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2 �1. INTRODUCTIONWe briey summarize the properties of a rank-revealing QR (RRQR) factorization.Let A be an m � n matrix (w.l.o.g. m � n) with singular values�1 � �2 � : : : � �n � 0; (1)and de�ne the numerical rank r of A with respect to a threshold � as follows:�1�r � � < �1�r+1 :Also, let A have a QR factorization of the formAP = QR = Q�R11 R120 R22� ; (2)where P is a permutation matrix, Q has orthonormal columns, R is upper triangu-lar, and R11 is of order r. Further, let �(A) denote the two-norm condition numberof a matrix A. We then say that (2) is an RRQR factorization of A if the followingproperties are satis�ed:�(R11) � �1=�r and kR22k2 = �max(R22) � �r+1: (3)Whenever there is a well-determined gap in the singular-value spectrum between �rand �r+1, and hence the numerical rank r is well de�ned, the RRQR factorization(2) reveals the numerical rank of A by having a well-conditioned leading submatrixR11 and a trailing submatrix R22 of small norm. We also note that the matrixPT � R�111 R12�I � ;which can be easily computed from (2), is usually a good approximation of thenullvectors, and a few steps of subspace iteration su�ce to compute nullvectorsthat are correct to working precision [Chan and Hansen 1992].The RRQR factorization is a valuable tool in numerical linear algebra becauseit provides accurate information about rank and numerical nullspace. Its mainuse arises in the solution of rank-de�cient least-squares problems, for example,in geodesy [Golub et al. 1986], computer-aided design [Grandine 1989], nonlinearleast-squares problems [Mor�e 1978], the solution of integral equations [Eld�en andSchreiber 1986], and the calculation of splines [Grandine 1987]. Other applicationsarise in beam forming [Bischof and Shro� 1992], spectral estimation [Hsieh et al.1991], and regularization [Hansen 1990; Hansen et al. 1992; Wald�en 1991].Stewart [1990] suggested another alternative to the singular value decomposition,a complete orthogonal decomposition called URV decomposition. This factorizationdecomposes A = U � R11 R120 R22 �V T ;where U and V are orthogonal and both kR12k2 and kR22k2 are of the order �r+1.In particular, compared with RRQR factorizations, URV decompositions employ ageneral orthogonal matrix V instead of the permutation matrix P . URV decompo-sitions are more expensive to compute, but they are well suited for nullspace updat-ing. RRQR factorizations, on the other hand, are more suited for the least-squares



� 3setting, since one need not store the orthogonal matrix V (the other orthogonalmatrix is usually applied to the right-hand side \on the y"). Of course, RRQRfactorizations can be used to compute an initial URV decomposition, where U = Qand V = P .We briey review the history of RRQR algorithms. From the interlacing theoremfor singular values [Golub and Loan 1983, Corollary 8.3.3], we have�min(R(1 : k; 1 : k)) � �k(A) and �max(R(k + 1 : n; k+ 1 : n)) � �k+1(A) : (4)Hence, to satisfy condition (3), we need to pursue two tasks:Task 1. Find a permutation P that maximizes �min(R11).Task 2. Find a permutation P that minimizes �max(R22).Golub [1965] suggested what is commonly called the \QR factorization with columnpivoting." Given a set of already selected columns, this algorithm chooses as thenext pivot column the one that is \farthest away" in the Euclidean norm from thesubspace spanned by the columns already chosen [Golub and Loan 1983, p.168,P.6.4{5]. This intuitive strategy addresses task 1.While this greedy algorithm is known to fail on the so-called Kahan matri-ces [Golub and Loan 1989, p. 245, Example 5.5.1], it works well in practice andforms the basis of the LINPACK [Dongarra et al. 1979] and LAPACK [Andersonet al. 1992a; Anderson et al. 1994b] implementations. Recently, Quintana-Ort��, Sun,and Bischof [1995] developed an implementation of the Golub algorithm that allowshalf of the work to be performed with BLAS-3 kernels. Bischof also had developedrestricted-pivoting variants of the Golub strategy to enable the use of BLAS-3 typekernels [Bischof 1989] for almost all of the work and to reduce communication coston distributed-memory machines [Bischof 1991].One approach to task 2 is based, in essence, on the following fact, which is provedin [Chan and Hansen 1992].Lemma 1. For any R 2 IRn�n and any W = �W1W2� 2 IRn�p with a nonsingularW2 2 IRp�p, we havekR(n� p+ 1:n; n� p+ 1:n)k2 � kRWk2 kW�12 k2: (5)This means that if we can determine a matrix W with p linearly independentcolumns, all of which lie approximately in the nullspace of R (i.e., kRWk2 is small),and if W2 is well conditioned such that (�min(W2))�1 = kW�12 k2 is not large, weare guaranteed that the elements of the bottom right p�p block of R will be small.Algorithms based on computing well-conditioned nullspace bases for A includethese by Golub, Klema, and Stewart [1976], Chan [1987], and Foster [1986]. Otheralgorithms addressing task 2 are these by Stewart [1984] and Gragg and Stewart[1976]. Algorithms addressing task 1 include those of Chan and Hansen [1994]and Golub, Klema, and Stewart [1976]. In fact, the latter achieves both task 1 andtask 2 and, therefore, reveals the rank, but it is too expensive in comparison withthe others.Bischof and Hansen combined a restricted-pivoting strategy with Chan's algo-rithm [Chan 1987] to arrive at an algorithm for sparse matrices [Bischof and Hansen



