
Parallel Computation of Three-DimensionalNonlinear Magnetostatic ProblemsDavid Levine� William Gropp� Kimmo Forsmany Lauri KettunenyAbstractWe describe a general-purpose parallel electromagnetic code for computing accurate so-lutions to large computationally demanding, 3D, nonlinear magnetostatic problems. Thecode, CORAL, is based on a volume integral equation formulation. Using an IBM SP paral-lel computer and iterative solution methods, we successfully solved the dense linear systemsinherent in such formulations. A key component of our work was the use of the PETSc library,which provides parallel portability and access to the latest linear algebra solution technology.1 IntroductionElectromagnetic �eld computation is an important design tool that has been used in many ap-plications since its emergence in the early 1960s. The �rst applications of electromagnetic �eldcomputation were driven mainly by two broad subject areas|accelerator physics and rotatingelectrical machinery (motors and generators). When the use of electromagnetic �eld design andanalysis techniques became widespread in these two areas, many other applications were quickto follow. Among the most important of these in industry are magnetic recording, magneticresonance imaging (MRI), nondestructive testing, position sensing, modeling electronic compo-nents and integrated circuits, and studies involving high-speed magnetically levitated (Maglev)ground transportation.The ever-increasing use of electromagnetic �eld computation makes improvements in solutionaccuracy and problem size vital. For example, currently there is a great demand to examineelectromagnetic compatibility problems at the circuit board and even at the integrated circuitlevel. So far, only simpli�ed calculations in two and three dimensions have been performed. Forpractical applications, however, problems with millions of degrees of freedom will need to besolved.Furthermore, because of increased competitiveness in industry, the turnaround time in thedesign phase must also be reduced. Essentially this means being able to solve more problemsfaster to arrive at an optimal design in shorter time. As an example, in the magnetic recording�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4801. Thiswork was supported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.yTampere University of Technology, FIN-33610, Tampere, Finland.1

industry, users solve two-dimensional problems in minutes and three-dimensional problems inhours. A typical mode of operation is to do several variations on a design study in a single day.Currently, users cannot do enough three-dimensional studies because of the lengthy solutiontime and their desire to study many design variations quickly.For the past twenty years most electromagnetic �eld computations have been done by us-ing programs based on �nite-element methods and run on sequential computers. However, thelimitations mentioned above (accuracy, problem size, and solution time) make further advanceswith this approach more and more di�cult. We believe that our approach|combining inte-gral equation methods, iterative linear system solvers, and massively parallel computers|canaddress many of the current limitations and provide timely and accurate solutions to large,computationally demanding problems.This paper discusses the CORAL code we have developed to implement our approach. CORALis an integral equation code that runs on massively parallel processors (MPPs) and solves three-dimensional, nonlinear magnetostatic problems. By combining iterative linear solvers and byexploiting the large amounts of main memory and disk space available on MPPs, we can ef-�ciently solve the dense linear systems inherent in an integral equation formulation. The useof the PETSc library provides both parallel portability and access to the latest linear algebrasolution technology.2 Integral Equation MethodsIn this section we compare integral equation methods with the more traditional �nite-elementapproach used in electromagnetic programs. We then briey discuss the integral equation for-mulation we use. More complete details of the integral equation approach may be found in[8].2.1 Comparison of Finite Elements and Integral Methods in ElectromagneticProgramsThe �rst widely used three-dimensional nonlinear magnetostatics program was the integral codeGFUN [11]. However, beginning in the mid-1970s, �nite-element programs came more intofavor. A comparison of the advantages of the two approaches can help illustrate how thissituation evolved and why we believe integral methods deserve reexamination at this time.Three advantages of �nite-element programs stand out. First, the theory, including errorestimation, is more developed for the �nite-element method (FEM). Essentially, it was takenover directly from structural �nite-element programs. Second, on a sequential computer, solvinga very large problem is faster with �nite elements. This speed results because the �nite-elementmethod leads to sparse matrices whose time of solution scales as O(m logm), where m is thedegrees of freedom in the �nite-element formulation. Integral equation methods (IEMs), onthe other hand, lead to dense matrices for which the solution time with direct methods scalesas O(n3), where n is the number of degrees of freedom in the integral equation formulation.In addition, IEMs have a matrix de�nition time that scales as O(n2) and can be signi�cant(note, however, that the m for FEMs may be much larger than the n for IEM, as described2

