Codes for Rank-Revealing QR Factorizations of
Dense Matrices

Christian H. Bischof

Mathematics and Computer Science Division, Bldg. 223, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439. Phone (708) 252-8875. bischof@mcs.anl.gov
and

Gregorio Quintana-Orti

Departamento de Informatica, Universidad Jaime |, Campus Penyeta Roja, 12071 Castellén,

Spain. gquintan@inf.uji.es.

This paper describes a suite of codes as well as associated testing and timing drivers for computing
rank-revealing QR (RRQR) factorizations of dense matrices. The main contribution is an efficient
block algorithm for approximating an RRQR factorization, employing a windowed version of
the commonly used Golub pivoting strategy and improved versions of the RRQR algorithms for
triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang,
respectively. We highlight usage and features of these codes and give an example of their use in
the context of solving rank-deficient least-squares systems.

Additional Key Words and Phrases: rank-revealing QR factorization, numerical rank, block algo-
rithm

1. OVERVIEW

Given a m X n matrix A with singular values 07 > 02 > ... > 0, > 0 and a
threshold 7, we define the numerical rank » of A through the smallest singular
value o, that satisfies ¢, < o1/7. That is, if there is a reasonable gap between o,
and o,41, and 0,41 1s small; it makes sense to consider A to numerically have rank
7.

Our goal is to compute a QR factorization

ap=qr=q(" 1), (1

This work was supported by the Applied and Computational Mathematics Program, Advanced
Research Projects Agency, under contracts DM28E04120 and P-95006.

Bischof was also supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and Technology Research, U. S. Department of
Energy, under Contract W-31-109-Eng-38.

Quintana also received support through the European ESPRIT Project 9072-GEPPCOM and
the Spanish Research Agency CICYT under grant TIC-91-1157-C03-02. During part of this work,
Quintana was a research fellow of the Spanish Ministry of Education and Science of the Valencian
Government at the Universidad Politécnica de Valencia and while visiting the Mathematics and
Computer Science Division at Argonne National Laboratory.

where
K?(Rll) ~ 0'1/0'7- S 7 and ||R22||2 = Umax(RZZ) X Opq1- (2)

Here P is a permutation matrix,) has orthonormal columns, R is upper triangular,
Ry1 is of order 7, and k(A) denotes the two-norm condition number of matrix A.
That is, R1; captures the well-conditioned part of the spectrum of A.

The implementations presented in this paper are based on the work described
in [Bischof and Quintana-Orti 1996]. The main computational routines are as
follows:

xGEQPB. An approximate RRQR factorization employing a restricted column-
pivoting scheme. For large enough matrices, this routine performs almost all of its
work by using BLAS-3 kernels.

xTRQPX. An efficient variant of the RRQR algorithm for triangular matrices
by Chandrasekaran and Ipsen [1994].

xTRQPY. An efficient variant of the RRQR algorithm for triangular matrices
by Pan and Tang [1992].

We have provided codes in single, double, complex, and double complex precisions,
and we use an “x” at the beginning of a routine name to refer to a particular
routine. Executing either xXTRQPX or xTRQPY after xGEQPB, we arrive at an
algorithm combining the efficiency of block orthogonal computations with the guar-
anteed reliability provided by the postprocessing algorithms. This functionality is
provided in the xGEQPX and xGEQPY routines. We expect that in most in-
stances these routines will provide a more reliable and efficient substitute for the
LAPACK [Anderson et al. 1994] routine xGEQPF.

The paper is structured as follows. In Section 2 we describe the usage of the
DGEQPX and DGEQPY routines for computing a RRQR factorization of a dense
matrix. Section 3 describes the contents of the code package and where to find it.
Section 4 presents our conclusions.

2. THE DGEQPX AND DGEQPY ROUTINES FOR COMPUTING AN RRQR FAC-
TORIZATION

The routines xGEQPX and xGEQPY implement dense RRQR factorizations com-
bining xGEQPB and one of xTRQPX and xTRQPY. Their calling sequence and
usage is identical. We discuss here the double-precision implementation

SUBROUTINE DGEQPX(JOB, M, N, K, A, LDA, C, LDC, JPVT, RCOND,
$ RANK, SVLUES, WORK, LWORK, INFO)

of the routine incorporating DGEQPB and DGEQPX. We comment on the ar-
guments in sequence, denoting the usage of the argument (input, output, both,
or workspace) as well as its type. For brevity, we omitted obvious facts such as
implied conformities of matrix sizes. They are described in detail in the documenta-
tion provided as part of the codes. In addition, all codes employ extensive checking

of input arguments and will flag unsuitable use of a particular argument using the

