00�Y �e 375 ; 264 Dzf DgT 0�Dg 0 �I0 Y � 3752664 d�zd��d�y 3775 = 264 rfrg0 375 :(52)For the �rst component, we multiply the last block row by the diagonal matrix (Y �)�1=2to obtain D�� +D�1�y = �(Y�)1=2e: (53)From (52), we also have��T�y = ���T (Dg)�z = �zT (Dzf)�z � 0;so by taking inner products in (53), we obtainkD��k2 + kD�1�yk2 � kD��k2 +�zT (Dzf)�z + kD�1�yk2 = k(Y �)1=2ek2 = P�:Hence, we have kD��k � P 1=2�1=2; kD�1�yk � P 1=2�1=2: (54)For the second component of the solution, we obtain from the last block row in (52) thatDd�� = �D�1d�y ) kDd��k = kD�1d�yk; (55)and so we seek a bound for kDd��k. Using (52) again, we obtain�Dgd�z �d�y = rg ) �Dgd�z +D2d�� = rg:By taking inner products with d��, we obtainkDd��k2 = d��T rg + d��T (Dg)d�z:From the �rst block row in (52), we have by positive semide�niteness of Dzf(z; �) thatd��T (Dg)d�z = (rf � (Dzf)d�z)Td�z � rTf d�z:By combining the last two expressions, we obtainkDd��k2 � d��Trg + rTf d�z � kd��kkrgk+ krfkkd�zk: (56)Because of (20b) and Lemma 5, we havekrfk � �max�; krgk � �max�; kd�zk � C9(�+ kd��k):



22It follows from (49) that kd��k � kD�1kkDd��k � C7��1=2kDd��k:By substituting all these estimates into the right-hand side of (56), we �nd that there is aconstant C10 such that kDd��k2 � C10 ��1=2kDd��k+ �2� :It follows immediately from this expression and (55) thatkDd��k � �C3�1=2; kD�1d�yk � �C3�1=2;for some constant �C3. The result of the lemma is obtained by combining this estimate with(54).Bounds on half the components of (��;�y) follow easily.Theorem 3 Suppose that the standing assumptions hold. Then for the constant �1 de�nedin Lemma 5, there is a positive constant C5 such that the solution (�z;��;�y) of (38)satis�es k��Nk � C5�; k�yBk � C5�; (57)for all (z; �; y) 2 
(�1).Proof. From the de�nition (48) and the bounds (51), we have that������yi�i�1=2��i����� � kD��k � C3�1=2:Hence from (43a) and (43b), we have for i 2 N thatj��ij �  �iyi !1=2C3�1=2 � C4�1=21=2min C3�1=2;which proves that k��Nk � C5�k for an obvious de�nition of C5. The bound on k�yBk isderived in the same way.5.3 A Bound for (t0; u0; v0)In this subsection we �nd bounds for the components (t0; u0; v0) de�ned by (42). The di�cultpart of the analysis appears in the following two lemmas, in which we estimate the size of(�f ; �g) in (40c),(40d).Under our standing assumptions, we can de�ne the following set:S1Z = f(z; �) 2 SZ j�i � min=C4; i 2 B; gi(z) � �min=C4; i 2 Ng; (58)



23where C4 is de�ned in Lemma 4. Because of (43b), all limit points of the sequence f(zk; �k)glie in S1Z ; in particular, (z�; �̂) 2 S1Z . Obviously, (z; �;�g(z)) is a strictly complementarysolution of (3) whenever (z; �) 2 S1Z .Our �rst result, like the results in the preceding subsections, considers points (z; �; y) 2 
near the solution set S and shows that distSZ (z; �) can be bounded in terms of the amountby which (z; �;�g(z)) violates feasibility and complementarity.Lemma 7 Suppose that the standing assumptions hold. Then there exist constants ~L and�2 2 (0; �1] such that the following bound holds for all points (z; �) 2 IRN � IRP+ withdistS1Z (z; �) � �2: distSZ (z; �) � ~Lk (f(z; �); g(z)+; �T g(z)) k: (59)Proof. By Lemmas 2 and 3, we know that SZ is compact. Since S1Z � SZ and S1Z isclosed, S1Z too is compact.We prove the result by contradiction. If the claim is false, we can choose a sequencef(�kz ; �k�)g � IRN � IRP+ with the propertiesdistS1Z (�kz ; �k�) # 0; (60)and k(�kz ; �k�)� (z�; ��k)k � kk (f(�kz ; �k�); g(�kz )+; (�k�)T g(�kz )) k; (61)where (z�; ��k) is the nearest point in SZ to �k for each k. (Note that (z�; ��k) exists, bycompactness of SZ , and that the z� component is uniquely de�ned.) By compactness ofS1Z and (60), we can take subsequences if necessary and assume that both f(�kz ; �k�)g andf(z�; ��k)g converge to (z�; ��) 2 S1Z . By de�ning �k = k(�kz ; �k�) � (z�; ��k)k and taking afurther subsequence, we can assume that there is a vector (dz; d�) 2 (IRN � IRP+) n f0g suchthat (�kz ; �k�)� (z�; ��k)�k ! (dz; d�):(In fact, (dz ; d�) is a unit vector.) Since ��kN = 0 and ��kB > 0 for all k su�ciently large, thesolution (z�; ��k) is strictly complementary for all k su�ciently large.The following analysis is devoted to showing that (dz; d�) = 0, a contradiction that provesthe result. First, we show that (dz ; d�) is in the normal cone to SZ at (z�; ��), namely, dzd� !T  z� � z�� � �� ! � 0 for all (z�; �) 2 SZ: (62)Second, we show that (dz; d�) is in the tangent cone to SZ at (z�; ��), indeed that(z�; ��) + � (dz; d�) 2 SZ for small � > 0. (63)Together, these two results imply that k(dz; d�)k = 0, as required.