below.) Historically, these characteristics have meant that in practice IEMs have either takentoo much computation time compared with �nite-element programs to achieve the same levelof accuracy, or have not used enough elements to obtain accurate solutions. Third, much lessphysical memory is required for the storage of the sparse matrix arising from the �nite-elementmethod than for the dense matrix arising from integral methods.Nevertheless, we emphasize that IEMs have a number of natural advantages over FEMs. First,only the active regions need to be discretized. Therefore, in a problem with motion, there isno need to adjust the mesh in the region connecting the moving and stationary components,since that region is not meshed. This is a major advantage when the domain is not connected.Also, not meshing the air region saves a lot of time in setting up the problem and eliminatesmany|often most|elements.Second, far-�eld boundary conditions are automatically taken into account. There is nodanger of error from taking the boundaries too close; nor is there a need to �nd how far awayto place them by trial and error. Even a crude integral model will give a good estimate of thefringing �eld.Third, �elds in the air region show smooth and realistic variation. Variation is not determinedby the order or geometry of the mesh, as it is for �nite-element codes. This is a big advantagewhen the variation must be known very accurately, as in MRI or accelerator magnets.Fourth, for eddy current problems there is no need to keep track of which elements are inmotion and which are not, since the mesh is �xed to the region of interest. Conversely, withFEMs it is necessary to keep track of which elements connect moving and stationary elements|atask that can be quite di�cult.Finally, integral methods readily lend themselves to parallel processing. Both the evaluationof the di�erent matrix elements and the determination of the �eld at di�erent points after theproblem is solved can be done completely in parallel. Indeed, several methods have already beendeveloped to e�ciently solve dense systems of linear equations on parallel computers.2.2 Numerical FormulationMotivated by these advantages of IEMs we developed the CORAL code. CORAL [7, 9], solvesthree-dimensional, nonlinear magnetostatics problems. The formulation we use in CORAL isbased on the idea of superposition of �elds from current and magnetization sources. We denotemagnetic ux density with B, magnetic �eld strength with H , magnetization with M , perme-ability with �, and susceptibility with �. Let Hs stand for the magnetic �eld strength fromcurrent sources in the absence of magnetic materials. The �eld component from magnetizationof materials is denoted with Hm. The �eld from source currents can be integrated from Biot-Savart's law and therefore is known a priori. Arranging the unknown terms on the left and thesource terms on the right, we get H �Hm = Hs : (1)The Hm-�eld at point r, resulting from a distribution of M in domain V; can be integrated3

such that Hm(r) = grad" �14� ZV M(r0) � (r � r0)jr� r0j3 dv0# : (2)Since M can be given in terms of H , namely,M = �(jH j)H; (3)we get H �Hm(�;H) = Hs ; (4)and hence the �elds on the left-hand side can be written in terms of H , if � is known.The formulation employed in CORAL is now developed by multiplying the divergence condi-tion of B, div B = div �H = 0 ; (5)with an appropriate test function, summing over V , substituting Eq. (4) into (5), and applyingintegral relationships (i.e., theorems analogous to Green's �rst identity) to getZV �H � h0 � ZV �Hm(�;H) � h0 = ZV �Hs � h0; 8h0; (6)where h0 is a test function that is a gradient �eld.In order to establish a discrete problem, the magnetic �eld H is approximated in the spaceW 1 spanned by \edge elements," that is, Whitney elements (see below) of degree p = 1. Thesystem of equations is developed from Eq. (6) by choosing h0 the same as the basis functionsof the kernel of curl W 1. The numerical problem implies the tangential continuity of H at allpoints, whereas the normal continuity of B is satis�ed only in the weak sense.In CORAL, the physical interpretation of the unknown variable is the line integral of themagnetic �eld H along an edge. In magnetostatics, this integral is equal to the di�erence inscalar potential between the end nodes of the edge; hence for a (simply) connected region, thenumber of unknowns is one less than the number of nodes. In practice the line integrals alonga spanning tree of the mesh are the independent variables chosen; from them, all other lineintegrals can be determined.In magnetostatics the problems are typically nonlinear, because the magnetic properties ofthe materials depend on the �eld strength. These kinds of problem are solved iteratively; aninitial guess for � is inserted, and the nonlinearity is taken into account by solving successiveproblems updating the material data at each cycle. After a few cycles the Newton-Raphsonmethod is applied to accelerate the convergence.3 The CORAL ProgramCORAL uses a three-dimensional tetrahedral mesh generated by the PROBE [4] mesh gener-ator. The mesh uses Whitney elements, a class of �nite elements introduced by Bossavit inconnection with computational electromagnetics [1]. Whitney elements di�er from traditional4

