Computing Rank-Revealing QR Factorizations of
Dense Matrices

Christian H. Bischof

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Ave., Argonne, IL 60439. bischof@mcs.anl.gov

and

Gregorio Quintana-Orti

Departamento de Informatica, Universidad Jaime |, Campus Penyeta Roja, 12071 Castellén,

Spain. gquintan@inf.uji.es.

We develop algorithms and implementations for computing rank-revealing QR (RRQR) factor-
izations of dense matrices. First, we develop an efficient block algorithm for approximating an
RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy,
safeguarded by incremental condition estimation. Second, we develop efficiently implementable
variants of guaranteed reliable RRQR algorithms for triangular matrices originally suggested by
Chandrasekaran and Ipsen, and by Pan and Tang. We suggest algorithmic improvements with re-
spect to condition estimation, termination criteria, and Givens updating. By combining the block
algorithm with one of the triangular postprocessing steps, we arrive at an efficient and reliable
algorithm for computing an RRQR factorization of a dense matrix. Experimental results on IBM
RS/6000 and SGI R8000 platforms show that this approach performs up to three times faster
than the less reliable QR factorization with column pivoting as it is currently implemented in LA-
PACK, and comes within 15% of the performance of the LAPACK block algorithm for computing
a QR factorization without any column exchanges. Thus, we expect this routine to be useful in
many circumstances where numerical rank deficiency cannot be ruled out but currently has been
ignored because of the computational cost of dealing with it.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;

G.4 [Mathematical Software]

Additional Key Words and Phrases: rank-revealing orthogonal factorization, numerical rank, block
algorithm, QR factorization, least-squares systems

This work was supported by the Applied and Computational Mathematics Program, Advanced
Research Projects Agency, under contracts DM28E04120 and P-95006.

Bischof was also supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and Technology Research, U. S. Department of
Energy, under Contract W-31-109-Eng-38.

Quintana also received support through the European ESPRIT Project 9072-GEPPCOM and
the Spanish Research Agency CICYT under grant TIC-91-1157-C03-02. During part of this work,
Quintana was a research fellow of the Spanish Ministry of Education and Science of the Valencian
Government at the Universidad Politécnica de Valencia and a visiting scientist at the Mathematics
and Computer Science Division at Argonne National Laboratory.

1. INTRODUCTION

We briefly summarize the properties of a rank-revealing QR (RRQR) factorization.
Let A be an m x n matrix (w.l.o.g. m > n) with singular values

1200 2. 20,20, (1)

and define the numerical rank r of A with respect to a threshold 7 as follows:

o o
—1§T< L

Ty Or41
Also, let A have a QR factorization of the form
_ _ Ri1 R
AP_QR—Q< 0 RZZ), (2)

where P is a permutation matrix, ¢ has orthonormal columns, R is upper triangu-
lar, and Ry; is of order r. Further, let kK(A4) denote the two-norm condition number
of a matrix A. We then say that (2) is an RRQR factorization of A if the following
properties are satisfied:

K?(Rll) ~ 0'1/0'7- and ||R22||2 = Umax(RZZ) X Opq1- (3)

Whenever there is a well-determined gap in the singular-value spectrum between o,
and o,41, and hence the numerical rank r is well defined, the RRQR factorization
(2) reveals the numerical rank of A by having a well-conditioned leading submatrix
Ry1 and a trailing submatrix Ros of small norm. We also note that the matrix

pT (Ry Ry)
.y ;
which can be easily computed from (2), is usually a good approximation of the
nullvectors, and a few steps of subspace iteration suffice to compute nullvectors
that are correct to working precision [Chan and Hansen 1992].

The RRQR factorization is a valuable tool in numerical linear algebra because
it provides accurate information about rank and numerical nullspace. Its main
use arises in the solution of rank-deficient least-squares problems, for example,
in geodesy [Golub et al. 1986], computer-aided design [Grandine 1989], nonlinear
least-squares problems [Moré 1978], the solution of integral equations [Eldén and
Schreiber 1986], and the calculation of splines [Grandine 1987]. Other applications
arise in beam forming [Bischof and Shroff 1992], spectral estimation [Hsieh et al.
1991], and regularization [Hansen 1990; Hansen et al. 1992; Waldén 1991].

Stewart [1990] suggested another alternative to the singular value decomposition,
a complete orthogonal decomposition called URV decomposition. This factorization

decomposes
. Ri1 Ria T
A=U (0 Rzz) vV

where U and V are orthogonal and both ||Ry2||2 and ||Raz||2 are of the order o,y 1.
In particular, compared with RRQR. factorizations, URV decompositions employ a
general orthogonal matrix V instead of the permutation matrix P. URV decompo-
sitions are more expensive to compute, but they are well suited for nullspace updat-
ing. RRQR factorizations, on the other hand, are more suited for the least-squares

setting, since one need not store the orthogonal matrix V' (the other orthogonal
matrix is usually applied to the right-hand side “on the fly”). Of course, RRQR
factorizations can be used to compute an initial URV decomposition, where U = @}
and V = P.

We briefly review the history of RRQR algorithms. From the interlacing theorem
for singular values [Golub and Loan 1983, Corollary 8.3.3], we have

Omin(R(1:k,1:k)) <op(A) and opmap(RE+1:n,k+1:0)) > op41(A). (4)
Hence, to satisfy condition (3), we need to pursue two tasks:

Task 1. Find a permutation P that maximizes opmgn(R11).

Task 2. Find a permutation P that minimizes oy (Ra2).

Golub [1965] suggested what is commonly called the “QR factorization with column
pivoting.” Given a set of already selected columns, this algorithm chooses as the
next pivot column the one that is “farthest away” in the Euclidean norm from the
subspace spanned by the columns already chosen [Golub and Loan 1983, p.168,
P.6.4-5]. This intuitive strategy addresses task 1.

While this greedy algorithm is known to fail on the so-called Kahan matri-
ces [Golub and Loan 1989, p. 245, Example 5.5.1], it works well in practice and
forms the basis of the LINPACK [Dongarra et al. 1979] and LAPACK [Anderson
et al. 1992a; Anderson et al. 1994b] implementations. Recently, Quintana-Orti, Sun,
and Bischof [1995] developed an implementation of the Golub algorithm that allows
half of the work to be performed with BLAS-3 kernels. Bischof also had developed
restricted-pivoting variants of the Golub strategy to enable the use of BLAS-3 type
kernels [Bischof 1989] for almost all of the work and to reduce communication cost
on distributed-memory machines [Bischof 1991].

One approach to task 2 is based, in essence, on the following fact, which 1s proved
in [Chan and Hansen 1992].

LEMMA 1. For any R€ R™™*" and any W = (%1) € R™*? with a nonsingular
2

Wa € RP*P | we have
|R(n—p+1:n,n—p+ 1)l < [[RWI [|W5] (5)

This means that if we can determine a matrix W with p linearly independent
columns, all of which lie approximately in the nullspace of R (i.e., ||R W]||2 is small),
and if Ws is well conditioned such that (omin(W2))~! = ||W2_1||2 is not large, we
are guaranteed that the elements of the bottom right p x p block of R will be small.

