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subject to nXj=1 aijxj = 1 for i = 1; : : : ; m (2)xj = 0 or 1 for j = 1; : : : ; n; (3)where aij is binary for all i and j, and cj > 0: The goal is to determine values for the binaryvariables xj that minimize the objective function z.In airline crew scheduling, each row (i = 1; : : : ; m) represents a ight leg (a takeo� andlanding) that must be own. The columns (j = 1; : : : ; n) represent legal round-trip rotations(pairings) that an airline crew might y. Associated with each assignment of a crew to a partic-ular ight leg is a cost, cj . The matrix elements aij are de�ned byaij = ( 1 if ight leg i is on rotation j0 otherwise. (4)Airline crew scheduling is an economically signi�cant problem [1, 3, 11, 16] and often a di�cultone to solve. One approximate approach (as well as the starting point for most exact approaches)is to solve the linear programming (LP) relaxation of the SPP. A number of authors [3, 11, 21]have noted that for \small" SPP problems the solution to the LP relaxation either is all integer,in which case it is also the optimal integer solution, or has only a few fractional values thatare easily resolved. However, in recent years it has been noted that as SPP problems grow insize, fractional solutions occur more frequently, and simply rounding or performing a \small"branch-and-bound tree search may not be e�ective [1, 3, 11].Exact approaches are usually based on branch-and-bound, with bounding strategies such aslinear programming and Lagrangian relaxation. Fischer and Kedia [10] used continuous analogsof the greedy and 3 � opt methods to provide improved lower bounds. Eckstein developed ageneral-purpose mixed-integer programming system for use on the CM-5 parallel computer andapplied it to, among other problems, set partitioning [9]. Desrosiers et al. developed an algorithmthat uses a combination of Dantzig-Wolfe decomposition with restricted column generation [8].Ho�man and Padberg report optimal solutions when they use branch-and-cut for a large set ofreal-world SPP problems [16].Several motivations for applying genetic algorithms to the set partitioning problem exist.First, since a GA works directly with integer solutions, there is no need to solve the LP relaxation.Second, genetic algorithms can provide exibility in handling variations of the model such asconstraints on cumulative ight time, mandatory rest periods, or limits on the amount of workallocated to a particular base by modifying the evaluation function. More traditional methodsmay have trouble accommodating the addition of new constraints as easily. Third, at anyiteration, genetic algorithms contain a population of possible solutions. As noted by Arabeyreet al. [2], \The knowledge of a family of good solutions is far more important than obtainingan isolated optimum." Fourth, the NP-completeness of �nding feasible solutions in the generalcase [23] and the enormous size of problems of current industrial interest make the SPP a goodproblem on which to test the e�ectiveness of GAs.2



2 The Hybrid Genetic AlgorithmGenetic algorithms work with a population of candidate solutions. In the original GAs of Holland[17] each candidate solution is represented as a string of bits, where the interpretation of thebit string is problem speci�c. Each bit string in the population is assigned a value according toa problem-speci�c �tness function. A \survival-of-the �ttest" step selects strings from the oldpopulation randomly, but biased by their �tness. These strings recombine by using the crossoverand mutation operators (see Section 2.4) to produce a new generation of strings that are (onehopes) more �t than the previous one.2.1 Population ReplacementThe generational replacement genetic algorithm (GRGA) replaces the entire population eachgeneration by their o�spring and is the traditional genetic algorithm de�ned by Holland [17].The hope is that the o�spring of the best strings carry the important \building blocks" [12] fromthe best strings forward to the next generation. The GRGA, however, allows the possibility thatthe best strings in the population do not survive to the next generation. Also, as pointed outby Davis [6], some of the best strings may not be allocated any reproductive trials. It is alsopossible that