�nite-elements in that the degrees of freedom are related to all the simplices in a simplicial mesh(i.e., the nodes, edges, facets, and volumes).CORAL is written primarily in Fortran 77 with a few routines written in C. The main partsof CORAL are routines that �nd a spanning tree, form the paths corresponding to the co-treeedges, generate the integral equation and Jacobian matrices, compute the terms on the right-hand side, and solve the system of equations. Below, we describe the software tools used toparallelize CORAL and the structure of the parallel code.3.1 Parallel Software ToolsOur goal was to develop a general-purpose code that would run on both MPPs and workstationclusters. For this reason we focused on the message-passing programming model. To satisfythe portability requirement, not only the message-passing primitives, but also the linear algebraroutines and I/O facilities must be portable. Our solution to this requirement was to use PETSc(Portable and Extensible Tools for Scienti�c Computing) [6], a large toolkit of software forportable, parallel (and serial) scienti�c computation.1The two components of PETSc that we used were the Chameleon and PSLES (Parallel Simpli�edLinear Equation Solvers) libraries. Chameleon is a second-generation message-passing systemthat provided a uniform way to access third-party and vendor-speci�c message-passing libraries.2Chameleon's message-passing calls needed no changes to run on either a cluster of workstationsor MPP computers. PSLES is an easy-to-use, e�cient, portable parallel library for solvingsystems of linear equations. PSLES supports a variety of iterative methods and preconditioners,and a dense LU solver. PSLES allows the speci�cation of options such as the solver algorithm,choice of preconditioning matrix, and setting of the tolerance. It accepts many matrix formats,including dense and sparse. Because it is built on top of Chameleon, PSLES runs on mostdistributed-memory architectures.In PSLES, a simple interface hides the algorithm and parameter choices and allows a user toeasily experiment with di�erent methods. For example, Figure 1 shows the code fragment fromCORAL that solves linear systems. This fragment is contained within an outer loop that solvesthe nonlinear problem. The functions SpDnCreateFromData and PSPCreate create a matrixin PSLES format from the user-speci�ed data structure matrix, the submatrix dynamicallyallocated by each processor (see Section 3.3). The If block chooses the algorithm to solvethe linear systems. The choice is speci�ed to the PSVCreate call via the variable method, alongwith pmat, a pointer to the processor's submatrix. PSVCreate returns the pointer ctx usedin the succeeding PSLES function calls. The PSVSetPBDDDomainsNumber function speci�es thenumber of blocks to use if block diagonal preconditioning is used. The PSVSetUp call allocatesscratch memory and sets to default values parameters and options not otherwise set. Finally,PSVSolve solves the system of equations with right-hand side b. The answer is returned in thearray x.1We used PETSc 1.0 in this work. PETSc 2.0 is now available [5].2At the time of this work, MPI, the Message Passing Interface, had not yet been de�ned.5

smat = SpDnCreateFromData(m, m, n, matrix)pmat = PSPCreate(smat, m)If (precnd .eq. PSVJacobi) thenmethod = PSVJacobiElse If (precnd .eq. PSVPBDD) thenmethod = PSVPBDDElse If (precnd .eq. PSVNOPRE) thenmethod = PSVNOPREElsemethod = PSVLUEndifctx = PSVCreate(pmat, method)Call PSVSetPBDDDomainsNumber(ctx, numbdd);Call PSVSetUp(ctx)its = PSVSolve(ctx, b, x)Figure 1: Code fragment from CORAL for solving linear systems using PSLES3.2 InputCORAL reads input from several �les: a binary �le containing data describing the material fromwhich the magnet is made, as well as the geometry and density of the electromagnetic coils; adescription of the tetrahedral mesh elements (spatial coordinates, neighbor lists, and whichnodes de�ne an element); and a �le containing parameters of the solution method. CORALis structured so that only one processor reads the input �les and broadcasts the data to otherprocessors.3.3 Memory AllocationFor parallel computation, the integral equation matrix and related arrays were decomposed.The other data structures were replicated on each processor. Fortran's static memory allocation,however, is inappropriate for distributed arrays, since we wished to allocate only as much memoryas necessary to hold the processor's portion of the arrays, but these sizes were not known untilrun time. Therefore, we wrote several C language routines.3.4 Matrix GenerationEach nonlinear iteration requires the generation of a new integral equation or Jacobian matrix.The full matrices are of order nedges�nedges (nedges is the number of edges in the spanning tree).These matrices were decomposed rowwise as shown in Figure 2. Each processor's submatrix isof order nedges=nprocs � nedges (nprocs is the number of processors being used).6