Algorithms based on computing well-conditioned nullspace bases for A include
these by Golub, Klema, and Stewart [1976], Chan [1987], and Foster [1986]. Other
algorithms addressing task 2 are these by Stewart [1984] and Gragg and Stewart
[1976]. Algorithms addressing task 1 include those of Chan and Hansen [1994]
and Golub, Klema, and Stewart [1976]. In fact, the latter achieves both task 1 and
task 2 and, therefore, reveals the rank, but it is too expensive in comparison with
the others.

Bischof and Hansen combined a restricted-pivoting strategy with Chan’s algo-
rithm [Chan 1987] to arrive at an algorithm for sparse matrices [Bischof and Hansen

1991] and also developed a block variant of Chan’s algorithm [Bischof and Hansen
1992]. A Fortran 77 implementation of Chan’s algorithm was provided by Reichel
and Gragg [1990].

Chan’s algorithm [Chan 1987] guaranteed
o

n(n—i+1)27—¢

< Omin(R(1:4,1:4) <oy (6)

and

i < Omaz(R(E :n,i:n)) < ojy/nln—i+ 1)2"”. (7)

That is, as long as the rank of the matrix is close to n, the algorithm is guaranteed
to produce reliable bounds, but reliability may decrease with the rank of the matrix.

Hong and Pan [1992] then showed that there exists a permutation matrix P such
that for the triangular factor R partitioned as in (2), we have

|[Raall2 < org1 (A)pi(r,n) (8)

and
1
a(r) (9)

where p; and ps are low-order polynomials in n and » (versus an exponential factor
in Chan’s algorithm).

Chandrasekaran and Ipsen [1994] were the first to develop RRQR, algorithms that
satisfy (8) and (9). Their paper also reviews and provides a common framework
for the previously devised strategies. In particular, they introduce the so-called

Umin(Rll) Z Ty (A)

unification principle, which says that running a task-1 algorithm on the rows of the
inverse of the matrix yields a task-2 algorithm. They suggest hybrid algorithms that
alternate between task-1 and task-2 steps to refine the separation of the singular
values of R.

Pan and Tang [1992] and Gu and Eisenstat [1992] presented different classes of
algorithms for achieving (8) and (9), addressing the possibility of nontermination
of the algorithms because of floating-point inaccuracies.

The goal of our work was to develop an efficient and reliable RRQR algorithm
and implementation suitable for inclusion in a numerical library such as LAPACK.
Specifically, we wished to develop an implementation that was both reliable and
close in performance to the QR factorization without any pivoting. Such an imple-
mentation would provide algorithm developers with an efficient tool for addressing
potential numerical rank deficiency by minimizing the computational penalty for
addressing potentialrank deficiency. Our strategy involves the following ingredients:

—an efficient block algorithm for computing an approximate RRQR factorization,

based on the work by Bischof [1989], and

—efficient implementations of RRQR algorithms well suited for triangular matri-
ces, based on the work by Chandrasekaran and Ipsen [1994] and Pan and Tang
[1992]. These algorithms seemed better suited for triangular matrices than those
suggested by Gu and FEisenstat [1992].

We find that

1. P=1I;

2. foreach i €{1,..., n} do res; = ||a(:,7)|]2 end do
3. for ¢ =1 to min(m,n) do

4, Let ¢ < pvt < n be such that respyt is maximal
5. P(:,3) < P(:,pvt); a(s,1) < a(:,put); respor := res; ;
6. [ui,a(i:m,1)] := genhh(a(i:m ,i));

7. a(i:m,i+1:n) = apphh(u; ,a(i:m,i+1:n));

8. foreach j € {i+1,...,n} do

9. TES; = 4 /7’653 —a(?,7)?%;

10. end foreach

11. end for

Fig. 1. The QR Factorization Algorithm with Traditional Column Pivoting

—in most cases the approximate RRQR. factorization computed by the block algo-
rithm is very close to the desired RRQR factorization, requiring little postpro-
cessing, and

—the almost entirely BLAS-3 preprocessing algorithm performs considerably faster
than the QR factorization with column pivoting and close to the performance of
the QR factorization without pivoting.

The paper is structured as follows. In the next section, we review the block
algorithm for computing an approximate RRQR factorization based on a restricted-
pivoting approach. In Section 3, we describe our modifications to Chandrasekaran
and Ipsen’s “Hybrid-II1" algorithm and Pan and Tang’s “Algorithm 3.” Section 4
presents our experimental results on IBM RS/6000 and SGI R8000 platforms. In
Section b, we summarize our results.

2. A BLOCK QR FACTORIZATION WITH RESTRICTED PIVOTING

In this section, we describe a block QR factorization algorithm that employs a
restricted pivoting strategy to approximately compute an RRQR. factorization, em-
ploying the ideas described by Bischof [1989].

We compute @ by a sequence of Householder matrices
H=Hu)=T-2uu” ||ul|, = 1. (10)

For any given vector #, we can choose a vector u so that i (u)x = aey, where €7 is
the first canonical unit vector and | o | = |||z (see, for example, [Golub and Loan
1989, p. 196]). The application of a Householder matrix B := H(u)A involves a
matrix-vector product z := AT u and a rank-one update B := 4 — 2uz7T.

Figure 1 describes the Golub Householder QR factorization algorithm with tra-
ditional column pivoting [Golub 1965] for computing the QR decomposition of an
m x n matrix A. The primitive operation [u, y] := genhh(x) computes u such that
y = H(w)z is a multiple of €1, while the primitive operation B := apphh(u, A)
overwrites B with H(u)A.

After step ¢ is completed, the values res;, 7 = ¢4 1,...,n are the length of the
projections of the jth column of the currently permuted AP onto the orthogonal
complement of the subspace spanned by the first ¢ columns of AP. The values res;
can be updated easily and do not have to be recomputed at every step, although

N

[FlH

1N

AN

Fig. 2. Restricting Pivoting for a Block Algorithm

roundoff errors may make it necessary to recompute res; = ||(a(?:m,))||2,J =
i+1,... n periodically [Dongarra et al. 1979, p. 9.17] (we suppressed this detail
in line 9 of Figure 1).

The bulk of the computational work in this algorithm is performed in the apphh ker-
nel, which relies on matrix-vector operations. However, on today’s cache-based
architectures (ranging from workstations to supercomputers) matrix-matrix op-
erations perform much better. Matrix-matrix operations are exploited by using
so-called block algorithms, whose top-level unit of computation is matrix blocks
instead of vectors. Such algorithms play a central role, for example, in the LA-
PACK implementations [Anderson et al. 1992a; Anderson et al. 1994b]. LAPACK
employs the so-called compact WY representation of products of Householder ma-
trices [Schreiber and Van Loan 1989], which expresses the product

Q=H,---Hy
of a series of m x m Householder matrices (10) as
Q=1+YTYT", (11)

where Y 1s an m x nb matrix and 7T is an nb x nb upper triangular matrix. Stable
implementations for generating Householder vectors as well as forming and applying
compact WY factors are provided in LAPACK.

To arrive at a block QR factorization algorithm, we would like to avoid updating
part of A until several Householder transformations have been computed. This
strategy is impossible with traditional pivoting, since we must update res; before
we can choose the next pivot column. While we can modify the traditional approach
to do half of the work using block transformations, this is the best we can do (these
issues are discussed in detail in [Quintana-Orti et al. 1995]). Therefore, we instead
limit the scope of pivoting as suggested in [Bischof 1989]. Thus, we do not have
to update the remaining columns until we have computed enough Householder
transformations to make a block update worthwhile.