mutation or crossover destroy or alter important bit values so that they are notpropagated into the next generation by the parent's o�spring.The steady-state genetic algorithm (SSGA) is an alternative to the GRGA that replaces onlya few individuals at a time, rather than an entire generation [26, 27]. In practice, the numberof new strings created each generation is usually one or two. The new string(s) replace theworst-ranked string(s) in the population. In this way the SSGA allows both parents and theiro�spring to coexist in the same population.One advantage of the SSGA is that it is immediately able to take advantage of the \geneticmaterial" in a newly generated string without having to wait to generate the rest of the pop-ulation, as in a GRGA. A disadvantage of the SSGA is that with small populations some bitpositions are more likely to lose their value (i.e., all strings in the population have the samevalue for that bit position) than with a GRGA. For this reason, SSGAs are often run with largepopulation sizes to o�set this. In earlier empirical testing [20] we found the SSGA more e�ectivethan the GRGA, and the results reported in this paper all use the SSGA with one individualreplaced each generation, and a population size of 100.2.2 Problem Data StructuresA solution to the SPP is given by specifying values for the binary decision variables xj . Thevalue of one (zero) indicates that column j is included (not included) in the solution. Thissolution may be represented by a binary vector x with the interpretation that xj = 1(0) if bitj is one (zero) in the binary vector. Representing an SPP solution in a GA is straightforwardand natural. A bit in a GA string is associated with each column j. The bit is one if column jis included in the solution, and zero otherwise.We also ordered the SPP matrix into block \staircase" form [24]. Block Bi is the set of3



columns that have their �rst one in row i. Bi is de�ned for all rows but may be empty for some.Within Bi the columns are sorted in order of increasing cj . Ordering the matrix in this manneris helpful in determining feasibility. In any block, at most one xj may be set to one. We usethis fact in our initialization scheme (see Section 2.6.)2.3 Evaluation FunctionThe obvious way to evaluate the �tness of a bit string is as a minimizer of Equation (1), the SPPobjective function. However, since just �nding a feasible solution to the SPP is NP-complete[23], and many or most strings in the population may be infeasible, Equation (1) alone isinsu�cient because it does not take into account infeasibilities. Our approach to this problemis to incorporate a penalty term into the evaluation function to penalize strings that violateconstraints.Such penalty methods allow constraints to be violated. Depending on the magnitude of theviolation, however, a penalty (in our case proportional to the size of the infeasibility) is incurredthat degrades the objective function. The choice of penalty term can be signi�cant. If thepenalty term is too harsh, infeasible strings that carry useful information but lie outside thefeasible region will be ignored and their information lost. If the penalty term is not strongenough, the GA may search only among infeasible strings [25].As part of the work in [20] we investigated several di�erent penalty terms without any con-clusive results. For the results reported in this paper we used the linear penalty termmXi=1 �i nXj=1 jaijxj � 1j : (5)Here, �i is a scalar weight that penalizes the violation of constraint i. Choosing a suitable valuefor �i is a di�cult problem. A good choice for �i should reect not just the \costs" associatedwith making constraint i feasible, but also the impact on other constraint's (in)feasibility. Weknow of no method to calculate an optimal value for �i. Therefore, we made the empirical choiceof setting �i to the largest cj from the columns that intersected row i. This choice is similar tothe \P2" penalty in [25], where it provided an upper bound on the cost to satisfy the violatedconstraints in the set covering problem (the equality in Eq. (2) is replaced by \�"). In the caseof set partitioning, however, the choice of �i provides no such bound, and the GA may �ndinfeasible solutions more attractive than feasible ones.2.4 GA OperatorsThe primary GA operators are selection, crossover, and mutation. We choose strings for re-production via binary tournament selection [12, 13]. Two strings were chosen randomly fromthe population, and the �tter string was allocated a reproductive trial. To produce an o�springwe held two binary tournaments, each of which produced one parent string. These two parentstrings were then recombined to produce an o�spring.The crossover operator takes bits from each parent string and combines them to create childstrings. The motivating idea is that by creating new strings from substrings of �t parent strings,4



