Application of a Hybrid Genetic Algorithm to
Airline Crew Scheduling®

David Levine
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439, U.S.A.

levine@mes.anl.gov

Scope and Purpose—Airline crew scheduling is a very visible and economically significant
problem. Because of its widespread use, economic significance, and difficulty of solution, the
problem has attracted the attention of the operations research community for over twenty-
five years. The purpose of this paper was to develop a genetic algorithm for the airline crew
scheduling problem, and to compare it with traditional approaches.

Abstract—This paper discusses the development and application of a hybrid genetic algo-
rithm to airline crew scheduling problems. The hybrid algorithm consists of a steady-state
genetic algorithm and a local search heuristic. The hybrid algorithm was tested on a set of forty
real-world problems. It found the optimal solution for half the problems, and good solutions
for nine others. The results were compared to those obtained with branch-and-cut and branch-
and-bound algorithms. The branch-and-cut algorithm was significantly more successful than
the hybrid algorithm, and the branch-and-bound algorithm slightly better.

1 Introduction

Genetic algorithms (GAs) are search algorithms that were developed by John Holland [17].
They are based on an analogy with natural selection and population genetics. One common
application of GAs is for finding approximate solutions to difficult optimization problems. In
this paper we describe the application of a hybrid GA (a genetic algorithm combined with a
local search heuristic) to airline crew scheduling problems. The most common model for airline
crew scheduling problems is the set partitioning problem (SPP)

n
Minimize z = Zijj (1)
i=1

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-
Eng-38.



subject to

Zaiﬁj:l for t=1,...,m (2)
J=1

z;=0orl for j=1,...,n, (3)

where a;; is binary for all 7 and j, and ¢; > 0. The goal is to determine values for the binary
variables z; that minimize the objective function z.

In airline crew scheduling, each row (¢ = 1,...,m) represents a flight leg (a takeoff and
landing) that must be flown. The columns (7 = 1,...,n) represent legal round-trip rotations
(pairings) that an airline crew might fly. Associated with each assignment of a crew to a partic-
ular flight leg is a cost, ¢;. The matrix elements a;; are defined by
0 — { 1 if flight leg ¢ is on rotation j (4)
Y 0 otherwise.

Airline crew scheduling is an economically significant problem [1, 3, 11, 16] and often a difficult
one to solve. One approximate approach (as well as the starting point for most exact approaches)
is to solve the linear programming (LP) relaxation of the SPP. A number of authors [3, 11, 21]
have noted that for “small” SPP problems the solution to the LP relaxation either is all integer,
in which case it is also the optimal integer solution, or has only a few fractional values that
are easily resolved. However, in recent years it has been noted that as SPP problems grow in
size, fractional solutions occur more frequently, and simply rounding or performing a “small”
branch-and-bound tree search may not be effective [1, 3, 11].

Exact approaches are usually based on branch-and-bound, with bounding strategies such as
linear programming and Lagrangian relaxation. Fischer and Kedia [10] used continuous analogs
of the greedy and 3 — opt methods to provide improved lower bounds. Eckstein developed a
general-purpose mixed-integer programming system for use on the CM-5 parallel computer and
applied it to, among other problems, set partitioning [9]. Desrosiers et al. developed an algorithm
that uses a combination of Dantzig-Wolfe decomposition with restricted column generation [8].
Hoffman and Padberg report optimal solutions when they use branch-and-cut for a large set of
real-world SPP problems [16].

Several motivations for applying genetic algorithms to the set partitioning problem exist.
First, since a GA works directly with integer solutions, there is no need to solve the LP relaxation.
Second, genetic algorithms can provide flexibility in handling variations of the model such as
constraints on cumulative flight time, mandatory rest periods, or limits on the amount of work
allocated to a particular base by modifying the evaluation function. More traditional methods
may have trouble accommodating the addition of new constraints as easily. Third, at any
iteration, genetic algorithms contain a population of possible solutions. As noted by Arabeyre
et al. [2], “The knowledge of a family of good solutions is far more important than obtaining
an isolated optimum.” Fourth, the NP-completeness of finding feasible solutions in the general
case [23] and the enormous size of problems of current industrial interest make the SPP a good
problem on which to test the effectiveness of GAs.



2 The Hybrid Genetic Algorithm

Genetic algorithms work with a population of candidate solutions. In the original GAs of Holland
[17] each candidate solution is represented as a string of bits, where the interpretation of the
bit string is problem specific. Fach bit string in the population is assigned a value according to
a problem-specific fitness function. A “survival-of-the fittest” step selects strings from the old
population randomly, but biased by their fitness. These strings recombine by using the crossover
and mutation operators (see Section 2.4) to produce a new generation of strings that are (one
hopes) more fit than the previous one.

