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Abstract

We describe an infeasible-interior-point algorithm for monotone variational inequal-
ity problems and prove that it converges globally and superlinearly under standard con-
ditions plus a constant rank constraint qualification. The latter condition represents a
generalization of the two types of assumptions made in existing superlinear analyses;
namely, linearity of the constraints and linear independence of the active constraint
gradients.

1 Introduction
We consider the monotone variational inequality over a closed convex set ¢ C R™:
Find z € C such that (' — 2)T®(2) >0, for all 2’ € C. (1)

The mapping ® : RY — R” is assumed to be continuously differentiable (C'') and monotone;
the latter property means that

(2 — 2)T(®(2') — ®(2)) > 0 for all 2/,z € RY.

We assume that C is defined as an intersection of finitely many algebraic inequalities; that

18,

¢ = {zeRV|g(z) <0}, (2)

where ¢ : RY — IR is a C’? function for which each component function ¢;, i = 1,2,..., P,
is convex.
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The mixed nonlinear complementarity (NCP) formulation of this problem is: Find the
vector triple (z, A, y) such that

0 | flzA) T
I i B ET R A )
where f:RY — RY is the C' function defined by

F(20) = B(2) + Dy(=)T A )

Note that f is monotone with respect to z € R™ for all vectors A € RY with nonnegative
components (that is, A € |R]j). The mapping

i 5

—g(z)

is monotone because monotonicity of ® and of each function Dg; means that its Jacobian

matrix
lsz DgT]_ DO(z) + T AD?gi(2)  Dg(2)"

= l “Dal=) 0 (6)

is positive semidefinite for all (z,\) € R x IR]_E.
It is well known [2] that, under suitable conditions on ¢ such as the famous Slater con-

—Dg D/\h

straint qualification, z solves (1) if and only if there exists a multiplier A such that (z,\)
solves (3).

We solve (1) by a method based on the interior-point algorithm of Wright and Ralph [10].
Besides being easier to adapt to the case of mixed NCP (3), it is also considerably simpler
than the algorithm in [10], in fact, closer in spirit to the method of Wright [8] for monotone
linear complementarity problems. We show that under certain assumptions the method
converges globally and superlinearly to the solution set of (3), even in some situations in
which the solution does not satisfy a strong uniqueness and nondegeneracy condition.

Superlinear convergence for interior-point methods was discussed first by Zhang, Tapia,
and Dennis [15]; see also Zhang and Tapia [14] and Ye, Giler, Tapia, and Zhang [13].
Infeasible-interior-point methods for the latter class were described by Wright in [9], with
improvements in [7, 8]. For nonlinear monotone complementarity problems, Wright and
Ralph [10] describe a superlinearly convergent method that requires invertibility of the prin-
cipal submatrix of the Jacobian corresponding to basic rows and columns. This condition
actually guarantees uniqueness of the solution point (z*, A\*), that is, uniqueness of the mul-
tiplier A* in (3). Similar assumptions almost always are made in the asymptotic analysis
of nonlinear programming algorithms. The main point of this paper is to show that super-
linear convergence also occurs under weaker assumptions that allow the multiplier A to be
nonunique. In fact, the algorithm here is the only one we know of for nonlinear programs
with nonlinear constraints and nonunique multipliers for which convergence is superlinear.

Loosening of degeneracy assumptions has practical importance for large-scale problems,
where degeneracy or near-degeneracy at solution points is typical. In this paper, we assume



that the active constraint gradients satisfy a constant rank constraint qualification at the
solution. This condition can be thought of as an interpolation between the two most com-
monly made assumptions, namely, linear independence of the active constraint gradients and
linearity of the constraint function g(z).
Possibly the best known application of (1) is the convex programming problem defined
by
min ?(2) subject to z € C, (7)

where ¢ : RY — R is C? and convex. Let ® = D¢. It is easy to show that the NCP
formulation (3),(4) is equivalent to the standard Karush-Kuhn-Tucker (KKT) conditions for
(7). If a constraint qualification holds, the solutions of (1) and (7) coincide.

The paper is developed as follows. In the remainder of this section, we summarize the
notation and terminology to be used in the paper. (Because of the technical nature of our
analysis, it is useful to have this material gathered in one place.) In Section 2, we describe
the algorithm for solving (3), but omit some of the details because of the similarity to Wright
and Ralph [10]. In Section 3, we prove the global convergence result for this algorithm and
state the local superlinear convergence result. The analysis in this section is quite similar to
that of [10], but it differs in some of the details. The rest of the paper is devoted to outlining
and proving the superlinear convergence theorem. In Section 4 we state and discuss the
assumptions that are used in this theorem. Section 5 shows that the steps generated by the
algorithm during its final stages satisfy the estimate required by the proof of the superlinear
convergence theorem. We divide Section 5 into subsections and provide ample motivating
discussion so that readers can see the thrust of our argument without our going into the
details. Section 6 describes conditions under which one of our key assumptions—existence
of a limit point—is satisfied, and also proves some auxiliary results that follow from the
assumptions of Section 4.

Notation and Terminology

Unless otherwise specified, || - || denotes the Euclidean norm of a vector, while
R ={yeR"|y>0}, R, ={yeR"|y>0}

For any two vectors ¢ and d, we frequently use (¢, d) as shorthand for (¢, d?)?. The vector
(1,1,...,1) is denoted by e, while z; is obtained by replacing all negative components in
the vector z by zero. The closed unit ball is denoted by IB. Derivatives are indicated by D,
or D, for a partial derivative with respect to z.

[teration indices (usually k) appear as superscripts on vectors and matrices and as sub-
scripts on scalars. Subscripts are used to indicate components of vectors and matrices.

If ¢ is a function mapping R4 to R4, we write ¢»(7) = O(7) if there are constants 7 > 0
and C' > 0 such that ¢(7) < C7 for 7 € (0,7].

The kernel or null space of a matrix H € IRP*? is

ker H = {d € R?| Hd = 0},



while the range space is denoted by
ran H = {Hd|d € R}.

Given 0 #Z Cc {1,2,...,p}tand 0 = J C {1,2,...,q}, we define three submatrices of H as

follows:
Hry = [Hijlier jers H.;7 = [Hijli=1,. pijer Hr = [Hijlietj=1,..q4-

If weRPand T C {1,2,...,p}, then wr denotes the subvector [w;];e7. In dealing with the
function ¢ : RY — R” in (2), we use Dgz(z) to denote the |Z| x N Jacobian of gr with
respect to z.

Often the arguments are omitted from the functions and Jacobians f(z, A), g(2), D. f(z, A),
and so on. In such cases, the arguments should be assumed to be z, A, and y, or any appli-
cable combination thereof.

We use S to denote the solution set for (3) and Sz to denote its projection onto its first
N + P components; that is,

S={(z A y)|(z, A y) solves (3)}, Sz ={(z,A)[(z,A, —g(z)) € S}. (8)
We can partition {1,2,..., P} into two index sets B and N such that
Ny =0, ys =0, all (2%, *,y*) € S. (9)

The solution (z*, \*, y*) is strictly complementary if \* +y* > 0; that is, Az > 0 and y3, > 0.
We also use this term when referring to just the z and A components of the solution. That
is, we say (z*, \*) is strictly complementary if Ay > 0 and ¢;(z*) < 0 for 1 € V.

The distance of a vector w € R” to a set T C R” is

distr(w) = inf{]jw — w"|| |w" € T}.

Given H C IR?*? we say H has constant column rank (CCR) if for each sequence { H*} C
H converging to some H € R?*? and each 0 = J C {1,2,...,q}, we have

rank H’} — rank H.7.

Given the current point (z,A,y) and a search direction (Az, AX Ay), we define the
complementarity measure [t as

p=Ay/P,
and the intermediate quantities (z(a), A(r), y(«a)) and p(a) by

(2(a). Aa) y(@) = (=, M y) + a(Az, AN Ay),  p(a) = Ma) y(a)/P.



2 An Algorithm for Mixed NCP

We now outline an infeasible-interior-point algorithm for mixed NCP that synthesizes two
earlier methods: the algorithm described by Wright and Ralph [10] for monotone NCP
and the algorithm of Wright [8] for linear complementarity problems. Neither of these
formulations applies explicitly to the mixed problem. In the case of linear problems, a
mixed framework is unnecessary in any case, since there are strong equivalence relationships
between mixed problems and nonmixed problems.

Our description is terse because much of the motivation can be found in the papers cited
above.

Given a starting point (2%, A% y°) with (A% ¢") > (0,0), the algorithm generates a se-
quence of iterates (2%, A\¥,y*) that satisfies this same positivity condition. For each vector
triple (z, A, y) for which (A, y) > 0, we define the residuals r; and r, by

l ri(z.0) ] _ l ) ] | (10)

Another useful quantity is the vector e, defined by e = (1,1,...,1)T. As is usual in descrip-
tions of interior-point methods, we turn positive vectors into diagonal matrices by capitalizing
their names; that is,

A =diag(A1, A2y ..oy Am), Y = diag(y1, Y2y -« Ym)-

When (z,,y) = (2%, \*, y*), we sometimes attach a subscript or superscript & to the quan-
tities u, 7, A, Y to make the dependence on (2%, \*, y*) explicit.

The algorithm can be thought of as a modified Newton algorithm applied to the following
system of constrained nonlinear equations.

—f(z,A) ri(z,A)
y+g(z) | = | rolzy) | =0, (A y) > 0. (11)
—AYe —AYe

The “modifications” are needed to keep \* and y* from prematurely approaching the bound-
ary of the feasible region defined by the conditions y > 0 and A > 0. Line searches are used
and, on some iterates, the search direction is skewed toward the interior of the positive or-
thant, so that longer steps can be taken without violating positivity. Near the solution, the
algorithm reverts to pure Newton steps, allowing the rapid local convergence properties of
this method to take effect.