The idea 1s graphically depicted in Figure 2. At a given stage we are done with
the columns to the left of the pivot window. We then try to select the next pivot
columns exclusively from the columns in the pivot window, not touching the part of
A to the right of the pivot window. Only when we have combined the Householder
vectors defined by the next batch of pivot columns into a compact WY factor do
we apply this block update to the columns on the right.

Since the leading block of R is supposed to approximate the large singular values

of A, we must be able to guard against pivot columns that are close to the span
of columns already selected. That is, given the upper triangular matrix R; defined

by the first 4 columns of QT AP and a new column Y} determined by the new

candidate pivot column, we must determine whether

R; v

has a condition number that is larger than a threshold 7, which defines what we
consider a rank-deficient matrix.
We approximate

Tinas (Rigt) % B (Reg) = n¥ max [1R(L: k. k), (12)

which is easy to compute. To cheaply estimate o (Riq1), we employ incremental
condition estimation (ICE) [Bischof 1990; Bischof and Tang 1991]. Given a good
estimate Gpmn(R;) = 1/]|z]|2 defined by a large norm solution = to R = = d , [|d||2 =

1 and a new column f; , incremental condition estimation, with only 3% flops,

computes s and ¢, s2 4+ ¢ = 1, such that

in(Rit1) % (i) = 117 o (13)

A stable implementation of ICE based on the formulation in [Bischof and Tang
1991] is provided by the LAPACK routine xLAIC1.? ICE is an order of magnitude
cheaper than other condition estimators (see, for example, [Higham 1986]). More-
over, it is considerably more reliable than simply using | v | as an estimate for
Tmin(Rit1) (see, for example, [Bischof 1991]). We also define

3max(Ri)

The restricted block pivoting algorithm proceeds in four phases:

R(R;) = (14)

Phase 1: Pivoting of largest column into first position. This phase 1s motivated
by the fact that the norm of the largest column of A is usually a good estimate for
0'1(14).

Phase 2: Block QR factorization with restricted pivoting. Given a desired block
size nb and a window size ws, ws > nb, we try to generate nb Householder transfor-
mations by applying the Golub pivoting strategy only to the columns in the pivot
window, using ICE to assess the impact of a column selection on the condition
number. When the pivot column chosen from the pivot window would lead to a
leading triangular factor whose condition number exceeds 7, we mark all remaining
columns in the pivot window (k, say) as “rejected,” pivot them to the end of the
matrix, generate a block transformation (of width not more than nb), apply it to
the remainder of the matrix, and then reposition the pivot window to encompass

1Here as in the sequel we use the convention that the prefix “x” generically refers to the appropriate

one of the four different precision instantiations: SLAIC1, DLAIC1, CLAIC1, or ZLAIC1.

the next ws not-yet-rejected columns. When all columns have been either accepted
as part of the leading triangular factor or rejected at some stage of the algorithm,
this phase stops.

Assuming we have included s columns in the leading triangular factor, we have
at this point computed an rs x 75 upper triangular matrix R,, = R(1 : ra, 1 : r3)
that satisfies

R(R,,) <. (15)

That is, 75 1s our estimate of the numerical rank with respect to the threshold 7 at
this point.
In our experiments, we chose

b
ws = nb + max{10, % +0.05n}. (16)

This choice tries to ensure a suitable pivot window and “loosens up” a bit as the
matrix size increases. A pivot window that is too large will reduce performance
because of the overhead in generating block orthogonal transformations and the
larger number of unblocked operations. On the other hand, a pivot window that is
too small will reduce the pivoting flexibility and thus increase the likelihood that
the restricted pivoting strategy will fail to produce a good approximate RRQR
factorization. In our experiments, the choice of w had only a small impact (not
more than 5%) on overall performance and negligible impact on the numerical
behavior.

Phase 3: Traditional pivoting strateqy among “rejected” columns. Since phase 2
rejects all remaining columns in the pivot window when the pivot candidate is
rejected, a column may have been pivoted to the end that should not have been
rejected. Hence, we now continue with the traditional Golub pivoting strategy on
the remaining n—ry columns, updating (14) as an estimate of the condition number.
This phase ends at column rs3, say, where

K(Ryy) <1, (17)

and the inclusion of the next pivot column would have pushed the condition number
beyond the threshold. We do not expect many columns (if any) to be selected in
this phase. It is mainly intended as a cheap safeguard against possible failure of
the initial restricted-pivoting strategy.

Phase 4: Block QR factorization without pivoting on remaining columns. The
columns not yet factored (columns rz+ 1 : n) are with great probability linearly
dependent on the previous ones, since they have been rejected in both phase 2
and phase 3. Hence, it is unlikely that any kind of column exchanges among the
remaining columns would change our rank estimate, and the standard BLAS-3
block QR factorization as implemented in the LAPACK routine xGEQRF is the
fastest way to complete the triangularization.

After the completion of phase 4, we have computed a QR factorization that
satisfies

K(Ry,) <1,

and for any column y in R(:,r3+ 1 : n) we have

E((Rga),y)>r.

This result suggests that this QR factorization is a good approximation to an RRQR
factorization and r3 1s a good estimate of the rank.

However, this QR factorization does not guarantee to reveal the numerical rank
correctly. Thus, we back up this algorithm with the guaranteed reliable RRQR
implementations introduced in the next two sections.

3. POSTPROCESSING ALGORITHMS FOR AN APPROXIMATE RRQR FACTOR-
IZATION

In 1991, Chandrasekaran and Ipsen [1994] introduced a unified framework for
RRQR algorithms and developed an algorithm guaranteed to satisfy (8) and (9)
and thus to properly reveal the rank. Their algorithm assumes that the initial ma-
trix is triangular and thus is well suited as a postprocessing step to the algorithm
presented in the preceding section. Shortly thereafter, Pan and Tang [1992] intro-
duced another guaranteed reliable RRQR algorithm for triangular matrices. In the
following subsections, we describe our improvements and implementations of these
algorithms.

3.1 The RRQR Algorithm by Pan and Tang

We implement a variant of what Pan and Tang [1992] call “Algorithm 3.” Pseu-
docode for our algorithm is shown in Figure 3. It assumes as input an upper
triangular matrix R. TI¥(4,5),7i < j, denotes a right cyclic permutation that ex-
changes columns ¢ and 7, in other words, ¢ — ¢+ 1,...,5 — 1 — j,j — ¢, whereas
Hﬁj,i < j denotes a left cyclic permutation that exchanges columns ¢ and j, in
other words, j — ¢,i — ¢+ 1,...,j— 1 — j. In the algorithm, triu(A) denotes
the upper triangular factor R in a QR factorization A = QR of A. As can be seen
from Figure 3, we use this notation as shorthand for retriangularizations of R after
column exchanges.

Given a value for k, and a so-called f-factor 0 < f < 1/v/k + 1, the algorithm is

guaranteed to halt and produce a triangular factorization that satisfies

| P
Umln(Rll) > \/m k(A) (18)
Omax(L22) < (k+ 11,)(71 =) or1(A). (19)

Our implementation incorporates the following features:

(1) Incremental condition estimation is used to arrive at estimates for smallest
singular values and vectors. Thus, ¢ (line 5) and v (line 9) of Figure 3 can be
computed inexpensively from u (line 2). The use of ICE significantly reduces
implementation cost.