2.1 Population Replacement

The generational replacement genetic algorithm (GRGA) replaces the entire population each
generation by their offspring and is the traditional genetic algorithm defined by Holland [17].
The hope is that the offspring of the best strings carry the important “building blocks” [12] from
the best strings forward to the next generation. The GRGA, however, allows the possibility that
the best strings in the population do not survive to the next generation. Also, as pointed out
by Davis [6], some of the best strings may not be allocated any reproductive trials. It is also
possible that mutation or crossover destroy or alter important bit values so that they are not
propagated into the next generation by the parent’s offspring.

The steady-state genetic algorithm (SSGA) is an alternative to the GRGA that replaces only
a few individuals at a time, rather than an entire generation [26, 27]. In practice, the number
of new strings created each generation is usually one or two. The new string(s) replace the
worst-ranked string(s) in the population. In this way the SSGA allows both parents and their
offspring to coexist in the same population.

One advantage of the SSGA is that it is immediately able to take advantage of the “genetic
material” in a newly generated string without having to wait to generate the rest of the pop-
ulation, as in a GRGA. A disadvantage of the SSGA is that with small populations some bit
positions are more likely to lose their value (i.e., all strings in the population have the same
value for that bit position) than with a GRGA. For this reason, SSGAs are often run with large
population sizes to offset this. In earlier empirical testing [20] we found the SSGA more effective
than the GRGA, and the results reported in this paper all use the SSGA with one individual
replaced each generation, and a population size of 100.

2.2 Problem Data Structures

A solution to the SPP is given by specifying values for the binary decision variables z;. The
value of one (zero) indicates that column j is included (not included) in the solution. This
solution may be represented by a binary vector x with the interpretation that z; = 1(0) if bit
J is one (zero) in the binary vector. Representing an SPP solution in a GA is straightforward
and natural. A bit in a GA string is associated with each column j. The bit is one if column j
is included in the solution, and zero otherwise.

We also ordered the SPP matrix into block “staircase” form [24]. Block B; is the set of



columns that have their first one in row 7. B; is defined for all rows but may be empty for some.
Within B; the columns are sorted in order of increasing ¢;. Ordering the matrix in this manner
is helpful in determining feasibility. In any block, at most one z; may be set to one. We use
this fact in our initialization scheme (see Section 2.6.)

2.3 Evaluation Function

The obvious way to evaluate the fitness of a bit string is as a minimizer of Equation (1), the SPP
objective function. However, since just finding a feasible solution to the SPP is NP-complete
[23], and many or most strings in the population may be infeasible, Equation (1) alone is
insufficient because it does not take into account infeasibilities. Our approach to this problem
is to incorporate a penalty term into the evaluation function to penalize strings that violate
constraints.

Such penalty methods allow constraints to be violated. Depending on the magnitude of the
violation, however, a penalty (in our case proportional to the size of the infeasibility) is incurred
that degrades the objective function. The choice of penalty term can be significant. If the
penalty term is too harsh, infeasible strings that carry useful information but lie outside the
feasible region will be ignored and their information lost. If the penalty term is not strong
enough, the GA may search only among infeasible strings [25].

As part of the work in [20] we investigated several different penalty terms without any con-
clusive results. For the results reported in this paper we used the linear penalty term

oA lage;— 1. (5)
=1 7=1

Here, A; is a scalar weight that penalizes the violation of constraint ¢. Choosing a suitable value
for A; is a difficult problem. A good choice for A; should reflect not just the “costs” associated
with making constraint ¢ feasible, but also the impact on other constraint’s (in)feasibility. We
know of no method to calculate an optimal value for ;. Therefore, we made the empirical choice
of setting A; to the largest ¢; from the columns that intersected row 4. This choice is similar to
the “P2” penalty in [25], where it provided an upper bound on the cost to satisfy the violated
constraints in the set covering problem (the equality in Eq. (2) is replaced by “>"). In the case
of set partitioning, however, the choice of A; provides no such bound, and the GA may find
infeasible solutions more attractive than feasible ones.

2.4 GA Operators

The primary GA operators are selection, crossover, and mutation. We choose strings for re-
production via binary tournament selection [12, 13]. Two strings were chosen randomly from
the population, and the fitter string was allocated a reproductive trial. To produce an offspring
we held two binary tournaments, each of which produced one parent string. These two parent
strings were then recombined to produce an offspring.

The crossover operator takes bits from each parent string and combines them to create child
strings. The motivating idea is that by creating new strings from substrings of fit parent strings,



Parent Strings Child Strings
aaaaaaaa a alb b bla a a
bPbbbbbbbbd b bla a alb b b

Figure 1: Two-Point Crossover

new and promising areas of the search space will be explored. Figure 1 illustrates two-point
crossover. Starting with two parent strings of length n = 8, two crossover sites ¢; = 3 and
cg = 6 are chosen at random. Two new strings are then created; one uses bits 1-2 and 68
from the first parent string and bits 3-5 from the second parent string; the other string uses the
complementary bits from each parent string.

Mutation is applied in the traditional GA sense; it is a background operator that provides a
theoretical guarantee that no bit value is ever permanently fixed to one or zero in all strings. In
our implementation of mutation we complement a bit with probability 1/n.