Parent Strings Child Stringsa a a a a a a a a a|b b b|a a ab b b b b b b b b b|a a a|b b bFigure 1: Two-Point Crossovernew and promising areas of the search space will be explored. Figure 1 illustrates two-pointcrossover. Starting with two parent strings of length n = 8, two crossover sites c1 = 3 andc2 = 6 are chosen at random. Two new strings are then created; one uses bits 1{2 and 6{8from the �rst parent string and bits 3{5 from the second parent string; the other string uses thecomplementary bits from each parent string.Mutation is applied in the traditional GA sense; it is a background operator that provides atheoretical guarantee that no bit value is ever permanently �xed to one or zero in all strings. Inour implementation of mutation we complement a bit with probability 1=n.In our algorithm we apply crossover or mutation. To do this we select two parent strings,and generate a random number r 2 [0; 1]. If r is less than the crossover probability, pc = 0:6,we create two new o�spring via two-point crossover and randomly select one of them to insertin the new population. Otherwise, we randomly select one of the two parent strings, make acopy of it, and apply mutation to it. In either case we also test the new string to see whetherit duplicates a string already in the population. If it does, it undergoes (possibly additional)mutation until it is unique.2.5 Local Search HeuristicThere is mounting experimental evidence [6, 18, 22] that hybridizing a genetic algorithm witha local search heuristic is bene�cial. It combines the GA's ability to widely sample a searchspace with a local search heuristic's hill-climbing ability. Our early experience with the GRGA[19], as well as subsequent experience with the SSGA [20], was that both methods had trouble�nding optimal (often even feasible) solutions. This led us to develop a local search heuristicto hybridize with the GA to assist in �nding feasible, or near-feasible, strings to apply the GAoperators to.To present this heuristic, we de�ne the following notation. Let J = f1; : : : ; ng be a setof column indices. Ri = fj 2 J jaij = 1g is the (�xed) set of columns that intersect row i.ri = fj 2 Rijxj = 1g is the (changing) set of columns that intersect row i in the currentsolution.The heuristic we developed is called ROW (since it takes a row-oriented view of the problem).The basic outline is given in Figure 2. ROW works as follows. For niters iterations (a parameterof the heuristic), one of the m rows of the problem is selected (either randomly or according tothe constraint with the largest infeasibility). For any row there are three possibilities: jrij = 0,jrij = 1, and jrij > 1. The action of ROW in these cases varies and also varies according towhether we are using a best-improving (every point in the neighborhood is evaluated and theone that most improves the current solution is accepted as the move) or �rst-improving (the �rst5



foreach nitersi = chose row( random or max )improve (i; jrij, best or �rst)endforFigure 2: The ROW Heuristicmove found that improves the current solution is made) strategy. If we are using best-improving,we apply one of the following rules.1. jrij = 0: For each j 2 Ri calculate �j1 , the change in z when xj  1. Set to one thecolumn that minimizes �j1 .2. jrij = 1: Let k be the unique column in ri. For each j 2 Ri; j 6= k calculate �kj1 , thechange in z when xk  0 and xj  1. If �kj1 < 0 for at least one j, set xk  0 and xj  1for the j that minimizes �kj1 .3. jrij > 1: For each j 2 ri calculate �j , the change in z when xk  0; 8k 2 ri; k 6= j. Set toone the column that minimizes �j .Strictly speaking, this is not a best-improving heuristic, since in cases 1 and 3 we can