24To show (62), we note that, since (z�; ��k) is the projection of (�kz ; �k�) onto SZ, we have �kz � z��k� � ��k !T  z� � z��� ��k ! � 0; for all (z�; �) 2 SZ .We obtain (62) by dividing this expression by �k and taking limits.The proof of (63) is longer. By the smoothness properties of f , and the fact thatf(z�; ��k) = 0, we havef(�kz ; �k�)�k = f(�kz ; �k�)� f(z�; ��k)�k ! Dzf(z�; ��)dz +Dg(z�)Td�: (64)Taking i 2 B, we have gi(z�) = 0 and sogi(�kz )+�k = "gi(�kz )� gi(z�)�k #+ ! [Dgi(z�)dz ]+ ; for all i 2 B. (65)For the nonbasic components, we havegi(z�) < 0 ) gi(�kz )+ = 0; for all i 2 N ; (66)and all k su�ciently large. Also, we have(�k�)T g(�kz )�k = (�k�)T g(�kz )� (��k)Tg(z�)�k ! g(z�)Td� + ��TDg(z�)dz: (67)By combining (64), (65), (66), and (67) and the property (61), we obtain0 = limk k(f(�kz ; �k�); g(�kz )+; (�k�)T g(�kz ))k�k= k(Dzf(z�; ��)dz +Dg(z�)Td�; [DgB(z�)dz]+; g(z�)Td� + ��TDg(z�)dz)k:It follows immediately that Dzf(z�; ��)dz +Dg(z�)d� = 0; (68a)DgB(z�)dz � 0; (68b)g(z�)Td� + ��TDg(z�)dz = 0: (68c)Since gB(z�) = 0 and ��N = 0, we can rewrite (68c) asXi2N gi(z�)(d�)i +Xi2B ��iDgi(z�)dz = 0: (69)Since (��k)N = 0 and �k� � 0 for all k, we have (d�)N � 0. Therefore all product terms inboth summations in (69) are nonpositive, so we can use gN (z�) < 0 and ��B > 0 to deducethat (d�)N = 0; DgB(z�)dz = 0: (70)



25By multiplying (68a) by dTz and using (70), we obtaindTzDfz(z�; ��)dz = �dTzDg(z�)Td� = 0: (71)Assumption 6, together with dz 2 kerDgB(z�) (from (70)) and (71), implies that dz = 0.Hence, (68a) reduces to Dg(z�)Td� = 0: (72)Finally, we are in a position to verify that (63) is satis�ed. Because of dz = 0 and(d�)N = 0, we havegB(z� + �dz) = gB(z�) = 0;gN (z� + �dz) = gN (z�) < 0;��N + � (d�)N = 0;��B + � (d�)B > 0; for � > 0 su�ciently small.From (72) and the fact that f is linear in �, we havef(z� + �dz; ��+ �d�) = f(z�; �� + �d�) = f(z�; ��) + �Dg(z�)Td� = 0:Together, these formulae indicate that (63) holds, so we are done.Lemma 8 Suppose that our standing assumptions are satis�ed. Then there exist constantsL̂ > 0, �L > 0, and �3 2 (0; �2] (where �2 is de�ned in Lemma 7) such that for each (z; �; y) 2
(�3) we have " f(z; �) +Dzf(z; �)(z� � z) +Dg(z)T (�� � �)g(z)� g(z�) +Dg(z)(z� � z) # � L̂�2; (73)and " Dzf(z; �)(z� � z) +Dg(z)T (�� � �)y �Dg(z)(z� � z) + g(z�) # � �L�: (74)where, as in (39), �� is chosen from the optimal Lagrange multiplier set �� to minimize theleft-hand side of (73).Proof. We start by proving (73). As in (39), we denote the minimand of the left-handside in (73) by (z�; ��), whose existence follows from compactness of SZ. We show �rst thatk(z�; ��)� (z; �)k = O(�) and then prove the result by a Lipschitz continuity argument.By considering (z; �; y) 2 
(�2), we have from (10), (22), and the fact that y � 0 thatkf(z; �)k � �max� and kg(z)+k = k[rg � y]+k � krgk � �max�: (75)