The major computational operation in the algorithm is the repeated solution of 2P + N-
dimensional linear systems of the form

D.f Dg" 0 Az ri(z, )
—Dg 0 =1 AX | = re(z,y) , (12)
0 Y A Ay —AYe+ oure
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2
Newton equations for the nonlinear system mentioned earlier, except for the & term. The
algorithms searches along the direction obtained from (12).

In the algorithm of Wright and Ralph [10] (which applies to nonmixed NCP), the search

for a takes place along a curved arc rather than a straight line. The curvature on this arc

where the centering parameter & lies in the range [0,2]. These equations are simply the

ensures that the residual term decreases linearly with «. It is not clear how to extend this
strategy to the mixed case, so the algorithm in this paper uses a simpler straight-line search.
The global and local convergence properties are essentially the same as in [10].

At each iteration, the algorithm computes a fast step—a pure Newton step for which
g = 0in (12). If the fast step fails to give a sufficiently large decrease in yu, we revert to
a safe step by assigning a positive value to . This modification allows a longer step to be
taken, so that a certain minimal amount of progress toward the solution can be made. In
choosing the step length o, we require not only that all iterates (2%, \*, y*) remain strictly
positive, but also that they satisfy

Moy® > i, i=1,2,...,P (13)

for positive values of v bounded away from zero. This condition ensures that the pairwise
products \;y; stay roughly in balance as they approach zero, so that no single one of them
vanishes much faster than the others. On fast steps, we expand this region by decreasing ~
slightly, to allow steps of length near 1 to be taken.

The algorithm is parametrized by a variety of positive scalar constants, which we specify
now for easy reference. Their roles are explained as they arise in subsequent discussions:

x € (0,1), o€ (0,3), a € (0,1], k€ (0,1), 7€ (0,1),
ﬁmin > 0 such that HT?H < ﬁminﬂo and HTSH < ﬁminﬁbOv ﬁmax = 6min€3/27 (14)
0 < Ymin < Ymax < %, v € (0, %), pE (O,min((%:y)l/771 — k).

The starting point (2%, A% 3°) is assumed to satisfy
)‘?yzo Z YmaxH0- (15)

The main algorithm can now be specified.

to 0; 70 £~ Ymax; 60 < ﬁmin;
for £=0,1,2,...,
if M = 0,
terminate with solution (Zk, pLA yk);

(Zk+17 )‘k+17 yk+1) — faSt(Zkv )‘kv ykv tka Vs ﬁk)a

if ppgr < pris
Vet ¢ Ymin T 7* (Ymax — Ymin); Bk = (1L 4+ 7515y
lpg1 < e+ 15



else
(Zk+17 )‘k+17 yk+1) — safe(zk, )‘kv ykv tka Vs ﬁk)a
Vrt1 < V5 Brar < B
tk-l—l — tk;
end for.

The fast step is taken only if it decreases the complementarity gap p by at least a factor of
p. The counter t; keeps track of the number of successful fast steps prior to iteration k. As
we see in the definitions of the subroutines fast and safe below, the value of ¢; indirectly
governs the distance ay that we move along the current search direction.

The coefficient matrix in (12) is the same for both fast and safe steps, so only one matrix
factorization is required per iteration.

The safe-step procedure is defined as follows.

safe(z, N\, y,t,7,0):
choose ¢ € [o, %], o® € [a, 1];
solve (12) to find (Az, AX, Ay);

choose o to be the first element in the sequence a?, ya®, y?a?, ...,
such that the following conditions are satisfied:

Ai(e)yi(e) = v p(a), (16a)
lrs(z(a), M)l < Bula); (16b)
lrg(2(a), ()| < Bula); (16¢)

pla) < [l —ak(l—a)]u (16d)

return (z(a), AM(a),y(a)).

A nonzero centering term is used, allowing us to move a nontrivial distance along the search
direction while staying in the set defined by

{(Zv A, y) | Xiyi > yu (17)

The second and third acceptance conditions (16b), (16c) ensure that the infeasibility re-
mains bounded by a multiple of the complementarity. The infeasibility is “squeezed” to
zero at least as rapidly as the complementarity measure. Similar conditions are enforced
in infeasible-interior-point algorithms for linear complementarity and linear programming;
see, for example, Wright [8]. The fourth condition (16d) is a “sufficient decrease” condition
of the kind often found in algorithms for nonlinear optimization. Its purpose is to ensure
that the decrease in objective function (in this case, ) achieves at least a fraction x of the
decrease promised by the linearized model (12).

Fast-step calculations are a little more complicated. Since they use no centering (6 = 0),
it may not be possible to satisfy the acceptance criteria (16) regardless of how small we choose



a. Hence, these criteria must be relaxed but not abandoned. The amount of relaxation is
large enough to allow near-unit steps to be taken near the solution, but small anough to
keep the iterates inside a neighborhood of the central path. These opposing considerations
are balanced by making the amount of relaxation geometric in the fast step counter ¢.

fast(z,A,y,t,7,8):
solve (12) with & =0 to find (Az, AX, Ay);

set :)/ = “Ymin + :)/t—l—l(ﬁ)/max - Vmin); set 6 = (1 + :Yt—l—l)ﬁ;

define
I
a’=1- e (18)
if a <0 return(z, A, y);
choose o to be the first element in the sequence a?, ya®, y?a?, ...,
such that the following conditions are satisfied:
Mal(a) 2 3 o). (193)
lre(z(a), M)l < Bule); (19b)
lrg(z(a), y(a))l| < Bu(e); (19¢)

return (z(a), AM(a),y(a)).

Note that a sufficient decrease condition is not needed in (19); the acceptance test pgy1 < ppik
in the main algorithm performs this check.

Before embarking on the convergence analysis, we note that the following conditions are
satisfied by every iterate (2%, ¥, y*):

MNyb > e > Ymipn,  i=1,2,. P, (20a)
(AL ) < Bugne (20h)
Note too that 3 is bounded. In fact,
23 ] 00 4
ﬁmin S ﬁk — ﬁmin H(l + :)/]) S ﬁmin H(l + (%)]) S ﬁmine?)/? = ﬁmaxv (21)
=1 7=1

where e in this case is Fuler’s constant and not the vector of 1s.

3 Convergence

In this section we first prove global convergence and then discuss superlinear local conver-
gence.



3.1 Global Convergence

We prove here a global convergence result: either the sequence of iterates terminates finitely
at a solution, or all limit points are solutions of (3). To prove this result, we use a simple
technique due to Polak [6, Chapter 1].

We start by formalizing our assumptions on ® and g.

Assumption 1 & : RN — RY is C' and monotone; and each component function g; of
g:RY = RY is C? and convex.

It follows immediately from this definition and (6) that

D.f Dg"
—Dg 0

is postive semidefinite for each (2, ) € RY x IR]_E.
Recall that S is the solution set for (3). All iterates of the algorithm are confined to the
set ), defined by

Q= {(z.0y) | (\y) 20, (22)
175 oo NI < Brnastts I (22 ) < Bonastts At = Amintts i = 1,24, P}
We also define
Q4 = QN (RY x RY, xRY,)
and note that
Q=0Q,, U8, Q. NS =40

In this definition, |R]j_|_ is the strictly positive orthant in R” and g = ATy /P as before.
The result that (2, A%, y*) € Q for all k follows from (14) and (21).
By monotonicity, we know that the submatrix D, f in the Jacobian is positive semidef-
inite. To ensure that the Newton-like equations (12) have a unique solution, we impose a
slightly stronger condition.

Assumption 2 The two sided projection of the matrix
P
D.f(z,A) = D®(z) + Z)‘ZDQQZ(Z)
=1
into ker Dg(z) is positive definite for all z € RY and ) € |R]j_|_.

To verify that (12) has a unique solution, eliminate Ay and A\ from (12), and note that the
coefficient matrix in the reduced system defined by

[D.1+ (D) AY " (Dg)] Az = —f(2,0) — (Dg) AV (g(2) + A=)

is positive definite.

Assumptions 1 and 2 imply that the algorithm takes a nontrivial step oy along the
computed search direction—and therefore makes a nontrivial amount of progress—at every
iteration. The first result indicates that this claim is true in the case of safe steps.
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Lemma 1 Suppose that Assumptions 1 and 2 hold. Let (é,jx,yf) € O\S. Then there are
scalars § > 0 and & € (0,1] such that if the algorithm takes a safe step from any point

(z,\,y) satisfying

I

(z,0y) € B (2,4,9)+ 4B, (23)

the calculated step length o will satisfy o > &

Proof. We define 6 by ) )
d=1 min (min(Ai,Qi)) > 0.

24=12,..,P

For (z,\,y) € B, we then have
Ny > (N =0 —8) =8, u=MTy/P >4 (24)
Note from (20a) that, if the safe step routine is called at the point (z, A, y), then
Ny > YL, 1=1,2,..., P,

for the value of 4 that is passed to the routine safe.

Since A > 0 and y > 0 for all (z,A,y) € B, the coefficient matrix in (12) is nonsingular
and continuous in an open set containing B. The right-hand side in (12) is also continuous
with respect to (z, A, y) and &. Hence, there is a constant Cg > 0 such that

1(Az, AX Ayl < Ce (25)
forall(z)\y) 3,5 € o, 1.
Define &) = §/(2Cs). We then have for all o € [0, &))] that
L o
)\Z—I-OéA)\ZZ)\Z—(S——|A)\Z| 225—5——5>0
2C5s 2

and similarly for y; + aAy;.
Now define

=(1 _ $2
& = min (a0, 2L~ )07
2072

We now show that the first acceptance criterion (16a) is satisfied for all a € [0,4®)]. From
the last block row in (12), we have
Ailo)yi(e) = Ny — aly + adu + a? AN Ay;
> yp(l —a) +adu — a’Cg,

since A\;y; > 7. Using (12) again, we also have

Ma)y(a) My —a(l =)\ Ty + AN Ay

< My —a(l =)\ Ty + *C2. (26)



11

By combining these two estimates, we find that (16a) is satisfied if
(1 = a) + adp — o*C3 > yu(l — a) + ayep + o*yCF /P,

which, in turn, is satisfied if
Fa(l —y)u > 2a°C.

