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Abstract

The connections between optimization and control theory have been explored by many re	
searchers� and optimization algorithms have been applied with success to optimal control� The
rapid pace of developments in model predictive control has given rise to a host of new problems
to which optimization has yet to be applied� Concurrently� developments in optimization� and es	
pecially in interior	point methods� have produced a new set of algorithms that may be especially
helpful in this context� In this paper� we reexamine the relatively simple problem of control of
linear processes subject to quadratic objectives and general linear constraints� We show how new
algorithms for quadratic programming can be applied e
ciently to this problem� The approach
extends to several more general problems in straightforward ways�
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Introduction

In this paper we apply some recently developed tech	
niques from the optimization literature to a core prob	
lem in model predictive control� namely� control of a
linear process with quadratic objectives subject to gen	
eral linear constraints� To describe our algorithms� we
use the following formulation�

minxj�uj
PN��

j��
�

�
�xTj Qxj  uTj Ruj�  qTxj  rTuj

�

�
xTN

�QxN  �qTxN �

xj�� � Axj Buj � j � �� � � � � N � �� ���

x� �xed�

Guj  Jxj � g� j � �� � � � � N � ��

where Q and R are positive semide�nite matrices and

uj � IRm� xj � IRn� g � IRmc �

This problem is well known from the optimal control
literature� but it has been revived recently in the con	
text of model predictive control �MPC�� In MPC appli	
cations such as receding horizon control �Rawlings and
Muske� ����� and constrained linear quadratic regula	
tion �Scokaert and Rawlings� ������ controls are ob	
tained by solving problems like ��� repeatedly� As we
describe later� the methods we outline here can be ex	
tended easily to more general forms of ���� which may
contain outputs yj � Cxj� penalties on control jumps
uj�� � uj� and so on�

The two approaches we consider in detail involve
the infeasible	interior	point method and the active set
method� Both methods are able to exploit the special
structure in the problem ���� as they must to obtain a
solution in a reasonable amount of time�

The techniques discussed here represent just one
of many potential contributions that optimization can
make to MPC� Developments in MPC have created a
demand for fast� reliable solution of problems in which
nonlinearities� noise� and constraints on the states and
controls may all be present� Meanwhile� recent algo	
rithmic developments in areas such as interior	point
methods and stochastic optimization have produced
powerful tools that are yet to be tested on MPC prob	
lems� By no means do we expect optimization algo	
rithms to be a panacea for all the problems that arise
in MPC� In many cases� more specialized algorithms
motivated by the particular control problem at hand
will be more appropriate� We do expect� however� that
some MPC problems will bene�t from the optimiza	
tion viewpoint and that interactions between optimiz	
ers and engineers are the best way to realize these ben	
e�ts�

In the next section� we sketch the way in which
algorithmic research in optimization relates to applica	
tions� illustrating the point with a problem from opti	
mal control� Next� we present the interior	point algo	
rithm and show how it can be applied e
ciently to the
problem ���� We then move to the active set approach

�
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and again outline its application to ����

Applications and Paradigms

The �eld of optimization was founded as a separate
academic discipline during the ����s� Its emergence
was due to a number of factors� On the �demand side��
there was a desire to approach the huge logistical prob	
lems posed by the wartime economy in a more system	
atic way� and a realization that the same techniques
also could be applied to the logistical problems faced
by industry and commerce during peacetime� On the
�supply side�� Dantzig�s development of the simplex
method and the appearance of digital computers were
two factors that played an important role�

Connections between optimization and other
mathematical disciplines� such as the calculus of varia	
tions and game theory� were recognized by the earliest
researchers in the �eld� Today� research in optimiza	
tion continues to give impetus to other areas of math	
ematics� such as nonsmooth analysis� linear algebra�
and combinatorics� It has found applications in oper	
ations research� industrial engineering� and economics�
in experimental sciences and statistics �the problem
of �tting observed data to models is an optimization
problem �Seber and Wild� ������� and in the physical
sciences �for example� meteorological data assimilation
�National Research Council� ����� and superconductor
modeling �Garner� Spanbauer� Benedek� Strandburg�
Wright and Plassmann� �������

Most researchers in optimization work with a set
of standard paradigms� each of which is a mathematical
formulation that is supposed to represent a large class
of applications� Examples include linear programming�
convex quadratic programming� unconstrained nonlin	
ear optimization� and nonlinear programming� These
paradigms and a few others were proposed in the early
days of optimization� and they are still the focus of
most of the research e�ort in the area� Optimization
paradigms are an interface between optimization re	
search and optimization applications� They focus the
e�orts of theoreticians and software developers on well	
de�ned tasks� thereby freeing them from the e�ort of
becoming acquainted with the details of each individ	
ual application� Linear programming is possibly the
most successful paradigm of all� because a vast range
of linear programs can be solved with a single piece of
software� with little need for case	by	case interactions
between software developers and users� More complex
paradigms� such as nonlinear programming� are not so
easy to apply� General software for these problems of	
ten is unable to take advantage of the special features
of each instance� resulting in ine
ciency� The algo	
rithms often can be customized� however� to remove
these ine
ciencies�

Optimal control and model predictive control illus	
trate the latter point� Many problems in these areas

�t into one of the standard optimization paradigms�
but it is often unclear how the optimization algo	
rithms can be applied e
ciently� In some cases�
special	purpose algorithms have been devised �for ex	
ample� di�erential dynamic programming �Jacobson
and Mayne� ������� in other cases� standard optimiza	
tion algorithms such as Newton�s method� the conju	
gate gradient method� and gradient projection algo	
rithms have been adapted successfully to the optimal
control setting �Polak� ����� Bertsekas� ����� Dunn and
Bertsekas� ������

We close this section with the example of the clas	
sical discrete	time optimal control problem with Bolza
objectives� a problem that arises frequently in the MPC
literature �Rawlings� Meadows and Muske� ������ This
problem provides a nice illustration of the potential im	
pact of optimization on control� It shows� too� that
naive application of optimization algorithms to control
problems can lead to gross ine
ciencies� which can be
remedied by a little customization and adaptation� The
problem is

minxj�uj
PN��

j�� Lj�xj� uj�  �LN �xN ��

xj�� � fj�xj � uj�� j � �� � � � � N � �� x� �xed����

where xj � IRn� uj � IRm� It can be viewed
as an unconstrained optimization problem in which
the unknowns are �u�� u�� � � � � uN���� the states
�x�� x�� � � � � xN � can be eliminated through the state
equations xj�� � fj�xj � uj�� However� it would be
highly ine
cient to solve ��� with a general implemen	
tation of Newton�s method for unconstrained optimiza	
tion� Such a code usually requires the user to evalu	
ate the function� gradient� and Hessian on request at
any given set of variable values� The Hessian for ���
with respect to �u�� � � � � uN��� is dense� so the code
would require O�N�m�� operations simply to compute
the Newton step� The paper by �Dunn and Bert	
sekas� ����� shows how the same step can be obtained
through a specialized calculation that takes advantage
of the structure in ��� and requires only O�N �m�n���
operations� Hence� the Newton algorithm must be tai	
lored to the special form of ��� if we are to have any
hope of solving this problem e
ciently�

The problem ��� also can be viewed as a nonlin	
ear programming problem in which the variables are
�u�� � � � � uN��� x�� � � � � xN � and the state equations are
viewed as equality constraints� The special structure
becomes transparent in this formulation� since the Ja	
cobian of the constraints and the Hessian of the objec	
tive function are both sparse �block	banded� matrices�
Therefore� a nonlinear programming code that imple	
ments some variant of sequential quadratic program	
ming may perform quite e
ciently� provided that it
uses exact second derivatives and exploits the sparsity�
The disadvantage is that nonlinear programming algo	
rithms tend to have weaker global convergence proper	
ties than do unconstrained optimization algorithms� In
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the special case of fj linear and Lj convex quadratic�
the problem ��� is a convex programming problem� and
global convergence is attained easily with either formu	
lation�

When constraints on the controls uj are added to
���� we still have the choice of eliminating the states
xj or not� though both formulations yield a nonlinear
programming problem� �The formulation in which the
states are eliminated will have simpler constraints and
a more complicated objective function�� When con	
straints on the states are introduced� however� elimi	
nation of the xj becomes more problematic� and there
is little choice but to view the problem as a non	
linear programming problem in which the unknowns
are �u�� u�� � � � � uN��� x�� x�� � � � � xN �� We consider the
linear	quadratic form of this problem in the next two
sections�

Interior�Point Methods for Linear�Quadratic
Problems

In this section� we consider the linear	quadratic prob	
lem ���� It has frequently been noted that this prob	
lem is� in optimization terms� a convex quadratic pro	
gram� Two successful methods for addressing this
class of problems are the active set method described
by �Fletcher� ����� and the interior	point method de	
scribed by �Wright� ������ However� the special struc	
ture of ��� means that we must take care in applying
either approach to this problem� A naive application of
a quadratic programming code based on the active	set
method �for instance� QPOPT �Gill� Murray� Saunders
and Wright� ������ will give poor results� typically re	
quiring O�N��m  n  mc�

�� operations� where mc is
the number of rows in the matrices G and J � In this
section� we show how the interior	point algorithm can
be applied to ���� while in the next section we examine
the adaptations that are needed to make the active set
approach more e
cient�

We state at the outset that the interior	point ap	
proach we describe here can be adapted to various mod	
i�cations and generalizations of ��� without signi�cant
loss of e
ciency� For instance�

	 the matrices Q� R� A� B� G� and J can vary with
j�

	 an output vector yj � Cxj can be incorporated
into the objective and constraints�

	 we can incorporate constraints and objective terms
that involve states�controls from adjacent stages�
for example� a penalty on the control move �uj���
uj�i for some component i � �� �� � � ��m�

The last generalization is useful when the problem is
obtained as a discretization of the continuous problem�
since many discretization schemes for ordinary di�eren	
tial equations and di�erential algebraic equations lead

to relationships between states and controls at a num	
ber of adjacent time points�

The rest of this section is organized as follows�
We de�ne the mixed monotone linear complementarity

problem �mLCP�� a powerful paradigm that general	
izes the optimality conditions for linear and quadratic
programs and is a convenient platform for describing
interior	point methods� We then outline an infeasible	
interior	point algorithm for the mLCP and discuss its
properties� Finally� we customize this algorithm to con	
vex quadratic programming and the linear	quadratic
problem ����

Mixed Linear Complementarity and the Infeasible�

Interior�Point Framework

The mLCP is de�ned in terms of a square� positive
semide�nite matrix M � IRn�n and a vector q � IRn�
The problem is to �nd vectors z� x� and s such that�

M�� M��

M�� M��

��
z
x

�


�
q�
q�

�
�

�
�
s

�
� ���

x � �� s � �� xT s � �� ���

Here� M�� and M�� are square submatrices of M with
dimensions n� and n�� respectively� and the vector q is
partitioned accordingly�

The infeasible	interior	point algorithm for �������
starts at point �z�� x�� s�� for which x� � � and s� � �
�interior to the nonnegative orthant� but possibly in�

feasible with respect to the constraints ���� All iterates
�zk� xk� sk� retain the positivity properties xk � � and
sk � �� but the infeasibilities and the complementarity

gap de�ned by

�k � �xk�T sk�n� ���

are gradually reduced to zero as k ��� Each step of
the algorithm is a modi�ed Newton step for the system
of nonlinear equations de�ned by the feasibility condi	
tions ��� and the complementarity conditions xisi � ��
i � �� �� � � �� n�� We can write this system as

F �z� x� s�
def
�

�
� M��z M��x
M��z M��x� s

XSe

�
� � �� ���

where we have used the notation

X � diag�x�� x�� � � � � xn��� S � diag�s�� s�� � � � � sn���

The algorithm has the following form�

Algorithm IIP
Given �z�� x�� s�� with �x�� s�� � ��
for k � �� �� �� � � �

for some �k � ��� ��� solve�
� M�� M�� �
M�� M�� �I

� Sk Xk

�
�
�
� �z

�x
�s

�
� �

�
� �rk�

�rk�
�XkSke  �k�ke

�
� �

���
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to obtain ��zk��xk��sk�� where

rk� � M��z
k M��x

k�

rk� � M��z
k M��x

k � sk�

e � ��� �� � � � � ��T �

set

�zk��� xk��� sk��� ���

� �zk� xk� sk�  �k��zk��xk��sk��

for some �k � ��� �� that retains
�xk��� sk��� � ��

end�for��

Note that ��� di�ers from the pure Newton step for
��� only because of the term �k�ke on the right	hand
side� This term plays a stabilizing role� ensuring that
the algorithm converges steadily to a solution of �������
while remaining inside the positive orthant de�ned by
�x� s� � ��

The only two parameters to choose in implement	
ing Algorithm IIP are the scalars �k and �k� The con	
vergence analysis leaves the choice of �k relatively un	
fettered �it is often con�ned to the range  �� ����� where
� is a �xed parameter� typically ������ but �k is re	
quired to satisfy the following conditions�

�i� The reduction factor for the infeasibility norms
kr�k and kr�k should be smaller than the reduc	
tion factor for �� that is� the ratios krk�k��k and
krk�k��k should decrease monotonically with k�

�ii� The pairwise products xisi� i � �� � � � � n� should
all approach zero at roughly the same rate� that is�
the ratios xki s

k
i ��k should remain bounded away

from zero for all i and all k� �Note that �k repre	
sents the average values of the terms xki s

k
i ��

�iii� We require su
cient decrease in �� in the sense
that the decrease actually obtained is at least a
small fraction of the decrease predicted by the lin	
ear model ���� �See �Dennis and Schnabel� �����
for a discussion of su
cient decrease conditions��

�iv� The chosen value of �k should not be too much
smaller than the largest possible value for which
�i�!�iii� are satis�ed�

For details� see �Wright� ����b� Wright� ������ When
�k and �k satisfy these conditions� global convergence
to a solution of ������� is attained whenever such a
solution exists� A slightly enhanced version of the al	
gorithm� in which �k is allowed to be zero on some
of the later iterations� exhibits superlinear conver	
gence under some additional assumptions� The prop	
erty that excites many of the theoreticians working
on interior	point methods"polynomial complexity"is

also attained when the starting point �z�� x�� s�� has
su
ciently large x� and s� components� relative to the
initial residuals r�� and r�� and the solutions of ��������

In practical implementations of Algorithm IIP� �k
often is chosen via the following simple heuristic� First�
we set �maxk to be the supremum of the following set�

f� � ��� �� j �zk� xk� sk�  ���zk��xk��sk� � �g� ���

Then we set

�k � min��� ����� � �maxk �� ����

That is� we forget about the theoretical conditions �i�!
�iv� above and simply choose �k to step almost all
the way to the boundary of the nonnegative orthant�
This tension between theory and practice existed for a
long time during the development of primal	dual meth	
ods� However� recent work has reconciled the di�er	
ences� There exist relaxed versions of conditions �i�!
�iv� that are satis�ed by the �practical� choice of �k
from ��������� Hence� the parameters �k and �k and be
chosen to make Algorithm IIP both practically e
cient
and theoretically rigorous�

The major operation to be performed at each step
of Algorithm IIP is the solution of the linear system
���� The matrix in this system obviously has a lot of
structure due to the presence of the zero blocks and the
diagonal components I� Sk� and Xk� Additionally� the
matrix M is sparse in most cases of practical interest�
including our motivating problem ���� so sparse matrix
factorizations are called for� In general� these are fairly
complex pieces of software� but problems of the form
��� require only banded factorization code� which is
comparatively simple�

The �rst step in solving ��� is to eliminate the �s
component� Since the diagonal elements of Xk are pos	
itive� we can rearrange the last block row in ��� to ob	
tain

�s � �Xk�����XkSke �k�ke � Sk�xk�

� �sk  �Xk�����k�ke� Sk�xk��

By substituting into the �rst two rows of ���� we obtain

�
M�� M��

M�� M��  �Xk���Sk

� �
�z
�x

�
����

�

�
�rk�

�rk� � sk  �k�k�Xk���e

�
�

In most cases� some of the partitions M��� M��� M���
or M�� are zero or diagonal or have some other sim	
ple structure� so further reduction of the system ����
is usually possible� This phenomenon happens� for
instance� when ������� is derived from a linear or
quadratic program� as we show below�

Since the factorization of the coe
cient matrix in
��� comprises most of the work at each iteration� we
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may be led to ask whether it is really necessary to com	
pute a fresh factorization every time� A set of heuristics
in which the factorization is essentially re	used on alter	
nate steps was proposed by �Mehrotra� ������ Mehro	
tra�s algorithm has proved to be successful in practice
and is the basis for the vast majority of interior	point
codes for linear programming�

Linear and Quadratic Programming as mLCPs

We now show how linear and convex quadratic pro	
gramming problems can be expressed in the form
������� and solved via Algorithm IIP� Consider �rst the
linear program in standard form�

min
x

cTx subject to Ax � b� x � �� ����

where c and x are vectors in Rn� b � IRm� and A �
IRm�n� The dual of ���� is

max
��s

bT	 subject to AT	  s � c� s � �� ����

where 	 � IRm are the dual variables �or� alternatively�
the Lagrange multipliers for the constraints Ax � b�
and s � IRn are the dual slacks� The Karush	Kuhn	
Tucker �KKT� conditions for ��������� are as follows�

AT	 s � c�

Ax � b� ����

x � �� s � �� xT s � ��

Because ���� is a convex programming problem� the
KKT conditions are both necessary and su
cient�
Hence� we can �nd a primal	dual solution for the linear
program by �nding a vector �x� 	� s� that satis�es the
conditions ����� We can verify that ���� has the form
������� by making the following identi�cations between
these two systems��

M�� M��

M�� M��

�
�

�
� A

�AT �

�
�

�
q�
q�

�
�

�
�b
c

�
�

z � 	� x� x� s� s�

Hence the KKT conditions ���� are an mLCP� and we
can obtain solutions to the linear program ���� and its
dual ���� simultaneously by applying Algorithm IIP to
�����

Next� we consider the following general convex
quadratic program�

min
z

�

�
zTQz  cT z s�t� Hz � h� Gz � g� ����

where Q is a symmetric positive semide�nite matrix�
The KKT conditions for this system are

Qz  HT 
  GT	 � �c�

�Hz � �h�

�Gz � t � �g� ����

t � �� 	 � �� tT	 � ��

The following identi�cations con�rm that the system
���� is an mLCP�

M�� �

�
Q HT

�H �

�
� M�� �

�
GT

�

�
�

M�� �
�
�G �

	
� M�� � ��

q� �

�
c
h

�
� q� � g�

z �

�
z



�
� x� 	� s� t�

The reduced form ���� of the linear system to be solved
at each iteration of Algorithm IIP is

�
� Q HT GT

�H � �
�G � �#k���T k

�
�
�
� �z

�

�	

�
� ����

�

�
� �rkc

�rkh
�rkg � tk  �k�k�	k���e

�
� �

Here� �k is de�ned as �k � �tk�T	k�m� where m is the
number of inequality constraints in ����� It is custom	
ary to multiply the last two block rows in ���� by ���
so that the coe
cient matrix is symmetric inde�nite�
We then obtain�

� Q HT GT

H � �
G � ��#k���T k

�
�
�
� �z

�

�	

�
� ����

�

�
� �rkc

rkh
rkg  tk � �k�k�	k���e

�
� �

Since �#k���T k is diagonal with positive diagonal el	
ements� we can eliminate �	 from ���� to obtain an
even more compact form�

�
QGT#k�T k���G HT

H �

� �
�z
�


�
����

�

�
�rkc GT  #k�T k���rkg  	k � �k�k�T k���e�

rkh

�
�

Factorizations of symmetric inde�nite matrices
have been studied extensively in the linear algebra lit	
erature� see �Golub and Van Loan� ����� for references
to the major algorithms� Standard software is avail	
able� at least in the dense case �Anderson� Bai� Bischof�
Demmel� Dongarra� Du Croz� Greenbaum� Hammar	
ling� McKenney� Ostrouchov and Sorensen� ������ Al	
gorithms for the sparse case have also received con	
siderable attention recently �Ashcraft� Grimes and
Lewis� ����� and have been implemented in the con	
text of interior	point methods by �Fourer and Mehro	
tra� ������

In solving the linear systems ���� or ����� we are
free to reorder the rows and columns of the coe
cient
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matrix in any way we choose� before or during the fac	
torization� As we see below� the problem ��� bene�ts
dramatically from such a reordering� since the coe
	
cient matrix in this case becomes a narrow	banded ma	
trix� which is easily factored via existing linear algebra
software such as LAPACK �Anderson et al�� ������

�Soft� Constraints and Penalty Terms

The cost of introducing slack variables and dummy
variables into the formulation ���� is often surprisingly
small when the quadratic program is solved by the tech	
nique outlined above� even though the total number of
variables in the problem may increase appreciably� The
reason is that the new variables can often be substi	
tuted out of the linear system ����� as in ���� and �����
so that they may not a�ect the size of the linear system
that we actually solve� This comment is relevant when
we are adding norm constraints or �soft� constraints
to the problems ���� or ���� as in �Scokaert and Rawl	
ings� ������ Suppose� for instance� that we wish to
include the soft constraint Gsz � gs in ����� and we
choose to do this by including a term �k�Gsz � gs��k�
to the objective function� �The subscript �� denotes
the positive part of a vector� obtained by replacing its
negative components by zeros�� To restore the problem
to the form of a standard convex quadratic program�
we introduce the �dummy� vector v� and

	 add the term �eTv to the objective� where e �
��� �� � � � � ��T �

	 introduce the additional constraints v � �� v �
Gsz � gs�

By computing the mLCP form ������� of the expanded
problem� applying Algorithm IIP� and reducing its step
equations as far as we can via simple substitutions� we
�nd that the linear system is ultimately no larger than
����� The details are messy and we omit them from
this discussion�

In the case of soft constraints and penalty terms�
the consequence of this observation is that the amount
of work per iteration is not really sensitive to whether
we choose a �	norm penalty or an �	norm penalty�
though the latter option adds fewer dummy variables
to the formulation of the problem�

Solving LQR E�ciently via the mLCP Formulation

The linear	quadratic problem ��� is obviously a special
case of ����� as we see by making the following identi	

�cations between the data�

Q�

�









�

R
Q

R
� � �

Q
R

�Q

�
����������
�

G�

�



�
G J

G J
� � �

� � �

G J

�
���� �

H �

�



�
B �I

A B �I
� � �

A B �I

�
���� �

z �

�







�

u�
x�
u�
���

uN��
xN

�
��������
� c�

�







�

r
q
r
���
r
�q

�
��������
�

g �

�



�
g
g
���
g

�
���� � h�

�



�
�Ax�

�
���
�

�
���� �

As suggested earlier� the matrices in this problem are
all block�banded� their nonzeros are clustered around a
line connecting the upper	left and lower	right corners
of the matrix� When we formulate the linear system
����� the nonzeros seem to become widely dispersed�
However� by interleaving the states xj� the controls uj�
the adjoints pj and the Lagrange multipliers 	j for the
constraints Guj  Jxj�� � g� we can return the coef	
�cient matrix in ���� to banded form� We order the
unknowns in the system as

��u���	���p���x���u�� � � � ��	N����pN ��xN�

and rearrange the rows and columns of the matrix ac	
cordingly to obtain�
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�We have used Dk
j to denote sections of the diagonal

matrix �#k���T k from ������ This system can be re	
duced further by using the diagonal entries Dk

j to elim	
inate �	j� j � �� �� � � � � N � ��

The computational savings obtained by recovering
bandedness are signi�cant� If we assume the dimen	
sions

uj � IRm� xj � IRn� 	j � IRmc �

the banded matrix has total dimensionN ��nmmc�
and half	bandwidth of ��n m  mc � ��� Therefore�
the time required to factor this matrix is O�N ��nm
mc���� compared with O�N���nmmc��� for a dense
matrix of the same size� In the absence of constraints
�that is� mc � ��� this cost has exactly the same order
as the cost of solving a linear	quadratic version of ���
by using dynamic programming techniques�

Stagewise ordering of the equations and variables
in ���� is the key to obtaining a banded structure� As
mentioned above� we can maintain the banded struc	
ture when outputs yk � Cxk and other constraints are
introduced into the model� provided that we continue
to order the variables by stage�

The techniques outlined above are quite similar to
those described in �Wright� ����a�� The di�erence lies
in the use of infeasible	interior	point methods above�
in contrast to the techniques of �Wright� ����a� which
combined feasible interior	point methods with an em	
bedding of the original problem into an expanded prob	
lem for which a feasible initial point is easy to compute�
The new approach is cleaner� more practical� and more
e
cient� while remaining theoretically rigorous�

Active Set Methods for Linear�Quadratic Prob�
lems

The structure of the problem ��� can also be exploited
when we use an active set method in place of the
interior	point method described above� Again� we �nd
that the linear algebra at each step can be performed
in terms of banded matrices rather than general dense
matrices� The details are di�erent from �and some	
what more complicated than� the interior	point case�
We start by sketching a single iterate of the active
set approach� For a more complete description� see
�Fletcher� ������

Active set methods for the general convex program
���� generate a sequence of feasible iterates� At each
iterate� a certain subset of the constraints Gz � g are
active �that is� hold as equalities�� On each step� we
choose a subset of the active set known as the working
set� �Typically� the working set either is identical to
the active set or else contains just one less constraint��
We then compute a step from the current point z that
minimizes the objective function in ���� while main	
taining activity of the constraints in the working set�
and also ensuring that the original equality constraints

Hz � h remain satis�ed� If we denote by $G the subset
of rows of G that make up the working set� the step
�z is obtained by solving the following system�

min�z
�
�
�z  �z�TQ�z  �z�  cT �z  �z�

subject to H�z � �� $G�z � ��

Equivalently� we have

min
�z

�

�
�zTQ�z  �cT�z� s�t� H�z � �� $G�z � ��

����
where �c � c  Qz� The KKT conditions for ���� are
that �z is a solution of this system if and only if there
are vectors �
 and �$	 such that ��z��
��$	� satis�es
the following system��

� Q HT $GT

H � �
$G � �

�
�
�
� �z

�

�$	

�
� �

�
� ��c

�
�

�
� � ����

We can obtain �z from this system and then do a
line search along this direction� stopping when a new
constraint is encountered or when the minimum of the
objective function along this direction is reached�

Note the similarity between ���� and ����� The
coe
cient matrices di�er only in that there is no di	
agonal term in the lower left of ����� and some rows
are deleted from G� For the problem ���� the matrices
Q� H� and $G are banded� so a stagewise reordering of
the rows and columns in ���� again produces a banded
system� The matrix will not be quite as regular as
����� because of the missing columns in $G� but similar
savings can be achieved in factoring it�

The banded matrix is best factored by Gaussian
elimination with row partial pivoting� as implemented
in the LAPACK routine dgbtrf and its a
liated so	
lution routine dgbtrs �Anderson et al�� ������ To the
author�s knowledge� there is no software that can ex	
ploit the fact that the matrix is symmetric in addition
to being banded�

Updating Factorizations

We have noted that the matrix in ���� is banded for the
problem ���� so we can use software tailored to such ma	
trices to obtain signi�cant savings over the dense linear
algebra that is usually employed in standard quadratic
programming software� The story is not quite this sim	
ple� however� The systems ���� that we solve at each
iteration are closely related to one another� di�ering
only in that a column is added and�or deleted from $G�
Therefore� it does not make sense to solve each system
�from scratch�� we try instead to modify the matrix
factorization that was computed at an earlier iteration
to accommodate the minor changes that have occurred
since then� In the general case of dense matrices� up	
dating of factorizations has been studied extensively
and is implemented in software for many kinds of op	
timization problems� �Simplex algorithms for linear
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programming� for instance� depend heavily on e
cient
updating of the basis matrix at each iteration�� The
question we face here is� Can we perform e
cient up	
dating of the factorization while still exploiting band	
edness% We answer this question in the a
rmative by
sketching a technique for re	solving ���� after a row has
been added to or deleted from $G�

We start with addition of a column to the system
����� Changing the notation for convenience� we de	
note the original coe
cient matrix by M and the new
row�column by a� We assume without loss of general	
ity that a is ordered last� Then the updated matrix $M
is

$M �

�
M a
aT �

�
�

We assume that the LU factorization of the original
matrix M is known� so that there is a permutation
matrix P � a lower triangular L and upper triangular U
such that

PM � LU� ����

�If M is banded� then the factors L and U also have
nonzeros only in locations near their diagonals�� We
can easily modify L and U to accommodate the new
row�column by adding an extra row and column to
each factor to obtain�
P �
� �

� �
M a
aT �

�
�

�
L

aTU�� �

��
U L��Pa
� �

�
�

where
� � �aTU��L��Pa�

Hence� the factorization can be updated at the cost of
triangular substitution with each of L and U � For ����
the cost of this process is O�N �m nmc���� so it is
less expensive than refactoring $M from scratch� unless
�mnmc � is very small� Since the new row�column
does not participate in the pivoting� the new row of L
and column of U are dense in general� so the factors are
not as sparse as they would be in a factorization from
scratch� Stability issues may arise� since the diagonal
element � may be small� A good strategy for dealing
with these problems is to compute a fresh factorization
whenever � becomes too small by some measure� or
when O�m  n  mc� iterations have passed since the
last refactorization�

We turn now to the case in which a row and column
are deleted from M � We assume that the factorization
���� is known and that we obtain a new coe
cient ma	
trix �M by deleting row i and column j from the matrix
PM � �Note that the indices of the deleted row and
column will be identical in the original matrix M by
symmetry� but row pivoting may cause them to di�er
in the permuted matrix PM �� Obviously� we can mod	
ify L and U so that their product equals �M by simply
deleting the ith row of L and the jth column of U �
Unfortunately� these deletions cause L and U to be	
come nontriangular� the entries Li���i��� Li���i��� � � �

now appear above the diagonal of the modi�ed version
of L� We can restore triangularity by removing the
ith column of L as well as the ith row� and similarly
removing the jth row of U as well as the jth column�
The modi�ed matrix �M can be expressed in terms of
these modi�ed L and U factors as follows�

�M � �L �U  vwT � ����

where �L is the matrix L with ith row and column re	
moved and �U is U with the jth row and column re	
moved� and we have

v �

�








�

�
���
�

Li���i
���

Ln�i

�
���������
� w �

�








�

�
���
�

Uj�j��
���

Uj�n

�
���������
�

The expression ���� shows that the product �L �U of
two triangular matrices di�ers from �M by a rank	
one matrix� which can be accounted for by using the
Sherman	Morrison	Woodbury formula �Golub and Van
Loan� ����� page ���� From this expression� we have

�M�� � ��L �U  vwT ���

� ��L �U ��� 
 ��L �U ���v� wT ��L �U ����

� wT ��L �U ���v
�

Hence� the solution �x of the system

�M �x � �c

can be written as

�x � �M���c

� ��L �U ����c
��L �U ���v

�  wT ��L �U ���v
wT ��L �U ����c�

In computing �x via this formula� the main operations
are to perform two pairs of triangular substitutions
with �L and �U � one pair to compute ��L �U ����c and an	
other to compute ��L �U ���v�

Hot Starts

In MPC� the problem ��� is not usually encountered
in isolation� On the contrary� we usually need to solve
a sequence of these problems in which the data A� B�
Q� etc� and�or the starting point x� vary only slightly
from one problem to the next� It is highly desirable
that the algorithms should be able to take advantage of
this fact� The information could be used� for instance�
to choose good starting values for all the variables or
to make a good guess of the active constraint set �that
is� the matrix $G in ������ The process of using this
information is called hot starting�
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Sequences of similar linear	quadratic problems can
arise in the control of nonlinear systems� When we ap	
ply the sequential quadratic programming algorithm
to a constrained version of ���� we obtain a search di	
rection at each iteration by solving a problem like ����
�Actually� we solve a slightly more general problem in
which the data A� B� Q� R varies with stage index j
and linear terms may appear in the objectives and con	
straints�� As the iterates converge to a solution of the
nonlinear problem� the data matrices become more and
more similar from one iteration to the next� A starting
guess of uj 	 � and xj 	 � is best� because the sub	
problem is obtained by approximating the nonlinear
problem around the current iterate� We can however
make an excellent guess at the active set and the initial
working set� particularly on later iterations� Active set
methods will typically require just a few steps to iden	
tify the correct active set from this good initial guess�

Model predictive control also gives rise to sequence
of similar linear	quadatic problems� The usual pro	
cedure is to solve a problem like ��� using the cur	
rent state of the system as the initial value x�� and
then apply the control u� until the next time point is
reached� The process is then repeated �Scokaert and
Rawlings� ����� Rawlings and Muske� ������ In the
absence of disturbances� the problems ��� are very sim	
ilar on successive steps� sometimes di�ering only in the
initial value x�� An excellent starting point can be ob	
tained from the solution at the previous set by setting

�x�� x�� � � � � xN� � �xnew� � x�� � � � � � x
�

N � x
new
N ��

�u�� u�� � � � � uN��� � �u�� � u
�

� � � � � � u
�

N��� u
new
N����

where u�j � x�j are the solution components at the pre	
vious step� xnew� is the new initial state� and xnewN

and unewN�� are some well	chosen estimates for the �	
nal stages� In the case of the active set approach� an
excellent starting guess can also be made for the active
constraint matrix $G�

In some situations� particularly when disturbances
are present� the starting point chosen by the obvi	
ous techniques may not be feasible even though it is
close to a solution� This represents no problem for the
infeasible	interior	point approach� although it is desir	
able in Algorithm IIP for the initial complementarity to
be comparable in size to the initial infeasibilities� The
active set method assumes a feasible starting point�
One remedy is to use a two	phase approach� in which
we solve a �Phase I� problem to �nd a feasible point�
then a �Phase II� problem to �nd the optimum� A
second option is to introduce penalty terms into the
objective for the infeasibilities and then obtain a solu	
tion in a single phase �provided that a heavy enough
penalty is imposed��

Active set methods typically gain more from hot
starting than do interior	point methods� for reasons
that are not yet fully understood� On linear pro	
gramming problems� the best interior	point codes gain

about a factor of three in compute time when they
are hot started� in comparison with a �cold� �i�e�� no
prior information� start� The relative savings for sim	
plex�active set methods are signi�cantly higher� It is
di
cult to predict how much the situation will change
when we consider the problem class ���� Numerical
testing is the only way to �nd out�
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