(2) The QR factorization update (line 4) must be performed only when the if-test
(line 6) is false. Thus, we delay it if possible.

10

Algorithm PT3M({ k)

1. 1 = k 4+ 1; acceptedcol = 0; I = I;

2. u := left singular vector corresponding to omin(R(1:k,1:k))
3. while (acceptedcol < n —k) do
4 R := triu(R~HkR+17i) ;I =11 HkR+1,i
5. Compute ¢ & omin(R(1:k + 1,1:k + 1))
6. if(c>f-|R(k+1,k+1)|) then
7

8

accepted_col := accepted_col + 1;

else
9. v := right singular vector corresponding to ¢
10. Find index ¢, 1 < ¢ < k 4+ 1, such that: |vq| = max; |v;|
11. R := trin(R - H§7k+1) ;I =11 H§7k+1; accepted_col = 0;
12. u := left singular vector corresponding to omin (R(1:k,1: k))
13. end if

14. if ({ ==n) theni:=k+1lelsei:=7+1endif
15. end while

Fig. 3. Variant of Pan/Tang RRQR Algorithm

(3) For the algorithm to terminate, all columns need to be checked, and no new

permutations must occur. In Pan and Tang’s algorithm, rechecking of columns
after a permutation always starts at column k& + 1. We instead begin checking
at the column right after the one that just caused a permutation. Thus, we
first concentrate on the columns that have not just been “worked over.”

(4) The left cyclic shift permutes the triangular matrix into an upper Hessenberg

3

form, which is then retriangularized with Givens rotations. Applying Givens
rotations to rows of R in the obvious fashion (as done, for example, in [Rei-
chel and Gragg 1990]) is expensive in terms of data movement, because of the
column-oriented nature of Fortran data layout. Thus, we apply Givens rotations
in an aggregated fashion, updating matrix strips (R(1 : jb,(j — 1)b+ 1 : jb)) of
width & with all previously computed Givens rotations.

Similarly, the right cyclic shift introduces a “spike” in column j, which is elim-
inated with Givens rotations in a bottom-up fashion. To aggregate Givens
rotations, we first compute all rotations only touching the “spike” and the di-
agonal of R, and then apply all of them one block column at a time. In our
experiments, we choose the width b of the matrix strips to be the same as the
blocksize nb of the preprocessing.

Compared with a straightforward implementation of Pan and Tang’s “Algorithm

> improvements (1) through (3) on average decreased runtime by a factor of five on

200 x 200 matrices on an Alliant FX/80. When retriangularizations were frequent,
improvement (4) had the most noticeable impact, resulting in a twofold to fourfold
performance gain on matrices of order 500 and 1000 on an IBM RS/6000-370.

Pan and Tang introduced the f-factor to prevent cycling of the algorithm. The

higher f is, the tighter are the bounds in (18) and (19), and the better the approx-
imations to the k& and k + 1st singular values of R. However, if f is too large, it
introduces more column exchanges and therefore more iterations; and, because of
round-off errors, it might present convergence problems. We used f = 0.9/v/k + 1

11

Algorithm Hybrid-ITI-sf(f k)
1.11=1

2. repeat

3 Golub-I-sf(f k)

4 Golub-I-sf(f k+1)

5. Chan-IT-sf(f,k+1)

6
7.

Chan-II-sf(f k)

until none of the four subalgorithms modified the column ordering

Fig. 4. Variant of Chandrasekaran/Ipsen Hybrid-III algorithm

Algorithm Golub-I-sf(f k)

1. Find smallest index j, k£ < j < n, such that
2. (IR(k:4,5)l2 = maxk<icn [|R(k: 4, 7)||2
5.t 5 R (K,)ll2 >| ROEF) | then
4

5

|

R:=triu(R - IL7) I e= 1T I
. end if

Fig. 5. “f-factor” Variant of Golub-I Algorithm

in our work.

3.2 The RRQR Algorithm by Chandrasekaran and Ipsen

Chandrasekaran and Ipsen introduced algorithms that achieve bounds (18) and (19)
with f = 1. We implemented a variant of the so-called Hybrid-TII algorithm,
pseudocode for which is shown in Figures 4-6.

Compared with the original Hybrid-III algorithm, our implementation incorpo-
rates the following features:

(1)

(2)

We employ the Chan-11 strategy (an O(n?) algorithm) instead of the so-called
Stewart-1I strategy (an O(n®) algorithm because of the need for the inversion of
R(1:k,1:k)) that Ipsen and Chandrasekaran employed in their experiments.

The original Hybrid-III algorithm contained two subloops, with the first one
looping over Golub-I(k) and Chan-TI(k) till convergence, the second one looping
over Golub-TI(k+1) and Chan-TI(k+1). We present a different loop ordering in
our variant, one that is simpler and seems to enhance convergence. On matrices
that required considerable postprocessing, the new loop ordering required about
7% fewer steps for 1000 x 1000 matrices (one step being a call to Golub-T or
Chan-IT) than Chandrasekaran and Ipsen’s original algorithm. In addition, the

Algorithm Chan-II-sf(k)
1. v := right singular vector corresponding to omin(R(1:k,1: k)).

2. Find largest index j, 1 < j < k, such that: |v;| = max; <;<p [v]
3. if f-|vs| > |vg| then

4. R:=triu(R 107, ;1= 11117,

5. end if

Fig. 6. “f-factor” Variant of Chan-II Algorithm

12

new ordering speeds detection of convergence, as shown below.

(3) Asinour implementation of the Pan/Tang algorithm, we use ICE for estimating
singular values and vectors, and the efficient “aggregated” Givens scheme for
the retriangularizations.

(4) We employ a generalization of the f-factor technique to guarantee termination
in the presence of rounding errors. The pivoting method assigns to every col-
umn a “weight,” namely, | R(k: 4, %)||2 in Golub-I(k) and v; in Chan-TI(k), where
v is the right singular vector corresponding to the smallest singular value of
R(1:k,1: k). To ensure termination, Chandrasekaran and Ipsen suggested piv-
oting a column only when its weight exceeded that of the current column by
at least nZ¢, where ¢ is the computer precision; they did not analyze the im-
pact of this change on the bounds obtained by the algorithm. In contrast, we
use a multiplicative tolerance factor f like that of Pan and Tang; the analysis
in [Quintana-Orti and Quintana-Orti 1996] proves that our algorithm achieves
the bounds

. —f2 o an
Omin(R11) > \/m #(A), and (20)
Omax(Ra22) < (k+ }g(n — k) ort1(A) . (21)

These bounds are identical to (18) and (19), except that an f? instead of an
f enters into the equation and that now 0 < f < 1. We used f = 0.5 in our
implementation.