Since p > 52, ¥ € (Ymin» Ymax), and & > &, this last condition holds for all a € [0,&(2)], SO
the condition (16a) is satisfied for « in this range.
We now prove that the fourth condition (16d) holds for all a € [0, 4], where

52
53 — min [ 6@ P(1 — k) — | .
o min (oz , P( K)ch)
For « in this range, we have from u > 82, in (24), and ¢ < % that

no| S

a?C3 <aP(l —k)— < a(l —r)(1 — &))\Ty.

Hence, from (26), we have
Ma)y(a) < My —a(l =)  y+ a(l — )1 — )My <[ — ar(l — &)\ Ty,

as required.
We turn next to the second condition (16b). From Taylor’s theorem and (12), we have

Fete) @) = fen+al 0 D ]| 3] ]

ta /01 [Df(z + 0aAz A+ 0aAN) — Df(z\)] [ ﬁi ] df

= (1—a)f(z,A) + aAry, (27)

where we have defined

1
Arj = / [Df(z + 0aAz, A+ 0aAX) — Df(z, \)] [ ﬁi ] do. (28)
0
By taking norms, we obtain
I8rfl < ma (DS + 0022, ) 4 002X) = DIV AZ AN (29
€(o,

Therefore, by continuity of Df (Assumption 1) and the bound (25), there is a scalar ¢ ¢
(0, 6] such that )
ae[0,aW] = ||Ars]| < L1aBmind?, (30)
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for all (z,)\,y) € B from which a safe step is calculated. By reducing &9, if necessary, we
can also assert that

acl0,aW = aC?< %6]352. (31)
By taking norms in (27) and using (20b), we find that

1f(z(a), Ala))l (1= a)[[f(z, Al + al|Arg]]

<
< (1—a)u+aflAr]. (32)
Meanwhile, we have by a slight change to (26) (bounding below instead of above) that
Ma)y(a) > My(1 —a+ad) — oCE.
Trivial rearrangement of this expression gives
(1 —a)p < pla) —adp + a*Cg/P.
By substituting into (32), we obtain

[f(z(a), Ma)|l < Bula) = Bagu + Ba’C3/P + af| Ary|
= Bula) — o [3p — BaCZ /P — || Ar]]. (33)
Since & > & and 8 > [min, we have from (24), (30), and (31) that
[Ars|| < 368u,  BaCi/P < 3500,

for all o € [0, &™]. Hence, the bracketed term in (33) is nonnegative, and we have

Ir5(z(a); Aa))l| = [If (z(a), M) < Bu(e),

for all a € [0, &™), as required.
By an almost identical argument, we can show that the third condition (16¢) holds for
a € [0,a4W], though we may have to choose &™* smaller (but still positive).
We have shown that the criteria (16) are satisfied for all a € [0,4*)]. Hence, the step
length selected by safe will be at least as long as the first value of o below 4™ that is tried

by the Armijo backtracking strategy. We deduce that
a> o
and our proof is complete. [

The global convergence result and its proof are similar to Theorem 3.3 of Wright and

Ralph [10].

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then either
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(A) (2%, \F y*) € S for some k < o0, or
(B) all limit points of {(2%, \*,y*)} belong to S.

Proof. Suppose for contradiction that the sequence {(2*, \*, y*)} is infinite, with a limit
point (2, S\,yf) that does not belong to &. Since the sequence is contained entirely in the
closed set €, we must have (é,j\,ﬁ) € O\S. We must have (S\,Q) > 0, since otherwise it
would follow from the definition of Q that i = 5\TyA/P = 0 and hence (2, 5\, y) € S. Hence,
f> 0.

Let K be an infinite subsequence such that

{50 ") beex = (5,0, 9).

Since {u} is monotone decreasing, we have py > i for all k. If a safe step is taken from the
k-th iterate, for some k € K, we have from (16d) and Lemma 1 that the (k + 1)-th iterate
must satisfy
aK |
Pt = [ —anr(l —ow)] e < pe — —~it. (34)

If a fast step is taken, we have from the acceptance test in the main algorithm that

(1—p).
pirr < pptk = g — (1= p)pn < i — =4, (35)
The estimates (34) and (35) show that, whatever kind of step is taken, the reduction in u
from iterate k is at least a small constant. Therefore, since {yu} is monotone decreasing and
K is infinite, we have p; | —oo. This is a contradiction, since uy is bounded below by zero,
so the proof is complete. [

3.2 Superlinear Local Convergence

By making various assumptions about the functions ® and ¢g and about the solution set
S (see the next section), we can show that the algorithm converges superlinearly. The
sequence of duality measures {ux} converges with Q-order at least 1 + 7, where 7 € (0,1) is
the parameter used to choose the initial step length for the fast step in (18).

We state our main result here. The remainder of the paper lays the groundwork for its
proof, which is given at the end.

Theorem 2 Suppose that Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied and that the
sequence {(2%, \F, y*)} is infinite, with a limit point (2%, \*,y*) (in the solution set S). Then
the algorithm eventually always takes fast steps, and

(i) the sequence {ur} converges superlinearly to zero with Q-order at least 1 + 7, and

(ii) the sequence {(2*, \*,y*)} converges superlinearly to (2%, \*,y*) with R-order at least
L+7.
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4 Assumptions for Superlinear Convergence

We have already shown in Section 3.1 that Assumptions 1 and 2 are enough to guarantee
global convergence of the kind described in Theorem 1. In the remainder of the paper, we
focus on case (B) of this theorem, in which the iterate sequence has a limit point in the
solution set §. In this section, we state and describe the assumptions that will be used in
the proof of Theorem 2.

Assumption 3 is the Slater constraint qualification.

Assumption 3 There is a vector z € C such that g(z) < 0.

Assumption 4 concerns strict complementarity for at least one member of the solution
set.

Assumption 4 There is a strictly complementary solution (z*,X\*,y*), that is, (z*,\*,y*)
satisfies (3) with \* +y* > 0.

The next assumption concerns smoothness of ® and D¢ around the vector z* defined by
Assumption 4.

Assumption 5 The matriz-valued functions D® and D%*g;, 1 = 1,2,..., P are Lipschitz
continuous in a neighborhood of z*.

We show in Lemma 3 below that the z* component of the solution is unique. This fact,
together with Assumption 5 and the observation that D.f(z,A) is linear in A, ensures that
D.f(z,A) and Dg(z) are Lipschitz continuous in a neighborhood of S.

For the next assumption, we recall the definition of the index sets B and A/ from Section 1.
All strictly complementary solutions (z*, A*,y*) have A5 > 0, A}, = 0, y5z = 0, and y3 > 0.
This assumption concerns invertibility of the projection of D, f(z*, A) onto the null space of
the active constraints, which are the components g;(z) for i € B.

Assumption 6 Let Sy and B be defined as in Section 1, and z* be as defined in Assump-
tion 4. Let A= be the set of X € RY such that (z*,A) € Sz. Then for each extreme point
A of A*, the two-sided projection of D, f(z*,A°) onto ker(Dgg) is invertible; that is, for any
basis Z of ker(Dgy), the matriz ZT D, f(2*, )7 is invertible.

This assumption looks similar to Assumption 2, but it applies to a different set of points
(z,A) and also refers to a different subspace—that of the active constraint Jacobian, not of
the entire constraint Jacobian.

Assumption 6 appears to be weaker than the more usual condition, in the context of
nonlinear programming, that D, f(z*,A) is positive definite on ker(Dgp) for each A € A*.
It is an easy exercise, however, to show that these two conditions are equivalent, though
checking the former is certainly more convenient in that it requires consideration of only
finitely many matrices.
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Lemma 2 Suppose that Assumptions 1, 2, 3, 4, and 6 are satisfied. Then the set of multi-
pliers A* defined in Assumption 6 is polyhedral, convex, and compact, hence is equal to the
convex hull of its extreme points.

Proof. Clearly A* is a polyhedral, convex set. Boundedness follows from Gauvin [1] if
we can show that the Mangasarian-Fromovitz constraint qualification holds at 2*. Given the
Slater point (Z, A) from Assumption 3, we have for ¢ € B that

G(2) > ai(=") 4 Dai(=")(z — =) = D)= — =),
so that Dg;(z*)(z — z*) < 0 for all ¢ € B, as required. [

We return to our earlier claim that the z* solution component is uniquely determined.

Lemma 3 If Assumptions 1, 3, 4, and 6 hold, then
Sy, = {7} x AT
where A* C |R1j is the set of multipliers referred to in Assumption 6.

Proof. Convexity of Sy follows from Proposition 3.1 of Harker and Pang [2], since the
NCP (3) is a equivalent to a monotone variational inequality over a closed convex set. The
invertibility condition, Assumption 6, implies that for (z,A) in Sz near (z*, \*), we must
have z = z*.

Suppose Sz contains (z, A), where z is remote from z*. By convexity, we also have

(I —a)(z", X))+ a(z,)) € Sz

for all o € [0,1]. Since (1 — a)z* + az — z* as a | 0, it follows from local uniqueness that
z = 2" [

Note that Lemmas 2 and 3 together imply that Sz is compact.
Finally, we state the constant rank assumption. See Pang and Ralph [5] for some discus-
sion on this and related conditions.

Assumption 7 The constant rank constraint qualification (CRCQ) holds for the system
g(z) <0 at z*: For some neighborhood U of z*, the set of matrices {Dgp(z)|z € U} has
constant column rank.