4 �1991] and also developed a block variant of Chan's algorithm [Bischof and Hansen1992]. A Fortran 77 implementation of Chan's algorithm was provided by Reicheland Gragg [1990].Chan's algorithm [Chan 1987] guaranteed�ipn(n� i+ 1)2n�i � �min(R(1 : i; 1 : i)) � �i (6)and �i � �max(R(i : n; i : n)) � �ipn(n� i+ 1)2n�i : (7)That is, as long as the rank of the matrix is close to n, the algorithm is guaranteedto produce reliable bounds, but reliabilitymay decrease with the rank of the matrix.Hong and Pan [1992] then showed that there exists a permutation matrix P suchthat for the triangular factor R partitioned as in (2), we havejjR22jj2 � �r+1(A)p1(r; n) (8)and �min(R11) � �r(A) 1p2(r; n) ; (9)where p1 and p2 are low-order polynomials in n and r (versus an exponential factorin Chan's algorithm).Chandrasekaran and Ipsen [1994] were the �rst to develop RRQR algorithms thatsatisfy (8) and (9). Their paper also reviews and provides a common frameworkfor the previously devised strategies. In particular, they introduce the so-calleduni�cation principle, which says that running a task-1 algorithm on the rows of theinverse of the matrix yields a task-2 algorithm. They suggest hybrid algorithms thatalternate between task-1 and task-2 steps to re�ne the separation of the singularvalues of R.Pan and Tang [1992] and Gu and Eisenstat [1992] presented di�erent classes ofalgorithms for achieving (8) and (9), addressing the possibility of nonterminationof the algorithms because of oating-point inaccuracies.The goal of our work was to develop an e�cient and reliable RRQR algorithmand implementation suitable for inclusion in a numerical library such as LAPACK.Speci�cally, we wished to develop an implementation that was both reliable andclose in performance to the QR factorization without any pivoting. Such an imple-mentation would provide algorithm developers with an e�cient tool for addressingpotential numerical rank de�ciency by minimizing the computational penalty foraddressing potential rank de�ciency. Our strategy involves the following ingredients:|an e�cient block algorithm for computing an approximate RRQR factorization,based on the work by Bischof [1989], and|e�cient implementations of RRQR algorithms well suited for triangular matri-ces, based on the work by Chandrasekaran and Ipsen [1994] and Pan and Tang[1992]. These algorithms seemed better suited for triangular matrices than thosesuggested by Gu and Eisenstat [1992].We �nd that



� 51. P = I;2. foreach i 2 f1; : : : ; ng do resi = ka(:; i)k2 end do3. for i = 1 to min(m;n) do4. Let i � pvt � n be such that respvt is maximal5. P (:; i)$ P (:; pvt) ; a(: ; i)$ a(: ; pvt) ; respvt := resi ;6. [ui; a(i :m; i)] := genhh(a(i :m; i)) ;7. a(i :m; i+1:n) := apphh(ui ; a(i :m; i+1:n)) ;8. foreach j 2 fi+ 1; : : : ; ng do9. resj :=pres2j � a(i; j)2 ;10. end foreach11. end forFig. 1. The QR Factorization Algorithm with Traditional Column Pivoting|in most cases the approximate RRQR factorization computed by the block algo-rithm is very close to the desired RRQR factorization, requiring little postpro-cessing, and|the almost entirely BLAS-3 preprocessing algorithm performs considerably fasterthan the QR factorization with column pivoting and close to the performance ofthe QR factorization without pivoting.The paper is structured as follows. In the next section, we review the blockalgorithm for computing an approximate RRQR factorization based on a restricted-pivoting approach. In Section 3, we describe our modi�cations to Chandrasekaranand Ipsen's \Hybrid-III" algorithm and Pan and Tang's \Algorithm 3." Section 4presents our experimental results on IBM RS/6000 and SGI R8000 platforms. InSection 5, we summarize our results.2. A BLOCK QR FACTORIZATION WITH RESTRICTED PIVOTINGIn this section, we describe a block QR factorization algorithm that employs arestricted pivoting strategy to approximately compute an RRQR factorization, em-ploying the ideas described by Bischof [1989].We compute Q by a sequence of Householder matricesH � H(u) = I � 2uuT ; kuk2 = 1: (10)For any given vector x, we can choose a vector u so that H(u)x = �e1, where e1 isthe �rst canonical unit vector and j � j= kxk2 (see, for example, [Golub and Loan1989, p. 196]). The application of a Householder matrix B := H(u)A involves amatrix-vector product z := ATu and a rank-one update B := A� 2uzT .Figure 1 describes the Golub Householder QR factorization algorithm with tra-ditional column pivoting [Golub 1965] for computing the QR decomposition of anm�n matrix A. The primitive operation [u; y] := genhh(x) computes u such thaty = H(u)x is a multiple of e1, while the primitive operation B := apphh(u;A)overwrites B with H(u)A.After step i is completed, the values resj ; j = i + 1; : : : ; n are the length of theprojections of the j th column of the currently permuted AP onto the orthogonalcomplement of the subspace spanned by the �rst i columns of AP . The values resjcan be updated easily and do not have to be recomputed at every step, although