We claimed before that the new loop ordering can avoid unnecessary steps when
the algorithm is about to terminate. To illustrate, we apply Chandrasekaran and
Ipsen’s original ordering to a matrix that almost reveals the rank:

1. Golub-I(k) Final permutation occurs here.
Now the rank 1s revealed.

2. Chan-TI(k)

3. Golub-I(k) Another iteration of inner k-loop
since permutation occurred.

4. Chan-TI(k)

5. Golub-I(k+1) TInner loop for k + 1

6. Chan-TI(k+1)

7. Golub-I(k) Another iteration of the main loop
since permutation occurred in last pass.

8. Chan-TI(k)

9. Golub-T(k+1)

10. Chan-TI(k+1) Termination

In contrast, the Hybrid-ITI-sf algorithm terminates in four steps:

13

Algorithm RRQR(f k)

repeat
call Hybrid-IILsf(f,k) or PT3M(f,k)
o= r(R(1:k,1: k))
8 :=r(R(1:k+1,1:k+1))
if((a<7)and (8> 7)) then

rank := k; stop

elseif ((a <7)and (8 <7))then

kE=k+1

elseif ((a>7)and (3> 7)))then
ki=k-1

end if

Fig. 7. Algorithm for Computing Rank-Revealing QR Factorization

1. Golub-I-sf(k) Final permutation
2. Golub-T-sf(k+1)

3. Chan-II-sf(k+1)

4. Chan-TI-sf(k) Termination

3.3 Determining the Numerical Rank

As Stewart [1993] pointed out, both the Chandrasekaran/Ipsen and Pan/Tang al-
gorithms, as well as our versions of those algorithms, do not reveal the rank of
a matrix per se. Rather, given an integer k, they compute tight estimates for
or(A) = omin(R(1: k,1: k) and op41(A) & omax(R(k + Lin, k + 1:n)).

To obtain the numerical rank with respect to a given threshold 7, given an initial
estimate for the rank (as provided, for example, by the algorithm described in Sec-
tion 2), we employ the algorithm shown in Figure 7. In our actual implementation,
a and § are computed in Hybrid-I1I-sf or PT3M.

4. EXPERIMENTAL RESULTS

We report in this section experimental results with the double-precision imple-
mentations of the algorithms presented in the preceding section. We consider the
following codes:

DGEQPF. The implementation of the QR factorization with column pivoting
provided in LAPACK.

DGEQPB. An implementation of the “windowed” QR factorization scheme de-
scribed in Section 2.

DGEQPX. DGEQPB followed by an implementation of the variant of the Chan-
drasekaran/Ipsen algorithm described in Subsections 3.2 and 3.3.

DGEQPY. DGEQPB followed by an implementation of the variant of the
Pan/Tang algorithm described in Subsections 3.1 and 3.3.

DGEQRF. The block QR factorization without any pivoting provided in LA-
PACK.

In the implementation of our algorithms, we make heavy use of available LA-
PACK infrastructure. The code used in our experiments, including test and timing

14

drivers and test matrix generators, is available as rrqr.tar.gz in pub/prism on
ftp.super.org.

We tested matrices of size 100, 150, 250,500, and 1000 on an IBM RS/6000 Model
370 and SGI R8000. In each case, we employed the vendor-supplied BLAS in the
ESSL and SGIMATH libraries, respectively.

4.1 Numerical Reliability

We employed 18 different matrix types to test the algorithms, with various singular
value distributions and numerical rank ranging from 3 to full rank. Details of the
test matrix generation are beyond the scope of this paper, and we give only a brief
synopsis here. For details, the reader is referred to the code.

Test matrices 1 through 5 were designed to exercise column pivoting. Matrix
6 was designed to test the behavior of the condition estimation in the presence
of clusters for the smallest singular value. For the other cases, we employed the
LAPACK matrix generator xLATMS, which generates random symmetric matrices by
multiplying a diagonal matrix with prescribed singular values by random orthogonal
matrices from the left and right. For the breakl distribution, all singular values are
1.0 except for one. In the arithmetic and geometric distributions, they decay from
1.0 to a specified smallest singular value in an arithmetic and geometric fashion,
respectively. In the “reversed” distributions, the order of the diagonal entries was
reversed. For test cases 7 though 12; we used xLATMS to generate a matrix of
order 3 + 1 with smallest singular value 5.0e-4, and then interspersed random
linear combinations of these “full-rank” columns to pad the matrix to order n. For
test cases 13 through 18, we used xLATMS to generate matrices of order n with the
smallest singular value being 2.0e-7. We believe this set to be representative of
matrices that can be encountered in practice.

We report in this section on results for matrices of size n = 1000, noting that
identical qualitative behavior was observed for smaller matrix sizes. We decided
to report on the largest matrix sizes because the possibility for failure in general
increases with the number of numerical steps involved. Numerical results obtained
on the three platforms agreed to machine precision. For this case; we list in Table 1
the numerical rank r with respect to a condition threshold of 7 = 10°, the largest
singular value 0,4z, the r-th singular value o, the (r 4+ 1)st singular value o,41,
and the smallest singular value o, for our test cases.

Figures 8 and 9 display the ratio

_ (o1/or)
0:= A (22)

where K(R) as defined in (14) is the computed estimate of the condition number of
R after DGEQPB (Figure 8) and DGEQPX and DGEQPY (Figure 9). Thus, ©
is the ratio between the ideal condition number and the estimate of the condition
number of the leading triangular factor identified in the RRQR factorization. If this
ratio is close to 1, and kK is a good condition estimate, our RRQR. factorizations
do a good job of capturing the “large” singular values of A. Since the pivoting
strategy (and hence the numerical behavior of DGEQPB) is potentially affected by
the block size chosen, Figures 8 and 9 contain seven panels, each of which shows
the results obtained with the 18 test matrices and a block size ranging from 1 to

15

Table 1. Test Matrix Types (r = rank for n = 1000)

| | Description | T | Omax oy | Ortl Omin
1 | Matrix with rank ™20%1) _ o 499 | 1.0e0 | 1.0e0 [2.0e-7 | 1.2¢-19
A(:,2 : min(m, n)) has full rank
2 'R(A) _ 'R(A(:,Z : min(m, n))) 999 1.0e0 | 5.0e-4 6.7e-19 | 6.7e-19
3 | Full rank 1000 1.0e0 | 5.0e-4 5.0e-4 5.0e-4
g | Al 1:3) small in norm 997 | 2.9e+1 | 5.0e-4 | 2.4e4 | 4.2¢5
A(:,4 : n) of full rank))))
A(:,1:3) small in norm
5 'R(A) _ 'R(A(:,l : 3)) 3 1.0e0 | 5.0e-4 5.5e-14 | 7.6e-21
6 | 5 smallest sing. values clustered | 1000 1.0e0 | 7.0e-4 | T.0e-4-3 7.0e-4
7 | Breakl distribution 501 1.0e0 | 5.0e-4 1.7e-15 | 1.0e-26
8 | Reversed breakl distribution 501 1.0e0 | 5.0e-4 1.7e-15 | 1.2e-27
9 | Geometric distribution 501 1.0e0 | 5.0e-4 3.3e-16 | 1.9e-35
10 | Reversed geometric distribution 501 1.0e0 | 5.0e-4 | 3.2e-16 | 5.4e-35
11 | Arithmetic distribution 501 1.0e0 | 5.0e-4 9.7e-16 | 1.4e-34
12 | Reversed arithmetic distribution 501 1.0e0 | 5.0e-4 9.7e-16 | 1.2e-34
13 | Breakl distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-7
14 | Reversed breakl distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-7
15 | Geometric distribution 746 1.0e0 | 5.0e-5 9.9e-6 2.0e-7
16 | Reversed geometric distribution 746 1.0e0 | 5.0e-5 9.9¢-6 2.0e-7
17 | Arithmetic distribution 999 1.0e0 | 1.0e-1 2.0e-7 2.0e-7
18 | Reversed arithmetic distribution 999 1.0e0 | 1.0e-1 2.0e-7 2.0e-7

24 (shown in the top of each panel).