=

P0

P1

P2

P3 Figure 2: Rowwise decomposition of matrix in CORALSince the equations are related to edges, and a node may belong to more than one edge, someprocessors may compute the same data for a node that has a contribution to more than oneequation. An advantage of this is that no data broadcasting between the processors is needed.In addition, only a small amount of overlapping data is computed on two or more processors.Each nonlinear iteration, the matrix elements are computed from the solution to the linearsystem from the previous nonlinear iteration and some geometry-dependent integral terms thatarise from Eq. (2). Computing these integral terms is a time-consuming part of the integralequation matrix generation. However, since these terms depend only on the problem geometry,they may be computed once and read each nonlinear iteration when a new matrix is generated.This approach saves a considerable amount of processing time and is a critical part of the integralformulation.The total amount of data storage required for the integral terms is nelements �nedges � 3, andfor large problems can easily exceed main memory (nelements is the number of tetrahedral meshelements). This is true even after the matrix decomposition when each processor needs accessonly to its nelements � nedges=nprocs � 3 part of the data. Therefore, the computed results werestored to a disk �le and read each successive nonlinear iteration.The row-decomposition of the matrix used here is not the optimal one for direct numericfactorization; in that case, a variant of a 2-d block-cyclic decomposition is appropriate. However,such a decomposition is far less natural for the matrix assembly part of the code. In addition,the decomposition used here is e�cient for the iterative solvers.7

3.5 Linear System SolutionSeveral special features of the linear systems arise in CORAL. First, the matrix resulting fromEq. (6) is asymmetric. Second, each system of linear equations arises from an outer nonlinearproblem and so may need only a relatively low accuracy solution. Third, the actual matrix,while dense, has many \small" elements. Finally, the size of the matrices to be solved variessigni�cantly according to the mesh re�nement and desired solution accuracy.Traditionally, dense systems of linear equations are solved directly by Gaussian elimination.However, the solution time for Gaussian elimination scales as O(n3), where n is the order of thematrix, and can be prohibitive for large values of n. An alternative approach is to use iterativesolvers. In general, the solution time for iterative methods involving dense matrices scales asO(n2) per iteration. The number of iterations, I , is heavily dependent on the initial guess andthe choice of matrix preconditioner. While I may grow as a function of n, in practice this growthis quite slow with appropriate preconditioners.In CORAL we believed there were several advantages to using iterative methods. First, tosolve a nonlinear problem, one must solve a related sequence of linear systems. With iterativemethods, we would be able to use the solution to one of the linear systems in the sequenceas the starting solution to the next linear system in the sequence, and hopefully reduce thesolution time. Second, for some nonlinear problems it may not be necessary to solve the earlylinear systems in the sequence to high accuracy. Unlike direct methods, iterative methods allowan early exit from the solution procedure with an approximate solution. Finally, for largeproblems, we believed iterative methods would be faster than direct methods. This will be trueasymptotically if O(n3) > I O(n2) and we expected slow growth in I as a function of n.4 Computational ExperimentsIn this section we report on our computational experiments. We focus on the computationalperformance. Details of the accuracy of the calculated electromagnetic �eld are given in [8].4.1 Test ProblemsWe present results for two test problems. TEAM 13 is one of the international TEAM (TestingElectromagnetic) benchmark problems [10]. It consists of thin steel plates that are exited belowthe saturation level. One of the di�culties when modeling TEAM 13 is the narrow air gapbetween the steel plates, which requires a large number of elements to achieve accurate resultsbelow the saturation level. Figure 3 shows the geometry of TEAM 13. TEAM 13 is a problemfor which an integral equation approach works well since only the magnetic regions have to bediscretized. Moreover, because the steel plates are thin, a relatively high number of elementscan be concentrated close to the air gap and to the bend of the plates. Finite-element methodsrequire many elements in the air close to the gap and the bend to compute accurate solutions.TEAM 13 was run using a mesh of 5,087 tetrahedral mesh elements, resulting in a matrix oforder 1,446. 8