6 � ��������%%%% @@@@XXXXXXXXXXXXXXXXXX ee\\\\\\\\\\eeeeee@@..........................%%��� ��������� -e DATEn pivot UP-do BLOCKFig. 2. Restricting Pivoting for a Block Algorithmroundo� errors may make it necessary to recompute resj = k(a(i : m; j))k2 ; j =i + 1; : : : ; n periodically [Dongarra et al. 1979, p. 9.17] (we suppressed this detailin line 9 of Figure 1).The bulk of the computationalwork in this algorithm is performed in the apphh ker-nel, which relies on matrix-vector operations. However, on today's cache-basedarchitectures (ranging from workstations to supercomputers) matrix-matrix op-erations perform much better. Matrix-matrix operations are exploited by usingso-called block algorithms, whose top-level unit of computation is matrix blocksinstead of vectors. Such algorithms play a central role, for example, in the LA-PACK implementations [Anderson et al. 1992a; Anderson et al. 1994b]. LAPACKemploys the so-called compact WY representation of products of Householder ma-trices [Schreiber and Van Loan 1989], which expresses the productQ = H1 � � �Hnbof a series of m �m Householder matrices (10) asQ = I + Y TY T ; (11)where Y is an m � nb matrix and T is an nb� nb upper triangular matrix. Stableimplementations for generating Householder vectors as well as forming and applyingcompact WY factors are provided in LAPACK.To arrive at a block QR factorization algorithm, we would like to avoid updatingpart of A until several Householder transformations have been computed. Thisstrategy is impossible with traditional pivoting, since we must update resj beforewe can choose the next pivot column. While we can modify the traditional approachto do half of the work using block transformations, this is the best we can do (theseissues are discussed in detail in [Quintana-Ort�� et al. 1995]). Therefore, we insteadlimit the scope of pivoting as suggested in [Bischof 1989]. Thus, we do not haveto update the remaining columns until we have computed enough Householdertransformations to make a block update worthwhile.The idea is graphically depicted in Figure 2. At a given stage we are done withthe columns to the left of the pivot window. We then try to select the next pivotcolumns exclusively from the columns in the pivot window, not touching the part ofA to the right of the pivot window. Only when we have combined the Householdervectors de�ned by the next batch of pivot columns into a compact WY factor dowe apply this block update to the columns on the right.Since the leading block of R is supposed to approximate the large singular values



� 7of A, we must be able to guard against pivot columns that are close to the spanof columns already selected. That is, given the upper triangular matrix Ri de�nedby the �rst i columns of QTAP and a new column � v � determined by the newcandidate pivot column, we must determine whetherRi+1 = � Ri v0  �has a condition number that is larger than a threshold � , which de�nes what weconsider a rank-de�cient matrix.We approximate�max(Ri+1) � b�max(Ri+1) � n 13 max1�k�ikR(1 : k; k)k2; (12)which is easy to compute. To cheaply estimate �min(Ri+1), we employ incrementalcondition estimation (ICE) [Bischof 1990; Bischof and Tang 1991]. Given a goodestimate b�min(Ri) = 1=kxk2 de�ned by a large norm solution x to RTi x = d ; kdk2 =1 and a new column � v �, incremental condition estimation, with only 3k ops,computes s and c, s2 + c2 = 1, such that�min(Ri+1) � b�min(Ri+1) = 1=k� sxc �k2 : (13)A stable implementation of ICE based on the formulation in [Bischof and Tang1991] is provided by the LAPACK routine xLAIC1.1 ICE is an order of magnitudecheaper than other condition estimators (see, for example, [Higham 1986]). More-over, it is considerably more reliable than simply using j  j as an estimate for�min(Ri+1) (see, for example, [Bischof 1991]). We also de�neb�(Ri) � b�max(Ri)b�min(Ri) : (14)The restricted block pivoting algorithm proceeds in four phases:Phase 1: Pivoting of largest column into �rst position. This phase is motivatedby the fact that the norm of the largest column of A is usually a good estimate for�1(A).Phase 2: Block QR factorization with restricted pivoting. Given a desired blocksize nb and a window size ws, ws � nb, we try to generate nb Householder transfor-mations by applying the Golub pivoting strategy only to the columns in the pivotwindow, using ICE to assess the impact of a column selection on the conditionnumber. When the pivot column chosen from the pivot window would lead to aleading triangular factor whose condition number exceeds � , we mark all remainingcolumns in the pivot window (k, say) as \rejected," pivot them to the end of thematrix, generate a block transformation (of width not more than nb), apply it tothe remainder of the matrix, and then reposition the pivot window to encompass1Here as in the sequel we use the conventionthat the pre�x \x" generically refers to the appropriateone of the four di�erent precision instantiations: SLAIC1, DLAIC1, CLAIC1, or ZLAIC1.



