ADAPTIVE REFINEMENT OF UNSTRUCTURED
FINITE-ELEMENT MESHES *

MARK T. JONES AND PAUL E. PLASSMANNT

Abstract. The finite element method used in conjunction with adaptive mesh refinement al-
gorithms can be an efficient tool in many scientific and engineering applications. In this paper we
review algorithms for the adaptive refinement of unstructured simplicial meshes (triangulations
and tetrahedralizations). We discuss bounds on the quality of the meshes resulting from these
refinement algorithms. Unrefinement and refinement along curved surfaces are also discussed.
Finally, we give an overview of recent developments in parallel refinement algorithms.

1. Introduction. The combination of the finite-element method and adap-
tive mesh refinement has proven effective in a variety of applications. This review
focuses on algorithms for refining unstructured meshes composed of triangles or
tetrahedra. We say a mesh is structured if it has a regular pattern of connections
between elements. Consider the three mesh examples shown in Figure 1. Note that
it is the pattern of connections that makes a mesh structured, not the geometric
positions of the mesh points. The left and center meshes have the same local con-
nectivity even though the center mesh has an irregular boundary. This regular
structure can be exploited in algorithms and software to create highly efficient
programs. It is not always possible, however, to create high-quality structured
meshes for complex domains; in such cases, unstructured meshes must be used.
This paper focuses on such unstructured meshes, which include meshes with no
discernible local structure, such as the example on the right in Figure 1.
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Fia. 1. On the left is a structured mesh of a regular domain. In the center is a structured
mesh on an wrregular domain. On the right s an unstructured mesh on an wrreqular domain.
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Fic. 2. An optimal mesh for the linear finite-element approximation of this one-dimensional
Junction would include a higher density of points in region (a,b) than in the rest of the domain.

An unstructured mesh can be adaptively refined to improve the quality of a
computed solution. Adaptive refinement is used most effectively in applications
where some mesh elements are required to be much smaller than others yet the
areas of refinement cannot be predicted prior to computation. This situation can
arise when the computed solution is rapidly changing in small areas of the domain
while in large parts of the domain the solution is relatively stable. For example,
consider the one-dimensional function shown in Figure 2. An optimal mesh used for
a linear finite-element approximation to this function would have a concentration
of mesh points in the interval (a,b) but relatively few points in the remainder of
the domain.

Fia. 3. On the left, triangles X and Y are marked for refinement. The refined triangulation
on the right is nested within the original triangulation on the left.

In this paper we discuss adaptive refinement algorithms for generating meshes
in two and three dimensions. We assume that an initial mesh, My, has been
generated consistent with the topology of the problem domain; for a survey of
the mesh generation problem we recommend the review by Bern and Eppstein [8].
We focus on algorithms for which the triangles or tetrahedra in the refined mesh,
M1, are nested within the old mesh, M;. For example, on the left in Figure 3
is a mesh with two triangles marked for refinement; the resulting refined mesh is
on the right. This nesting is motivated by the finite-element method. The finite-
element spaces Vg, Vi,..., Vi corresponding to the nested meshes My, My, ..., My
are also to be nested, that is, V5 C V; C ... C V.. For many important classes
of problems the Galerkin method used with these meshes leads to a sequence of
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Construct a coarse mesh, My, consistent with the geometry
of the problem domain
1 =0
While (Error estimates are not acceptable) do
Compute a solution, S;, on M;
Compute a local error estimate or indicator on each element of M;
Mark elements in M; for refinement
If (Marked elements exist)
Construct M;1 by refining marked elements of M;
Endif
=141
Enddo

Fig. 4. A typical adaptive refinement algorithm

discrete approximations with monotonic convergence properties. In addition, the
nested meshes can be used in conjunction with multigrid solution methods [3], [23].