In our algorithm we apply crossover or mutation. To do this we select two parent strings,
and generate a random number r € [0,1]. If r is less than the crossover probability, p. = 0.6,
we create two new offspring via two-point crossover and randomly select one of them to insert
in the new population. Otherwise, we randomly select one of the two parent strings, make a
copy of it, and apply mutation to it. In either case we also test the new string to see whether
it duplicates a string already in the population. If it does, it undergoes (possibly additional)
mutation until it is unique.

2.5 Local Search Heuristic

There is mounting experimental evidence [6, 18, 22] that hybridizing a genetic algorithm with
a local search heuristic is beneficial. It combines the GA’s ability to widely sample a search
space with a local search heuristic’s hill-climbing ability. Our early experience with the GRGA
[19], as well as subsequent experience with the SSGA [20], was that both methods had trouble
finding optimal (often even feasible) solutions. This led us to develop a local search heuristic
to hybridize with the GA to assist in finding feasible, or near-feasible, strings to apply the GA
operators to.

To present this heuristic, we define the following notation. Let J = {l,...,n} be a set

of column indices. R; = {j € J]a;; = 1} is the (fixed) set of columns that intersect row i.
ri = {j € Ri|lz; = 1} is the (changing) set of columns that intersect row 7 in the current
solution.

The heuristic we developed is called ROW (since it takes a row-oriented view of the problem).
The basic outline is given in Figure 2. ROW works as follows. For niters iterations (a parameter
of the heuristic), one of the m rows of the problem is selected (either randomly or according to
the constraint with the largest infeasibility). For any row there are three possibilities: |r;| = 0,
|r;| = 1, and |r;] > 1. The action of ROW in these cases varies and also varies according to
whether we are using a best-improving (every point in the neighborhood is evaluated and the
one that most improves the current solution is accepted as the move) or first-improving (the first



foreach niters
i = chose_row( random_or_maz )
improve (¢, |r|, best_or_first)
endfor

Figure 2: The ROW Heuristic

move found that improves the current solution is made) strategy. If we are using best-improving,
we apply one of the following rules.

1. |ri] = 0: For each j € R; calculate A, the change in z when z; <« 1. Set to one the
column that minimizes Aj .

2. |ri] = 1: Let k be the unique column in r;. For each j € R;,j # k calculate AZ’ the
change in » when zj, < 0 and z; — 1. If AZ < 0 for at least one j, set zj, <~ 0 and z; — 1

for the 7 that minimizes AZ.

3. |r;| > 1: For each j € r; calculate A;, the change in z when z} — 0,Vk € r;,k # j. Set to
one the column that minimizes A;.

Strictly speaking, this is not a best-improving heuristic, since in cases 1 and 3 we can move
to neighboring solutions that degrade the current solution. Nevertheless, we allow this situation
because we know that whenever |r;| = 0 or |r;| > 1, constraint ¢ is infeasible and we must move
from the current solution, even if neighboring solutions are less attractive. The advantage is
that the solution “jumps out” of a locally optimal, but infeasible domain of attraction.

The first-improving version of ROW differs from the best-improving version in the following
ways. In case 1 we select a random column j from R; and set z; < 1. In case 2 we set z; — 0
and z; < 1 as soon as we find any AZ < 0,7 € R;. In case 3 we randomly select a column
k € r;, leave zj, = 1, and set all other z; = 0,7 € r;. In cases 1 and 3, since we have no guarantee
we will find a “first-improving” solution but we know that we must change the current solution
to become feasible, we make a random move that at least makes constraint ¢ feasible, without
weighing all the implications (cost component and (in)feasibility of other constraints).

2.6 Initialization

The initial GA population is usually generated randomly. The intent is to sample many areas
of the search space and let the GA discover the most promising ones. We developed a modified
random initialization scheme. Block random initialization, based on a suggestion of Gregory
[14], uses information about the expected structure of an SPP solution. A solution to the SPP
typically contains only a few ones and is mostly zeros. We can use this knowledge by randomly
setting to one approximately the same number of columns estimated to be one in the final
solution. If the average number of nonzeros in a column is P, we expect the number of z; = 1
in the optimal solution to be approximately m/P. We use the ratio of m/P to the number of



nonnull blocks as the “probability” of whether to set to one some z; in block B;. If we do choose
some j € B; to set to one, that column is chosen randomly. If the “probability” is > 1, we set
to one a single column in every block.

3 Computational Results

3.1 Test Problems

To test the hybrid algorithm we selected a subset of forty problems (most of the small- and
medium-sized problems, and a few of the larger problems) from the Hoffman and Padberg test
set [16]. These are real set partitioning problems provided by the airline industry. They are
given in Table 1, where they have been sorted by increasing numbers of columns. All but two
of the first thirty have fewer than 3000 columns (nw33 and nw09 have 3068 and 3103 columns,
respectively). The last ten problems are significantly larger, not just because there are more
columns, but also because there are more constraints. One reason we did not test all of the larger
problems is that in practice (e.g., as in [16]) they are usually preprocessed by a matrix reduction
feature that, for large problems, can significantly reduce the size of the problem. However, we
did not have access to such a capability.