8 �the next ws not-yet-rejected columns. When all columns have been either acceptedas part of the leading triangular factor or rejected at some stage of the algorithm,this phase stops.Assuming we have included r2 columns in the leading triangular factor, we haveat this point computed an r2 � r2 upper triangular matrix Rr2 = R(1 : r2; 1 : r2)that satis�es b�(Rr2) � � : (15)That is, r2 is our estimate of the numerical rank with respect to the threshold � atthis point.In our experiments, we chosews = nb+maxf10; nb2 + 0:05ng : (16)This choice tries to ensure a suitable pivot window and \loosens up" a bit as thematrix size increases. A pivot window that is too large will reduce performancebecause of the overhead in generating block orthogonal transformations and thelarger number of unblocked operations. On the other hand, a pivot window that istoo small will reduce the pivoting exibility and thus increase the likelihood thatthe restricted pivoting strategy will fail to produce a good approximate RRQRfactorization. In our experiments, the choice of w had only a small impact (notmore than 5%) on overall performance and negligible impact on the numericalbehavior.Phase 3: Traditional pivoting strategy among \rejected" columns. Since phase 2rejects all remaining columns in the pivot window when the pivot candidate isrejected, a column may have been pivoted to the end that should not have beenrejected. Hence, we now continue with the traditional Golub pivoting strategy onthe remaining n�r2 columns, updating (14) as an estimate of the condition number.This phase ends at column r3, say, whereb�(Rr3) � � ; (17)and the inclusion of the next pivot column would have pushed the condition numberbeyond the threshold. We do not expect many columns (if any) to be selected inthis phase. It is mainly intended as a cheap safeguard against possible failure ofthe initial restricted-pivoting strategy.Phase 4: Block QR factorization without pivoting on remaining columns. Thecolumns not yet factored (columns r3 + 1 : n) are with great probability linearlydependent on the previous ones, since they have been rejected in both phase 2and phase 3. Hence, it is unlikely that any kind of column exchanges among theremaining columns would change our rank estimate, and the standard BLAS-3block QR factorization as implemented in the LAPACK routine xGEQRF is thefastest way to complete the triangularization.After the completion of phase 4, we have computed a QR factorization thatsatis�es b�(Rr3) � �;



� 9and for any column y in R(:; r3 + 1 : n) we haveb�(� Rr30 � ; y) > �:This result suggests that this QR factorization is a good approximation to an RRQRfactorization and r3 is a good estimate of the rank.However, this QR factorization does not guarantee to reveal the numerical rankcorrectly. Thus, we back up this algorithm with the guaranteed reliable RRQRimplementations introduced in the next two sections.3. POSTPROCESSING ALGORITHMS FOR AN APPROXIMATE RRQR FACTOR-IZATIONIn 1991, Chandrasekaran and Ipsen [1994] introduced a uni�ed framework forRRQR algorithms and developed an algorithm guaranteed to satisfy (8) and (9)and thus to properly reveal the rank. Their algorithm assumes that the initial ma-trix is triangular and thus is well suited as a postprocessing step to the algorithmpresented in the preceding section. Shortly thereafter, Pan and Tang [1992] intro-duced another guaranteed reliable RRQR algorithm for triangular matrices. In thefollowing subsections, we describe our improvements and implementations of thesealgorithms.3.1 The RRQR Algorithm by Pan and TangWe implement a variant of what Pan and Tang [1992] call \Algorithm 3." Pseu-docode for our algorithm is shown in Figure 3. It assumes as input an uppertriangular matrix R. �R(i; j); i < j, denotes a right cyclic permutation that ex-changes columns i and j, in other words, i ! i + 1; : : : ; j � 1 ! j; j ! i, whereas�Li;j; i < j denotes a left cyclic permutation that exchanges columns i and j, inother words, j  i; i  i + 1; : : : ; j � 1  j. In the algorithm, triu(A) denotesthe upper triangular factor R in a QR factorization A = QR of A. As can be seenfrom Figure 3, we use this notation as shorthand for retriangularizations of R aftercolumn exchanges.Given a value for k, and a so-called f-factor 0 < f � 1=pk + 1, the algorithm isguaranteed to halt and produce a triangular factorization that satis�es�min(R11) � fpk(n� k + 1)�k(A) (18)�max(R22) � p(k + 1)(n� k)f �k+1(A) : (19)Our implementation incorporates the following features:(1) Incremental condition estimation is used to arrive at estimates for smallestsingular values and vectors. Thus, � (line 5) and v (line 9) of Figure 3 can becomputed inexpensively from u (line 2). The use of ICE signi�cantly reducesimplementation cost.(2) The QR factorization update (line 4) must be performed only when the if-test(line 6) is false. Thus, we delay it if possible.