moveto neighboring solutions that degrade the current solution. Nevertheless, we allow this situationbecause we know that whenever jrij = 0 or jrij > 1, constraint i is infeasible and we must movefrom the current solution, even if neighboring solutions are less attractive. The advantage isthat the solution \jumps out" of a locally optimal, but infeasible domain of attraction.The �rst-improving version of ROW di�ers from the best-improving version in the followingways. In case 1 we select a random column j from Ri and set xj  1. In case 2 we set xk  0and xj  1 as soon as we �nd any �kj1 < 0; j 2 Ri. In case 3 we randomly select a columnk 2 ri, leave xk = 1, and set all other xj = 0; j 2 ri. In cases 1 and 3, since we have no guaranteewe will �nd a \�rst-improving" solution but we know that we must change the current solutionto become feasible, we make a random move that at least makes constraint i feasible, withoutweighing all the implications (cost component and (in)feasibility of other constraints).2.6 InitializationThe initial GA population is usually generated randomly. The intent is to sample many areasof the search space and let the GA discover the most promising ones. We developed a modi�edrandom initialization scheme. Block random initialization, based on a suggestion of Gregory[14], uses information about the expected structure of an SPP solution. A solution to the SPPtypically contains only a few ones and is mostly zeros. We can use this knowledge by randomlysetting to one approximately the same number of columns estimated to be one in the �nalsolution. If the average number of nonzeros in a column is P , we expect the number of xj = 1in the optimal solution to be approximately m=P . We use the ratio of m=P to the number of6



nonnull blocks as the \probability" of whether to set to one some xj in block Bi. If we do choosesome j 2 Bi to set to one, that column is chosen randomly. If the \probability" is � 1, we setto one a single column in every block.3 Computational Results3.1 Test ProblemsTo test the hybrid algorithm we selected a subset of forty problems (most of the small- andmedium-sized problems, and a few of the larger problems) from the Ho�man and Padberg testset [16]. These are real set partitioning problems provided by the airline industry. They aregiven in Table 1, where they have been sorted by increasing numbers of columns. All but twoof the �rst thirty have fewer than 3000 columns (nw33 and nw09 have 3068 and 3103 columns,respectively). The last ten problems are signi�cantly larger, not just because there are morecolumns, but also because there are more constraints. One reason we did not test all of the largerproblems is that in practice (e.g., as in [16]) they are usually preprocessed by a matrix reductionfeature that, for large problems, can signi�cantly reduce the size of the problem. However, wedid not have access to such a capability.To try to gain some insight into the di�culty of the test problems, we solved them usingthe public-domain lp solve program [4]. This program solves linear programming problems byusing the simplex method and solves integer programming (IP) problems by using the branch-and-bound algorithm.The columns in Table 1 are the name of the test problem, the number of rows and columnsin the problem, the optimal objective function value for the LP relaxation, and the objectivefunction value of the optimal integer solution, the number of simplex iterations required bylp solve to solve the LP relaxation plus the additional simplex iterations required to solveLP subproblems in the branch-and-bound tree, the number of variables in the solution to theLP relaxation that were not zero, the number of the nonzero variables in the solution to theLP relaxation that were one (rather than having a fractional value), and the number of nodessearched by lp solve in its branch-and-bound tree search before an optimal solution was found.The optimal integer solution was found by lp solve for all but the following problems: aa04,kl01, aa05, aa01, nw18, and kl02, as indicated in Table 1 by the \>" sign in front of the numberof simplex iterations and number of IP nodes for these problems. For aa04 and aa01, lp solveterminated before �nding the solution to the LP relaxation. For aa05, kl01, and kl02, lp