Clearly the CRCQ holds if g is affine. It also holds if (Dgj)T has full column rank (that is,

if the linear independence constraint qualification holds).
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5 Proof of the Superlinear Convergence Result

In this section, we prove the main result, Theorem 2. Most of the effort is spent in estimating
the size of fast steps (Az, A, Ay) that are calculated from points (z,A,y) € Q close to the
limit point (z, A,y). The ultimate result, Corollary 1, shows that the estimate

1Az, AN, A)l| < Cop (36)

holds for all steps of this type. In Subsection 5.6, this estimate is used together with Lipschitz
continuity to complete the proof of Theorem 2.

The task of proving the estimate (36) turns out to be highly technical, so we have
organized our argument into subsections and provided considerable motivating discussion.
Readers should be able to follow the outline of our argument without delving into the details.
The difficulty is due entirely to our wish to use weaker conditions than the usual nondegen-
eracy conditions. When the latter hold, the condition (36) follows from a simple application
of the implicit function theorem.

Most results in this section follow from the same set of assumptions, which we define here
to avoid repetition:

Standing Assumptions: These are the assumptions of Theorem 2; namely, As-
sumptions 1, 2, 3, 4, 5, 6, and 7, together with an assumption that the sequence
has a limit point but does not terminate finitely.

Assumption 7 is needed only from Subsection 5.4 onwards, but we include it among the
standing assumptions for simplicity.

In Subsection 5.1, we define a partition of the vector (Az, AX, Ay) into two compo-
nents (f,u,v) and (¢',u’,v"). Subsection 5.2 gives a relatively easy part of the proof: show-
ing that the components Aly and Ayg are O(ug). Subsections 5.3 and 5.4 show that
(t',u',v") and (ug,var), respectively, are also O(p). All these results, taken together, estab-
lish ||[(AX, Ay)|| = O(p). We summarize this result in Subsection 5.5 and deduce that the
remaining step component ||Az|| is also O(u).

Throughout the section, we assume that the sequence (2%, \*, y*) has a limit point that
we denote by (é,j\,ﬁ) Of course, we know from Theorem 1 that (2‘,5\,@) € S. When
Assumption 4 and the result of Lemma 3 hold, all solutions have the vector z* as their z
component. In this case we have 2 = z*, so we sometimes write the limit point as (z*, 5\, yr),
where y* = —g(z*).

Another quantity that appears repeatedly in the remaining analysis of this section is the
restricted neighborhood () of the limit point defined by

Q8) £{(z: A y) € 21z A ) — (= A,y < o). (37)
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5.1 Computation of Fast Steps
Recall that each fast step is obtained by solving (12) with & = 0; that is,

D.f (Dg)t 0 Az Ty
—Dg 0 —1I AN | = g (38)
0 Y A Ay —AYe

For convenience, we restate the following notational definitions from Section 2:

ry=—f(z,N), ry=y+glz), p=Ay/P.

We are particularly interested in the fast step calculation when the current iterate (z, A, y)
is close to the limit point (z*, S\,y*). To establish bounds on the step (Az, AX, Ay) in this
situation, we split it into two pieces. The splitting is defined implicitly in terms of the
following minimization problem:

[ S m) = (2 0) 4+ D f(2,M)(z" — 2) + Dg(z)" (7 — A)] ] H (39)
9(2*) = [g(2) + Dg(z)(z" — 2)] '

(27,m) € argmin
(z*,m)ESy

Existence of the vector (z*,7) follows from compactness of Sz. We use (z*,7) to define the
vectors 1y, 0y, €5, €, as follows:

ng = D.f(z,M)(z" = 2)+ Dg(z)" (7 = ), (40a)
ng = y—Dg(2)(z" —2) +g(z7) (40b)
e = —f(zA) = D.f(z,N)(z" = 2) = Dg(=)" (7 = X), (40c)
g = 9(2) =9(") + Dg(2)(" = 2). (40d)

The right-hand side of (38) can now be partitioned as

Ty Ny €f
T'g = Mg + | € |
—AYe —YAe 0

and the splitting (Az, AN, Ay) = (¢, u,v) + (¢, u',v") of the right-hand side follows accord-
ingly:

D.f (Do)t 0 [t ] s
_Dg 0 -1 u = Ng ’ (41)
0 Y A | v —AYe
D.f (Dg)" 0 J[¢ €f
—Dg 0 —1 u | =€ |- (42)
0 Y ALY 0

Because of Assumption 2, the systems (38), (41), and (42) all have unique solutions.
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5.2 Bounds for A\y and Ay

It is relatively easy to obtain size estimates for about Ay and Ayg, which together make
up half the components of (AX, Ay). We start by deriving some upper and lower bounds on
the components of A and y for (z, A, y) in a neighborhood of the form (37), which will prove
useful throughout the remainder of this section.

Lemma 4 Suppose that the standing assumptions hold. Then there is a constant Cy such

that the following bounds hold for all (z, X, y) € Q(1):

N < Cyqp (1€ N), v < Cyp (1 € B), (43a)
)\i Z 7min/04 (Z € B)v Yi Z 7min/04 (Z € N)v (43b)
Yi 2 Yminpt/Cs (i € B), Xi > Ymint/Cy (1 € N). (43¢)

Proof. Let (z*,A*,y*) denote the strictly complementary solution from Assumption 4.
By monotonicity of the mapping (5), (10), and the fact that g(z*) = —y*, we have

0 < f(Z,A)—f(Z*,A*)]T[Z—Z*]_[ —ry ]T[Z—Z*]
— 1 —9(z) +a(=) A=A y—rg—y" A=A ]
By rearranging this expression, we have from (A*)Ty* = 0, (20b), and (21) that
W)y + )"A < My gz = 2+ g A = X
< Pt Bmastt (|21 1271+ AL+ 1A -

Since (z, A, y) € (1), we have

1z DI < NGO+ =2, A = V<[ A+ 1 (44)
so we can bound the term in parentheses by a constant, giving

Ay + ()" A < Cape,

for some positive constant Cy. Since A} = 0 and yj; = 0, this inequality implies that

SNyi+ D yrh < Cap

ieB ieN
Since (A, y3) > 0 and (A, y) > 0, each term in the summations is positive, so we have

J 1
i < —Cap, 1€N; v < —
y.

> )\?04/% 1 €B.

K3

From these bounds, we can define (4 is an obvious way to satisfy (43a).
For any ¢ € B, we have from (22) and (43a) that

)\' > YminH > YminH _ Ymin
oy Cup Cy’
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giving the first part of (43b). The second part is proved similarly.
For ¢ € B, we have from (22) and our choice of (z, A, y) € Q(1) that

YminH > :)/min,u

P 2 > .

A similar lower bound can be proved for \;, i € A'. Hence (43c) holds, for a suitable redefi-
nition of Cy. (]

Lemma 5 Suppose that the standing assumptions are satisfied. Then there are constants
41 € (0,1] and Cy > 0 such that for all (z,\,y) € Q(d1), the solution of the linear system

D.f (Dg)T 0 ][ Az ry
—Dg 0 —IT||AX|=|mr (45)
0 Y A | Ay 0

satisfies

1Az < Co (p+ |ANS])) -

Proof. Because §; < 1, the estimates (43) apply for points (z,A,y) € Q(d1). Note too
that these points also satisfy p = O(4;), since

Pr= ATy = Ngys + Alya < (JAsll + 6181 + 8l [l + 61) = O(6y).

By eliminating Ay and Ay from the system (45), we obtain

(D-f) + (Dgn)"An(Ya) "' Dgx (Dgs)® ] [ Az ] _ [rf — (Dgw )" Aw (Ya) " (rg )
—Dgs (As)™'Ys | [ Adg | (rg)s
(46)
From Lemma 4, we have ||Ay(Yy) ™| = O(x) and ||[Az'Y5s]| = O(i). Because of Lipschitz
continuity (Assumption 5) and (z, A, y) € Q(d1), we have

Dg(z) = Dg(2") = O]z ==7|) = 0(&)
D.f(z,2) = D-f(z7,2) = O(l|]z = 2"|) + O(|A = All) = O(é).

By perturbing the coefficient matrix in (46) and substituting these estimates, along with
= 0O(61), we obtain

458 ) 5

_ lw—(ngTAN(YN)-l(rg)N ] +O(5l)[ A ] (47)
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By partitioning Az into its components in ker Dgp(2*) and ran Dgs(2*)T, we have from
Assumption 6 that Az is bounded in norm by the right-hand side of (47). Hence, since ||r¢||
and ||r,|| are both O(x), and Dgy is bounded on bounded sets, we can write

IAZ[] < Co (i + & (1AZ]] + [1ANs]))
for some constant Cy. By choosing §; small enough that
Cody < 1,
we can combine terms in HE\ZH on the left-hand side and divide to obtain
1Az < 205 (1 + 61| AXs][) < 2Cope + | ANz,

proving the result. [

In subsequent results, we often will refer to the positive definite diagonal matrix D*

defined b
’ D = ATy 12, (48)

We can obtain bounds on ||D|| and ||[D~!|| for points (2, A, y) € Q(1) by applying Lemma 4.
For ||D~!|, we have

A2 (A + 1)1/
DY = < : < Copu'/? 49
1D = e, o = G mint, e = 10 )

K3

for some constant C7z. Similar logic shows that
D] < Crp™'/2, (50)

after a possible redefinition of C.
The next result is a bound on the scaled vectors DA)X and D=t Ay.

Lemma 6 Suppose that the standing assumptions hold. Then for the constant 6, defined in
Lemma 5, there is a constant Cs > 0 such that the solution (Az, AX,Ay) of (38) satisfies

IDAX|| < Capl’?, D Ay < Cap'l?, (51)
for all (z,\,y) € Q(d1).