LAPACK XERBLA routine.
JOB - (input)- INTEGER

Describes whether to update the matrix C' with the orthogonal matrix ¢ com-
puted in the RRQR factorization. If JOB == 1, C' is not touched, if JOB ==
2, C'is overwritten by Q7 - C, and if JOB == 3, C is overwritten by C - Q.
M - (input) - INTEGER
The number of rows of A.
N - (input) - INTEGER
The number of columns of A.
K - (input) - INTEGER
The number of columns (if JOB == 2) or rows (if JOB == 3) of C.
A — (input/output) - DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m x n matrix A. On exit, the upper triangle of the array contains
the min(m, n) x n upper trapezoidal matrix R; the lower triangle is zero.
LDA - (input) - INTEGER
The leading dimension of array A.
C — (input/output) DOUBLE PRECISION array, dimension (LDC, NC)
The number of columns of this matrix is K if JOB == 2, or M if JOB == 3.
If JOB == 1, this matrix is not touched; otherwise it is updated with Q.
LDC - (input) INTEGER
The leading dimension of array C.
JPVT - (output) INTEGER array, dimension (N)
JPVT encodes the permutation matrix P: If JPVT(I) = J, then column j of
A has been permuted into position ¢ of AP.
RCOND —(input/output) DOUBLE PRECISION
On entry, 1/RCOND specifies the upper bound 7 on the condition number of
Ry;. If RCOND == 0 on entry, 7 = 1/¢, where ¢ is the machine precision, is
chosen as default. On exit, 1/RCOND is an estimate for the two-norm condition
number of Rq1.
RANK - (output) - INTEGER
RANK is an estimate for the numerical rank of A with respect to the threshold
1/RCOND in the sense that RANK = arg_max(x(R(1:7,1:7)) < 1/RCOND)
SVLUES (output) DOUBLE PRECISION array, dimension (4)

SVLUES contains estimates of some of the singular values of the triangular
factor R.

SVLUES(1). largest singular value of R(1:RANK,1:RANK)
SVLUES(2). smallest singular value of R(1:RANK,1:RANK)
SVLUES(3). smallest singular value of R(1:RANK+1,1:RANK+1)
SVLUES(4). smallest singular value of R

Because of the properties of an RRQR factorization, SVLUES(1) will also be
an estimate for the largest singular value of A, SVLUES(2) and SVLUES(3)
will be estimates for the RANK-th and (RANK+1)-st singular value of A,
and SVLUES(4) will be an estimate for the smallest singular value of A. By

examining these values, one can confirm that the rank is well defined with
respect to the condition number threshold chosen.

WORK - (workspace) DOUBLE PRECISION array, dimension (LWORK)

On exit, work(1) is the size of the storage array needed for optimal performance.

LWORK - (input) - INTEGER
Dimension of the array WORK. If JOB=1, the unblocked strategy requires
that LIWORK > 2*MN+3*N and the block algorithm requires that LWORK >
2*MN-+N*NB.
If JOB # 1, the unblocked strategy requires that LWORK > 2*MN+2*N+MAX(K,N),
and the block algorithm requires that LWORK > 2*MN+NB*NB+NB*MAX(K,N).
Here MN = min(M,N), and NB is the block size. In both cases, the minimum
required workspace is the one for the unblocked strategy. The code chooses the
blocksize that is returned by the LAPACK ILAENYV routine for the xGEQRF

routine.

INFO - (output) - INTEGER

This argument returns the exit status of the subroutine:

INFO == 0. Successful exit.

INFO < 0. If INFO = -i, the i-th input argument had an illegal value

INFO == 1, 2 or 3. In some cases, we have found that our estimates for both
Ka(R(1 : 7,1 : 7)) and ko(R(1 : v+ 1,1 : v+ 1)) are smaller than the
threshold 7 or alternatively, both so(R(1: 7+ 1,1:r+ 1)) and x2(R(1 :
r+2,1:7r+2)) are larger than the threshold 7. Even though we have not
observed it, we cannot rule out the possibility of catastrophic failure of our
condition estimation procedure, but in all likelihood this occurrence is due
to the cutoff for the rank being in the middle of a singular value cluster,
and hence ill defined. Thus, we return as rank the value r, but we warn
the user that the rank is not well defined. The singular value estimates
returned in SVLUES should provide further information.