10 �Algorithm PT3M(f,k)1. i = k + 1; accepted col = 0; � = I;2. u := left singular vector corresponding to �min(R(1:k; 1:k))3. while ( accepted col � n� k ) do4. R := triu(R � �Rk+1;i) ; � := � � �Rk+1;i5. Compute � � �min(R(1:k + 1;1:k + 1))6. if (� � f � jR(k + 1; k + 1)j) then7. accepted col := accepted col + 1;8. else9. v := right singular vector corresponding to �10. Find index q, 1 � q � k + 1, such that: jvq j = maxj jvjj11. R := triu(R ��Lq;k+1) ; � := � � �Lq;k+1 ; accepted col = 0;12. u := left singular vector corresponding to �min(R(1:k; 1: k))13. end if14. if (i == n) then i := k + 1 else i := i+ 1 end if15. end while Fig. 3. Variant of Pan/Tang RRQR Algorithm(3) For the algorithm to terminate, all columns need to be checked, and no newpermutations must occur. In Pan and Tang's algorithm, rechecking of columnsafter a permutation always starts at column k + 1. We instead begin checkingat the column right after the one that just caused a permutation. Thus, we�rst concentrate on the columns that have not just been \worked over."(4) The left cyclic shift permutes the triangular matrix into an upper Hessenbergform, which is then retriangularized with Givens rotations. Applying Givensrotations to rows of R in the obvious fashion (as done, for example, in [Rei-chel and Gragg 1990]) is expensive in terms of data movement, because of thecolumn-oriented nature of Fortran data layout. Thus, we apply Givens rotationsin an aggregated fashion, updating matrix strips (R(1 : jb; (j � 1)b+ 1 : jb)) ofwidth b with all previously computed Givens rotations.Similarly, the right cyclic shift introduces a \spike" in column j, which is elim-inated with Givens rotations in a bottom-up fashion. To aggregate Givensrotations, we �rst compute all rotations only touching the \spike" and the di-agonal of R, and then apply all of them one block column at a time. In ourexperiments, we choose the width b of the matrix strips to be the same as theblocksize nb of the preprocessing.Compared with a straightforward implementation of Pan and Tang's \Algorithm3," improvements (1) through (3) on average decreased runtime by a factor of �ve on200� 200 matrices on an Alliant FX/80. When retriangularizations were frequent,improvement (4) had the most noticeable impact, resulting in a twofold to fourfoldperformance gain on matrices of order 500 and 1000 on an IBM RS/6000-370.Pan and Tang introduced the f-factor to prevent cycling of the algorithm. Thehigher f is, the tighter are the bounds in (18) and (19), and the better the approx-imations to the k and k + 1st singular values of R. However, if f is too large, itintroduces more column exchanges and therefore more iterations; and, because ofround-o� errors, it might present convergence problems. We used f = 0:9=pk + 1



� 11Algorithm Hybrid-III-sf(f,k)1. � = I2. repeat3. Golub-I-sf(f,k)4. Golub-I-sf(f,k+1)5. Chan-II-sf(f,k+1)6. Chan-II-sf(f,k)7. until none of the four subalgorithms modi�ed the column orderingFig. 4. Variant of Chandrasekaran/Ipsen Hybrid-III algorithmAlgorithm Golub-I-sf(f,k)1. Find smallest index j, k � j � n, such that2. kR(k: j; j)k2 = maxk�i�n kR(k: i; i)k23. if f � kR(k: j; j)k2 >j R(k; k) j then4. R := triu(R ��Rk;j); � := � � �Rk;j5. end if Fig. 5. \f-factor" Variant of Golub-I Algorithmin our work.3.2 The RRQR Algorithm by Chandrasekaran and IpsenChandrasekaran and Ipsen introduced algorithms that achieve bounds (18) and (19)with f = 1. We implemented a variant of the so-called Hybrid-III algorithm,pseudocode for which is shown in Figures 4{6.Compared with the original Hybrid-III algorithm, our implementation incorpo-rates the following features:(1) We employ the Chan-II strategy (an O(n2) algorithm) instead of the so-calledStewart-II strategy (an O(n3) algorithm because of the need for the inversion ofR(1 : k; 1 : k)) that Ipsen and Chandrasekaran employed in their experiments.(2) The original Hybrid-III algorithm contained two subloops, with the �rst onelooping over Golub-I(k) and Chan-II(k) till convergence, the second one loopingover Golub-I(k+1) and Chan-II(k+1). We present a di�erent loop ordering inour variant, one that is simpler and seems to enhance convergence. On matricesthat required considerable postprocessing, the new loop ordering required about7% fewer steps for 1000 � 1000 matrices (one step being a call to Golub-I orChan-II) than Chandrasekaran and Ipsen's original algorithm. In addition, theAlgorithm Chan-II-sf(k)1. v := right singular vector corresponding to �min(R(1:k; 1: k)).2. Find largest index j, 1 � j � k, such that: jvj j = max1�i�k jvi j3. if f � jvjj > jvkj then4. R := triu(R ��Lj;k);� := � ��Lj;k5. end if Fig. 6. \f-factor" Variant of Chan-II Algorithm



12 �new ordering speeds detection of convergence, as shown below.(3) As in our implementationof the Pan/Tang algorithm,we use ICE for estimatingsingular values and vectors, and the e�cient \aggregated" Givens scheme forthe retriangularizations.(4) We employ a generalization of the f-factor technique to guarantee terminationin the presence of rounding errors. The pivoting method assigns to every col-umn a \weight," namely, kR(k: i; i)k2 in Golub-I(k) and vi in Chan-II(k), wherev is the right singular vector corresponding to the smallest singular value ofR(1: k; 1: k). To ensure termination, Chandrasekaran and Ipsen suggested piv-oting a column only when its weight exceeded that of the current column byat least n2�, where � is the computer precision; they did not analyze the im-pact of this change on the bounds obtained by the algorithm. In contrast, weuse a multiplicative tolerance factor f like that of Pan and Tang; the analysisin [Quintana-Ort�� and Quintana-Ort�� 1996] proves that our algorithm achievesthe bounds �min(R11) � f2pk(n� k + 1)�k(A); and (20)�max(R22) � p(k + 1)(n� k)f2 �k+1(A) : (21)These bounds are identical to (18) and (19), except that an f2 instead of anf enters into the equation and that now 0 < f � 1. We used f = 0:5 in ourimplementation.We claimed before that the new loop ordering can avoid unnecessary steps whenthe algorithm is about to terminate. To illustrate, we apply Chandrasekaran andIpsen's original ordering to a matrix that almost reveals the rank:1. Golub-I(k) Final permutation occurs here.Now the rank is revealed.2. Chan-II(k)3. Golub-I(k) Another iteration of inner k-loopsince permutation occurred.4. Chan-II(k)5. Golub-I(k+1) Inner loop for k + 16. Chan-II(k+1)7. Golub-I(k) Another iteration of the main loopsince permutation occurred in last pass.8. Chan-II(k)9. Golub-I(k+1)10. Chan-II(k+1) TerminationIn contrast, the Hybrid-III-sf algorithm terminates in four steps:



� 13Algorithm RRQR(f,k)repeatcall Hybrid-III-sf(f,k) or PT3M(f,k)� := �(R(1:k; 1:k))� := �(R(1:k + 1; 1:k + 1))if (( � � � ) and ( � > � )) thenrank := k; stopelse if ( ( � � � ) and (� � � ) )thenk := k + 1else if ( ( � � � ) and ( � � � ) )thenk := k � 1end ifFig. 7. Algorithm for Computing Rank-Revealing QR Factorization1. Golub-I-sf(k) Final permutation2. Golub-I-sf(k+1)3. Chan-II-sf(k+1)4. Chan-II-sf(k) Termination3.3 Determining the Numerical RankAs Stewart [1993] pointed out, both the Chandrasekaran/Ipsen and Pan/Tang al-gorithms, as well as our versions of those algorithms, do not reveal the rank ofa matrix per se. Rather, given an integer k, they compute tight estimates for�k(A) � �min(R(1: k; 1: k)) and �k+1(A) � �max(R(k + 1:n; k+ 1:n)).To obtain the numerical rank with respect to a given threshold � , given an initialestimate for the rank (as provided, for example, by the algorithm described in Sec-tion 2), we employ the algorithm shown in Figure 7. In our actual implementation,� and � are computed in Hybrid-III-sf or PT3M.4. EXPERIMENTAL RESULTSWe report in this section experimental results with the double-precision imple-mentations of the algorithms presented in the preceding section. We consider thefollowing codes:DGEQPF. The implementation of the QR factorization with column pivotingprovided in LAPACK.DGEQPB. An implementation of the \windowed" QR factorization scheme de-scribed in Section 2.DGEQPX. DGEQPB followed by an implementation of the variant of the Chan-drasekaran/Ipsen algorithm described in Subsections 3.2 and 3.3.DGEQPY. DGEQPB followed by an implementation of the variant of thePan/Tang algorithm described in Subsections 3.1 and 3.3.DGEQRF. The block QR factorization without any pivoting provided in LA-PACK.In the implementation of our algorithms, we make heavy use of available LA-PACK infrastructure. The code used in our experiments, including test and timing



14 �drivers and test matrix generators, is available as rrqr.tar.gz in pub/prism onftp.super.org.We tested matrices of size 100; 150; 250;500, and 1000 on an IBM RS/6000 Model370 and SGI R8000. In each case, we employed the vendor-supplied BLAS in theESSL and SGIMATH libraries, respectively.4.1 Numerical ReliabilityWe employed 18 di�erent matrix types to test the algorithms, with various singularvalue distributions and numerical rank ranging from 3 to full rank. Details of thetest matrix generation are beyond the scope of this paper, and we give only a briefsynopsis here. For details, the reader is referred to the code.Test matrices 1 through 5 were designed to exercise column pivoting. Matrix6 was designed to test the behavior of the condition estimation in the presenceof clusters for the smallest singular value. For the other cases, we employed theLAPACKmatrix generator xLATMS, which generates random symmetric matrices bymultiplyinga diagonal matrixwith prescribed singular values by random orthogonalmatrices from the left and right. For the break1 distribution, all singular values are1.0 except for one. In the arithmetic and geometric distributions, they decay from1.0 to a speci�ed smallest singular value in an arithmetic and geometric fashion,respectively. In the \reversed" distributions, the order of the diagonal entries wasreversed. For test cases 7 though 12, we used xLATMS to generate a matrix oforder n2 + 1 with smallest singular value 5.0e-4, and then interspersed randomlinear combinations of these \full-rank" columns to pad the matrix to order n. Fortest cases 13 through 18, we used xLATMS to generate matrices of order n with thesmallest singular value being 2.0e-7. We believe this set to be representative ofmatrices that can be encountered in practice.We report in this section on results for matrices of size n = 1000, noting thatidentical qualitative behavior was observed for smaller matrix sizes. We decidedto report on the largest matrix sizes because the possibility for failure in generalincreases with the number of numerical steps involved. Numerical results obtainedon the three platforms agreed to machine precision. For this case, we list in Table 1the numerical rank r with respect to a condition threshold of � = 105, the largestsingular value �max, the r-th singular value �r , the (r + 1)st singular value �r+1,and the smallest singular value �min for our test cases.Figures 8 and 9 display the ratio� := (�1=�r)b�(Rr) ; (22)where b�(R) as de�ned in (14) is the computed estimate of the condition number ofR after DGEQPB (Figure 8) and DGEQPX and DGEQPY (Figure 9). Thus, �is the ratio between the ideal condition number and the estimate of the conditionnumber of the leading triangular factor identi�ed in the RRQR factorization. If thisratio is close to 1, and b� is a good condition estimate, our RRQR factorizationsdo a good job of capturing the \large" singular values of A. Since the pivotingstrategy (and hence the numerical behavior of DGEQPB) is potentially a�ected bythe block size chosen, Figures 8 and 9 contain seven panels, each of which showsthe results obtained with the 18 test matrices and a block size ranging from 1 to



