
ADAPTIVE REFINEMENT OF UNSTRUCTUREDFINITE-ELEMENT MESHES �MARK T. JONES AND PAUL E. PLASSMANNyAbstract. The �nite element method used in conjunction with adaptive mesh re�nement al-gorithms can be an e�cient tool in many scienti�c and engineering applications. In this paper wereview algorithms for the adaptive re�nement of unstructured simplicial meshes (triangulationsand tetrahedralizations). We discuss bounds on the quality of the meshes resulting from thesere�nement algorithms. Unre�nement and re�nement along curved surfaces are also discussed.Finally, we give an overview of recent developments in parallel re�nement algorithms.1. Introduction. The combination of the �nite-element method and adap-tive mesh re�nement has proven e�ective in a variety of applications. This reviewfocuses on algorithms for re�ning unstructured meshes composed of triangles ortetrahedra. We say a mesh is structured if it has a regular pattern of connectionsbetween elements. Consider the three mesh examples shown in Figure 1. Note thatit is the pattern of connections that makes a mesh structured, not the geometricpositions of the mesh points. The left and center meshes have the same local con-nectivity even though the center mesh has an irregular boundary. This regularstructure can be exploited in algorithms and software to create highly e�cientprograms. It is not always possible, however, to create high-quality structuredmeshes for complex domains; in such cases, unstructured meshes must be used.This paper focuses on such unstructured meshes, which include meshes with nodiscernible local structure, such as the example on the right in Figure 1.
Fig. 1. On the left is a structured mesh of a regular domain. In the center is a structuredmesh on an irregular domain. On the right is an unstructured mesh on an irregular domain.� The �rst author received support from NSF grants ASC-9501583 and ASC-9411394. Thesecond author was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Departmentof Energy, under Contract W-31-109-Eng-38.y The address of the �rst author is Computer Science Department, University of Tennessee,Knoxville, TN 37996. The address of the second author is Mathematics and Computer ScienceDivision, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.1



a bFig. 2. An optimal mesh for the linear �nite-element approximation of this one-dimensionalfunction would include a higher density of points in region (a; b) than in the rest of the domain.An unstructured mesh can be adaptively re�ned to improve the quality of acomputed solution. Adaptive re�nement is used most e�ectively in applicationswhere some mesh elements are required to be much smaller than others yet theareas of re�nement cannot be predicted prior to computation. This situation canarise when the computed solution is rapidly changing in small areas of the domainwhile in large parts of the domain the solution is relatively stable. For example,consider the one-dimensional function shown in Figure 2. An optimal mesh used fora linear �nite-element approximation to this function would have a concentrationof mesh points in the interval (a; b) but relatively few points in the remainder ofthe domain.
X YFig. 3. On the left, triangles X and Y are marked for re�nement. The re�ned triangulationon the right is nested within the original triangulation on the left.In this paper we discuss adaptive re�nement algorithms for generating meshesin two and three dimensions. We assume that an initial mesh, M0, has beengenerated consistent with the topology of the problem domain; for a survey ofthe mesh generation problem we recommend the review by Bern and Eppstein [8].We focus on algorithms for which the triangles or tetrahedra in the re�ned mesh,Mi+1, are nested within the old mesh, Mi. For example, on the left in Figure 3is a mesh with two triangles marked for re�nement; the resulting re�ned mesh ison the right. This nesting is motivated by the �nite-element method. The �nite-element spaces V0; V1; : : : ; Vk corresponding to the nested meshes M0;M1; : : : ;Mkare also to be nested, that is, V0 � V1 � : : : � Vk. For many important classesof problems the Galerkin method used with these meshes leads to a sequence of2