Figure 3: Geometry of TEAM 13

Figure 4: Geometry of APS Dipole Magnet.9

Table 1: TEAM 13 Timings (sec.), One Block Per Processor4 Proc. 8 Proc. 16 Proc.Nonlin Iter. 11 > 15 >25Time 252 >1800 >3600The second test problem was a dipole magnet from the Advanced Photon Source at ArgonneNational Laboratory. Figure 4 shows the geometry of this magnet. The poles are curvy, and themagnet has shielding plates in front of the coils. In addition, the ends of the poles are beveled.Since the geometry is nontrivial, this problem is a challenging test for integral formulations.Because of symmetry, only one-fourth of the APS dipole magnet had to be discretized. TheAPS dipole magnet was run using a mesh of 14,149 tetrahedral mesh elements, resulting in amatrix of order 3,242.4.2 ResultsThe results we present were computed on an IBM SP parallel computer with 128 RS/6000 model370 processors, each with 128 Mbytes of memory and a one Gbyte local disk. Compilation wasdone by using the IBM xlf Fortran compiler with level O3 optimizations. Chameleon generatedEUI-H message-passing calls.In the work reported in [3] we compared LAPACK's LU solver [2] with several di�erent iter-ative solvers and preconditioners on a DEC Alpha workstation. In one set of tests, generalizedminimal residual (GMRES), bi-conjugate gradient stabilized (Bi-CGSTAB), and conjugate gra-dient stabilized (CGS) using a band preconditioner were all more e�cient than LU, with GMRESbeing the most e�cient. In another set of experiments, LU was compared with GMRES using�ve di�erent preconditioners. Of these, block diagonal and a sparse preconditioner providedconsistently better results than the LU solver.To successfully use GMRES on a parallel computer, a key issue was to develop an appropriateparallel preconditioner. We �rst implemented a block diagonal preconditioner (BDD) that usedone block per processor. Using the same number of blocks as the number of processors hasfavorable implementation features (i.e., no interprocessor communication is necessary). Anotheradvantage of a BDD preconditioner is that a sequential LU solver can be applied to the solutionof the individual blocks.Table 1 shows the performance of GMRES with the parallel BDD preconditioner on TEAM13, as a function of the number of processors. The \>" in front of an entry indicates the solutiondid not converge. The results show that while easily implemented, this version of BDD does notscale to larger numbers of processors in the sense that the number of iterations required growswith the number of blocks. Testing on the APS Dipole magnet and other problems showedsimilar results.The results in Table 1 led us to develop a block diagonal preconditioner that supports multipleprocessors per block, or multiple blocks per processor. With this we performed some informaltests to identify an \appropriate" number of blocks that would yield good (but not necessarilyoptimal) results. Typically, this was one block for each 400{800 equations.10

Table 2: Timing Results (sec.) as a Function of the Number of ProcessorsProblem 4 8 16 32 64 128TEAM13 301 159 119 73 146 247APD Dipole X X 5951 3419 2506 6168Table 3: Timing (sec.) of Parallel LU and GMRES, 3241 EquationsProcessors 4 8 16 32 64LU 275.7 143.1 76.7 40.2 24.8GMRES (147 iter.) 109.9 57.8 29.7 17.0 10.9Table 2 contains the total solution time to solve both test problems as a function of thenumber of processors. The number of nonlinear iterations required to solve TEAM 13 was 11,and for the APS dipole magnet it was 45. LU was used to solve the �rst nonlinear iterationand GMRES with the new BDD preconditioner successive nonlinear iterations. The number ofBDD blocks was �xed at four and the solution from the previous nonlinear iteration was usedas a starting point.Two points are notable. First, compared with the results in Table 1, GMRES converged ineach case with an \appropriate" block size. Second, a good speedup was achieved as long as thegranularity (number of equations) per processor was su�cient. As the granularity decreased, sodid the speedup. In fact, when the granularity got too small, the parallel computing overheadsdegraded performance overall.To show that GMRES compares favorably with LU in a parallel computing environment, wereproduce Table VI from [3] in Table 3. The times given are for solving only the second nonlineariteration of the APS dipole magnet. GMRES was run with the BDD preconditioner with thenumber of blocks �xed at four, and the solution to the �rst nonlinear iteration used as a startingpoint.5 ConclusionsPrior to our work, it was thought that integral equation methods were computationally toodemanding to be a viable approach. For that reason scientists and engineers have not takenadvantage of IEMs when modeling electromagnetic calculations. In our work with CORAL,however, we have shown that the combination of large-scale parallel computing and iterativelinear solvers make integral equation methods a practical approach for solving three-dimensional,nonlinear magnetostatic problems.The IBM SP was a key factor in our success. The large main memory on each processorallowed us to store in-core very large, dense matrices. Also, the large amount of disk space oneach processor allowed us to \precompute" several large, computationally demanding results,11