We see that except for matrix type 1 in Figure 8, the block size does not play
much of a rule numerically, although close inspection reveals subtle variations in
both Figure 8 and 9. With block size 1, DGEQPB just becomes the standard Golub
pivoting strategy. Thus, the first panel in Figure 8 corroborates the experimentally
robust behavior of this algorithm. We also see that except for matrix type 1, the
restricted pivoting strategy employed in DGEQPB does not have much impact on
numerical behavior. For matrix type 1, however, it performs much worse. Matrix 1
is constructed by generating % — 1 independent columns and generating the leading

5 + 1 as random linear combinations of those columns, scaled by 6%, where € 1s the
machine precision. Thus, the restricted pivoting strategy, in its myopic view of the
matrix, gets stuck (so to speak) in these columns.

The postprocessing of these approximate RRQR factorizations, on the other
hand, remedies potential shortcomings in the preprocessing step. As can be seen
from Figure 9, the inaccurate factorization of matrix 1 is corrected, while the other
(in essence correct) factorizations get improved only slightly. Except for small
variations, DGEQPX and DGEQPY deliver identical results.

We also computed the exact condition number of the leading triangular subma-
trices identified in the triangularizations by DGEQPB, DGEQPX, and DGEQPY,
and compared it with our condition estimate. Figure 10 shows the ratio of the ex-
act condition number to the estimated condition number of the leading triangular

16

_ - — 1| -
*0U~puod pajyewnss / ‘ou”puod fewndo

A
o

10°L
10°

80 100 120
Tests

60

40

Ratio between Optimal and Estimated Condition Number for DGEQPB

Fig. 8.

< s
N _ =
\\\\\\\\\\\\\\\\\\\\\\\\\\\ ~
F 9 ==K __ i
N D
e -
\\\\\\\\\\\\\\\\\\\\\\\\\\ R
© = _ _
Fooo it 4
™ b
- lYl\Y\V‘J
© Yf\\’\\l.\lt
=== e
o T
¢HA.1
N D bttt S S
-~ Xz
= T T T oo [odNe]
1 . , !
o] B @
(=) o o) o
— — — =

10"

‘OuU” puod parewns3 / ‘ou” puod [ewndo

60 80 100 120
Tests

40

20

Ratio between Optimal and Estimated Condition Number for DGEQPX (solid line) and

DGEQPY (dashed)

Fig. 9.

17

10"
1 5 8 12 16 20 24
g »
| ’ A Hi A
5 il i A 2 . - A
I | b] \
g ol A A e A A
810{ T ‘\'\ EAN f')r‘i':i\/i A :wl‘,‘ J“’l“\” /,‘r'ﬂ‘u T
SR R YRR RN R TR R AT ’,m’»f“
g \“3“‘W‘]“"J‘\H\f!‘“\!w“‘ilh‘a'niy‘“‘\\,“
I A T T R R A TR SR VT B
a I N T Pl W Ly
il [I N I O T
= I AR BT T T BRI W i
3 [T T A T T T T w oo il
5 by i i \JJ I T TR ‘! T
10t u b U I lj 1] d
o
c
8 QPB
g
g QPX
QPY
-2 L L L L L L
10 20 40 60 80 100 120

Tests

Fig. 10. Ratio between Exact and Estimated Condition Number of Leading Triangular Factor
for DGEQPB (dashed), DGEQPX (dashed-dotted), and DGEQPY (dotted)

factor. We observe excellent agreement, within an order of magnitude in all cases.

Hence, the “spikes” for test matrices 13 and 14 in Figures 8 and 9 are not due
to errors in our estimators. Rather, they show that all algorithms have difficulties
when confronted with dense clusters of singular values. We also note that in this
context, the notion of rank is numerically ill defined, since there is no sensible place
to draw the line. The “rank” derived via the SVD is 746 in both cases, and our
algorithms deliver estimates between 680 and 710, with minimal changes in the
condition number of their corresponding leading triangular factors.

In summary, these results show that DGEQPX and DGEQPY are reliable al-
gorithms for revealing numerical rank. They produce RRQR factorizations whose
leading triangular factors accurately capture the desired part of the spectrum of A,
and thus reliable and numerically sensible rank estimates. Thus, the RRQR fac-
torization takes advantage of the efficiency and simplicity of the QR factorization,
yet 1t produces information that is almost as reliable as that computed by means
of the more expensive singular value decomposition.

4.2 Computing Performance

In this section we report on the performance of the LAPACK codes DGEQPF and
DGEQRF as well as the new DGEQPB, DGEQPX, and DGEQPY codes. For these
codes, as well as all others presented in this section, the Mflop rate was obtained by
dividing the number of operations required for the unblocked version of DGEQRF
by the runtime. This normalized Mflop rate readily allows for timing comparisons.
We report on matrix sizes 100, 250, 500, and 1000, using block sizes (nb) of 1, 5,
8, 12, 16, 20, and 24.

Figures 11 and 12 show the Mflop performance (averaged over the 18 matrix

18

n = 100 n = 250
50 T T 65 T

a5

Performance (in Mflops)
) IN
a o

Performance (in Mflops)

(%]
]

25

20 " " 25 " "
o 10 20 30 o 10 20 30

Block size Block size

n = 500 n = 1000
75 T T 75 T T

70

o)
Y

o)

]
o]
]

[0 9]
] 4

Performance (in Mflops)

Ny

a

Performance (in Mflops)
a
a

[0
]

Iy

e}
N
a

5

a
IN
0

W
]

()
a

10 20 30 (o] i0 20 30
Block size Block size

Fig. 11. Performance versus Block Size on IBM RS/6000-370: DGEQPF (---), DGEQRF (—),
DGEQPB (- -), DGEQPX (--x), DGEQPY (-—+)

types) versus block size on the IBM and SGI platforms. The dotted line denotes
the performance of DGEQPF, the solid one that of DGEQRF and the dashed one that
of DGEQPB; the x and + symbols indicate DGEQPX and DGEQPY, respectively.

On all three machines, the performance of the two new algorithms for computing
RRQR is robust with respect to variations in the block size. The two new block
algorithms for computing RRQR. factorization are, except for small matrices on the
SGI, faster than LAPACK’s DGEQPF for all matrix sizes. We note that the SGI
has a data cache of 4 MB, while the IBM platform has only a 32 KB data cache.
Thus, matrices up to order 500 fit into the SGI cache, but matrices of order 1000 do
not. Therefore, for matrices of size 500 or less, we observe limited benefits from the
better inherent data locality of the BLAS 3 implementation on this computer. These
results also show that DGEQPX and DGEQPY exhibit comparable performance.