26Since for all (z; �; y) 2 
(�2), we have k(z; �)k � Ĉ1 for some constant Ĉ1, it follows that(z; �; y) 2 
(�2) ) j�T g(z)j = j�T (rg � y)j � k�kkrgk+ j�Tyj � (Ĉ1�max + P )�:We have shown that the right-hand side in (59) is O(�) and therefore, by the result ofLemma 7, we have k(z; �)� (z�; ��)k � �C1� (76)for some constant �C1 and all (z; �; y) 2 
(�2).By the Lipschitz continuity assumption (see Assumption 5 and the comments that fol-low) we can choose �3 2 (0; �2] such that Dzf(z; �) and Dg(z) are Lipschitz continuous fordistS1Z (z; �) � �3. Therefore, the matrix function" Dzf(z; �) Dg(z)TDg(z) 0 #is also Lipschitz continuous as a function of (z; �) in this neighborhood. Since (z�; ��) 2 SZ,we have f(z�; ��) = 0 and we have that" f(z; �) +Dzf(z; �)(z� � z) +Dg(z)T (�� � �)g(z)� g(z�) +Dg(z)(z� � z) # � �Lk(z�; ��)� (z; �)k2; (77)for some constant �L > 0 and all (z; �) with distS1Z (z; �) � �3. We obtain the result (73) bycombining (76) with (77) and de�ning L̂ = �L �C21 .For (74), we have that" �Dzf(z; �)(z� � z)�Dg(z)T (�� � �)y �Dg(z)(z� � z) + g(z�) #= " rfrg # � " f(z; �) +Dzf(z; �)(z� � z) +Dg(z)T (�� � �)g(z)� g(z�) +Dg(z)(z� � z) # ;and therefore " Dzf(z; �)(z� � z) +Dg(z)T (�� � �)y �Dg(z)(z� � z) + g(z�) # � " rfrg #+ L̂�2;where the last term is a consequence of (73). Since k(rf ; rg)k = O(�) by (22), we have theresult.We use Lemma 8 to estimate the quantities �f , �g, �f , and �g de�ned by (40). For(z; �; y) 2 
(�3), we have from (39), (40c), (40d), and (73) thatk�fk � L̂�2; k�gk � L̂�2: (78)Similarly, we have from (39), (40a), (40b), and (74) thatk�fk � �L�; k�gk � �L�: (79)



27Lemma 9 Suppose that the standing assumptions hold and �3 is given by Lemma 8. Thenthere is a constant C11 such that the solution (t0; u0; v0) of (42) satis�es k(t0; u0; v0)k � C11�for all (z; �; y) 2 
(�3).Proof. Note that (t0; u0; v0) satis�es the equations (45) if we replace (rf ; rg; 0) on theright-hand side by (�f ; �g; 0). The main di�erence between the two systems is the size of theright-hand sides: O(�) in (45), O(�2) here from (78). By using the same technique of proofas in Lemma 5, we can show that kt0k � C9(�2 + ku0Bk); (80)for some constant C9. This estimate, together with the techniques of the second part of theproof of Lemma 6, implies thatkDu0k � C3�3=2; kD�1v0k � C3�3=2; (81)where D is de�ned as in (48). The estimates kDk � C7��1=2 and kD�1k � C7��1=2 obtainedfrom (49) and (50) can now be combined with (80) and (81) to complete the proof.5.4 Bounds for uB and vNIn this subsection we address the most di�cult part of the proof: showing that the compo-nents uB and vN from (41) are O(�k). As in the case of a�ne f , the key to our result is toshow that (uB; vN ) is the solution of a certain quadratic program (Theorem 5 below). Unlikethe a�ne case, however, the coe�cient matrix in this quadratic program does not remainconstant. Instead, this matrix satis�es a constant column rank condition (Theorem 4), andthis condition is enough to yield the desired bound (Lemmas 10 and 11).We start by proving a novel variant of a lemma from Monteiro and Wright [4, Lemma2.2]. The de�nition of constant column rank appears at the end of Section 1.Lemma 10 If H is a bounded set in IRp�q with constant column rank and k � k is any normon IRq, there exists a nonnegative constant L = L(H) with the property that for each H 2 Hand h 2 ranH, there is a solution w 2 IR q of the equation Hw = h for whichkwk � Lkhk:Proof. The case of h = 0 is trivial, so we assume throughout the proof that h 6= 0.To obtain a contradiction, assume there exist fHkg � H and fhkg � IRq n f0g such that,for each k, hk 2 ranHk and dist(Hk)�1hk(0) > kkhkk: (82)We may assume without loss of generality (by taking subsequences and dividing by khkk ifnecessary) that Hk ! H 2 IRp�q and hk ! h 2 IRq n f0g:



28Let J be a maximal set of column indices of H such that H�J has linearly independentcolumns. By the assumption of constant column rank, we �nd that for large enough k, J isalso a maximal set of column indices of Hk for which Hk�J has linearly independent columns.Since hk 2 ranHk, it follows that, for large k, there is a (unique) solution wkJ , of the systemHk�JwkJ = hk:Now choose a subset I of the rows of H such that the submatrix HIJ is invertible, and letwJ = H�1IJ hI :It follows that wkJ ! wJ .For each k we augment wkJ to form wk 2 (Hk)�1hk, by setting wkj = 0 for j 62 J .Similarly, we can augment wJ above by setting wj = 0 for j 62 J , to form w 2 H�1h. Ofcourse wk ! w, and since hk ! h 6= 0, we havekwkkkhkk ! kwkkhk <1;contradicting (82).On the one hand, Lemma 10 extends Ho�man's lemma [3] by allowing H to vary withina set H rather than remain constant. On the other hand, Ho�man's lemma is more generalin that it applies to linear systems of inequalities as well as equalities. We believe, however,that the above result and proof can be adapted to linear systems that include inequalities.In the following result, we partition the matrix H 2 H � IRp�q asH = h ~H Ĥ i ;where ~H 2 IRp�~q and Ĥ 2 IRp�q̂, with ~q + q̂ = q. We use ~w and ŵ to denote vectors in IR ~qand IR q̂, respectively. Below, as usual, k � k is the 2-norm.Lemma 11 Let H be a bounded subset of IRp�q with constant column rank. Then there existsa nonnegative constant L = L(H) with the property that for any q̂� q̂ diagonal matrix S > 0,matrix H = h ~H Ĥ i 2 H and vector h 2 ranH, the (unique) ŵ component of the solutionof the following problemmin( ~w;ŵ) 12kSŵk2; subject to ~H ~w + Ĥŵ = h (83)satis�es kŵk1 � Lkhk1:Proof. We adapt the proof of Monteiro and Wright [4, Lemma 7].