To try to gain some insight into the difficulty of the test problems, we solved them using
the public-domain 1p_solve program [4]. This program solves linear programming problems by
using the simplex method and solves integer programming (IP) problems by using the branch-
and-bound algorithm.

The columns in Table 1 are the name of the test problem, the number of rows and columns
in the problem, the optimal objective function value for the LP relaxation, and the objective
function value of the optimal integer solution, the number of simplex iterations required by
lp_solve to solve the LP relaxation plus the additional simplex iterations required to solve
LP subproblems in the branch-and-bound tree, the number of variables in the solution to the
LP relaxation that were not zero, the number of the nonzero variables in the solution to the
LP relaxation that were one (rather than having a fractional value), and the number of nodes
searched by 1lp_solve in its branch-and-bound tree search before an optimal solution was found.

The optimal integer solution was found by 1p_solve for all but the following problems: aa04,
k101, aa05, aa01, nw18, and k102, as indicated in Table 1 by the “>” sign in front of the number
of simplex iterations and number of IP nodes for these problems. For aa04 and aa01, 1p_solve
terminated before finding the solution to the LP relaxation. For aa05, k101, and k102, 1p_solve
found the solution to the LP relaxation but terminated before finding any integer solution. A
nonoptimal integer solution was found by lp_solve for nw18 before it terminated. Termination
occurred either because the program aborted or because a user-specified resource limit was
reached.

For 1p_solve many of the smaller problems are fairly easy, with the integer optimal solution
being found after only a small branch-and-bound tree search. There are, however, some ex-
ceptions where a large tree search is required (nw23, nw28, nw36, nw29, nw30). These problems
loosely correlate with a higher number of fractional values in the LP relaxation. For the larger
problems 1p_solve results are mixed. On the nw problems (nw07, nw06, nw1l, nw18, and nw03)



Table 1: Test Problems

Problem | No. No. LP 1P LP LP LP 1P
Name Rows | Cols Optimal | Optimal | Iters Nonzeros | Ones | Nodes
nw4l 17 197 | 10972.5 11307 174 7 3 9
nw32 19 294 | 14570.0 14877 174 10 4 9
nw40 19 404 | 10658.3 10809 279 9 0 7
nw08 24 434 | 35894.0 35894 31 12 12 1
nwib 31 467 | 67743.0 67743 43 7 7 1
nw21 25 577 7380.0 7408 109 10 3 3
nw22 23 619 6942.0 6984 65 11 2 3
nwi2 27 626 | 14118.0 14118 35 15 15 1
nw39 25 677 9868.5 10080 131 6 3 5
nw20 22 685 | 16626.0 16812 1240 18 0 15
nw23 19 711 12317.0 12534 3050 13 3 57
nw37 19 770 9961.5 10068 132 6 2 3
nw26 23 771 6743.0 6796 341 9 2 11
nwi1o 24 853 | 68271.0 68271 44 13 13 1
nw34 20 899 | 10453.5 10488 115 7 2 3
nw43 18 | 1072 8897.0 8904 142 9 2 3
nw4?2 23 | 1079 7485.0 7656 274 8 1 9
nw28 18 | 1210 8169.0 8298 1008 5 2 39
nw25 20 | 1217 5852.0 5960 237 10 1 5
nw38 23 | 1220 5552.0 5558 277 8 2 7
nw27 22 | 1355 9877.0 9933 118 6 3 3
nw24 19 | 1366 5843.0 6314 302 10 4 9
nw35 23 | 1709 7206.0 7216 102 8 4 3
nw36 20 | 1783 7260.0 7314 | 74589 7 1 789
nw29 18 | 2540 4185.3 4274 5137 13 0 87
nw30 26 | 2653 3726.8 3942 2036 10 0 45
nw31 26 | 2662 7980.0 8038 573 7 2 7
nwi9 40 | 2879 | 10898.0 10898 120 7 7 1
nw33 23 | 3068 6484.0 6678 202 9 1 3
nw09 40 | 3103 | 67760.0 67760 146 16 16 1
nw07 36 | 5172 5476.0 5476 60 6 6 1
nw06 50 | 6774 7640.0 7810 | 58176 18 2 151
aal4 426 | 7195 | 25877.6 26402 7428 234 5 >1
k101 55 | 7479 1084.0 1086 | 26104 68 0 >37
aa05b 801 | 8308 | 53735.9 53839 6330 202 53 >4
nwil 39 | 8820 | 116254.5 | 116256 200 21 17 3
aal1 823 | 8904 | 55535.4 56138 | 23326 321 17 >1
nwi8 124 | 10757 | 338864.3 | 340160 | 162947 68 27 >62
k102 71 | 36699 215.3 219 | 188116 91 1 >3
nw03 59 | 43749 | 24447.0 24492 4123 17 6 3




the results are quite good, with integer optimal solutions found for all but nw18. Again, the size
of the branch-and-bound tree searched seems to correlate loosely with the degree of fractionality
of the solution to the LP relaxation. On the k1 and aa models, 1p_solve has considerably more
difficulty and does not find any integer solutions.