Construct a coarse mesh, M0, consistent with the geometryof the problem domaini = 0While (Error estimates are not acceptable) doCompute a solution, Si, on MiCompute a local error estimate or indicator on each element of MiMark elements in Mi for re�nementIf (Marked elements exist)Construct Mi+1 by re�ning marked elements of MiEndifi = i+ 1Enddo Fig. 4. A typical adaptive re�nement algorithmdiscrete approximations with monotonic convergence properties. In addition, thenested meshes can be used in conjunction with multigrid solution methods [3], [23].An alternative re�nement approach based on Delaunay triangulations insertsnew mesh points in element interiors (Steiner insertion) and is popular for �nite-volume methods in computational 
uid dynamics and related areas. We recom-mend the papers by Chew [9], Ruppert [34], and Weatherill et al. [36] for details onthis approach. We also note that the h-re�nement discussed in this paper can becombined with order re�nement of the basis functions; we recommend the papers[10], [24], and [28] for more information on hp-adaptive �nite-element methods. Agood overview of a number of research topics in adaptive methods can be found inthe book by Flaherty et al. [12].A typical �nite-element adaptive re�nement approach is summarized in Fig-ure 4. We note that e�ciency is the primary reason for selectively, rather thanuniformly, re�ning a mesh. To demonstrate the gain in e�ciency, consider solvingPoisson's equation on the unit square with Dirichlet boundary conditions. Weassume the solution given byu(x; y) = x(x� 1)y(y � 1)e(�100((x�:5)2+(y�:117)2))(1.1)and use a source for the discretized problem computed from this solution. Weseek a discrete solution for which the estimated L1 error between the linear �nite-element approximation and this exact solution is less than some �xed tolerance.This test problem is based on problem 1a in [22], which considers a number of errorestimators. For a more detailed analysis of error estimates for the �nite-elementmethod, we recommend the paper by Babu�ska and Rheinboldt [2].The re�ned mesh is given in Figure 5; note the re�nement in the region corre-sponding to the peak in the source function. This selectively re�ned mesh has 600triangles. To achieve the same level of accuracy with a uniformly re�ned mesh,we would have had to re�ne the mesh to a spacing consistent with the smallest3



Fig. 5. A selectively re�ned mesh for a test problem on the unit square. Note the re�nementaround the peak in the source function at (0:5; :117).elements used in the adaptive mesh. This uniform mesh would have required ap-proximately 65; 000 triangles. Mitchell [22] notes that when he uses the linear�nite-element method for a number of similar problems, the L1 norm of the errorbehaves as O(n�1), where n is the number of vertices used in the adaptive mesh.This e�ciency results in much smaller memory requirements and large savings incomputation times during the solution phase. The relative gain in e�ciency canbe even more compelling for three-dimensional problems.The remainder of this paper is organized as follows. In x2, algorithms forre�nement of triangulations are reviewed, along with bounds on the quality of thosealgorithms. The re�nement of tetrahedralizations is covered in x3. Unre�nementand re�nement of curved boundaries are discussed in x4. Parallel algorithms forre�nement in two and three dimensions are given in x5. Finally, a summary andsuggestions for future work are made in x6.2. Re�nement in Two Dimensions. In this section we consider the adap-tive re�nement of triangulations in two dimensions. Prior to discussing the re�ne-ment algorithms themselves, we examine the characteristics of a high-quality meshfor �nite-element calculations.For ease in the �nite-element formulation and programming, it is desirable tomaintain a conforming triangulation during re�nement. A mesh is conforming ifthe intersection of any two triangles in the mesh Mk is a line segment connectingtwo nodal points, a nodal point, or the empty set. In Figure 6 a conforming meshis shown on the left and a nonconforming mesh on the right.To ensure the quality of a mesh during re�nement, it is desirable that no verylarge or very small angles are generated. In [1], Babu�ska and Aziz show thatthe accuracy of the �nite-element approximation degrades as the maximum angleapproaches �. Small angles should be avoided because the condition number of thematrices that arise from the �nite-element discretization grows as O( 1�min ), where�min is the minimum angle in the triangulation [13].Finally, the mesh should be graded or smooth. In other words, the area ofneighboring triangles should not di�er dramatically; otherwise the �nite element4