29Assume for a contradiction that there exist sequences of positive diagonal matrices fSkg,matrices fHkg � H, and vectors fhkg such that hk 2 ranHk for each k, andlimk!1 kŵkk1khkk1 =1;where ( ~wk; ŵk) is a solution of (83), unique in the ŵk component, with S = Sk, H = Hkand h = hk. By taking a subsequence if necessary, we can de�ne a constant L1 > 0 and anonempty index set J � f1; 2; : : : ; q̂g such thatjŵkj jkhkk1 � L1; 8j 62 J ; (84a)lim jŵkj jkhkk1 = 1; 8j 2 J : (84b)Consider the following linear system~Hk ~w + Ĥkŵ = hk;ŵj = ŵkj ; 8j 62 J ; (85)and note that ( ~wk; ŵk) is a solution of this system.Consider the coe�cient matrix in (85), which is h ~H Ĥ i followed by the row vectorsh 0 (ej)T i, j 62 J , where ej is the vector in IR q̂ composed of 0s except for a 1 in its jthentry. The rank of this matrix is the sum of the cardinality of the set f1; 2; : : : ; q̂gnJ and therank of h ~H Ĥ�J i. Hence, the family of coe�cient matrices of (85) has constant columnrank. By Lemma 10, the system (85) has a solution (~xk; x̂k) such thatkx̂kk1 � k(~xk; x̂k)k1 � L2 �khkk1 +maxj =2J jŵkj j� ;where L2 is a constant depending only on H and J . Therefore from (84a), we havekx̂kk1 � L3khkk1;where L3 = L2(1 + L1). From (84b) there exists K � 0 such that for all k � K we havejŵkj j > L3khkk1; 8j 2 J ;and therefore jŵkj j > kx̂kk1; 8j 2 J ; 8k � K:From this relation and the fact that ŵk satis�es the second equation of (85), we obtainkSkx̂kk2 = Xj2J(Skjj x̂kj )2 + Xj =2J (Skjj x̂kj )2< Xj2J(Skjjŵkj )2 + Xj =2J (Skjjŵkj )2= kSkŵkk2; for all k � K. (86)



30This relation, together with the fact that x̂k satis�es the �rst equation of (85), contradictsthe assertion that ŵk is an optimal solution of (83) with S = Sk, H = Hk, and h = hk.In Theorem 4 below, we identify the matrix set H in Lemmas 10 and 11 with the set(" Dzf(z; �) DgB(z)T 0�Dg(z) 0 �I�N # : distS1Z (z; �) � �) ; (87)for some � > 0. To apply this result, we need to show that this set has constant columnrank, as we do in the next technical lemma and Theorem 4.Lemma 12 Let ; 6= J � B and ; 6= K � N . Let I denote the identity in IRP�P . If thetwo-sided projection of Dzf(z; �) onto ker(DgB) is positive de�nite, then for t 2 IRn and�J 2 IR jJ j, we have (t; �J ) 2 ker" Dzf(z; �) DgJ (zk)T�DgB(zk) 0 # (88)if and only if t = 0 and �J 2 ker(DgJ )T . In addition, we havedimker " Dzf (DgJ )T 0�Dg 0 �I�K # = dimker(DgJ )T : (89)Proof. The reverse implication in the �rst statement is obvious. To prove the forwardimplication, assume �rst that (88) holds. We then have(Dzf)t 2 ran (DgJ )T � ran (DgB)T : (90)Let Z be a basis of ker(DgB), so that ZT ran (DgB)T = 0. Because DgBt = 0, we have t = Z~tfor some ~t. From (90), we have ZT (Dzf)t = 0, and so ZT (Dzf)Z~t = 0. Because of ournonsingularity assumption on the projection of Dzf(z; �), we have ~t = 0 and therefore t = 0.Hence, by substituting in (90), we obtain �J 2 ker(DgJ )T , so the proof of the �rst part iscomplete.We now prove (89). Let the vector (t; �J ; sK) have the property that(t; �J ; sK) 2 ker" Dzf (DgJ )T 0�Dg 0 �I�K # :By partitioning appropriately, we have(Dzf)t+ (DgJ )T�J = 0 (91a)�DgBt = 0; (91b)�(DgN )t� INKsK = 0: (91c)