solvefound the solution to the LP relaxation but terminated before �nding any integer solution. Anonoptimal integer solution was found by lp solve for nw18 before it terminated. Terminationoccurred either because the program aborted or because a user-speci�ed resource limit wasreached.For lp solve many of the smaller problems are fairly easy, with the integer optimal solutionbeing found after only a small branch-and-bound tree search. There are, however, some ex-ceptions where a large tree search is required (nw23, nw28, nw36, nw29, nw30). These problemsloosely correlate with a higher number of fractional values in the LP relaxation. For the largerproblems lp solve results are mixed. On the nw problems (nw07, nw06, nw11, nw18, and nw03)7



Table 1: Test ProblemsProblem No. No. LP IP LP LP LP IPName Rows Cols Optimal Optimal Iters Nonzeros Ones Nodesnw41 17 197 10972.5 11307 174 7 3 9nw32 19 294 14570.0 14877 174 10 4 9nw40 19 404 10658.3 10809 279 9 0 7nw08 24 434 35894.0 35894 31 12 12 1nw15 31 467 67743.0 67743 43 7 7 1nw21 25 577 7380.0 7408 109 10 3 3nw22 23 619 6942.0 6984 65 11 2 3nw12 27 626 14118.0 14118 35 15 15 1nw39 25 677 9868.5 10080 131 6 3 5nw20 22 685 16626.0 16812 1240 18 0 15nw23 19 711 12317.0 12534 3050 13 3 57nw37 19 770 9961.5 10068 132 6 2 3nw26 23 771 6743.0 6796 341 9 2 11nw10 24 853 68271.0 68271 44 13 13 1nw34 20 899 10453.5 10488 115 7 2 3nw43 18 1072 8897.0 8904 142 9 2 3nw42 23 1079 7485.0 7656 274 8 1 9nw28 18 1210 8169.0 8298 1008 5 2 39nw25 20 1217 5852.0 5960 237 10 1 5nw38 23 1220 5552.0 5558 277 8 2 7nw27 22 1355 9877.0 9933 118 6 3 3nw24 19 1366 5843.0 6314 302 10 4 9nw35 23 1709 7206.0 7216 102 8 4 3nw36 20 1783 7260.0 7314 74589 7 1 789nw29 18 2540 4185.3 4274 5137 13 0 87nw30 26 2653 3726.8 3942 2036 10 0 45nw31 26 2662 7980.0 8038 573 7 2 7nw19 40 2879 10898.0 10898 120 7 7 1nw33 23 3068 6484.0 6678 202 9 1 3nw09 40 3103 67760.0 67760 146 16 16 1nw07 36 5172 5476.0 5476 60 6 6 1nw06 50 6774 7640.0 7810 58176 18 2 151aa04 426 7195 25877.6 26402 7428 234 5 >1kl01 55 7479 1084.0 1086 26104 68 0 >37aa05 801 8308 53735.9 53839 6330 202 53 >4nw11 39 8820 116254.5 116256 200 21 17 3aa01 823 8904 55535.4 56138 23326 321 17 >1nw18 124 10757 338864.3 340160 162947 68 27 >62kl02 71 36699 215.3 219 188116 91 1 >3nw03 59 43749 24447.0 24492 4123 17 6 38



the results are quite good, with integer optimal solutions found for all but nw18. Again, the sizeof the branch-and-bound tree searched seems to correlate loosely with the degree of fractionalityof the solution to the LP relaxation. On the kl and aa models, lp solve has considerably moredi�culty and does not �nd any integer solutions.3.2 ROW Heuristic ResultsCreating a hybrid GA required selecting three parameters for the ROW heuristic. The �rstwas the number of iterations to apply ROW. Since ROW can be computationally expensive,and empirical evidence in [20] showed no signi�cant di�erence applying ROW for 1, 5, or 20iterations, we �xed the number of iterations ROW was applied to one.The two remaining parameters to select are the method for constraint selection and the searchstrategy (best-improving or �rst-improving). We studied this empirically using a subset of ninetest problems from Table 1. This subset was selected so that we would have several smallerproblems and a few larger ones.Table 2 compares the best-improving (column Best) and �rst-improving (column First) strate-gies in conjunction with the method for constraint selection. Random means that one of them constraints is selected randomly. Max. means that the constraint with the largest value ofjPnj=1 aijxj � 1j is selected. The columns Opt. and Feas. are the number of times out of tenindependent trials an optimal or feasible solution was found.The most obvious result in Table 2 is that no feasible solution was found on any run forany test problem with constraint selection via maximum violation. Random constraint selectionhelped signi�cantly in �nding feasible solutions, although not many optimal ones were found.It appears the randomness in cases one and three of the �rst-improving strategy helps escapefrom a locally optimal solution. The di�erences between the best-improving and �rst-improvingstrategies were not signi�cant.Table 2: ROW Heuristic: Best vs. First ImprovingProblem Best FirstName Random Max. Random Max.Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas.nw41 0 10 0 0 0 10 0 0nw32 0 10 0 0 1 10 0 0nw40 0 10 0 0 0 10 0 0nw08 0 4 0 0 0 10 0 0nw15 0 2 0 0 3 10 0 0nw20 0 10 0 0 0 10 0 0nw33 0 10 0 0 0 10 0 0aa04 0 0 0 0 0 0 0 0nw18 0 0 0 0 0 0 0 0Table 3 compares the best-improving and �rst-improving strategies using the hybrid of SSGA9