Fig. 6. The mesh on the left is a conforming mesh. The mesh on the right is nonconforming.Note the midpoint on the left side of the rightmost triangle.approximation may be quite far from the actual solution.We note that in some applications (in particular, problems with nonisotropicphysics) these quality measures may be violated. For example, when discretiz-ing 
uid 
ow in a boundary layer, an optimal triangulation may have a highaspect ratio corresponding to steep velocity gradients in directions normal to asurface. Special mesh generation techniques are required in these cases. We referthe reader to [6] for a discussion of the construction of accurate control volumesfor nonisotropic 
ows.2.1. Subdividing Triangles. The most obvious means of dividing a triangleto maintain a conforming mesh is to place a nodal point at the centroid of thetriangle and connect it to the three existing nodal points. This process createsthree new triangles, as shown in Figure 7. Unfortunately, repeated re�nement of aregion clearly results in angles that go toward 0 and �; ungraded meshes also canresult, as illustrated on the right of this �gure.
XFig. 7. Triangle X on the left has been divided into three triangles. Repeated division resultsin poor angles and lack of mesh smoothness.Another means of triangle division is bisection, as shown in Figure 8. Bisectiondivides the triangle area exactly in half, and the bisected angle is also halved.This approach can result in a nonconforming mesh, as illustrated on the right ofFigure 8. However, as we show below, this problem can be solved by propagatingthe re�nement to nonconforming triangles. Moreover, if triangles are bisected onlyacross their longest edge, one can bound the maximum and minimum angles of5



the resulting triangles independently of the number of times the resulting trianglesare bisected. If a triangle and its descendants are repeatedly bisected across theirlongest edges, the smallest resulting angle is bounded by at worst one-half thesmallest angle in the original triangle [33]. A simple corollary is that the largestresulting angle is also bounded away from �. Moreover, the angles of Mk tend togo toward �3 as k !1 [35].
XFig. 8. Triangle X on the left has been bisected into two triangles. At this stage the resultingtriangulation is nonconforming.A third means of triangle division is regular re�nement [4], as illustrated inFigure 9. Again, this approach can result in a nonconforming mesh, as shownon the right of this �gure. A conforming mesh can be obtained by temporarilyre�ning triangles with one nonconforming edge through bisection. This bisectingedge, known as a green edge, is removed before the next level of re�nement; reg-ular re�nement is used on triangles that have two or more nonconforming edges.The four triangles resulting from regular re�nement are all similar to the originaltriangle. Thus, no re�ned mesh angle can be less than half the smallest initialmesh angle.
XFig. 9. Triangle X on the left has been regularly re�ned into four triangles. At this stagethe resulting triangulation is nonconforming.2.2. Re�nement Algorithms. Rivara has described an e�ective algorithmfor mesh re�nement based on bisection in [30]. The algorithm assumes that aninitial set of triangles in Mi have been marked for re�nement based on error es-timates/indicators. As triangles become nonconforming, they are also marked forre�nement. The algorithm, given in Figure 10, continues until a conforming mesh,6



Mi+1, has been constructed. Rivara shows that this algorithm will terminate; how-ever, no useful bound exists for L, the number of times the while loop is executed[30]. In Figure 11, we give an example for which L is O(n), where n is the numberof triangles in Mi. In practice, however, we have found L to be a small constantindependent of n.Let T0 be the set of marked trianglesi = 0While (Ti 6= ;) doBisect triangles in Ti across their longest edgeLet Ti be the set of nonconforming trianglesi = i+ 1Enddo Fig. 10. The longest-edge bisection algorithm of Rivara
Fig. 11. A worst-case example of propagation of re�nement. On the left, the shaded triangleis marked for re�nement; on the right, the resulting conforming mesh after re�nement. Note thatlongest-edge re�nement has propagated through every triangle in the mesh but one.Rivara has described variants of this algorithm, including one in which simplebisection is combined with bisection across the longest edge to reduce L [30]. Bysimple bisection, we mean bisection across an edge that may not be the longest.In this algorithm, a triangle is �rst bisected across its longest edge. If either ofthe two resulting triangles become nonconforming, as the result of bisection of aneighbor, they are bisected across the nonconforming edge (see Figure 12). Thealgorithm, given in Figure 13, yields the same angles bounds as the longest edge-only algorithm. Note that the algorithm in Figure 13 is for the �rst re�nementstep; subsequent steps must assign triangles to Vi and Ti based on whether thetriangle resulted from a longest-edge bisection or not.A group led by Bank [4] has developed a re�nement algorithm based on regularre�nement with selected temporary bisections. This algorithm, given in Figure 14,has been used in the software package PLTMG [3]. Triangles initially marked forre�nement are re�ned by using regular re�nement. As re�nement propagates, anytriangle with at least two nonconforming edges is also regularly re�ned. When only7