3.2 ROW Heuristic Results

Creating a hybrid GA required selecting three parameters for the ROW heuristic. The first
was the number of iterations to apply ROW. Since ROW can be computationally expensive,
and empirical evidence in [20] showed no significant difference applying ROW for 1, 5, or 20
iterations, we fixed the number of iterations ROW was applied to one.

The two remaining parameters to select are the method for constraint selection and the search
strategy (best-improving or first-improving). We studied this empirically using a subset of nine
test problems from Table 1. This subset was selected so that we would have several smaller
problems and a few larger ones.

Table 2 compares the best-improving (column Best) and first-improving (column First) strate-
gies in conjunction with the method for constraint selection. Random means that one of the
m constraints is selected randomly. Maz. means that the constraint with the largest value of
| >°0y a;jz; — 1] is selected. The columns Opt. and Feas. are the number of times out of ten
independent trials an optimal or feasible solution was found.

The most obvious result in Table 2 is that no feasible solution was found on any run for
any test problem with constraint selection via maximum violation. Random constraint selection
helped significantly in finding feasible solutions, although not many optimal ones were found.
It appears the randomness in cases one and three of the first-improving strategy helps escape
from a locally optimal solution. The differences between the best-improving and first-improving
strategies were not significant.

Table 2: ROW Heuristic: Best vs. First Improving

Problem Best First
Name Random Max. Random Max.
Opt. | Feas. | Opt. | Feas. | Opt. | Feas. | Opt. | Feas.
nw41 0 10 0 0 0 10 0 0
nw32 0 10 0 0 1 10 0 0
nw40 0 10 0 0 0 10 0 0
nw08 0 4 0 0 0 10 0 0
nwib 0 2 0 0 3 10 0 0
nw20 0 10 0 0 0 10 0 0
nw33 0 10 0 0 0 10 0 0
aal4 0 0 0 0 0 0 0 0
nwis8 0 0 0 0 0 0 0 0

Table 3 compares the best-improving and first-improving strategies using the hybrid of SSGA



in combination with the ROW heuristic (which we refer to as SSGAROW). In Table 3 constraint
selection was done randomly. The results show the first-improving strategy was superior at
finding optimal solutions. This is an interesting result since we could argue that we would
expect exactly the opposite. That is, since the GA itself introduces randomness into the search,
we would expect to do better applying crossover and mutation to the best solution found by
ROW rather than the first, which is presumably not as good. A possible explanation is that
the GA population has converged and so the only new search information being introduced is
from the ROW heuristic. ROW, however, in its best-improving mode gets trapped in a local
optimum, and so little additional search occurs.

Table 3: SSGAROW: Best vs. First Improving

Problem Best First

Name Opt. | Feas. | Opt. | Feas.
nw41l 6 10 9 10
nw32 0 10 4 10
nw40 2 10 7 10
nw038 0 2 0 4
nwib 1 10 ) 10
nw20 0 10 1 10
nw33 0 10 1 10
aal4 0 0 0 0
nwis 0 0 0 0

3.3 Hybrid Genetic Algorithm Results

Table 4 compares the SSGA by itself, the ROW heuristic by itself, and the SSGAROW hybrid.
SSGA and ROW both perform poorly with respect to finding optimal solutions. SSGA finds no
optimal solutions, and ROW finds only four. SSGAROW, however, outperforms both ROW and
SSGA. In this case, ROW makes good local improvements, and SSGA’s recombination ability
allows these local improvements to be incorporated into other strings, thus having a global effect.

Table 5 contains the results of applying SSGAROW to the test problems in Table 1. In these
runs the ROW heuristic was applied to one randomly selected string each generation, a constraint
was randomly selected, and a first-improving strategy was used. A run was terminated either
when the optimal solution (which for the test problems was known) was found or after 10,000
iterations (in previous informal testing we had observed that most of the progress is made early
in the search and the best solution found rarely changed after about 10,000 iterations).

To perform these experiments, for each problem in Table 1 we made ten independent runs.
Fach run was made on a single node of an IBM Scalable POWERparallel (SP) computer. For
the IBM SP system used, a node consists of an IBM RS/6000 Model 370 workstation processor,
128 MB of memory, and a 1 GB disk.