� 15Table 1. Test Matrix Types (r = rank for n = 1000)Description r �max �r �r+1 �min1 Matrix with rank min(m;n)2 � 1 499 1.0e0 1.0e0 2.0e-7 1.2e-192 A(:; 2 : min(m;n)) has full rankR(A) = R(A(:;2 : min(m;n))) 999 1.0e0 5.0e-4 6.7e-19 6.7e-193 Full rank 1000 1.0e0 5.0e-4 5.0e-4 5.0e-44 A(:; 1 : 3) small in normA(:; 4 : n) of full rank 997 2.9e+1 5.0e-4 2.4e-4 4.2e-55 A(:; 1 : 3) small in normR(A) = R(A(:;1 : 3)) 3 1.0e0 5.0e-4 5.5e-14 7.6e-216 5 smallest sing. values clustered 1000 1.0e0 7.0e-4 7.0e-4-3 7.0e-47 Break1 distribution 501 1.0e0 5.0e-4 1.7e-15 1.0e-268 Reversed break1 distribution 501 1.0e0 5.0e-4 1.7e-15 1.2e-279 Geometric distribution 501 1.0e0 5.0e-4 3.3e-16 1.9e-3510 Reversed geometric distribution 501 1.0e0 5.0e-4 3.2e-16 5.4e-3511 Arithmetic distribution 501 1.0e0 5.0e-4 9.7e-16 1.4e-3412 Reversed arithmetic distribution 501 1.0e0 5.0e-4 9.7e-16 1.2e-3413 Break1 distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-714 Reversed break1 distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-715 Geometric distribution 746 1.0e0 5.0e-5 9.9e-6 2.0e-716 Reversed geometric distribution 746 1.0e0 5.0e-5 9.9e-6 2.0e-717 Arithmetic distribution 999 1.0e0 1.0e-1 2.0e-7 2.0e-718 Reversed arithmetic distribution 999 1.0e0 1.0e-1 2.0e-7 2.0e-724 (shown in the top of each panel).We see that except for matrix type 1 in Figure 8, the block size does not playmuch of a rule numerically, although close inspection reveals subtle variations inboth Figure 8 and 9. With block size 1, DGEQPB just becomes the standard Golubpivoting strategy. Thus, the �rst panel in Figure 8 corroborates the experimentallyrobust behavior of this algorithm. We also see that except for matrix type 1, therestricted pivoting strategy employed in DGEQPB does not have much impact onnumerical behavior. For matrix type 1, however, it performs much worse. Matrix 1is constructed by generating n2 �1 independent columns and generating the leadingn2 +1 as random linear combinations of those columns, scaled by � 14 , where � is themachine precision. Thus, the restricted pivoting strategy, in its myopic view of thematrix, gets stuck (so to speak) in these columns.The postprocessing of these approximate RRQR factorizations, on the otherhand, remedies potential shortcomings in the preprocessing step. As can be seenfrom Figure 9, the inaccurate factorization of matrix 1 is corrected, while the other(in essence correct) factorizations get improved only slightly. Except for smallvariations, DGEQPX and DGEQPY deliver identical results.We also computed the exact condition number of the leading triangular subma-trices identi�ed in the triangularizations by DGEQPB, DGEQPX, and DGEQPY,and compared it with our condition estimate. Figure 10 shows the ratio of the ex-act condition number to the estimated condition number of the leading triangular
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...  QPYFig. 10. Ratio between Exact and Estimated Condition Number of Leading Triangular Factorfor DGEQPB (dashed), DGEQPX (dashed-dotted), and DGEQPY (dotted)factor. We observe excellent agreement, within an order of magnitude in all cases.Hence, the \spikes" for test matrices 13 and 14 in Figures 8 and 9 are not dueto errors in our estimators. Rather, they show that all algorithms have di�cultieswhen confronted with dense clusters of singular values. We also note that in thiscontext, the notion of rank is numerically ill de�ned, since there is no sensible placeto draw the line. The \rank" derived via the SVD is 746 in both cases, and ouralgorithms deliver estimates between 680 and 710, with minimal changes in thecondition number of their corresponding leading triangular factors.In summary, these results show that DGEQPX and DGEQPY are reliable al-gorithms for revealing numerical rank. They produce RRQR factorizations whoseleading triangular factors accurately capture the desired part of the spectrum of A,and thus reliable and numerically sensible rank estimates. Thus, the RRQR fac-torization takes advantage of the e�ciency and simplicity of the QR factorization,yet it produces information that is almost as reliable as that computed by meansof the more expensive singular value decomposition.4.2 Computing PerformanceIn this section we report on the performance of the LAPACK codes DGEQPF andDGEQRF as well as the new DGEQPB, DGEQPX, and DGEQPY codes. For thesecodes, as well as all others presented in this section, the Mop rate was obtained bydividing the number of operations required for the unblocked version of DGEQRFby the runtime. This normalized Mop rate readily allows for timing comparisons.We report on matrix sizes 100, 250, 500, and 1000, using block sizes (nb) of 1, 5,8, 12, 16, 20, and 24.Figures 11 and 12 show the Mop performance (averaged over the 18 matrix
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Fig. 11. Performance versus Block Size on IBM RS/6000-370: DGEQPF (� � �), DGEQRF (|),DGEQPB (- -), DGEQPX (-�-x), DGEQPY (-�-+)types) versus block size on the IBM and SGI platforms. The dotted line denotesthe performance of DGEQPF, the solid one that of DGEQRF and the dashed one thatof DGEQPB; the � and + symbols indicate DGEQPX and DGEQPY, respectively.On all three machines, the performance of the two new algorithms for computingRRQR is robust with respect to variations in the block size. The two new blockalgorithms for computing RRQR factorization are, except for small matrices on theSGI, faster than LAPACK's DGEQPF for all matrix sizes. We note that the SGIhas a data cache of 4 MB, while the IBM platform has only a 32 KB data cache.Thus, matrices up to order 500 �t into the SGI cache, but matrices of order 1000 donot. Therefore, for matrices of size 500 or less, we observe limited bene�ts from thebetter inherent data locality of the BLAS 3 implementationon this computer. Theseresults also show that DGEQPX and DGEQPY exhibit comparable performance.Figures 13 through 14 o�er a closer look at the performance of the various test