Fig. 12. The possible children of a triangle for the modi�ed bisection algorithm of Rivara.After the initial longest-edge bisection, the remaining two edges are bisected if they are noncon-forming. Note that these edges may not be the longest edges in the bisected triangle.Let T0 be the set of marked trianglesf T will denote triangles not yet re�ned gV0 = ; f V will denote children of re�ned triangles gi = 0While ((Ti [ Vi) 6= ;) doBisect triangles in Ti across their longest edgeBisect triangles in Vi across a nonconforming edgeLet Vi be the set of nonconforming triangles embedded in [ij=0TiLet Ti be the set of all other trianglesi = i+ 1Enddo Fig. 13. The modi�ed bisection algorithm of Rivaratriangles with one or less nonconforming edges remain, the remaining nonconform-ing edges are bisected. Prior to the next re�nement, these bisected triangles aremerged. Thus, every triangle in Mi+1 either is similar to a triangle in the originalmesh or is similar to a triangle obtained by the bisection of a triangle in the originalmesh. Note that because the bisected triangles are temporary, the re�ned meshesare not strictly nested.In the modi�ed version of Sewell's algorithm proposed by Mitchell, trianglesare always bisected across the edge opposite the newest node in the triangles [22].Triangles are re�ned only in compatible pairs; a neighboring pair is compatible ifthe edge selected by each triangle is the same (see Figure 15). If a triangle tobe re�ned does not have a compatible neighbor, the neighbor opposite the newestnode is recursively re�ned until a compatible neighbor is created. Because anangle is never divided twice, the angles generated by the algorithm are necessarilybounded away from 0 and � (see Figure 16). Further, the length of the recursivedivision of a neighbor is bounded [22].Mitchell compared these re�nement algorithms in several numerical experi-ments [22]. He found that all these methods performed well. In general, the regularre�nement algorithm was preferable when the initial triangles are nearly equilat-8



All bisected triangles are mergedLet T0 be the set of marked trianglesi = 0While (Ti 6= ;) doRegularly re�ne triangles in TiLet Ti be the set of triangles with at least two nonconforming edgesi = i+ 1EnddoBisect remaining nonconforming triangles across nonconforming edgeFig. 14. The regular re�nement algorithm of Bank
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Let T be the set of marked trianglesCall New Re�ne(t,;) for each triangle, t, in TProcedure New Re�ne(t,d)Let n be the neighbor opposite the newest node in tIf (t is compatible with n)If (n = d)ReturnElseBisect the pair to form t1, t2 and children of nRemove t and n (if necessary) from TIf (d 6= ;)Call New Re�ne(s,d), where s is the triangle in t1; t2that shares an edge with dEndifReturnEndifElseCall New Re�ne(n,t)Bisect t and its newly compatible neighborRemove t and neighbor (if necessary) from TEndifEndif Fig. 16. The modi�ed newest-node re�nement algorithm of Mitchelltwo-dimensional measure of mesh quality, the angles of the triangulation formedby the faces of the tetrahedra, is not an adequate mesh quality measure. Considera tetrahedra with the following coordinates:v0 = (0; 0; 0);(3.2) v1 = (0; 1; 0);v2 = (0:5; 0:5; �);v3 = (0:5;�0:5; �):The face angles of this tetrahedron are good in the two-dimensional sense; theyare bounded away from 0 and � independent of �. However, as �! 0, the interiorsolid angles and volume of the tetrahedron go to zero.Many measures of tetrahedron quality have been proposed, most of whichhave a maximum value for an equilateral tetrahedron and a minimum value for adegenerate tetrahedron. One commonly used measure is the minimum solid angle.The solid angle at a vertex is de�ned to be the surface area of the spherical triangleon a unit sphere obtained by placing the vertex at the center of the sphere andprojecting the three edges originating at that vertex onto the sphere. Another10