in combination with the ROW heuristic (which we refer to as SSGAROW). In Table 3 constraintselection was done randomly. The results show the �rst-improving strategy was superior at�nding optimal solutions. This is an interesting result since we could argue that we wouldexpect exactly the opposite. That is, since the GA itself introduces randomness into the search,we would expect to do better applying crossover and mutation to the best solution found byROW rather than the �rst, which is presumably not as good. A possible explanation is thatthe GA population has converged and so the only new search information being introduced isfrom the ROW heuristic. ROW, however, in its best-improving mode gets trapped in a localoptimum, and so little additional search occurs.Table 3: SSGAROW: Best vs. First ImprovingProblem Best FirstName Opt. Feas. Opt. Feas.nw41 6 10 9 10nw32 0 10 4 10nw40 2 10 7 10nw08 0 2 0 4nw15 1 10 5 10nw20 0 10 1 10nw33 0 10 1 10aa04 0 0 0 0nw18 0 0 0 03.3 Hybrid Genetic Algorithm ResultsTable 4 compares the SSGA by itself, the ROW heuristic by itself, and the SSGAROW hybrid.SSGA and ROW both perform poorly with respect to �nding optimal solutions. SSGA �nds nooptimal solutions, and ROW �nds only four. SSGAROW, however, outperforms both ROW andSSGA. In this case, ROW makes good local improvements, and SSGA's recombination abilityallows these local improvements to be incorporated into other strings, thus having a global e�ect.Table 5 contains the results of applying SSGAROW to the test problems in Table 1. In theseruns the ROW heuristic was applied to one randomly selected string each generation, a constraintwas randomly selected, and a �rst-improving strategy was used. A run was terminated eitherwhen the optimal solution (which for the test problems was known) was found or after 10,000iterations (in previous informal testing we had observed that most of the progress is made earlyin the search and the best solution found rarely changed after about 10,000 iterations).To perform these experiments, for each problem in Table 1 we made ten independent runs.Each run was made on a single node of an IBM Scalable POWERparallel (SP) computer. Forthe IBM SP system used, a node consists of an IBM RS/6000 Model 370 workstation processor,128 MB of memory, and a 1 GB disk.The No. Opt. and No. Feas. columns are the number of times the optimal or feasible solutionwas found. The Best Feas. column is either the objective function value of the best feasible10



Table 4: Comparison of AlgorithmsProblem SSGA ROW SSGAROWName Opt. Feas. Opt. Feas. Opt. Feas.nw41 0 10 0 10 9 10nw32 0 10 1 10 4 10nw40 0 10 0 10 7 10nw08 0 0 0 10 0 4nw15 0 1 3 10 5 10nw20 0 10 0 10 1 10nw33 0 4 0 10 1 10aa04 0 0 0 0 0 0nw18 0 0 0 0 0 0solution found, or an \X" if no feasible solution was found. The �rst % Opt. column is thepercentage from optimality of the best feasible solution. The entry is \O" if the best feasiblesolution found was optimal, the percentage from optimality if the best feasible solution wassuboptimal, or \X" if no feasible solution was found. The Avg. Feas. column is the averageobjective function value of all the feasible solutions found. The second % Opt. column is thepercentage from optimality of the average feasible solutions.The results in Table 5 can be divided into two groups: those for which SSGAROW foundfeasible solution(s), and those for which it did not. The infeasible problems were nw08�, nw10,nw09, aa04, aa05, nw11, aa01, and nw18.For the problems in the �rst group, feasible solutions were found almost every run. Optimalsolutions were found on average one �fth of the time. Except for four problems (nw12, nw06, kl02,and nw03), the best feasible solution was within three percent of optimality. The average feasiblesolution varied, but was typically within �ve percent of optimality for the smaller problems,within ten percent of optimality for medium-sized problems, and above ten