store them to disk, and read them each nonlinear iteration, saving considerable computationtime.The PSLES component of the PETSc library allowed us to easily test di�erent solvers andpreconditioners. In fact, we often run CORAL using LU to solve the �rst nonlinear iteration,and GMRES for the successive nonlinear iterations. Both solvers are integrated seamlesslytogether in the code. We found that in order to outperform LU factorization, sophisticatedimplementations of the preconditioning matrix that scale well on large numbers of processorsare required.The Chameleon component of PETSc was also an important part of our work. Using Chameleon,we were able to do the initial development and debugging of CORAL on a workstation networkand, with no source code changes, port to the IBM SP. CORAL was parallelized by using justthe broadcast and reduction primitives of Chameleon in combination with the PSLES solvers|noexplicit message-passing was required! The success of Chameleon and PSLES in the CORAL codesuggests that libraries based on MPI will go a long way toward solving the problem of portingcodes to parallel computers.Our next goal is time-dependent problems with moving objects in which eddy currents arise.With integral methods there is no need to keep track of which elements are in motion and whichare not, since the mesh is �xed to the region of interest. The fact that one need not discretizeair and that exterior boundary conditions are automatically incorporated o�ers signi�cant ad-vantages compared with �nite-element methods.AcknowledgmentsWe thank Sean Pratt, Jennifer Rovegno, Jukka Salonen, Diana Tabor, Hania Yassin, and VectorFields Inc. for their assistance. The computations were performed on the IBM SP in Argonne'sHigh-Performance Computing Research Facility.References[1] A. Bossavit. Whitney forms: A class of �nite elements for three-dimensional computationsin electromagnetism. In IEE Proceedings, volume 135, Pt. A, pages 493{499, 1988.[2] E. Anderson et al. LAPACK Users's Guide. SIAM, Philadelphia, 1992.[3] K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen. Solution of dense systemsof linear equations arising from integral formulations. IEEE Antennas and Propagation (inpress).[4] K. Forsman and L. Kettunen. Tetrahedral mesh generation in convex primitives by maxi-mizing solid angles. IEEE Transaction on Magnetism, 30:3535{3538, 1994.[5] W. Gropp, L. Curfman McInnes, and B. Smith. PETSc World Wide Web home page.http://www.mcs.anl.gov/petsc/petsc.html, 1995.12

[6] W. Gropp and B. Smith. Scalable, extensible, and portable numerical libraries. In Proceed-ings of Scalable Parallel Libraries Conference, pages 87{93. IEEE, 1994.[7] L. Kettunen. Volume Integral Formulations for Three Dimensional Electromagnetic FieldComputation. PhD thesis, Tampere University of Technology, 1992. Publication 86, Tam-pere, Finland.[8] L. Kettunen, K. Forsman, D. Levine, and W. Gropp. Volume integral equations in nonlinear3-d magnetostatics. International Journal of Numerical Methods in Engineering, 38:2655{2675, 1995.[9] L. Kettunen and L. Turner. A Volume integral formulation for nonlinear magnetostaticsand eddy currents using edge elements. IEEE Transactions on Magnetics, 28(2):1639{1642,1992.[10] T. Nakata, N. Takahashi, K. Fujiwara, K. Muramatsu, T. Imai, and Y. Shiraki. Numer-ical analysis and experiments of 3-D non-linear magnetostatic model. In Proceedings ofTEAM Workshop on Computation of Applied Electromagnetics in Materials, pages 308{310, Okayama, Japan, 1990.[11] M. J. Newman, L. Turner, and C. W. Trowbridge. GFUN: An interactive program as an aidto magnet design. In Proceedings 4th Magnet Technology Conference, Brookhaven, 1972.

13