measure is the aspect ratio of the tetrahedron: the ratio of the sphere containedwithin the tetrahedron to the sphere containing the tetrahedron, divided by three.A third measure, the mean ratio �, is de�ned in [19]; this measure is based on theeigenvalues of the transformation of a given tetrahedron to a regular tetrahedron.Joe and Liu show in [20] that each of these measures is equivalent in some sense.Before describing speci�c re�nement algorithms, we review the process ofbisection in three dimensions. To bisect a tetrahedra, t, composed of vertices(v0; v1; v2; v3) across the edge (v0; v1), we �rst create the new vertex v01 at themidpoint of (v0; v1). We bisect the tetrahedron with the plane de�ned by the newvertex, v01, and the vertices v2 and v3. This bisection creates two new tetrahedra,(v0; v01; v2; v3) and (v01; v1; v2; v3), as shown in Figure 17. This operation bisectsfaces (v0; v1; v2) and (v0; v1; v3) of t, which (unless these faces are on a domainboundary) are each shared with adjacent tetrahedra. Thus, for correctness, anybisection algorithm must uniquely de�ne how a given face is to be bisected. Twotetrahedra that share a face must agree on how it is to be bisected; otherwise anonconforming mesh will be constructed.
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is also split (ties can be broken by vertex labels). Thus, the bisection of the facesof shared tetrahedra is uniquely de�ned. Unfortunately, it is an open questionwhether the tetrahedra resulting from this algorithm have bounded solid angles(or any other measure) [26]. Rivara and Levin provide experimental results show-ing that the minimum angle in the tetrahedralization tends to converge to a �xedpoint or at least does not drop below a �xed point [32]. These results suggest that,at least in practice, this algorithm would not result in tetrahedra that continue todegenerate in quality as a mesh is re�ned.The major di�culty in proving that the Rivara and Levin algorithm does notcontinue to degrade mesh quality is that it is not known whether the algorithmgenerates a �nite number of similar tetrahedron. However, a bisection algorithm�rst introduced by B�ansch [5] does generate a �nite number of similar tetrahedra.Before describing the algorithm in detail, we sketch the proof given by Liu and Joe[19] which motivates the algorithm.
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However, the inverse of the a�ne mapping does not map similar tetrahedra inthe canonical space into similar tetrahedra in the original space unless the similartetrahedra have the same orientation. Thus, Liu and Joe de�ne two tetrahedrato be in the same similarity class in the canonical space if they can be mappedonto each other by a combination of scaling and translation. Liu and Joe showby direct calculation that a �nite number of similarity classes of tetrahedra aregenerated by longest-edge bisection of the canonical tetrahedron. Therefore, ifthis same bisection order is used in the original space, only a �nite number ofsimilar tetrahedra are generated.Both B�ansch [5] and Liu and Joe [21] give equivalent algorithms that generatethis bisection order. The algorithm proposed by B�ansch is given in Figure 19. InB�ansch's algorithm each face in every tetrahedra in the mesh has an edge markedas a \re�nement edge" such that (a) the marking on a face is consistent between thetwo tetrahedra that share it, and (b) at least one edge in a tetrahedron is markedby two faces (such a shared edge is called a \global re�nement edge"). B�anschnotes that this requirement is initially accomplished by marking the longest edgein every face (ties can be broken in any consistent manner; for example, by vertexor edge label order). With this method there is a unique global re�nement edgefor each tetrahedron.Mark the re�nement edge of every face in MkLet T0 be the set of marked tetrahedrai = 0While (Ti 6= ;) doBisect tetrahedra in Ti across their global re�nement edgeIn each new tetrahedron, mark the \old" edges in each bisected faceas re�nement edgesMark the re�nement edges for the resulting new facesLet Ti be the set of nonconforming tetrahedrai = i+ 1Enddo Fig. 19. The tetrahedra re�nement algorithm of B�anschIn the B�ansch algorithm given in Figure 19, tetrahedra marked for re�nementalways are bisected across the global re�nement edge. The unbisected edges in thetwo bisected faces in each bisected tetrahedron are marked as re�nement edges.This bisection and marking process is shown in Figure 20, where an x representsthe marked side for a face and a * denotes that the marked side is unspeci�edin a face. In these �gures we have unfolded the faces of the tetrahedron to showthe marking of the face edges, as done in [5]. The bisection creates a new faceshared by the two new tetrahedra; the key to the algorithm is how to choose there�nement edges for these new faces.To accomplish the choice of re�nement edges for new faces, B�ansch classi�es13
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B�ansch proves that this algorithm results in a conforming mesh in a �nite numberof steps. He further claims that only a �nite number of similar tetrahedra aregenerated in the re�ned mesh, although the proof is incomplete. A complete proofof this result is given by Liu and Joe [19]. The conclusion of this result is thatthe angles of all resulting tetrahedra are bounded independently of the number oflevels of re�nement [5].Liu and Joe have a more detailed description and analysis of this algorithmfrom a di�erent perspective and prove additional properties of the algorithm [19][21]. They show that the shape measure, �, of any child, ti, formed with thisalgorithm from a tetrahedron t is bounded independently of the number of levelsof re�nement as �(ti) � c�(t) ;(3.5)where c � 0:0974. In addition, they show that two tetrahedra sharing a face ina mesh re�ned with this algorithm can di�er by at most two levels of re�nement.They further show that any two tetrahedra sharing an edge in such a mesh willdi�er by at most four levels of re�nement. This fact implies that, in some sense,the resulting mesh should be smooth [21].Liu and Joe experimentally compared meshes formed by longest-edge bisectionas in [32] with meshes obtained from their algorithm [21]. They found that thelongest-edge bisection algorithm often results in meshes with manymore tetrahedrathan generated by their algorithm.4. Coarsening and Re�nement on Curved Surfaces. It is often useful,particularly in time-dependent computations, to unre�ne regions of the mesh thatwere re�ned in previous steps of the computation. For example, if a shock front ismoving across the domain, one might wish to re�ne around the wave and unre�ne inits wake. Reversing the re�nement algorithms presented in the preceding sectionshas been considered [5] [31].
1