31Now we can apply the �rst part of the theorem to (91a) and (91b) to �nd that the system(91) can be written equivalently as t = 0;(DgJ )T�J = 0;�INKsK = 0:Since K � N , the last of these equations implies that sK = 0. Therefore the solutions of (91)are the vectors of the form (t; �J ; sK) = (0; �J ; 0), for all �J 2 ker(DgJ )T , and the proof iscomplete.Under certain assumptions (including Assumption 7), it follows from (89) that the set(87) has constant column rank for some � > 0. We state the result formally.Theorem 4 Suppose that the standing assumptions are satis�ed. Then there is a constant� > 0 such that the bounded set (87) has constant column rank.Proof. Because of Assumption 6 and continuity of Dzf(z; �) and Dg(z) with respect toz, we can choose � > 0 so that- Dzf(z; �) and Dg(z) are bounded on the bounded set SZ + �IB, and- the two-sided projection of Dzf(z; �) onto kerDgB(z) is invertible.Hence, Lemma 12 applies.Suppose for contradiction that (87) does not have constant column rank for any � > 0.Then there is a sequence f(zk; �k)g converging to some (z�; �1) 2 S1Z (hence, Dzf(zk; �k)!Dzf(z�; �1)), and some index sets J � B, K � N such thatdimker" Dzf(zk; �k) DgJ (zk)T 0�Dg(zk) 0 �I�K # < dimker " Dzf(z�; �1) (Dg�J )T 0�Dg� 0 �I�K # :Hence, from (89), we must havedimker(DgkJ )T < dimker(Dg�J )Tfor all k. This inequality contradicts Assumption 7, so no such sequence exists, and the proofis complete.Finally, we state the quadratic program for which (t; uB; vN ) is a solution, and we use theresults above to estimate the size of these components. See (40) and (41) for the de�nitionsof �f , �g and t; u; v respectively.



32Theorem 5 Suppose that the standing assumptions hold, and let (z; �; y) 2 
(�4), where�4 = min(�3; �), and �3 and � are de�ned in Lemma 8 and Theorem 4, respectively. Then thesolution (t; u; v) of (41) is also the solution of the following convex quadratic program:min(�t;�uB;�vN ) 12kDBB�uBk2 + 12k(DNN )�1�vNk2;subject to " Dzf(z; �) DgB(z)T 0�Dg(z) 0 �(I�N ) # 264 �t�uB�vN 375 = " �f �DgN (z)TuN�g + I�BvB # : (92)Moreover, there is a constant C12 such thatk(uB; vN )k � C12k(�f ; �g; uN ; vB)k: (93)Proof. Note �rst that the matrices D, D�1 (see (48)) are well de�ned because of therestriction (z; �; y) 2 
(�4).It is immediate from (41) that (t; uB; vN ) is feasible for (92). To prove optimality, weneed to show that the remaining KKT conditions hold; that is,264 0D2BBuBD�2NNvN 375 2 ran 0B@264 (Dzf)T �DgTDgB 00 �IN� 3751CA :By using arguments similar to those of Ye and Anstreicher [12, Section 3], we can show thatran 0B@264 (Dzf)T �DgTDgB 00 �IN� 3751CA = ran 0B@264 �Dzf �DgTDgB 00 �IN� 3751CA :Hence, it su�ces to show that264 0D2BBuBD�2NNvN 375 = 264 �Dzf �DgTDgB 00 �IN� 375 " z + t� z�� + u� �� # ; (94)where �� is de�ned in (39). To verify this claim, note �rst that by (40a) and (41), we haveDzf(z; �)t+Dg(z)Tu = �f = Dzf(z; �)(z� � z) +Dg(z)T (�� � �);and therefore 0 = �Dzf(z; �)(z + t� z�)�Dg(z)T (�+ u� ��):For the second part of (94), we have from (40b) and (41) that�(DgB)t = vB + (�g)B = vB + yB � (DgB)(z� � z);D2u = ��1(Y u) = ��1(��Y e� �v) = �y � v;



33and therefore D2BBuB = (DgB)(z + t� z�):Finally, we use (41) together with ��N = 0 to writeD�2NN vN = Y �1NN�NNvN = ��N � uN = �IN�(� + u� ��):We now prove (93). For (z; �; y) 2 
(�4), we havedistS1Z (z; �) � k(z; �)� (z�; �̂)k � �4 � �:It therefore follows from Theorem 4 that the coe�cient matrix in (92) lies in the set (87),which has constant column rank. Our claim is proved by applying Lemma 11 to the quadraticprogram (92).5.5 The Fast Step EstimateWe are now in a position to tie together the results of Subsections 5.2, 5.3, and 5.4 andtherefore obtain an estimate for the length of the fast step.Corollary 1 Suppose that the standing assumptions hold. Then for the positive constant�4 de�ned in Theorem 5 and all (z; �; y) 2 
(�4), the fast step (�z;��;�y) calculated bysetting ~� = 0 in (12) satis�es k(�z;��;�y)k � C0�; (95)for some constant C0.Proof. From Theorem 3, we have k(��N ;�yB)k = O(�) whenever (z; �; y) 2 
(�4) �
(�1). We seek similar bounds on the remaining components, which are (��B;�yN ) and�z.From Lemma 9, we have for (z; �; y) 2 
(�3) that k(t0; u0; v0)k � C11�. Therefore,k(uN ; vB)k � k(��N ;�yB)k+ k(u0N ; v0B)k = O(�):Since �f and �g are bounded by �L� over the set 
(�3) (Lemma 8 and (79)), the right-handside of (93) is O(�). Hence, the second part of Theorem 5 yields k(uB; vN )k = O(�). Hence,k(��B;�yN )k � k(uB; vN )k+ k(u0B; v0N )k = O(�): (96)Finally, we show that the desired estimate holds for �z as well. The proof is almost thesame as the proof of Lemma 5, so we skip the details. Starting with (12), we perform blockelimination to obtain a system with the same coe�cient matrix as in (46), but a di�erentright-hand side; namely," rf � (DgN )T�NY �1N ((rg)N � yN )(rg)B � yB #= " rf � (DgN )T�NY �1N (rg)N(rg)B # + " (DgN )T�N�yB # : (97)