percent of optimalityfor the larger problems.For the second group of problems, SSGAROW was unable to �nd any feasible solutions.These problems can be subdivided into those where SSGAROW never found a better (infeasible)solution than the optimal one, and those where it did. In the former class are nw09, aa04, aa05,aa01, and nw18. One point to note from Table 1 is the large number of constraints in aa01,aa04, aa05, and nw18. Also, we note from Table 1 that these problems have relatively highnumbers of fractional values in the solution to the LP relaxation and that they were di�cult forlp solve also.For the three aa problems, on average at the end of a run the best (infeasible) solution foundhad an evaluation function value approximately four times that of the optimal solution. Fornw09 and nw18, however, the best (infeasible) solution found was within �ve to ten percent ofthe optimal solution, but still no feasible solutions were found. For these �ve problems between�Although a feasible solution was found for nw08 in one run, the performance characteristics are most closelyrelated to nw10 and nw11, two infeasible problems. 11



Table 5: Hybrid Genetic Algorithm ResultsProblem No. No. Best % Avg. %Name Opt. Feas. Feas. Opt. Feas. Opt.nw41 10 10 11307 O 11307 .000nw32 1 10 14877 O 15238 .024nw40 0 10 10848 .004 10872 .006nw08 0 1 37078 .033 37078 .033nw15 8 10 67743 O 67743 .000nw21 1 10 7408 O 7721 .042nw22 0 10 7060 .011 7830 .121nw12 0 10 15110 .063 15645 .108nw39 4 10 10080 O 10312 .023nw20 0 10 16965 .009 17618 .048nw23 6 10 12534 O 12577 .003nw37 5 10 10068 O 10257 .019nw26 1 10 6796 O 7110 .046nw10 0 0 X X X Xnw34 5 10 10488 O 10616 .012nw43 0 10 9146 .027 9620 .080nw42 2 10 7656 O 8137 .062nw28 6 10 8298 O 8509 .025nw25 1 10 5960 O 6709 .125nw38 6 10 5558 O 5597 .007nw27 1 10 9933 O 10750 .082nw24 1 10 6314 O 7188 .138nw35 2 10 7216 O 7850 .088nw36 0 10 7336 .003 7433 .016nw29 0 10 4378 .024 4568 .069nw30 4 10 3942 O 4199 .065nw31 3 10 8038 O 8598 .070nw19 0 10 11060 .015 12146 .115nw33 1 10 6678 O 7128 .067nw09 0 0 X X X Xnw07 1 10 5476 O 6375 .164nw06 0 5 9802 .255 16679 1.136aa04 0 0 X X X Xkl01 0 10 1110 .022 1134 .044aa05 0 0 X X X Xnw11 0 0 X X X Xaa01 0 0 X X X Xnw18 0 0 X X X Xkl02 0 9 232 .059 241 .100nw03 0 9 26622 .087 33953 .38612



twelve and twenty-three percent of the constraints remained infeasible.For nw08, nw10, and nw11, SSGAROW was able to �nd infeasible strings with lower evaluationfunction values than the optimal solution and had concentrated its search on those strings. Forthese problems the penalty term used in the evaluation function was not strong enough, and theGA exploited that.Table 6 compares the solutions to the test problems found by lp solve, the branch-and-cutalgorithm of Ho�man and Padberg [16] (column HP), and the SSGAROW algorithm. The entriesare \O" if the optimal solution was found, the percentage from optimality if the best feasiblesolution was suboptimal, or an \X" if no feasible solution was found. The lp solve results wereobtained on an IBM RS/6000 Model 590 workstation. Ho�man and Padberg's results are fromTable 3 in [16] where the runs were made on an IBM RS/6000 Model 550 workstation. ForSSGAROW, the entries are the �fth column from Table 5.The branch-and-cut algorithm obtained the best results, solving all problems to optimality.For these results, however, a matrix reduction preprocessing step was applied to the test problemsto reduce their size (in addition to the matrix reduction done as part of the branch-and-cutalgorithm itself), that was not available to either lp solve or SSGAROW. lp solve foundoptimal (or in the case of nw18 near-optimal) solutions to all but �ve of the larger problems(for which no feasible solutions were found). SSGAROW found optimal solutions to twentyproblems, and solutions within �ve percent of optimality for nine others. Of the other elevenproblems, feasible solutions greater than �ve percent of optimality were obtained for four ofthem, and for the seven others, no feasible solution was found.We have not reported the actual solution times, however, since each algorithm was run ona di�erent model IBM workstations. However, if we take into account the relative perfor-mance of the di�erent processors [20] we can make some general comments about