X Y

2 3Fig. 23. The triangulation in step 1 is re�ned to form the triangulation in step 2. Howeverthe unre�nement suggested in step 3 does not form a legal triangulation.Reversing the re�nement cannot be done arbitrarily, however. One must ex-actly reverse the process because triangles or tetrahedra cannot be arbitrarilymerged and still be guaranteed to form a conforming triangulation. For exam-ple, consider Figure 23 where triangle X and Y are merged and a quadrilateral isformed rather than a triangle. In Figure 24 note that the vertex in the center of15



3

1 2

4

A
B

C
D

EFig. 24. The triangulation in step 1 is re�ned to form the triangulation in step 2 and thenfurther re�ned to form the triangulation in step 3. However, the unre�nement suggested in step4 does not form a conforming triangulation.triangles A;B;C;D;E is removed and the triangles are merged, yet a conformingtriangulation has not been formed. Rivara describes a labeling algorithm that cor-rectly allows for the unre�nement of a adaptive mesh created with the bisectionalgorithm [31].
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vFig. 25. The curved domain on the left is approximated by the line segment connecting v0and v1. When the line the segment is bisected, vertex v01 is the new midpoint.In practice, these re�nement algorithms can be used not only on polygonalregions, but also on regions with curved boundaries and surfaces. One can associateline segments of the initial triangulation with portions of the curved boundaries.Then, for example, if line segment (v0; v1) is to be re�ned and it lies on the curvedboundary, rather than using average of the positions of the points as the midpoint,we would use the point midway between v0 and v1 that lies on the curved surface.This process is depicted in Figure 25. Care must be taken, however, since severalpotential pitfalls exist. First, the angle bounds by the re�nement algorithms forpolygonal regions do not hold for these curved boundaries. Second, this approachcan result in illegal triangulations. Below, we give two examples of such problems.However, given that the initial triangulation is a good approximation of the domainbeing discretized, these problems usually can be avoided and good results obtained.In Figure 26 we give an example of how a concave boundary can result intriangles with negative area. The domain to be discretized is shown in step 1. In16
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7 8tFig. 26. Triangles of negative area resulting from the re�nement of a concave boundary.Bisection of the longest edge of triangle t6 introduces two children, triangles t7 and t8, that areinverted because of the creation of a new vertex along the concave boundary.