34The �rst vector on the right is exactly the right hand side of (46), hence its norm is O(�)as shown in the proof of Lemma 5. The second vector on the right of the above equationis also O(�) from Lemma 4. Thus the vector on the left hand side of (97) is O(�) for(z; �; y) 2 
(�4). Hence, as in (47), we have that" Dzf(z�; �̂) (Dg�B)T�Dg�B 0 # " �z��B # = O(�) +O(� + kz � z�k+ k�� �̂k) " �z��B #= O(�) +O(� + �4) " �z��B # : (98)By using the same argument as in Lemma 5, we have that k�zk = O(�) + O(k��Bk). (Acareful analysis shows that it is not even necessary to decrease �4 to obtain this estimate.)Because k��Bk = O(�) by (96), we have k�zk = O(�), as required.5.6 Proof of Theorem 2At long last, we are in a position to prove Theorem 2. We look at a subsequence thatapproaches the limit point (z�; �̂; y�), and we show that once this subsequence enters asu�ciently small neighborhood of this point, with a su�ciently large iteration count, thefollowing things happen:� When the fast step is tried, the initial choice (18) for � satis�es the conditions (19),and the new iterate satis�es �k+1 � ��k and is accepted by the main algorithm.� The new iterate and all subsequent iterates cannot escape a (slightly larger) neighbor-hood of (z�; �̂; y�), and fast steps are taken at all these iterates too.� The entire sequence converges superlinearly to the limit point (z�; �̂; y�).Proof. (Theorem 2) To prove the assertion that the initial choice of fast step length (18)is eventually always accepted, we collect a few relevant facts.First, note from the choice of constant �3 in the proof of Lemma 8 and the fact that�4 2 (0; �3] that Df(z; �) and Dg(z) are Lipschitz continuous on an open neighborhood of
(�4). We denote the relevant Lipschitz constant by L.Second, note that the sequence f��̂k=�tkg decreases monotonically to zero. On safe steps,we have �k+1 < �k while tk (and therefore the denominator) remain unchanged. On faststeps, we have from the relationship between �, �, and �̂ in (14) that��̂k+1�tk+1 � ��̂��̂k��tk � ���̂k2��tk = 12 ��̂k�tk : (99)If there are in�nitely many fast steps, the sequence is driven to zero because the factor 1=2in (99) occurs in�nitely often. If there are only �nitely many fast steps, the denominator �tk



35eventually settles down to a constant, and the sequence is driven to zero by the fact that�k # 0.We now proceed with the main part of the proof. Let fkjg1j=0 be the sequence of indicessuch that limj!1 (zkj ; �kj ; ykj) = (z�; �̂; y�): (100)Now choose the index J su�ciently large that the following conditions are satis�ed:(zkJ ; �kJ ; ykJ ) 2 
(�4=4); (101a)�kJ � (1 � �)�44C0 ; (101b)�1��̂kJ � (1 � �)(max � min)2C20 ; (101c)�1��̂kJ � ��min(L=2 + �max)C20 ; (101d)��̂kJ=�tkJ � �=2; (101e)�kJ � �2C20 : (101f)Let us �rst show that the value � = 1� ��̂kJ=�tkJ from (18) satis�es the condition (19a);that is, �i(�)yi(�) � (min + �t+1(max � min))�(�): (102)(We omit the subscript kJ here and later for clarity.) For the left-hand side of (102), we have�i(�)yi(�) = (�i + ���i)(yi + ��yi)= �iyi(1 � �) + �2��i�yi� (min + �t(max � min))(1 � �)� � C20�2;where we used the relationships (38), (95), and �iyi � � with  = min + �t(max � min).For the right-hand side of (102), we have by the same logic that�(�) = (�+ ���)T (y + ��y)=P� (1� �)� + �2k�ykk��k=P� (1� �)� + C20�2: (103)Hence, for the condition (102) to hold, it su�ces that[min + �t(max � min)](1� �)�� C20�2� [min + �t+1(max � min)](1� �)� + C20�2:This inequality is equivalent to(�t � �t+1)(max � min)�(1 � �) � 2C20�2: (104)



36By substituting 1 � � = ��̂=�t from (18) and rearranging, we �nd that (104) is in turnequivalent to (101c). Hence condition (19a) is satis�ed.We need the Lipschitz continuity assumption for the second condition (19b). Because of(10) and the de�nition of ~� in the fast routine, we can rewrite this condition askf(z(�); �(�))k � (1 + �t+1)��(�); (105)where the current point (z; �) has kf(z; �)k � ��. Taylor's theorem can be used to expandf(z(�); �(�)), exactly as in (27). The di�erence here is that Lipschitz continuity can be usedto obtain a tighter estimate of �rf . Note that the arguments of Df in (29) lie within thedomain of Lipschitz continuity, since by (101a), (101b), and (95), we havek(z + ���z; �+ ����) � (z�; �̂)k� k(z � z�; �� �̂)k+ k(�z;��)k � �4=4 + C0�kJ � �4=2:Therefore we have from (28) and (95) thatk�rfk � 12Lk(�z;��)k2 � 12LC20�2;As in (27), it follows thatkf(z(�); �(�))k � (1 � �)��+ 12LC20�2:Meanwhile, a trivial change to the estimate (103) yields�(�) � (1� �)� � C20�2:From these last two inequalities, we see that condition (105) is satis�ed if(1� �)��+ 12LC20�2 � (1 + �t+1)�[(1� �)� � C20�2]:Because (1 + �t+1)� � �max, from (21), this last condition in turn is satis�ed if12LC20�2 � �t+1�(1� �)�� �maxC20�2:By substituting from (18) and using the bound �min � �, we �nd that this last condition isimplied by (101d), so we conclude that (105) is also satis�ed. By similar logic, we can showthat the same conditions (101) also guarantee that the remaining condition (19c) holds.Finally, we verify that �kJ+1 � ��kJ , so that the fast step is accepted by the mainalgorithm. Because of (103), this condition is satis�ed if(1 � �)� + C20�2 � ��;