Figures 13 through 14 offer a closer look at the performance of the various test

n = 100 n = 250
100 T T 160 T T
150 1
90 B
140 4
80 1
= g 1zo(1
=2 =
= L i =
= 70 = 120} 4
@ ey
3 =1
s S 110} E
£ 60 4 g
= E= P
S S
a a 100 */ b
50 1 ,
e — WK — s 90 /o _skEioim oo ox B
4 T e / ;k/ >
* _ - K
40 R - 7 - J
TP e S =R 80 < e i
¥ xX— =
30 . : 70 : :
(o] 20 30 (o] i0 20 30
Block size Block size
n = 500
190 T T 180
180 1
160 1
170 b
160 i 140 A
))
= =3
= 150 =
= B =
= = 120 1
4 140 B I
= 2
< <
5 £ 100 |
S 130 4 £
S S
a a-
120 1 80 4
110 b
100 <~ 4
=~
90 . : a0 : :
(o] 10 20 30 (o] i0 20 30
Block size Block size

Fig. 12. Performance versus Block Size on SGI R8000: DGEQPF (.-.), DGEQRF (—), DGE-
QPB (- -), DGEQPX (--x), DGEQPY (---+)

20

60 B
N
50F ,,;\77//x\P>77,,\;77’4,,,,77_;7777 B
- X X X + + T+
2 x x * t++%ﬁ%ﬁi+;x++xx
£ X,
=
E40r X X]
[
o
=4
[
£
230 1
[
a
201 b
%
10 b
|
0 2 4 6 8 10 12 14 16 18
Matrix type

Fig. 13. Performance versus Matrix Type on an IBM RS/6000-370 for n = 250 and nb = 16:
DGEQPF (---), DGEQRF (—), DGEQPB (- -), DGEQPX (x), DGEQPY (+)

matrices. We chose nb = 16 and n = 250 as a representative example. Similar
behavior was observed in the other cases.

We see that on the IBM platforms (Figure 13), the performance of DGEQRF
and DGEQPF does not depend on the matrix type. We also see that, except for
matrix types 1, 5, 15, and 16, the postprocessing of the initial approximate RRQR
factorization takes very little time, with DGEQPX and DGEQPY performing sim-
ilarly. For matrix type 1, considerable work is required to improve the initial QR
factorization. For matrix types 5 and 15, the performances of DGEQPX and DGE-
QPY differ noticeably on the IBM platform, but there is no clear winner. We also
note that matrix type 5 is suitable for DGEQPB, since the independent columns
are up front and thus are revealed quickly, and the rest of the matrix is factored
with DGEQRF.

The SGI platform (Figure 14) offers a different picture. The performance of all
algorithms shows more dependence on the matrix type, and DGEQPB performs
worse on matrix type 5 than on all others. Nonetheless, except for matrix 1,
DGEQPX and DGEQPY do not require much postprocessing effort.

The pictures for other matrix sizes are similar. The cost for DGEQPX and
DGEQPY decreases as the matrix size increases, except for matrix type 1, where it
increases as expected. We also note that Figures 11 and 12 would have looked even
more favorable for our algorithm had we omitted matrix 1 or chosen the median
(instead of the average) performance.

Figure 15 shows the percentage of the actual amount of flops spent in monitoring
the rank in DGEQPB and in postprocessing the initial QR factorization for different
matrix sizes on the IBM RS/6000. We show only matrix types 2 through 18, since
the behavior of matrix type 1 is rather different: in this special case, roughly

21

T T T T T T T T T
ol ///Aggggﬁ\\\///\\\»4444_44444_AAAAJ///AAAAAAAA*AA_Aggi |
1201 b

S + % T %\ /t+ + + + o+

= X / \ X X X

S 100+ X \\ , N // B

E NG N e

3 / X X X X XX

é 80- % + o+ X X o+ o+ 4

g ¥

e
60 b
40 1

+
20- X b
I I I I I I I I I
0 2 4 6 8 10 12 14 16 18
Matrix type

Fig. 14. Performance versus Matrix Type on an SGI R8000 for n = 250 and nb = 16: DGEQPF
(--+), DGEQRF (—), DGEQPB (- -), DGEQPX (x), DGEQPY (+4)

DGEQPX DGEQPY

% in flops of pivoting
% in flops of pivating

5 10 15 5 10 is
Matrix type Matrix type

Fig. 15. Cost of Pivoting (in % of flops) versus Matrix Types of Algorithms DGEQPX and DGEQPY
on an IBM RS/6000-370 for Matrix Sizes 100 (+), 250 (x), 500 (*) and 1000 (o).

50% of the overall flops is expended in the postprocessing. Note that the actual
performance penalty due to these operations is, while small, still considerably higher
than the flop count suggests. This is not surprising given the relatively fine-grained
nature of the condition estimation and postprocessing operations.

One may wonder whether the use of DGEQRF to compute the initial QR factor-
ization would lead to better results, since DGEQRF is the fastest QR factorization

22

algorithm. This is not the case, since DGEQRF does not provide any rank pre-
ordering, and thus performance gains from DGEQRF are annihilated in the post-
processing steps. For example, for matrices of order 250 on an IBM RS/6000-370,
the average Mflop rate, excluding matrix b, was 4.5, with a standard deviation of
1.4. The percentage of flops spent in postprocessing in these cases was on average
76.8%, with a standard deviation of 6.7. For matrix 5, we are lucky, since the
matrix is of low rank and all independent columns are at the front of the matrix.
Thus, we spend only 3% in postprocessing, obtaining a performance of 49.1 Mflops
overall. In all other cases, though, considerable effort is expended in the postpro-
cessing phase, leading to overall disappointing performance. These results show
that the preordering done by DGEQPB is essential for the efficiency of the overall
algorithm.

5. CONCLUSIONS

In this paper, we presented rank-revealing QR (RRQR) factorization algorithms
that combine an initial QR factorization employing a restricted pivoting scheme
with postprocessing steps based on variants of algorithms suggested by Chan-
drasekaran and Ipsen and Pan and Tang.

The restricted-pivoting strategy results in an initial QR factorization that is
almost entirely based on BLLAS-3 kernels, yet still achieves at a good approximation
of an RRQR factorization most of the time. To guarantee the reliability of the
initial RRQR factorization and improve it if need be, we improved an algorithm
suggested by Pan and Tang, relying heavily on incremental condition estimation and
“blocked” Givens rotation updates for computational efficiency. As an alternative,
we implemented a version of an algorithm by Chandrasekaran and Ipsen, which
among other improvements uses the f-factor technique suggested by Pan and Tang
to avoid cycling in the presence of roundoff errors.

Numerical experiments on eighteen different matrix types with matrices ranging
in size from 100 to 1000 on IBM RS/6000 and SGI R8000 platforms show that this
approach produces reliable rank estimates while outperforming the (less reliable)
QR factorization with column pivoting, the currently most common approach for
computing an RRQR factorization of a dense matrix.

ACKNOWLEDGMENTS

We thank Xiaobai Sun, Peter Tang, and Enrique S. Quintana-Orti for stimulating
discussions on the subject.

References

ANDERSON, E., Bai, Z., BiscHor, C., DEMMEL, J., DONGARRA, J., DUCROZ, J., GREENBAUM,
A., HAMMARLING, S., McKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1992a .
LAPACK User’s Guide. STAM, Philadelphia.

ANDERSON, E., Bai, Z., BiscHor, C., DEMMEL, J., DONGARRA, J., DUCROZ, J., GREENBAUM,
A., HAMMARLING, S., McKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1994b .
LAPACK User’s Guide Release 2.0. STAM, Philadelphia.