1 2 3

YFig. 27. Triangles with potentially very large angles resulting from the re�nement of a convexboundarystep 2, an initial triangulation is provided by some method of grid generation. Instep 3 this triangulation is re�ned further, maintaining a legal triangulation. Notethat the upper edge of t6 corresponds to the concave boundary of the domain. Instep 4, triangle t6 is re�ned with the midpoint of the re�ned side de�ned by themidpoint of the concave boundary. This re�nement results in t6 being re�ned intotwo triangles of negative area.In Figure 27 we give an example of how a convex boundary can result intriangles with large angles. The domain to be discretized is shown in step 1. Instep 2, an initial triangulation is provided; note that the triangular region on thetop, denoted by the dotted X, is not covered by the initial triangulation. We seethat the re�nement of triangle Y results in a potentially large angle in the twochild triangles in step 3.5. Parallel Algorithms for Re�nement. Many scienti�c computations aredemanding both in terms of processor time and memory. The use of massivelyparallel computing can make previously intractable computations possible. In aparallel environment, however, aspects of the computation are more interrelatedthan in a sequential setting. For example, the mesh partitioning must be dynamicto ensure correct load balancing when re�ning and then solving the resulting linear17



systems. We do not discuss these other problem aspects here; however, they mustbe considered in the same context of the re�nement algorithm. We note that muchwork has been done on the parallel solution of linear systems, using both iterativemethods [17] and direct methods [14] [29].In this section, we review recent work on algorithms for the parallel re�nementof unstructured meshes. We limit our discussion to triangulations; however, bothof the methods described apply to tetrahedra as well. In addition, we describe themethods primarily with respect to bisection, but these approaches apply to all thelocal re�nement algorithms discussed in this paper.
X YvFig. 28. Neighboring triangles X and Y are assigned to di�erent processors. They share anedge marked by both for re�nement. A parallel re�nement algorithm must ensure that a redundantcopy of the new vertex v on this edge is not created.Two primary problems need to be addressed to maintain a correct parallelmesh data structure when constructing a local re�nement algorithm. First, whentwo triangles on di�erent processors share an edge marked for re�nement, theymust avoid (or undo) creation of a redundant vertex. This problem is illustratedin Figure 28. Second, triangles in the mesh must maintain correct neighbor infor-mation. When two adjacent triangles on di�erent processors are simultaneouslyre�ned, one must ensure that the neighborhood information is maintained cor-rectly. This problem is illustrated in Figure 29.

X Y
X1

Y
1

X2
Y2Fig. 29. On the left, triangles X and Y are marked for re�nement and assigned to di�erentprocessors. After re�nement, we get the triangles on the right, where the new triangle X2 is nowneighboring the new triangle Y2. The parallel re�nement algorithm must ensure that this neighborinformation is maintained correctly during re�nement.Williams [37] [39] has given an approach for parallel mesh re�nement andhas implemented it in the parallel software package DIME. To address the twoquestions above, he maintains a parallel voxel database, using vertex coordinate18