Proof. We break the solution into two pieces and prove that the required bounds hold
for each part. We write

(Az, AN, Ay) = (A2, AN, Ay) + (Az, AN, Ay),
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where
D.f Dg' 0 Az 0 D.f Dg' 0 Az ry
~Dg 0 —I||Ax|=] o |, —Dg 0 —I||Ax]|=]|wm].
0 Yy A Ay —YAe 0 Yy A Ay 0

(52)
For the first component, we multiply the last block row by the diagonal matrix (YA)~/2
to obtain

DAXN + D™'"Ay = —(YA)/2e, (53)

From (52), we also have
AN Ay = —AXN (Dg)Az = Az (D.f)Az > 0,
so by taking inner products in (53), we obtain
IDAX|? + | D™ Ay||* < |DAX|? + Az (D.f)Az + | D7 Ay|)? = (Y A)?e|? = Pp.

Hence, we have

|DEA| < P22, DTy < P (54)

For the second component of the solution, we obtain from the last block row in (52) that
DAX=-D"'Ay = |[DAN| = ||D7Ay], (55)
and so we seek a bound for HD@H Using (52) again, we obtain
—Dgﬁ\z — ﬁ;\y =r, = —Dgﬁ\z + D*AN = rg.
By taking inner products with @, we obtain
o T T o
IDAX" = AN r, + AN (Dg)Az.
From the first block row in (52), we have by positive semidefiniteness of D. f(z,A) that
T . e 7
AN (Dg)Az = (ry — (D.f)Az)" Az <rpAz.
By combining the last two expressions, we obtain
o T o — .
IDAX® < AN vy +rp Az < [JAN|fr]] + [l [[1]A])- (56)
Because of (20b) and Lemma 5, we have

1741l < Bmaxtts Irgll < Bmaxpe, ||Az]] < Cop + ||AA]).
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It follows from (49) that
IAN] < [ DHIDAN]| < Cru~' 2| DAX||.

By substituting all these estimates into the right-hand side of (56), we find that there is a
constant ;g such that

IDAX|* < Cuo (4 DAN| + 1) .
It follows immediately from this expression and (55) that
IDAX|| < Cop™?, DT Ay|| < Cape?,
for some constant Cs. The result of the lemma is obtained by combining this estimate with
(54). ]
Bounds on half the components of (AX, Ay) follow easily.

Theorem 3 Suppose that the standing assumptions hold. Then for the constant é; defined
in Lemma 5, there is a positive constant Cs such that the solution (Az, AN Ay) of (38)
satisfies

[AA|l < Cspes [[Ays| < Csp, (57)
for all (z,\,y) € Q(d1).
Proof. From the definition (48) and the bounds (51), we have that

Yi 1/2
= ADY
()

Hence from (43a) and (43b), we have for ¢ € A" that

< [DAX] < CaprP

N 1/2 1/2
|A)\i| < (ﬁ) 03M1/2 < C4M C3M1/2,
Yi

1/2

7 .
min

which proves that ||[Aly|| < Csuy for an obvious definition of C5. The bound on ||Ayg|| is
derived in the same way. [

5.3 A Bound for (¢, u/,v')

In this subsection we find bounds for the components (¢, u’,v") defined by (42). The difficult
part of the analysis appears in the following two lemmas, in which we estimate the size of
(€f,€4) in (40c),(40d).

Under our standing assumptions, we can define the following set:

S%O = {(Zv)‘) S SZ | )‘2 > Vmin/c% NS B; gz(Z) < _’Ymin/c% 1 € N}v (58)
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where ( is defined in Lemma 4. Because of (43b), all limit points of the sequence {(2*, \*)}
lie in §; in particular, (z*, 5\) € §7. Obviously, (z,A, —g(z)) is a strictly complementary
solution of (3) whenever (z,\) € S.

Our first result, like the results in the preceding subsections, considers points (z, A, y) € Q
near the solution set S and shows that dists,(z, A) can be bounded in terms of the amount
by which (z, A, —g(2)) violates feasibility and complementarity.

Lemma 7 Suppose that the standing assumptions hold. Then there exist constants L and
5y € (0,8,] such that the following bound holds for all points (z,)) € RY x |R1j with
distisse (z,A) < 6y

dists, (2,A) < L|| (f(z.0),9(z)4. A g(=)) || (59)

Proof. By Lemmas 2 and 3, we know that Sz is compact. Since S C Sz and SF is
closed, 87 too is compact.

We prove the result by contradiction. If the claim is false, we can choose a sequence
{(¢8,65)} ¢ RN x |R1j with the properties

diStSEO (557 51;) i 0, (60)

and
15, €8) = (5 A0 > RIH(F(EE,€0), 9(€0) 4, (€5) g9 I, (61)

where (2*, \¥) is the nearest point in Sz to &F for each k. (Note that (z*,A\F) exists, by
compactness of Sz, and that the z* component is uniquely defined.) By compactness of
S% and (60), we can take subsequences if necessary and assume that both {(£¥,£%)} and
{(2%, M)} converge to (z*,)) € S¥. By defining 7 = ||(&*,€8) — (2%, AF)|| and taking a
further subsequence, we can assume that there is a vector (d.,d\) € (RV x RY)\ {0} such

that o -
( 275/\) — (Z*v)‘ )
Tk
(In fact, (d.,d)) is a unit vector.) Since Mk =0 and \g > 0 for all k sufficiently large, the
solution (z*, A\¥) is strictly complementary for all k sufficiently large.

The following analysis is devoted to showing that (d.,d\) = 0, a contradiction that proves
the result. First, we show that (d.,d)) is in the normal cone to Sz at (z*, A), namely,

— (dz,d/\)

T
d, 2=z N
( ds ) ( S ) <0 forall (z%AX) €Sz (62)

Second, we show that (d.,d,) is in the tangent cone to Sz at (2%, ), indeed that
(2, \) + 7(d.,dy\) € Sz for small 7 > 0. (63)

Together, these two results imply that ||(d.,d))|| = 0, as required.
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To show (62), we note that, since (2%, A\¥) is the projection of (£*, &¥) onto Sz, we have

fk—Z* T P
(ﬁE—A’“) ()\_)\k)g(), for all (z*,)) € Sz.

We obtain (62) by dividing this expression by 7 and taking limits.
The proof of (63) is longer. By the smoothness properties of f, and the fact that
f(z*, M%) = 0, we have
kock koghY _ f(o* NF -
f( 275/\) _ f( 275/\) f(Z ) ) — sz(2*7)\)dz T Dg(Z*)Td/\. (64)

Tk Tk

Taking 1 € B, we have ¢;(z*) = 0 and so

gill)r _ [gi(gﬁ) _gi(z*)] — [Dgi(z7)d-], . foralli € B. (65)
Tk Th N
For the nonbasic components, we have
g(z5) <0 = ¢(H, =0, forallie N, (66)
and all k sufficiently large. Also, we have
D7) D O | pad.

Tk Tk
By combining (64), (65), (66), and (67) and the property (61), we obtain
(f( 57 5§)79(§§)+7 (ff)Tg(ff))H

Tk

= (D.f(z", A d. + Dg(z*)"dy, [Dgs(")d.) 4, g(z*) dy + AT Dg(2")d. ).

0 = limH
k

It follows immediately that

D.f(z*,\)d. + Dg(z*)dy, = 0, (68a)
Dggp(z")d, < 0, (68b)
g(z) dy + M Dg(2")d. = (68¢)
Since g5(2*) = 0 and Ay = 0, we can rewrite (68c) as
> i) da)i + 3 AiDgi(=7)d. = 0. (69)

EN 1€B

Since (Af)y = 0 and &8 > 0 for all k, we have (d\)y > 0. Therefore all product terms in
both summations in (69) are nonpositive, so we can use gy (z*) < 0 and Az > 0 to deduce
that

(d/\)_/\/ == 0, DgB(Z*)dZ =0. (70)



25

By multiplying (68a) by d! and using (70), we obtain
d*Df.(2*,\)d. = —dF Dg(z*)"dy\ = 0. (71)

Assumption 6, together with d, € ker Dgg(z*) (from (70)) and (71), implies that d, = 0.
Hence, (68a) reduces to

Dg(z*)"d\ = 0. (72)

Finally, we are in a position to verify that (63) is satisfied. Because of d, = 0 and
(d))a = 0, we have

g5(2" +7d.) = gs(2") =
v (" +7d.) = gn(27) <
A+ T(d )y =
A + (d\)g >

Y

0
0
0
0, for 7 > 0 sufficiently small.
From (72) and the fact that f is linear in A, we have

[+ rd, A+ 7dy) = f(z5, A+ 7dy) = f(z*,A) + 7Dg(z*)"dy = 0.

Together, these formulae indicate that (63) holds, so we are done. [

Lemma 8 Suppose that our standing assumptions are satisfied. Then there exist constants
L>0,L>0,andds € (0,0;] (where §y is defined in Lemma 7) such that for each (z, A, y) €
Q(d3) we have

FeA) + Dofe N — =)+ Dg() - N 1|
H [ g(Z) - g(Z*) + Dg(z)(z* — Z) S L/“L ” (73)
and
D.f(z,\)(z* —2)+ Dg(2)T (7 — \) y
[R5 vmiaciviakd | E2 -

where, as in (39), © is chosen from the optimal Lagrange multiplier set A* to minimize the

left-hand side of (73).

Proof. We start by proving (73). As in (39), we denote the minimand of the left-hand
side in (73) by (z*,7), whose existence follows from compactness of Sz. We show first that
I|(z*,7) — (2, A)]| = O(i) and then prove the result by a Lipschitz continuity argument.

By considering (z, A, y) € Q(d2), we have from (10), (22), and the fact that y > 0 that

[£(2, Ml < Bmaxpt and

lg(2)4ll = Nlrg =yl Il < llroll < Pmaxe- (75)
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Since for all (z, A, y) € Q(d2), we have |[(z, V)] < (1 for some constant (1, it follows that
(z:0y) € Q&) = [NTglz)] = N (rg = )| S IMlIrll + A"yl < (CrBmax + Pt
We have shown that the right-hand side in (59) is O(x) and therefore, by the result of

Lemma 7, we have

I(z,2) = (=% )]l < Cupr (76)

for some constant C; and all (z,\,y) € Q(8;).