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Fig. 12. Performance versus Block Size on SGI R8000: DGEQPF (� � �), DGEQRF (|), DGE-QPB (- -), DGEQPX (-�-x), DGEQPY (-�-+)
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Fig. 13. Performance versus Matrix Type on an IBM RS/6000-370 for n = 250 and nb = 16:DGEQPF (� � �), DGEQRF (|), DGEQPB (- -), DGEQPX (x), DGEQPY (+)matrices. We chose nb = 16 and n = 250 as a representative example. Similarbehavior was observed in the other cases.We see that on the IBM platforms (Figure 13), the performance of DGEQRFand DGEQPF does not depend on the matrix type. We also see that, except formatrix types 1, 5, 15, and 16, the postprocessing of the initial approximate RRQRfactorization takes very little time, with DGEQPX and DGEQPY performing sim-ilarly. For matrix type 1, considerable work is required to improve the initial QRfactorization. For matrix types 5 and 15, the performances of DGEQPX and DGE-QPY di�er noticeably on the IBM platform, but there is no clear winner. We alsonote that matrix type 5 is suitable for DGEQPB, since the independent columnsare up front and thus are revealed quickly, and the rest of the matrix is factoredwith DGEQRF.The SGI platform (Figure 14) o�ers a di�erent picture. The performance of allalgorithms shows more dependence on the matrix type, and DGEQPB performsworse on matrix type 5 than on all others. Nonetheless, except for matrix 1,DGEQPX and DGEQPY do not require much postprocessing e�ort.The pictures for other matrix sizes are similar. The cost for DGEQPX andDGEQPY decreases as the matrix size increases, except for matrix type 1, where itincreases as expected. We also note that Figures 11 and 12 would have looked evenmore favorable for our algorithm had we omitted matrix 1 or chosen the median(instead of the average) performance.Figure 15 shows the percentage of the actual amount of ops spent in monitoringthe rank in DGEQPB and in postprocessing the initial QR factorization for di�erentmatrix sizes on the IBM RS/6000. We show only matrix types 2 through 18, sincethe behavior of matrix type 1 is rather di�erent: in this special case, roughly
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Fig. 15. Cost of Pivoting (in % of ops) versus Matrix Types of Algorithms DGEQPX and DGEQPYon an IBM RS/6000-370 for Matrix Sizes 100 (+), 250 (x), 500 (*) and 1000 (o).50% of the overall ops is expended in the postprocessing. Note that the actualperformance penalty due to these operations is, while small, still considerably higherthan the op count suggests. This is not surprising given the relatively �ne-grainednature of the condition estimation and postprocessing operations.One may wonder whether the use of DGEQRF to compute the initial QR factor-ization would lead to better results, since DGEQRF is the fastest QR factorization



22 �algorithm. This is not the case, since DGEQRF does not provide any rank pre-ordering, and thus performance gains from DGEQRF are annihilated in the post-processing steps. For example, for matrices of order 250 on an IBM RS/6000-370,the average Mop rate, excluding matrix 5, was 4.5, with a standard deviation of1.4. The percentage of ops spent in postprocessing in these cases was on average76.8%, with a standard deviation of 6.7. For matrix 5, we are lucky, since thematrix is of low rank and all independent columns are at the front of the matrix.Thus, we spend only 3% in postprocessing, obtaining a performance of 49.1 Mopsoverall. In all other cases, though, considerable e�ort is expended in the postpro-cessing phase, leading to overall disappointing performance. These results showthat the preordering done by DGEQPB is essential for the e�ciency of the overallalgorithm.5. CONCLUSIONSIn this paper, we presented rank-revealing QR (RRQR) factorization algorithmsthat combine an initial QR factorization employing a restricted pivoting schemewith postprocessing steps based on variants of algorithms suggested by Chan-drasekaran and Ipsen and Pan and Tang.The restricted-pivoting strategy results in an initial QR factorization that isalmost entirely based on BLAS-3 kernels, yet still achieves at a good approximationof an RRQR factorization most of the time. To guarantee the reliability of theinitial RRQR factorization and improve it if need be, we improved an algorithmsuggested by Pan and Tang, relying heavily on incremental condition estimation and\blocked" Givens rotation updates for computational e�ciency. As an alternative,we implemented a version of an algorithm by Chandrasekaran and Ipsen, whichamong other improvements uses the f-factor technique suggested by Pan and Tangto avoid cycling in the presence of roundo� errors.Numerical experiments on eighteen di�erent matrix types with matrices rangingin size from 100 to 1000 on IBM RS/6000 and SGI R8000 platforms show that thisapproach produces reliable rank estimates while outperforming the (less reliable)QR factorization with column pivoting, the currently most common approach forcomputing an RRQR factorization of a dense matrix.ACKNOWLEDGMENTSWe thank Xiaobai Sun, Peter Tang, and Enrique S. Quintana-Ort�� for stimulatingdiscussions on the subject.ReferencesAnderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. 1992a .LAPACK User's Guide. SIAM, Philadelphia.Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. 1994b .LAPACK User's Guide Release 2.0. SIAM, Philadelphia.Bischof, C. H. 1989 . A block QR factorization algorithm using restricted pivoting. InProceedings SUPERCOMPUTING '89 (Baltimore, Md., 1989), pp. 248{256. ACM Press.Bischof, C. H. 1990 . Incremental condition estimation.SIAM Journal on Matrix Analysisand Applications 11, 2, 312{322.
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