The No. Opt. and No. Feas. columns are the number of times the optimal or feasible solution
was found. The Best Feas. column is either the objective function value of the best feasible

10



Table 4: Comparison of Algorithms

Problem SSGA ROW SSGAROW
Name Opt. Feas. | Opt. Feas. | Opt. Feas.
nw4l 0 10 0 10 9 10
nw32 0 10 1 10 4 10
nw40 0 10 0 10 7 10
nw08 0 0 0 10 0 4
nwlb 0 1 3 10 ) 10
nw20 0 10 0 10 1 10
nw33 0 4 0 10 1 10
aa04 0 0 0 0 0 0
nwi8 0 0 0 0 0 0

solution found, or an “X” if no feasible solution was found. The first % Opt. column is the
percentage from optimality of the best feasible solution. The entry is “O” if the best feasible
solution found was optimal, the percentage from optimality if the best feasible solution was
suboptimal, or “X” if no feasible solution was found. The Awvg. Feas. column is the average
objective function value of all the feasible solutions found. The second % Opt. column is the
percentage from optimality of the average feasible solutions.

The results in Table 5 can be divided into two groups: those for which SSGAROW found
feasible solution(s), and those for which it did not. The infeasible problems were nw08*, nw10,
nw09, aal4, aal05, nwil, aa01, and nwi8.

For the problems in the first group, feasible solutions were found almost every run. Optimal
solutions were found on average one fifth of the time. Except for four problems (nw12, nw06, k102,
and nw03), the best feasible solution was within three percent of optimality. The average feasible
solution varied, but was typically within five percent of optimality for the smaller problems,
within ten percent of optimality for medium-sized problems, and above ten percent of optimality
for the larger problems.

For the second group of problems, SSGAROW was unable to find any feasible solutions.
These problems can be subdivided into those where SSGAROW never found a better (infeasible)
solution than the optimal one, and those where it did. In the former class are nw09, aa04, aa05,
aa01, and nw18. One point to note from Table 1 is the large number of constraints in aa01,
aa04, aa05, and nwi8. Also, we note from Table 1 that these problems have relatively high
numbers of fractional values in the solution to the LP relaxation and that they were difficult for
lp_solve also.

For the three aa problems, on average at the end of a run the best (infeasible) solution found
had an evaluation function value approximately four times that of the optimal solution. For
nw09 and nwi8, however, the best (infeasible) solution found was within five to ten percent of
the optimal solution, but still no feasible solutions were found. For these five problems between

*Although a feasible solution was found for nw08 in one run, the performance characteristics are most closely
related to nw10 and nwi1, two infeasible problems.

11



Table 5: Hybrid Genetic Algorithm Results

Problem | No. | No. | Best | % Avg. | %
Name Opt. | Feas. | Feas. | Opt. | Feas. | Opt.
nw4l 10 10 | 11307 O | 11307 | .000
nw32 1 10 | 14877 O | 15238 | .024
nw40 0 10 | 10848 | .004 | 10872 | .006
nw08 0 137078 | .033 | 37078 | .033
nwib 8 10 | 67743 O | 67743 | .000
nw21 1 10 | 7408 O | 7721 | .042
nw22 0 10| 7060 | .011 | 7830 | .121
nwi2 0 10 | 15110 | .063 | 15645 | .108
nw39 4 10 | 10080 O | 10312 | .023
nw20 0 10 | 16965 | .009 | 17618 | .048
nw23 6 10 | 12534 O | 12577 | .003
nw37 5 10 | 10068 O | 10257 | .019
nw26 1 10 | 6796 O | 7110 | .046
nwl0 0 0 X X X X
nw34 5 10 | 10488 O | 10616 | .012
nw43 0 10 | 9146 | .027 | 9620 | .080
nw4?2 2 10 | 7656 O | 8137 | .062
nw28 6 10 | 8298 O | 8509 | .025
nw25 1 10 | 5960 O] 6709 | .125
nw38 6 10 | 5558 O | 5597 | .007
nw27 1 10 | 9933 O | 10750 | .082
nw24 1 10| 6314 O | 7188 | .138
nw35 2 10 | 7216 O | 7850 | .088
nw36 0 10| 7336 | .003 | 7433 | .016
nw29 0 10 | 4378 | .024 | 4568 | .069
nw30 4 10 | 3942 O | 4199 | .065
nw31 3 10 | 8038 O | 8598 | .070
nwi9 0 10 | 11060 | .015 | 12146 | .115
nw33 1 10 | 6678 O | 7128 | .067
nw09 0 0 X X X X
nw07 1 10 | 5476 O | 6375 | .164
nw06 0 51 9802 | .255 | 16679 | 1.136
aa04 0 0 X X X X
k101 0 10| 1110 | .022 | 1134 | .044
aa05b 0 0 X X X X
nwil 0 0 X X X X
aal1 0 0 X X X X
nwi8 0 0 X X X X
k102 0 9 232 | .059 241 | .100
nw03 0 9| 26622 | .087 | 33953 | .386

12




twelve and twenty-three percent of the constraints remained infeasible.

For nw08, nw10, and nw11, SSGAROW was able to find infeasible strings with lower evaluation
function values than the optimal solution and had concentrated its search on those strings. For

these problems the penalty term used in the evaluation function was not strong enough, and the
GA exploited that.