BiscHor, C. H. 1989 . A block QR factorization algorithm using restricted pivoting. In
Proceedings SUPERCOMPUTING ’89 (Baltimore, Md., 1989), pp. 248-256. ACM Press.

BiscHor, C. H. 1990. Incremental condition estimation. SIAM Journal on Matriz Analysis
and Applications 11, 2, 312-322.

23

BiscHor, C. H. 1991 . A parallel QR factorization algorithm with controlled local pivoting.
SIAM Journal on Scientific and Statistical Computing 12, 1, 36-57.

BiscHor, C. H. aND HaNseEN, P. C. 1991 . Structure-preserving and rank-revealing QR
factorizations. SIAM Journal on Scientific and Statistical Computing 12, 6 (November),
1332-1350.

BiscHor, C. H. aND HaANSEN, P. C. 1992 . A block algorithm for computing rank-revealing
QR factorizations. Numerical Algorithms 2, 3-4, 371-392.

BiscHor, C. H. AND SHROFF, G. M. 1992 . On updating signal subspaces. IEEE Transac-
trons on Signal Processing 40, 1, 96—105.

BiscHor, C. H. aND Tang, P. T. P. 1991 . Robust incremental condition estimation.
Preprint MCS-P225-0391, Mathematics and Computer Science Division, Argonne National
Laboratory.

CHaN, T. F. 1987 . Rank revealing QR factorizations. Linear Algebra and Its Applica-
tions 88/89, 67-82.

CHAN, T. F. AND HaNSEN, P. C. 1992 . Some applications of the rank revealing QR factor-
ization. STAM Journal on Scientific and Statistical Computing 13, 3, 727-741.

CHaN, T. F. AND HANSEN, P. C. 1994 . Low-rank revealing QR factorizations. Numerical
Linear Algebra and Applications 1,1, 33-44.

CHANDRASEKARAN, S. AND IPseN, I. 1994 . On rank-revealing QR factorizations. STAM
Journal on Matriz Analysis and Applications 15, 2, 592—622.

DonGaRRa, J. J., Bunch, J. R., MoLER, C. B., AND STEWART, G. W. 1979 . LINPACK
Users’ Guide. STAM, Philadelphia.

ELDEN, L. AND SCHREIBER, R. 1986 . An application of systolic arrays to linear discrete
ill-posed problems. STAM Journal on Scientific and Statistical Computing 7, 892—903.
FosTER, L. V. 1986 . Rank and null space calculations using matrix decomposition without

column interchanges. Linear Algebra and Its Applications 74, 47-71.

GoLuB, G. H. 1965 . Numerical methods for solving linear least squares problems. Nu-
merische Mathematik 7, 206—216.

GoLUB, G. H., KLEMA, V., AND STEWART, G. W. 1976 . Rank degeneracy and least squares
problems. Technical Report TR—456, University of Maryland, Dept. of Computer Science.

GoLuB, G. H. anND Loan, C. F. V. 1983 . Matriz Computations. The Johns Hopkins Uni-
versity Press, Baltimore.

GoLus, G. H. anDp Loan, C. F. V. 1989 . Matriz Computations (2nd ed.). The Johns
Hopkins University Press, Baltimore.

GoruB, G. H., MANNEBACK, P., AND ToiNT, P. L. 1986 . A comparison between some
direct and iterative methods for certain large scale geodetic least-squares problem. STAM
Journal on Scientific and Statistical Computing 7, 799-816.

GRrAGG, W. B. AND STEWART, G. W. 1976 . A stable variant of the secant method for
solving nonlinear equations. STAM Journal on Numerical Analysis 13, 6, 889-903.

GRANDINE, T. A. 1987 . An iterative method for computing multivariate C1 piecewise
polynomial interpolants. Computer Aided Geometric Design 4, 307-319.

GRANDINE, T. A. 1989 . Rank deficient interpolation and optimal design: An example.
Technical Report SCA-TR-113 (February), Boeing Computer Services, Engineering and
Scientific Services Division.

GuU, M. AND EISENSTAT, S. 1992 . A stable and efficient algorithm for the rank-one mod-
ification of the symmmetric eigenproblem. Technical Report YALEU/DCS/RR-916, Yale
University, Department of Computer Science.

Hansen, P. C. 1990 . Truncated SVD solutions to discrete ill-posed problems with ill-
determined numerical rank. STAM Journal on Matriz Analysis and Applications 11, 3, 503
— 518.

HanseN, P. C., SEKII, T., AND SHIBAHASHI, H. 1992. The modified truncated SVD-method
for regularization in general form. STAM Journal on Scientific Computing 18, 1142—-1150.

HicHaMm, N. J. 1986 . Efficient algorithms for computing the condition number of a tridi-
agonal matrix. STAM Journal on Scientific and Statistical Computing 7, 150-165.

24

Hong, Y. P. aAND Pan, C.-T. 1992 . The rank revealing QR decomposition and SVD.
Mathematics of Computation 58, 213—-232.

Hsien, S. F., Liu, K. J. R., AND Yao, K. 1991 . Comparisons of truncated QR and SVD
methods for AR spectral estimations. In R. J. Vaccaro Ed., SVD and Signal Processing
IT (Amsterdam, 1991), pp. 403-418. Elsevier Science Publishers.

Morg, J. 1978. The Levenberg-Marquardt algorithm: Implementation and theory.In G. A.
WatsoN Ed., Proceedings of the Dundee Conference on Numerical Analysis (Berlin, 1978).
Springer Verlag.

PaN, C.-T. anD TanG, P. T. P. 1992 . Bounds on singular values revealed by QR factor-
izaton. Technical Report MCS-P332-1092, Mathematics and Computer Science Division,
Argonne National Laboratory.

QUINTANA-ORTI, G. AND QUINTANA-ORTI, E. S. 1996. Guaranteeing termination of Chan-
drasekaran & Ipsen’s algorithm for computing rank-revealing QR factorizations. Preprint
MCS-P564-0196, Mathematics and Computer Science Division, Argonne National Labora-
tory.

QUINTANA-ORTI, G., SuN, X., AND Biscruor, C. H. 1995 . A BLAS-3 version of the QR
factorization with column pivoting. Preprint MCS-P551-1295, Mathematics and Computer
Science Division, Argonne National Laboratory.

REICHEL, L. AND GRAGG, W. 1990. Fortran subroutines for updating the QR factorization.
ACM Transactions on Mathematical Software 16, 369-377.

SCHREIBER, R. AND VAN LoaN, C. 1989 . A storage efficient WY representation for prod-
ucts of Householder transformations. SIAM Journal on Scientific and Statistical Comput-
ing 10, 1, 53-57.

STEWART, G. W. 1984 . Rank degeneracy. STAM Journal on Scientific and Statistical Com-
puting 5, 403-413.

STEWART, G. W. 1990 . An updating algorithm for subspace tracking. Technical Report
CS-TR-2494, University of Maryland, Department of Computer Science.

STEWART, G. W. 1993 . Determining rank in the presence of error. Technical Report CS-
TR-2972, Dept. of Computer Science, University of Maryland.

WALDEN, B. 1991 . Using a fast signal processor to solve the inverse kinematic problem with
special emphasis on the singularity problem. Ph. D. thesis, Linkdping University, Dept. of
Mathematics.