An alternative refinement approach based on Delaunay triangulations inserts
new mesh points in element interiors (Steiner insertion) and is popular for finite-
volume methods in computational fluid dynamics and related areas. We recom-
mend the papers by Chew [9], Ruppert [34], and Weatherill et al. [36] for details on
this approach. We also note that the hA-refinement discussed in this paper can be
combined with order refinement of the basis functions; we recommend the papers
[10], [24], and [28] for more information on Ap-adaptive finite-element methods. A
good overview of a number of research topics in adaptive methods can be found in
the book by Flaherty et al. [12].

A typical finite-element adaptive refinement approach is summarized in Fig-
ure 4. We note that efficiency is the primary reason for selectively, rather than
uniformly, refining a mesh. To demonstrate the gain in efficiency, consider solving
Poisson’s equation on the unit square with Dirichlet boundary conditions. We
assume the solution given by

(1) ul,y) = ale — Dyly — 1)el~ 009 +omn7)

and use a source for the discretized problem computed from this solution. We
seek a discrete solution for which the estimated L., error between the linear finite-
element approximation and this exact solution is less than some fixed tolerance.
This test problem is based on problem la in [22], which considers a number of error
estimators. For a more detailed analysis of error estimates for the finite-element
method, we recommend the paper by Babuska and Rheinboldt [2].

The refined mesh is given in Figure 5; note the refinement in the region corre-
sponding to the peak in the source function. This selectively refined mesh has 600
triangles. To achieve the same level of accuracy with a uniformly refined mesh,
we would have had to refine the mesh to a spacing consistent with the smallest
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Fia. 5. A selectively refined mesh for a test problem on the unit square. Note the refinement
around the peak in the source function at (0.5,.117).

elements used in the adaptive mesh. This uniform mesh would have required ap-
proximately 65,000 triangles. Mitchell [22] notes that when he uses the linear
finite-element method for a number of similar problems, the L., norm of the error
behaves as O(n™'), where n is the number of vertices used in the adaptive mesh.
This efficiency results in much smaller memory requirements and large savings in
computation times during the solution phase. The relative gain in efficiency can
be even more compelling for three-dimensional problems.

The remainder of this paper is organized as follows. In §2. algorithms for
refinement of triangulations are reviewed, along with bounds on the quality of those
algorithms. The refinement of tetrahedralizations is covered in §3. Unrefinement
and refinement of curved boundaries are discussed in §4. Parallel algorithms for
refinement in two and three dimensions are given in §5. Finally, a summary and
suggestions for future work are made in §6.

2. Refinement in Two Dimensions. In this section we consider the adap-
tive refinement of triangulations in two dimensions. Prior to discussing the refine-
ment algorithms themselves, we examine the characteristics of a high-quality mesh
for finite-element calculations.

For ease in the finite-element formulation and programming, it is desirable to
maintain a conforming triangulation during refinement. A mesh is conforming if
the intersection of any two triangles in the mesh M} is a line segment connecting
two nodal points, a nodal point, or the empty set. In Figure 6 a conforming mesh
is shown on the left and a nonconforming mesh on the right.

To ensure the quality of a mesh during refinement, it is desirable that no very
large or very small angles are generated. In [1], Babuska and Aziz show that
the accuracy of the finite-element approximation degrades as the maximum angle
approaches 7. Small angles should be avoided because the condition number of the
matrices that arise from the finite-element discretization grows as O(ﬁ), where
Omin 1s the minimum angle in the triangulation [13].

Finally, the mesh should be graded or smooth. In other words, the area of

neighboring triangles should not differ dramatically; otherwise the finite element

4



Fia. 6. The mesh on the left is a conforming mesh. The mesh on the right is nonconforming.
Note the midpoint on the left side of the rightmost triangle.

approximation may be quite far from the actual solution.