By the Lipschitz continuity assumption (see Assumption 5 and the comments that fol-
low) we can choose d3 € (0,d;] such that D, f(z,A) and Dg(z) are Lipschitz continuous for
distss (z,A) < d3. Therefore, the matrix function

DJ@M)DﬂdT]
Dyg(z) 0

is also Lipschitz continuous as a function of (z, A) in this neighborhood. Since (z*,7) € Sz,
we have f(z*,7) = 0 and we have that

Hl e e A par ) T

for some constant L > 0 and all (z, \) with distss (2, A) < d3. We obtain the result (73) by
combining (76) with (77) and defining L = LC2.
For (74), we have that

[—Dﬁwﬂﬂf—d—DﬂdWW—M]

SEH(Z*,ﬁ)—(Z,)\)HQ, (77)

y— Dg(2)(z" — z) + g(z7)
— l rs ] . l f(Zv)‘) + sz(Z,)\)(Z* - Z) + Dg(Z)T(ﬁ - )‘) ]
ry 9(z) = g(z") + Dg(2)(z" — ) ’

and therefore
[sz)\z—z)—l—Dg()(w—)\) -
y = Dg(2)(z" = 2) + 9(z7) -
where the last term is a consequence of (73). Since ||(rs,7,)|| = O(u) by (22), we have the
result. [

Ty £ 9
rg]H—I_LM7

We use Lemma 8 to estimate the quantities nys, n,, €7, and ¢, defined by (40). For
(z, A, y) € Q(d3), we have from (39), (40c), (40d), and (73) that

lesll < Li?, lell < Lpt®. (78)
Similarly, we have from (39), (40a), (40b), and (74) that

Il < Lpy iyl < L. (79)
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Lemma 9 Suppose that the standing assumptions hold and 3 is given by Lemma 8. Then
there is a constant Cyy such that the solution (¥',u',v") of (42) satisfies ||(t',u',v")|| < Crip
for all (z,\,y) € Q(ds).

Proof. Note that (¢/,u’,v) satisfies the equations (45) if we replace (rg,r,,0) on the
right-hand side by (¢y, €;,0). The main difference between the two systems is the size of the
right-hand sides: O(u) in (45), O(u?) here from (78). By using the same technique of proof
as in Lemma 5, we can show that

[#]] < Colp® + IluslD, (80)

for some constant Cy. This estimate, together with the techniques of the second part of the
proof of Lemma 6, implies that

IDu| < Co®?, 1D < G, (81)

where D is defined as in (48). The estimates || D|| < Crp=/? and | D~ < C-p~"? obtained
from (49) and (50) can now be combined with (80) and (81) to complete the proof. [

5.4 Bounds for uz and vy

In this subsection we address the most difficult part of the proof: showing that the compo-
nents ug and vy from (41) are O(py). As in the case of affine f, the key to our result is to
show that (ug,var) is the solution of a certain quadratic program (Theorem 5 below). Unlike
the affine case, however, the coefficient matrix in this quadratic program does not remain
constant. Instead, this matrix satisfies a constant column rank condition (Theorem 4), and
this condition is enough to yield the desired bound (Lemmas 10 and 11).

We start by proving a novel variant of a lemma from Monteiro and Wright [4, Lemma
2.2]. The definition of constant column rank appears at the end of Section 1.

Lemma 10 If H is a bounded set in RP*? with constant column rank and || - || is any norm
on R, there exists a nonnegative constant L = L(H) with the property that for each H € H
and h € ran H, there is a solution w € R? of the equation Hw = h for which

[l < Ll|A][-

Proof. The case of h = 0 is trivial, so we assume throughout the proof that h # 0.
To obtain a contradiction, assume there exist { H*} C H and {h*} C IR?\ {0} such that,
for each k, h* € ran H* and
diSt(Hk)—lhk(O) > thkH (82)

We may assume without loss of generality (by taking subsequences and dividing by |[*]| if
necessary) that [I* — H € R?*? and h* — h € R?\ {0}.
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Let J be a maximal set of column indices of H such that H.; has linearly independent
columns. By the assumption of constant column rank, we find that for large enough k&, 7 is
also a maximal set of column indices of H* for which H%; has linearly independent columns.
Since h* € ran H*, it follows that, for large k, there is a (unique) solution w?, of the system

k. k k
Now choose a subset Z of the rows of H such that the submatrix Hz s is invertible, and let
wg = HI_}hI

It follows that w% — wz.

For each k we augment w% to form w* € (H*)7'h*, by setting wf =0 for j & J.
Similarly, we can augment w; above by setting w; = 0 for j € J, to form w € H™'h. Of
course w* — w, and since h* — h # 0, we have

[t el

— 1 < 00,
v ]|

contradicting (82). ]

On the one hand, Lemma 10 extends Hoffman’s lemma [3] by allowing H to vary within
a set ‘H rather than remain constant. On the other hand, Hoffman’s lemma is more general
in that it applies to linear systems of inequalities as well as equalities. We believe, however,
that the above result and proof can be adapted to linear systems that include inequalities.

In the following result, we partition the matrix H € H C R?*? as

where H € R?*7 and H € R?*?, with §+ ¢ = q. We use @ and % to denote vectors in IR?
and IR, respectively. Below, as usual, || - || is the 2-norm.

Lemma 11 Let H be a bounded subset of R?*? with constant column rank. Then there exists

a nonnegative constant L = L(H) with the property that for any ¢ x ¢ diagonal matriz S > 0,

matric H = [ H H } € H and vector h € ran H, the (unique) @ component of the solution
of the following problem

min %HSI?)HZ, subject to Ho + Hio = h (83)

(@,

satisfies

o < LA

w

Proof. We adapt the proof of Monteiro and Wright [4, Lemma 7].
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Assume for a contradiction that there exist sequences of positive diagonal matrices {S*},
matrices { H*¥} C H, and vectors {h*} such that h* € ran H* for each k, and

lim

= .

Y

where (1", ") is a solution of (83), unique in the " component, with § = S* H = H*

and h = h*. By taking a subsequence if necessary, we can define a constant L; > 0 and a
nonempty index set J C {1,2,...,4} such that

o
w’?oo
lim Hhkﬂ 00, VjedJ. (84b)

Consider the following linear system
HRo + H = b,
w; = wf, VjigJ,
and note that (", ") is a solution of this system.
Consider the coefficient matrix in (85), which is [ H H } followed by the row vectors

(85)

{ 0 ()T }, j & J, where ¢ is the vector in R? composed of 0s except for a 1 in its jth
entry. The rank of this matrix is the sum of the cardinality of the set {1,2,...,¢}\J and the
rank of { H [:[.j } Hence, the family of coefficient matrices of (85) has constant column
rank. By Lemma 10, the system (85) has a solution (¥, 2*) such that

< N’Wkoo<L{hkoo Ak}
< @ ) oo < Lz |27 +fjf;zaj><|w]| 7

where Ly is a constant depending only on H and J. Therefore from (84a), we have

oo < Lallh¥ e,

where L3 = Ly(1 + Ly). From (84b) there exists K > 0 such that for all £ > K we have
> LSHthoov \V/] S jv

~k
w;

and therefore

VieJ, Vk> K.

From this relation and the fact that " satisfies the second equation of (85), we obtain

H :Zsfjf+25fjf

|

JET iET

k Ak k Ak

< Z S]J ] 2t Z S]J ]
JET igT

= | for all £ > K. (86)
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This relation, together with the fact that 2* satisfies the first equation of (85), contradicts
the assertion that w* is an optimal solution of (83) with S = S* H = H* and h =h*. =

In Theorem 4 below, we identify the matrix set ‘H in Lemmas 10 and 11 with the set

D.f(z,\) Dgs(z)T 0 ,
{[ _D(g(z)) go( ) I : dlstsgo (Z, )\) < 6}7 (87)

for some € > 0. To apply this result, we need to show that this set has constant column
rank, as we do in the next technical lemma and Theorem 4.

Lemma 12 Let ) # J C B and 0 # K C N. Let I denote the identity in RP*F . If the
two-sided projection of D.f(z,X) onto ker(Dgg) is positive definite, then for t € R" and
m7 € RVl we have

sz(Z,)\) ng(zk)T
(t,m7) € ker l —Dags (=) 0 (88)
if and only ift =0 and 77 € ker(Dgz)T. In addition, we have
. sz (ng)T 0 1 T
dim ker l Dy 0 I dimker(Dgzs)" . (89)

Proof. The reverse implication in the first statement is obvious. To prove the forward
implication, assume first that (88) holds. We then have

(D.f)t € ran (Dgs)" C ran (Dgs)’. (90)

Let Z be a basis of ker(Dgp), so that ZTran (Dgs)T = 0. Because Dgst = 0, we have t = Z1
for some 7. From (90), we have ZT(D.f)t = 0, and so ZT(D.f)Zt = 0. Because of our
nonsingularity assumption on the projection of D. f(z,\), we have { = 0 and therefore ¢ = 0.
Hence, by substituting in (90), we obtain 77 € ker(Dgs)T, so the proof of the first part is
complete.

We now prove (89). Let the vector (¢, 77, sk) have the property that

T
(t,m7,8c) € ker D-f (Dgs) 0

—Dg 0 —Ix |
By partitioning appropriately, we have
(D)t +(Dgs)'ms = 0 (91a)
—Dggt = 0, (91b)

—(Dgn)t — Iyxse = 0. (91c)
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Now we can apply the first part of the theorem to (91a) and (91b) to find that the system
(91) can be written equivalently as

-
(Dgg)'rg = 0,
—Inksk =
Since K C N, the last of these equations implies that s = 0. Therefore the solutions of (91)

are the vectors of the form (¢,77,sxc) = (0,77,0), for all 77 € ker(Dgs)T, and the proof is
complete. [

Under certain assumptions (including Assumption 7), it follows from (89) that the set
(87) has constant column rank for some ¢ > 0. We state the result formally.