INFO == 4. The postprocessing steps are based on iterative processes to re-
veal the rank. If the number of iterations exceeds a maximum threshold, we
terminate with INFO = 4. We have not observed this event in our experi-
ments. For xTRQPX, the limit is n+ 25 steps, where 4 steps make roughly
one iteration (a step is one call to Golub-T or Stewart-II). For xTRQPY,
the limit 18 n + 25 iterations.

We point out the following differences from LAPACK’s DGEQPF routine:

—The matrix @ is not returned in factored form, rather, it is applied “on the
fly” to a matrix C if desired. This approach avoids the regeneration of the or-
thogonal factors computed in DGEQPB and avoids problems arising from the
unpredictable number of permutations that could be required in the postprocess-
ing stage.

—There are no provisions for “fixed” columns. DGEQPF allows one to force certain
columns to be pivoted up front, by initializing the corresponding JPVT entries to
nonzero values on entry. DGEQPX and DGEQPY cannot provide this function-
ality, since we have no guarantee that the user would move the “right” columns
for an RRQR. factorization up front.

—DGEQPF does not provide any estimates of the singular values of A. In con-
trast, our routines provide good estimates of the singular values of R (which are
guaranteed to be close to those of A because of the RRQR property) around the
rank defined by the threshold of A, and of the largest and smallest singular value
of A. Thus, a user can verify that his threshold is numerically meaningful with
respect to rank determination. This is important, since determining a sensible
threshold and a resulting rank is very application dependent and usually requires
considerable user insight into the problem at hand.

3. CONTENTS OF THE RRQR SUBROUTINE PACKAGE

The package containing our RRQR program suite is available via anonymous ftp
from ftp.super.org as file rrqr.tar.gz in the pub/prism directory. The package
contains the following pieces:

Main Routines and Drivers:.

—The xGEQPB, xTRQPX, and xTRQPY routines for approximating and validat-
ing a RRQR factorization.

—The xGEQPX and xGEQPY drivers combining xGEQPB with xXTRQPX and
xTRQPY, respectively.

—The xGELSA and XGELSB drivers respectively employing xGEQPX and xGE-
QPY in solving a rank-deficient linear least squares problem.

Testing Environment:. We supply code for testing the numerical reliability of
xGEQPB, xGEQPX, and xGEQPY, as well as the LAPACK routine xGEQPF.
This code computes residuals, compares singular value estimates with actual values,
and compares the “best possible” result for the condition number of the leading
factor of an RRQR factorization with our actual results. Contained herein is also
the matrix generator suite that we employed for the results reported in [Bischof

and Quintana-Orti 1996].

Timing Environment:. Wesupply code for timing xGEQPB, xGEQPX, and xGE-
QPY, as well as the LAPACK routine xGEQPF.

Support Routines:. We supply code for all routines called by the main routines
or testing and timing codes.

Needed LAPACK Routines:. We include those routines from the LAPACK Ver-
sion 1 release [Anderson et al. 1994] that we call upon. The complete LAPACK
library can be obtained from netlib, see http://www.netlib.org.

4. CONCLUSIONS

This paper described the usage of the main routines in a suite of codes for computing
reliable rank-revealing orthogonal factorizations in an efficient fashion. The codes
build to a large extent on LAPACK infrastructure and can easily be substituted
for most uses of the LAPACK xGEQPF routine that computes a QR factorization
employing the traditional column pivoting strategy.

References

ANDERSON, E., Bai, Z., BiscHor, C., DEMMEL, J., DONGARRA, J., DUCROZ, J., GREENBAUM,
A., HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1994. LA-
PACK User’s Guide Release 2.0. STAM, Philadelphia.

BiscHoF, C. H. AND QUINTANA-ORTI, G. 1996. Computing rank-revealing qr factorizations
of dense matrices. Preprint MCS-P559-0196, Mathematics and Computer Science Division,
Argonne National Laboratory.

CHANDRASEKARAN, S. AND IPseN, I. 1994 . On rank-revealing QR factorizations. STAM
Journal on Matriz Analysis and Applications 15, 2, 592—622.

PaN, C.-T. anD TanG, P. T. P. 1992 . Bounds on singular values revealed by QR factor-
izaton. Technical Report MCS-P332-1092, Mathematics and Computer Science Division,
Argonne National Laboratory.