Table 6 compares the solutions to the test problems found by lp_solve, the branch-and-cut
algorithm of Hoffman and Padberg [16] (column HP), and the SSGAROW algorithm. The entries
are “O7 if the optimal solution was found, the percentage from optimality if the best feasible
solution was suboptimal, or an “X” if no feasible solution was found. The 1p_solve results were
obtained on an IBM RS/6000 Model 590 workstation. Hoffman and Padberg’s results are from
Table 3 in [16] where the runs were made on an IBM RS/6000 Model 550 workstation. For
SSGAROW, the entries are the fifth column from Table 5.

The branch-and-cut algorithm obtained the best results, solving all problems to optimality.
For these results, however, a matrix reduction preprocessing step was applied to the test problems
to reduce their size (in addition to the matrix reduction done as part of the branch-and-cut
algorithm itself), that was not available to either 1p_solve or SSGAROW. lp_solve found
optimal (or in the case of nw18 near-optimal) solutions to all but five of the larger problems
(for which no feasible solutions were found). SSGAROW found optimal solutions to twenty
problems, and solutions within five percent of optimality for nine others. Of the other eleven
problems, feasible solutions greater than five percent of optimality were obtained for four of
them, and for the seven others, no feasible solution was found.

We have not reported the actual solution times, however, since each algorithm was run on
a different model IBM workstations. However, if we take into account the relative perfor-
mance of the different processors [20] we can make some general comments about computational
performance. The branch-and-cut algorithm was significantly faster than both 1p_solve and
SSGAROW. For the problems where both 1p_solve and SSGAROW found optimal solutions,
the 1p_solve solution times were slightly faster than SSGAROW when the faster processor
lp_solve ran on is factored in.

4 Conclusions

The SSGA alone was sometimes successful at finding feasible solutions, but not at finding optimal
solutions. This motivated us to develop the ROW heuristic to hybridize with the SSGA. Two
important parameters of ROW are how constraint selection is performed, and how to select a
move to make. We found random constraint selection and a first-improving strategy (which
also introduces randomness) were more successful than attempts to apply ROW to the most
infeasible constraint or find the best-improving solution. Key points about ROW are its ability
to make moves in large neighborhoods, its willingness to move downhill to escape infeasibilities,
and the randomness introduced by random constraint selection and the first-improving strategy.
However, when all constraints are feasible ROW no longer introduces any randomness, since it
is in a “true” first-improving mode and all moves examined degrade the current solution, so
ROW remains trapped at a local optima.

13



Table 6: Comparison of Solution Time

Problem | 1p_solve | HP | SSGAROW
nwéil 0 0] 0]
nw32 0 0] 0]
nw40 0 0 .004
nw08 0 0] .033
nwi5s 0 0] 0]
nw21 0 0] 0]
nw22 0 0 011
nwi2 0 0] .063
nw39 0 0] 0]
nw20 0 0] .009
nw23 0 0] 0]
nw37 0 0] 0]
nw26 0 0] 0]
nwi0 0 0 X
nw34 0 0] 0]
nw43 0 0 027
nw42 0 0] 0]
nw28 0 0] 0]
nw25 0 0] 0]
nw38 0 0] 0]
nw27 0 0] 0]
nw24 0 0] 0]
nw35 0 0] 0]
nw36 0 0] .003
nw29 0 0 .024
nw30 0 0] 0]
nw31 0 0] 0]
nwi9 0 0 .015
nw33 0 0] 0]
nw09 0 0 X
nw07 0 0] 0]
nw06 0 0 .255
aa04 X 0 X
k101 X O 022
aa05 X 0 X
nwii 0 0 X
aa01 X 0 X
nwi8 .01 0 X
k102 X 0 .059
nw03 0 0] .087

14




We ran ten independent trials of SSGAROW on each of forty real-world SPP problems. We
found the optimal solution at least once for half of these problems, and solutions within five
percent of optimality for nine others. For eight problems, we were unable to find any feasible
solutions. In three of these cases the penalty term was not strong enough and the GA exploited
this by concentrating its search among infeasible strings with lower evaluation function values
than the optimal solution.

We compared SSGAROW with branch-and-cut and branch-and-bound algorithms. The branch-
and-cut algorithm was the most successful, solving all problems to optimality, and in much
less time than either SSGAROW or branch-and-bound. SSGAROW was also outperformed by
branch-and-bound, but not as significantly. In fact, SSGAROW found feasible solutions for two
of the larger test problems when branch-and-bound did not.

It is not surprising that genetic algorithms are outperformed by traditional operations research
algorithms. GAs are general-purpose tools that will usually be outperformed when specialized
algorithms for a problem exist [6, 7]. However, several points are worth noting. First, the nw
models are relatively easy to solve with little branching and may not by indicative of current
SPP problems airlines would like to solve [15]. Second, genetic algorithms map naturally onto
parallel computers and we expect them to scale well with large numbers of processors. Our
parallel computing experience [20] is very promising in this regard.