Theorem 4 Suppose that the standing assumptions are satisfied. Then there is a constant
€ > 0 such that the bounded set (87) has constant column rank.

Proof. Because of Assumption 6 and continuity of D, f(z,A) and Dg(z) with respect to
z, we can choose € > 0 so that

- D.f(z,A) and Dg(z) are bounded on the bounded set Sz + ¢lB, and
- the two-sided projection of D, f(z, A) onto ker Dgg(z) is invertible.

Hence, Lemma 12 applies.

Suppose for contradiction that (87) does not have constant column rank for any e > 0.
Then there is a sequence {(z*, A*)} converging to some (2%, A*°) € S (hence, D, f(z*, \*) —
D.f(z*,X>)), and some index sets J C B, K C N such that

D.f(z5,AF) Dgs(z%)T 0
—Dg(zF) 0 —Ix

D.f(z",2*) (Dgy)t 0
—Dg* 0 —Ilx

dim ker

< dim ker l

Hence, from (89), we must have
dimker(Dgf})T < dimker(Dg})T

for all £. This inequality contradicts Assumption 7, so no such sequence exists, and the proof
is complete. [

Finally, we state the quadratic program for which (¢, ug,vy) is a solution, and we use the
results above to estimate the size of these components. See (40) and (41) for the definitions
of ns, n, and ¢, u, v respectively.
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Theorem 5 Suppose that the standing assumptions hold, and let (z,\,y) € Q(d4), where
d4 = min(ds, €), and 63 and € are defined in Lemma 8 and Theorem 4, respectively. Then the
solution (t,u,v) of (41) is also the solution of the following convex quadratic program:

Minus00) 3l Dssus]" + 5[1(Daa) " ox I,

- D.f(z,A) Dgs(z)" 0 ol [y = Daw(s)Tuy
subject to ~Dg(2) BO (L) ] {Zi ] = l ! 0y + Lavs . (92)

Moreover, there is a constant Cyy such that
[[(us, var) || < Cral[(ny, ng, war, vs)||- (93)

Proof. Note first that the matrices D, D™' (see (48)) are well defined because of the
restriction (z, A, y) € Q(d4).

It is immediate from (41) that (¢,up,vy) is feasible for (92). To prove optimality, we
need to show that the remaining KKT conditions hold; that is,

0 (sz)T —Dg"
Diszup | € ran Dgg 0 :
DJ_VQNUN 0 —1Iy.

By using arguments similar to those of Ye and Anstreicher [12, Section 3], we can show that

(D.f)f —Dg" —D.f -Dg"
ran Dyg 0 = ran Dyg 0 .
0 —1Iy. 0 —1Iy.

Hence, it suffices to show that

24+t —2z"
Digos [=| e 0 |51 9
DiAvon 0 —1y.

where 7 is defined in (39). To verify this claim, note first that by (40a) and (41), we have
D. (= N1+ Dal=)u = ny = D f(= )= — =)+ Dgl(=)" (7 — ).

and therefore
0=—D.f(z,\)(z+1—2") = Dg(2)" (A +u — 7).
For the second part of (94), we have from (40b) and (41) that

—(Dgs)t = v+ (ny)8 = v + ys — (Dgs)(z* — 2),
D*u=A"'(Yu)= A" (—AYe—Av) = —y — v,
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and therefore
Digus = (Dgs)(z +1 —27).
Finally, we use (41) together with 7y = 0 to write

DX/ZJ\/UN = Y/\7/1\/ANNUN =—dv—uy =—Iy(A+u—m).
We now prove (93). For (z, A, y) € Q(d4), we have
distsz (2,4) < [|[(2,0) = (=%, V)] £ 64 < e.

It therefore follows from Theorem 4 that the coefficient matrix in (92) lies in the set (87),
which has constant column rank. Our claim is proved by applying Lemma 11 to the quadratic
program (92). ]

5.5 The Fast Step Estimate

We are now in a position to tie together the results of Subsections 5.2, 5.3, and 5.4 and
therefore obtain an estimate for the length of the fast step.

Corollary 1 Suppose that the standing assumptions hold. Then for the positive constant

04 defined in Theorem 5 and all (z, A, y) € Q(d4), the fast step (Az, AN, Ay) calculated by
setting & = 0 in (12) satisfies
[(Az, AX, Ay)|| < Cop, (95)
for some constant Cy.
Proof. From Theorem 3, we have |[(Aly, Ayg)|| = O(n) whenever (z,A,y) € Q(ds) C

Q(d1). We seek similar bounds on the remaining components, which are (Alg, Ayy) and
Az.

From Lemma 9, we have for (z, A, y) € Q(d3) that ||(¢/,u’,v")|| < Ciip. Therefore,

(s vs) | < (A, Ays) || + (1 (wlys vs) | = Op)-

Since 1y and 7, are bounded by Ly over the set Q(d3) (Lemma 8 and (79)), the right-hand
side of (93) is O(u). Hence, the second part of Theorem 5 yields ||(ug,vn)|| = O(p). Hence,

[(AAz; Ay )| < [l(us, va) | + [ (uss, va) | = O(p) (96)

Finally, we show that the desired estimate holds for Az as well. The proof is almost the
same as the proof of Lemma 5, so we skip the details. Starting with (12), we perform block
elimination to obtain a system with the same coefficient matrix as in (46), but a different
right-hand side; namely,

[ ry— (Dgn )" AnY i ((rg)v — yw) ]
(rg)s — ys

[ ry— (DQN():;/)\;VYMI(%)N ] N [ (Dgfy)zw ] .

(97)
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The first vector on the right is exactly the right hand side of (46), hence its norm is O(u)
as shown in the proof of Lemma 5. The second vector on the right of the above equation
is also O(p) from Lemma 4. Thus the vector on the left hand side of (97) is O(u) for
(z,A,y) € Q(d4). Hence, as in (47), we have that

D.f(z% %) (Dg)T 1] Az ] . R Az
"Dy 0 Mg | = O 00+ lz =+ IA=AD | Ay

~ o+l | 35| (9%)

By using the same argument as in Lemma 5, we have that |Az]] = O(p) + O(]|AXz]]). (A
careful analysis shows that it is not even necessary to decrease 4 to obtain this estimate.)

Because [|[AXg|| = O(p) by (96), we have ||[Az|| = O(p), as required. [

5.6 Proof of Theorem 2

At long last, we are in a position to prove Theorem 2. We look at a subsequence that
approaches the limit point (Z*,jx,y*), and we show that once this subsequence enters a
sufficiently small neighborhood of this point, with a sufficiently large iteration count, the
following things happen:

e When the fast step is tried, the initial choice (18) for a satisfies the conditions (19),
and the new iterate satisfies ury1 < ppr and is accepted by the main algorithm.

e The new iterate and all subsequent iterates cannot escape a (slightly larger) neighbor-
hood of (z*, A\, y*), and fast steps are taken at all these iterates too.

e The entire sequence converges superlinearly to the limit point (z*, 5\, y*).

Proof. (Theorem 2) To prove the assertion that the initial choice of fast step length (18)
is eventually always accepted, we collect a few relevant facts.

First, note from the choice of constant d5 in the proof of Lemma 8 and the fact that
ds € (0,93] that Df(z,A) and Dg(z) are Lipschitz continuous on an open neighborhood of
Q(d4). We denote the relevant Lipschitz constant by L.

Second, note that the sequence {u} /7' } decreases monotonically to zero. On safe steps,
we have pip41 < pp while ¢ (and therefore the denominator) remain unchanged. On fast
steps, we have from the relationship between p, ¥, and 7 in (14) that

# # 3 . 1
Pl ¢ PRk < b Pk (99)

LT oY T 2t 2
If there are infinitely many fast steps, the sequence is driven to zero because the factor 1/2
in (99) occurs infinitely often. If there are only finitely many fast steps, the denominator 3
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eventually settles down to a constant, and the sequence is driven to zero by the fact that
fix 4 0.
We now proceed with the main part of the proof. Let {k;}52, be the sequence of indices
such that
lim (A0, %) = (7, Ay (100)

Now choose the index J sufficiently large that the following conditions are satisfied:

(RN ) Q(5,/), (101a)
1 —p)b
-7 (1 - ﬁ)(’ymax - Vmin)
L= < 7 Do 101d
Moo = (LJ2F Buan) O3 (101d)
WL <l (101e)
p

Let us first show that the value o =1 — pj /3" from (18) satisfies the condition (19a);
that is,

Ai(@)yi(a@) = (min + 7 (Ymax — Ymin) Jpe(@). (102)
(We omit the subscript kj here and later for clarity.) For the left-hand side of (102), we have
Ail@)yi(a) = (A + AN (yi + aAy;)
= Nyl —a)+ ®ANAy;
> (Ymin + :Yt(’)/max — Ymin) ) (1 — a)p — Cg 27

where we used the relationships (38), (95), and A;y; > v with ¥ = Ymin + 7 (Ymax — Vmin)-
For the right-hand side of (102), we have by the same logic that

pla) = (A+aAN)(y+aly)/P
< (L—a)u+a®||Ayll[|AN]/P
< (1—a)u+ Cou*. (103)

Hence, for the condition (102) to hold, it suffices that

[Ymin + :Yt(ﬂymax — Ymin)] (1 — @) — Cgﬂz
> [Ymin + 7 (Ymax — Ymin)] (1 — @) + Cop®.

This inequality is equivalent to

(7 = 7" (Ymax — Ymin) (1 — ) > 2051, (104)
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By substituting 1 — a = u’ /4" from (18) and rearranging, we find that (104) is in turn
equivalent to (101c). Hence condition (19a) is satisfied.