37which, by substitution of (18), is equivalent to��̂=�t + C20� � �:Conditions (101e) and (101f) together guarantee that this conditions holds, so we are done.At this point, we have shown that a fast step is taken from (zkJ ; �kJ ; ykJ ). The newiterate does not move away too far from the limit point, if at all, becausek(zkJ+1; �kJ+1; ykJ+1)� (z�; �̂; y�)k � k(zkJ ; �kJ ; ykJ )� (z�; �̂; y�)k+ k(�zkJ ;��kJ ;�ykJ )k� �4=4 + C0�kJ� �4=2;where the last inequality is a consequence of (101b) and (95). Hence, (zkJ+1; �kJ+1; ykJ+1) 2
(12�4), and so the estimate (95) applies again at iteration kJ +1. The remaining conditions(101b){(101f) continue to apply at the new iterate, and the same logic as above can be usedto show that a fast step is again taken from this iterate. Because of these two consecutivefast steps, we have �kJ+2 � ��kJ+1 � �2�kJ : (106)We can continue in this vein, inductively, to show that only fast steps are taken from thispoint onwards, and that the iterates never leave the neighborhood 
(12 �̂). The last statementfollows from (95) and (106), since we have for all s � 0 thatdistS1Z (zkJ+s; �kJ+s) � �̂=4 + C0(�kJ + �kJ+1 + � � �+ �kJ+s�1)� �̂=4 + C0�kJ (1 + �+ �2 + � � �)� �̂=4 + C01� ��kJ� �̂=2:We now examine the rate of convergence of f�kg. From (18) and (103), we have for allk � kJ that �k+1 � �k  ��̂k�tk !+ C20�2k:Hence for some K � kJ , the �rst term on the right-hand side dominates the second, and wehave �k+1 � ��̂+1k =�tk ; for all k � K.The proof that f�kg converges to zero with Q-order at least 1 + �̂ follows by standardarguments; see Wright [9, Theorem 6.3] and Wright and Zhang [11, Theorem 5.2]. Hence,part (i) of the theorem is proved.For (ii), we show that the sequence of iterates is Cauchy. For all K2 > K1 su�cientlylarge, we have from (95) that(zK2; �K2 ; yK2)� (zK1; �K1 ; yK1) � K2Xk=K1 �kk(�zk;��k;�yk)k



38� C0 1Xk=K1 �k� C0�K1 h1 + � + �2 + � � �i= C0�K1 11 � � ! 0 as K1 !1. (107)Hence the sequence is Cauchy, so it converges to a limit point, which must be the limitpoint (z�; �̂; y�) of the subsequence (100). Its R-order follows immediately from (107) andthe result of part (i).6 Existence of a Limit PointIn our main result, Theorem 2, we assumed that a limit point of the sequence f(zk; �k; yk)gactually exists. This condition will follow immediately if we can show that the sequence isbounded, by compactness.We show in Lemma 13 that boundedness of the solution set S is a consequence of bound-edness of the feasible set C de�ned in (2). Then, in Lemma 14, we show that boundednessof the iterate sequence f(zk; �k; yk)g also holds under the additional assumption that �k # 0.Lemma 13 Suppose that Assumptions 1 and 3 hold and that the set C de�ned by (2) isbounded. Then the solution set S is nonempty, bounded, closed, and therefore compact.Proof. By Theorem 3.1 of Harker and Pang [2], the set of vectors z� that solves (1) isnonempty. This set is also bounded because of the restriction z� 2 C. Boundedness of thesolution components y� follows trivially because y� = g(z�) and g is smooth.We prove boundedness of the optimal �� components by contradiction. If the claim doesnot hold, we can choose a sequence of solutions (ẑk; �̂k; ŷk) 2 S such that k�̂kk1 " 1. (Theother components ẑk and ŷk remain bounded, by the argument of the preceding paragraph.)We can assume without loss of generality that(ẑk; ŷk)! (ẑ; ŷ); with ẑ 2 C; ŷ � 0;and �̂kk�̂kk1 ! �̂; with k�̂k1 = 1; �̂ � 0:Moreover, since (�̂k)Tg(ẑk) = 0 for all k, we have that�̂i > 0 ) gi(ẑ) = 0: (108)Because of (3) and (4), we have that�(ẑk) + mXi=1Dgi(ẑk)�̂ki = 0; for all k:



39Dividing by k�̂kk1 and taking the limit as k !1, we have0 = mXi=1Dgi(ẑ)�̂i = Xij�̂i>0Dgi(ẑ)�̂i: (109)Given the Slater point �z (Assumption 3), convexity of g, and the property (108), we havethat �̂i > 0 ) 0 > gi(�z) � gi(ẑ) +Dgi(ẑ)T (�z � ẑ) = Dgi(ẑ)T (�z � ẑ): (110)But this inequality implies that Xij�̂i>0(�z � ẑ)TDgi(ẑ)�̂i < 0;which contradicts (109). Hence, f�̂kg cannot be unbounded, so our proof is complete.Closedness of S follows immediately from the de�nition.Lemma 14 Suppose that Assumptions 1 and 3 hold and that C is bounded and limk!1 �k =0. Then the iterate sequence f(zk; �k; yk)g is bounded.Proof. We start by showing that there is a constant B > 0 such that gi(zk) � B for all iand k. From this observation together with Assumption 3, we deduce that fzkg is bounded.Boundedness of fykg follows directly from boundedness of fzkg. The �nal part of the proofuses an argument like that in the proof of Lemma 13.Since (zk; �k; yk) 2 
 for all k, we have from (10), (22), and yk � 0 thatgi(zk) = [rkg ]i � yki � [rkg ]i � krkgk � �max�k � �max�0:So if we de�ne B = �max�0, we havegi(zk) � B; for all k = 0; 1; 2; : : : and i = 1; 2; : : : ;m. (111)Suppose for contradiction that fzkg is not bounded. If �z is the vector from Assumption3, we can choose a subsequence K such thatkzk � �zk " 1; for k 2 K: (112)We now de�ne � = mini=1;2;:::;m �gi(�z) and note that � > 0 by Assumption 3. We also de�nean auxiliary subsequence fẑkg for k 2 K byẑk = �z + �B + �(zk � �z); (113)



40where B is de�ned in (111). By convexity of each gi, we have from the de�nitions of B and� that gi(ẑk) � �1� �B + �� gi(�z) + �B + �gi(zk)� BB + �gi(�z) + �B + �B� � B�B + � + B�B + �= 0;for all 1; 2; : : : ;m. Hence, ẑk 2 C by the de�nition (2). On the other hand, we have from(112) and (113) that kẑk � �zk = �B + �kzk � �zk " 1; for k 2 K;which contradicts boundedness of C. Hence, fzkg is bounded.Boundedness of fykg follows immediately from (10), sincekykk = krkg � g(zk)k � �max�0 + kg(zk)k:The right-hand side of this expression is bounded because fzkg is bounded and g is contin-uous.Assume for contradiction that f�kg is unbounded. From (4) and (10), we have that�(zk) + mXi=1Dgi(zk)�ki = rkf : (114)Because fzkg and fykg are bounded, we can choose a subsequence K such that(zk; yk)! (ẑ; ŷ)and �kk�kk1 ! �̂; with k�̂k1 = 1; �̂ � 0:We have from (10) that g(zk) = rkg � yk � �max�k � yk:Hence, using �k # 0 and yk � 0, and taking the limits of both sides for k 2 K, we obtaing(ẑ) = �ŷ � 0 and hence ẑ 2 C. Moreover, if �̂i > 0, we must have gi(ẑ) = 0, since otherwisewe would have limk!1 �k � limk!1�k�kk1�̂igi(ẑ)=P " 1:The remainder of the proof now follows exactly as in Lemma 13 above.We conclude with a corollary of Lemma 12 that throws extra light on our assumptions.



41Lemma 15 Suppose that the standing assumptions are satis�ed. Then for any (z�; �) 2 SZ,we have " Dzf(z�; �) DgB(z�)T�DgB(z�) 0 # " �z�� # = " 00 # (115)if and only if �z = 0 and �� 2 kerDgB(z�)T . In particular, the Jacobian matrix in (115) isinvertible if and only if DgB(z�) has full row rank.Assumption 6 is a weak version of the better-known condition that the \active" sub-matrix (115) of the Jacobian (6) is invertible|an assumption that is made in most localconvergence analyses of nonlinear programming algorithms including Wright and Ralph [10].Allowing nonzero vectors �� in the null space of the above Jacobian matrix amounts to al-lowing nonunique optimal multipliers �; this exibility relies on the constant rank condition,Assumption 7. The main point of the current paper is that superlinear convergence stillholds when the weaker (but more complicated!) assumptions of this paper are used insteadof the standard ones.AcknowledgmentsWe thank Jong-Shi Pang for comments that led to improvements in the manuscript.References[1] J. Gauvin, A necessary and su�cient regularity condition to have bounded multipliersin nonconvex programming, Mathematical Programming, 12 (1977), pp. 136{138.[2] P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlin-ear complementarity problems: A survey of theory, algorithms and applications, Math-ematical Programming, 48 (1990), pp. 161{220.[3] A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Res.Nat. Bur. Standards, 49 (1952), pp. 263{265.[4] R. D. C. Monteiro and S. J. Wright, Local convergence of interior-point algo-rithms for degenerate monotone LCP, Computational Optimization and Applications,3 (1994), pp. 131{155.[5] J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametricanalysis of normal maps, technical report, Mathematical Sciences Department, JohnsHopkins University, Baltimore, Md., 1993. To appear in Mathematics of OperationsResearch.[6] E. Polak, Computational Methods in Optimization, Academic Press, New York, 1970.
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