Several areas for possible enhancement exist. First, for several problems the penalty function
was not strong enough and the GA exploited this by searching among infeasible strings with
lower evaluation function values than feasible strings. Research into stronger penalty terms or
other methods for solving constrained problems with genetic algorithms is warranted. Second,
using an adaptive mutation rate or simulated-annealing-like move in the ROW heuristic to
maintain diversity in the population in order to sustain the search warrants further investigation.
Recently, Chu and Beasley [5] have shown that preprocessing the constraint matrix to reduce its
size, as well as modifications to the fitness definition, parent selection method, and population
replacement scheme lead to improved performance solving SPP problems.

Acknowledgments

Parts of this paper are based on my Ph.D. thesis at Illinois Institute of Technology, A number of
people helped in various ways during the course of this work. I thank Greg Astfalk, Bob Bulfin,
Tom Canfield, Tom Christopher, Remy Evard, John Gregory, Bill Gropp, Karla Hoffman, John
Loewy, Rusty Lusk, Jorge Moré, Bob Olson, Gail Pieper, Paul Plassmann, Nick Radcliffe,
Xiaobai Sun, David Tate, and Stephen Wright. I also thank two anonymous referees for their
helpful comments.

References

[1] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing Optimization.
IBM Systems Journal, 31(1):71-78, 1992.

15



[2]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline Crew Scheduling Problem:
A Survey. Transportation Science, 3(2):140-163, 1969.

J. Barutt and T. Hull. Airline Crew Scheduling: Supercomputers and Algorithms. STAM
News, 23(6), 1990.

M. Berkelaar. 1p_solve, 1993. A public domain linear and integer programming program.
Available by anonymous ftp from ftp.es.ele.tue.nl in directory pub/lp_solve, file
lp_solve.tar.Z.

P. Chu and J. Beasley. A Genetic Algorithm for the Set Partitioning Problem. Technical
report, Imperial College, 1995.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

K. DeJong. Genetic algorithms are NOT function optimizers. In D. Whitley, editor, Foun-
dations of Genetic Algorithms -2-, pages h—17. Morgan Kaufmann, San Mateo, 1993.

J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis. The Airline Crew Pairing Problem.
Technical Report G-93-39, Université de Montréal, 1993.

J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mized Integer Programming
on the CM-5. Technical Report TMC-257, Thinking Machines Corp., 1993.

M. Fischer and P. Kedia. Optimal Solution of Set Covering/Partitioning Problems Using
Dual Heuristics. Management Science, 36(6):674-688, 1990.

I. Gershkoff. Optimizing Flight Crew Schedules. INTERFACES, 19:29-43, 1989.

D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Publishing Company, Inc., New York, 1989.

D. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 69-93. Morgan
Kaufmann, San Mateo, 1991.

J. Gregory. Private communication, 1991.
J. Gregory. Private communication, 1994.

K. Hoffman and M. Padberg. Solving Airline Crew-Scheduling Problems by Branch-and-
Cut. Management Science, 39(6):657-682, 1993.

J. Holland. Adaption in Natural and Artificial Systems. The University of Michigan Press,
Ann Arbor, 1975.

T. Kido, H. Kitano, and M. Nakanishi. A hybrid search for genetic algorithms: Combining
genetic algorithms, tabu search, and simulated annealing. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms, page 614, San Mateo, 1993.
Morgan Kaufmann.

D. Levine. A genetic algorithm for the set partitioning problem. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 481-487,
San Mateo, 1993. Morgan Kaufmann.

16



[20]

[21]

[22]

[23]

[26]

[27]

D. Levine. A Parallel Genetic Algorithm for the Set Partitioning Problem. PhD thesis,
Illinois Institute of Technology, Chicago, 1994. Department of Computer Science.

R. Marsten and F. Shepardson. Exact Solution of Crew Scheduling Problems Using the Set
Partitioning Model: Recent Successful Applications. Networks, 11:165-177, 1981.

H. Muhlenbein. Parallel Genetic Algorithms and Combinatorial Optimization. In O. Balci,
R. Sharda, and S. Zenios, editors, Computer Science and Operations Research, pages 441—
456. Pergamon Press, 1992.

G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, New York, 1988.

J. Pierce. Application of Combinatorial Programming to a Class of All-Zero-One Integer
Programming Problems. Management Science, 15:191-209, 1968.

J. Richardson, M. Palmer, G. Liepins, and M. Hilliard. Some guidelines for genetic algo-
rithms with penalty functions. In J. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 191-197, San Mateo, 1989. Morgan Kaufmann.

G. Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor, Proceedings
of the Third International Conference on Genetic Algorithms, pages 2-9, San Mateo, 1989.
Morgan Kaufmann.

D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Rocky Mountain
Conference on Artificial Intelligence, pages 118-130, Denver, 1988.

17