We need the Lipschitz continuity assumption for the second condition (19b). Because of
(10) and the definition of 3 in the fast routine, we can rewrite this condition as

1f(z(e), MeDl < (1 +371)Bpu(a), (105)

where the current point (z, A) has || f(z, A)|| < . Taylor’s theorem can be used to expand
f(z(a), A(e)), exactly as in (27). The difference here is that Lipschitz continuity can be used
to obtain a tighter estimate of Ar;. Note that the arguments of Df in (29) lie within the
domain of Lipschitz continuity, since by (101a), (101b), and (95), we have

(2 4+ BaAz, A+ 0aAX) — (27, )|
< Iz =2 A = A+ (A2, AN < 64/4 + Coprr, < 64/2.

Therefore we have from (28) and (95) that

1
1Arg] < SLIAz ANP < S 1O,

[N

As in (27), it follows that

(=) M) < (1= )+ 5LC3"
Meanwhile, a trivial change to the estimate (103) yields
ple) = (1 —a)u — Cop’.
From these last two inequalities, we see that condition (105) is satisfied if
(1= )+ S LO < (14531 — )y — G

Because (1 +3")3 < Buax, from (21), this last condition in turn is satisfied if

|
SLCon <A = a)i = BuanCop

By substituting from (18) and using the bound S, < 3, we find that this last condition is
implied by (101d), so we conclude that (105) is also satisfied. By similar logic, we can show
that the same conditions (101) also guarantee that the remaining condition (19c¢) holds.

Finally, we verify that pi,41 < ppg,, so that the fast step is accepted by the main
algorithm. Because of (103), this condition is satisfied if

(1 — o)+ Cou* < pp,
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which, by substitution of (18), is equivalent to

WA+ Cop < p.

Conditions (101e) and (101f) together guarantee that this conditions holds, so we are done.
At this point, we have shown that a fast step is taken from (z%7,A\*7 4*7). The new
iterate does not move away too far from the limit point, if at all, because

H(Zkﬂ—lv )‘kj—l—lvykﬂ—l) - (Z*v va*)H H(ijv )‘kjvykj) - (Z*v va*)H + H(Azkij)‘kijykj)H
da/4 + Copg,
54/27

IAIACIA

where the last inequality is a consequence of (101b) and (95). Hence, (zF/+1 \rs+L ghotly ¢
Q($44), and so the estimate (95) applies again at iteration k; 4 1. The remaining conditions
(101b)—(101f) continue to apply at the new iterate, and the same logic as above can be used
to show that a fast step is again taken from this iterate. Because of these two consecutive
fast steps, we have

fiste < phkgr1 S P (106)
We can continue in this vein, inductively, to show that only fast steps are taken from this

point onwards, and that the iterates never leave the neighborhood Q(%S) The last statement
follows from (95) and (106), since we have for all s > 0 that

diStSEO (ij+s7 )‘kj-l—s) < 8/4 + CO(/“”W + fk 41+ /“ij-l-s—l)

2 C
< 5/4+—0/~Uw
L=p
< §/2.

We now examine the rate of convergence of {yu;}. From (18) and (103), we have for all
k > kj that

M1 < g (M—i) + Cops.
v

Hence for some K > kj, the first term on the right-hand side dominates the second, and we
have
i < gt/ for all £ > K.

The proof that {uz} converges to zero with Q-order at least 1 + 7 follows by standard
arguments; see Wright [9, Theorem 6.3] and Wright and Zhang [11, Theorem 5.2]. Hence,
part (i) of the theorem is proved.
For (ii), we show that the sequence of iterates is Cauchy. For all Ky > K sufficiently
large, we have from (95) that
K>
< > arll(AZF AN AYY)

k=K,

H (ZI(27 )\I(g , y[{g) _ (Zl(l , )\I(l , yl(l)
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< Cy Z HEk
k=K,
< Coprc, [L4p+p"++
1

= Co,u](ll— — 0 as [(1 — OQ. (107)
—p

Hence the sequence is Cauchy, so it converges to a limit point, which must be the limit
point (z*, A, y*) of the subsequence (100). Its R-order follows immediately from (107) and
the result of part (i). [

6 Existence of a Limit Point

In our main result, Theorem 2, we assumed that a limit point of the sequence {(z*, A\, y*)}
actually exists. This condition will follow immediately if we can show that the sequence is
bounded, by compactness.

We show in Lemma 13 that boundedness of the solution set § is a consequence of bound-
edness of the feasible set C defined in (2). Then, in Lemma 14, we show that boundedness
of the iterate sequence {(z*, \* y*)} also holds under the additional assumption that py, | 0.

Lemma 13 Suppose that Assumptions 1 and 3 hold and that the set C defined by (2) is
bounded. Then the solution set S is nonempty, bounded, closed, and therefore compact.

Proof. By Theorem 3.1 of Harker and Pang [2], the set of vectors z* that solves (1) is
nonempty. This set is also bounded because of the restriction z* € C. Boundedness of the
solution components y* follows trivially because y* = ¢g(z*) and ¢ is smooth.

We prove boundedness of the optimal A* components by contradiction. If the claim does
not hold, we can choose a sequence of solutions (2%, Ak, §%) € S such that Hj\kHOO 1 00. (The
other components 2% and §* remain bounded, by the argument of the preceding paragraph.)
We can assume without loss of generality that

(£%,9%) — (£,9), with 2€C, §>0,

and
k

[[A*]]

Moreover, since (A\*)Tg(2%) = 0 for all k, we have that

>

~

— A, with |[Me=1, A>0.

~

A >0 = gz(é) =0. (108)
Because of (3) and (4), we have that

Q)+ 3. Dgi(F)\F =0,  for all k.
=1
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Dividing by Hj\kHOO and taking the limit as k — oo, we have
0= ZDgZ (5hi = 3 Dgi(%)A (109)
i=1 i|Ai>0

Given the Slater point z (Assumption 3), convexity of ¢, and the property (108), we have
that
§50 = 05 0(2) > g(5) + D) (-~ 2) = D) — 5 (110)

But this inequality implies that

> (2= 2)"Dg(2)A <0,

i|Ai>0

which contradicts (109). Hence, {j\k} cannot be unbounded, so our proof is complete.
Closedness of § follows immediately from the definition. [

Lemma 14 Suppose that Assumptions 1 and 3 hold and that C is bounded and limy_, ., iy =
0. Then the iterate sequence {(z*, \*, y*)} is bounded.

Proof. We start by showing that there is a constant B > 0 such that g;(2*) < B for all 1
and k. From this observation together with Assumption 3, we deduce that {2*} is bounded.
Boundedness of {y*} follows directly from boundedness of {z*}. The final part of the proof

uses an argument like that in the proof of Lemma 13.
Since (2%, A\*,y*) € Q for all k, we have from (10), (22), and y* > 0 that

gz(Zk) — [rj]z - yzk S [r§]2 S HTZ;H S ﬁmaxluk S ﬁmaXMO-
So if we define B = [(yaxfto, we have
g:;(z") < B, forall k=0,1,2,...and 1 = 1,2,...,m. (111)

Suppose for contradiction that {z*} is not bounded. If z is the vector from Assumption
3, we can choose a subsequence K such that

|25 = Z|| 1 oo, for k£ € K. (112)

We now define € = min,=y 2,_» —¢i(2) and note that € > 0 by Assumption 3. We also define
an auxiliary subsequence {2*} for k € K by

o (-2, (113)
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where B is defined in (111). By convexity of each ¢;, we have from the definitions of B and
€ that

a6 < (1-57) 90+ 5ol

B+ B+
B €
< —q(z B
- B—I—cg(z)—l_B—l—e
Be Be
< — +
- B4+e B+e

= 0,

for all 1,2,...,m. Hence, 2¥ € C by the definition (2). On the other hand, we have from
(112) and (113) that

€

B—I—cH

Rz = K| too, forkek,

which contradicts boundedness of C. Hence, {z*} is bounded.

Boundedness of {y*} follows immediately from (10), since

ly* 1l = llry = g(=")| < Bmastto + llg(=")]I

The right-hand side of this expression is bounded because {z*} is bounded and ¢ is contin-
uous.
Assume for contradiction that {\*} is unbounded. From (4) and (10), we have that

(I)(Zk) + ZDgi(zk))\f = r?. (114)
=1

Because {z*} and {y*} are bounded, we can choose a subsequence K such that
(=%,9%) = (£,9)
and
)\k ~ A N
We have from (10) that
g(Zk) = Tj - yk < ﬁmax/“bk - yk
Hence, using py | 0 and y* > 0, and taking the limits of both sides for & € K, we obtain

g(2) = —y < 0 and hence Z € C. Moreover, if \; > 0, we must have g;(2) = 0, since otherwise
we would have

Jim e > Tim —[| Xl Aigi(2)/ P 1 oo,

The remainder of the proof now follows exactly as in Lemma 13 above. [

We conclude with a corollary of Lemma 12 that throws extra light on our assumptions.
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Lemma 15 Suppose that the standing assumptions are satisfied. Then for any (z*,\) € Sz,

o 8]

we have

P

if and only if §z = 0 and 6\ € ker Dgg(z*)T. In particular, the Jacobian matriz in (115) is
invertible if and only if Dgr(z*) has full row rank.

Assumption 6 is a weak version of the better-known condition that the “active” sub-
matrix (115) of the Jacobian (6) is invertible—an assumption that is made in most local
convergence analyses of nonlinear programming algorithms including Wright and Ralph [10].
Allowing nonzero vectors 0\ in the null space of the above Jacobian matrix amounts to al-
lowing nonunique optimal multipliers A; this flexibility relies on the constant rank condition,
Assumption 7. The main point of the current paper is that superlinear convergence still
holds when the weaker (but more complicated!) assumptions of this paper are used instead
of the standard ones.
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