information to help resolve point identity and triangle neighborhood information.He does not, however, present a running time analysis of the algorithm.An alternative approach has been taken by Jones and Plassmann [18]. In thisapproach, independent sets of triangles are maintained to ensure that neighboringtriangles are never simultaneously re�ned on di�erent processors. Recall that aset of triangles is said to be independent if they do not share an edge. The in-dependent sets can be e�ciently chosen in parallel by a randomization strategy.Random numbers are assigned to every triangle marked for re�nement; a trian-gle is in the independent set if its random number is larger than any neighboringmarked triangles. The expected running time of this algorithm under the PRAMcomputational model is O( logNlog logN ) + O(L), where N is the number of trianglesmarked for re�nement and L is the number of propagation steps required for there�nement algorithm (see x2). Recall that the PRAM computational model as-sumes that processors communicate through a common shared memory; the aboveanalysis assumes that we have as many processors as we have triangles.This bound implies that, in practice, the running time of the algorithm is aslowing growing function of the number of processors. This fact is veri�ed ex-perimentally in [18] where scalable performance is demonstrated by the algorithmon the Intel DELTA parallel computer. In [16] the performance of the adaptivere�nement algorithm is examined in the context of solving problems involvinghigher-order shell elements. The computational cost of the algorithm is shown tobe small relative to the time required for mesh partitioning, matrix assembly, andlinear system solution.
Fig. 30. An illustration of the set of vertices and elements maintained by one processor. Theset of vertices assigned to processor is shown as the set of �lled vertices, and the set of shadedtriangles are the assigned elements. The union of the set of shaded and unshaded triangles is theset of elements required to assemble the portion of the linear system corresponding to the assignedvertex unknowns. The dashed lines demonstrate one way to partition the vertices; in this case,geometric cuts were used.In Figure 30 we illustrate the information that must be maintained by eachprocessor for a parallel implementation of the �nite-element method. The meshvertices and elements must be partitioned among the processors; we assume thatthe processor assignments are unique. In the �gure, vertices that are assigned to19



a processor are shown as solid, and triangles assigned to the same processor areshown as shaded. To assemble the matrix row corresponding to the unknown ata mesh vertex, a processor must have information from all elements sharing thatvertex. Elements in this set not assigned to the processor are shown as unshaded,and additional vertices in these elements are shown as un�lled circles.To assemble the linear system in parallel, one can either (1) evaluate onlyelements assigned to a processor and communicate element sti�ness matrices forrow assembly, or (2) keep all the element information necessary to assemble rowscorresponding to the assigned vertices and avoid this communication. The formerapproach requires interprocessor communication; the latter approach requires nocommunication, but redundant element evaluation and more processor memory.The latter approach was used for the results given in [16].Note that the e�cient parallel performance of the methods discussed in thissection rely on good mesh partitions. The initial mesh must be partitioned toequalize the load on each processor and to minimize the number of triangles thatshare edges but are assigned to di�erent processors. An additional problem isthat as the computation proceeds, some processors are more likely than otherprocessors to re�ne triangles. Thus, the mesh must be dynamically rebalanced tomaintain the same load distribution as the initial partitioning, while minimizingthe interprocessor communication required to move triangles between processors.Many e�ective partitioning heuristics have been proposed in the literature [15];Williams compares several partitioning methods [38]. The choice of partitioningmethods strongly depends on the sparse solver used. If a direct sparse factorizationis used, minimization of the separator size is of primary importance, and spectralmethods produce excellent results [27].Finally, we note that interesting work has been done on the parallelization ofalternative adaptive schemes to those discussed in this paper. Devine et al. hasconsidered a parallel p-re�nement approach on regular grids [11], and Bell et al.[7] have considered parallel adaptive methods for explicit �nite-volume schemeson nested orthogonal meshes. Parallel hp-re�nement �nite-element methods havebeen considered by Oden and Patra [25].6. Summary and Concluding Remarks. Adaptive re�nement of �nite-element meshes can signi�cantly improve the computational e�ciency of scienti�cand engineering calculations involving solutions with large gradients, complicatedgeometries, and other special problem characteristics. In this paper we have re-viewed a number of algorithms that generate nested, or nearly nested, adaptive�nite-element meshes. These algorithm ensure the generation of meshes whosequality is within a constant factor to the initial mesh quality in two-dimensions.In three dimensions, the theoretical bounds are not as good, and a number of openproblems remain. However, good experimental results have been obtained for thesealgorithms [21], [32].Parallel algorithms for adaptive re�nement are encouraging. However, a paral-20
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