computationalperformance. The branch-and-cut algorithm was signi�cantly faster than both lp solve andSSGAROW. For the problems where both lp solve and SSGAROW found optimal solutions,the lp solve solution times were slightly faster than SSGAROW when the faster processorlp solve ran on is factored in.4 ConclusionsThe SSGA alone was sometimes successful at �nding feasible solutions, but not at �nding optimalsolutions. This motivated us to develop the ROW heuristic to hybridize with the SSGA. Twoimportant parameters of ROW are how constraint selection is performed, and how to select amove to make. We found random constraint selection and a �rst-improving strategy (whichalso introduces randomness) were more successful than attempts to apply ROW to the mostinfeasible constraint or �nd the best-improving solution. Key points about ROW are its abilityto make moves in large neighborhoods, its willingness to move downhill to escape infeasibilities,and the randomness introduced by random constraint selection and the �rst-improving strategy.However, when all constraints are feasible ROW no longer introduces any randomness, since itis in a \true" �rst-improving mode and all moves examined degrade the current solution, soROW remains trapped at a local optima. 13
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We ran ten independent trials of SSGAROW on each of forty real-world SPP problems. Wefound the optimal solution at least once for half of these problems, and solutions within �vepercent of optimality for nine others. For eight problems, we were unable to �nd any feasiblesolutions. In three of these cases the penalty term was not strong enough and the GA exploitedthis by concentrating its search among infeasible strings with lower evaluation function valuesthan the optimal solution.We compared SSGAROWwith branch-and-cut and branch-and-bound algorithms. The branch-and-cut algorithm was the most successful, solving all problems to optimality, and in muchless time than either SSGAROW or branch-and-bound. SSGAROW was also outperformed bybranch-and-bound, but not as signi�cantly. In fact, SSGAROW found feasible solutions for twoof the larger test problems when branch-and-bound did not.It is not surprising that genetic algorithms are outperformed by traditional operations researchalgorithms. GAs are general-purpose tools that will usually be outperformed when specializedalgorithms for a problem exist [6, 7]. However, several points are worth noting. First, the nwmodels are relatively easy to solve with little branching and may not by indicative of currentSPP problems airlines would like to solve [15]. Second, genetic algorithms map naturally ontoparallel computers and we expect them to scale well with large numbers of processors. Ourparallel computing experience [20] is very promising in this regard.Several areas for possible enhancement exist. First, for several problems the penalty functionwas not strong enough and the GA exploited this by searching among infeasible strings withlower evaluation function values than feasible strings. Research into stronger penalty terms orother methods for solving constrained problems with genetic algorithms is warranted. Second,using an adaptive mutation rate or simulated-annealing-like move in the ROW heuristic tomaintain diversity in the population in order to sustain the search warrants further investigation.Recently, Chu and Beasley [5] have shown that preprocessing the constraint matrix to reduce itssize, as well as modi�cations to the �tness de�nition, parent selection method, and populationreplacement scheme lead to improved performance solving SPP problems.AcknowledgmentsParts of this paper are based on my Ph.D. thesis at Illinois Institute of Technology, A number ofpeople helped in various ways during the course of this work. I thank Greg Astfalk, Bob Bul�n,Tom Can�eld, Tom Christopher, Remy Evard, John Gregory, Bill Gropp, Karla Ho�man, JohnLoewy, Rusty Lusk, Jorge Mor�e, Bob Olson, Gail Pieper, Paul Plassmann, Nick Radcli�e,Xiaobai Sun, David Tate, and Stephen Wright. I also thank two anonymous referees for theirhelpful comments.References[1] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing Optimization.IBM Systems Journal, 31(1):71{78, 1992.15
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