We note that in some applications (in particular, problems with nonisotropic
physics) these quality measures may be violated. For example, when discretiz-
ing fluid flow in a boundary layer, an optimal triangulation may have a high
aspect ratio corresponding to steep velocity gradients in directions normal to a
surface. Special mesh generation techniques are required in these cases. We refer
the reader to [6] for a discussion of the construction of accurate control volumes
for nonisotropic flows.

2.1. Subdividing Triangles. The most obvious means of dividing a triangle
to maintain a conforming mesh is to place a nodal point at the centroid of the
triangle and connect it to the three existing nodal points. This process creates
three new triangles, as shown in Figure 7. Unfortunately, repeated refinement of a
region clearly results in angles that go toward 0 and 7; ungraded meshes also can
result, as illustrated on the right of this figure.

Fia. 7. Triangle X on the left has been divided into three triangles. Repeated division results
wmn poor angles and lack of mesh smoothness.

Another means of triangle division is bisection, as shown in Figure 8. Bisection
divides the triangle area exactly in half, and the bisected angle is also halved.
This approach can result in a nonconforming mesh, as illustrated on the right of
Figure 8. However, as we show below, this problem can be solved by propagating
the refinement to nonconforming triangles. Moreover, if triangles are bisected only
across their longest edge, one can bound the maximum and minimum angles of
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the resulting triangles independently of the number of times the resulting triangles
are bisected. If a triangle and its descendants are repeatedly bisected across their
longest edges, the smallest resulting angle is bounded by at worst one-half the
smallest angle in the original triangle [33]. A simple corollary is that the largest
resulting angle is also bounded away from 7. Moreover, the angles of M} tend to
go toward % as k — oo [35].

& O

Fia. 8. Triangle X on the left has been bisected into two triangles. At this stage the resulting
triangulation is nonconforming.

A third means of triangle division is regular refinement [4], as illustrated in
Figure 9. Again, this approach can result in a nonconforming mesh, as shown
on the right of this figure. A conforming mesh can be obtained by temporarily
refining triangles with one nonconforming edge through bisection. This bisecting
edge, known as a green edge, is removed before the next level of refinement; reg-
ular refinement is used on triangles that have two or more nonconforming edges.
The four triangles resulting from regular refinement are all similar to the original
triangle. Thus, no refined mesh angle can be less than half the smallest initial

& O

Fia. 9. Triangle X on the left has been regularly refined into four triangles. At this stage
the resulting triangulation is nonconforming.

mesh angle.

2.2. Refinement Algorithms. Rivara has described an effective algorithm
for mesh refinement based on bisection in [30]. The algorithm assumes that an
initial set of triangles in M; have been marked for refinement based on error es-
timates/indicators. As triangles become nonconforming, they are also marked for
refinement. The algorithm, given in Figure 10, continues until a conforming mesh,
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M1, has been constructed. Rivara shows that this algorithm will terminate; how-
ever, no useful bound exists for L, the number of times the while loop is executed
[30]. In Figure 11, we give an example for which L is O(n), where n is the number
of triangles in M;. In practice, however, we have found L to be a small constant
independent of n.

Let Ty be the set of marked triangles

=0

While (7; # () do
Bisect triangles in T; across their longest edge
Let T; be the set of nonconforming triangles
1=1+1

Enddo

Fia. 10. The longest-edge bisection algorithm of Rivara

N

Fia. 11. A worst-case example of propagation of refinement. On the left, the shaded triangle
1s marked for refinement; on the right, the resulting conforming mesh after refinement. Note that
longest-edge refinement has propagated through every triangle in the mesh but one.

Rivara has described variants of this algorithm, including one in which simple
bisection is combined with bisection across the longest edge to reduce L [30]. By
simple bisection, we mean bisection across an edge that may not be the longest.
In this algorithm, a triangle is first bisected across its longest edge. If either of
the two resulting triangles become nonconforming, as the result of bisection of a
neighbor, they are bisected across the nonconforming edge (see Figure 12). The
algorithm, given in Figure 13, yields the same angles bounds as the longest edge-
only algorithm. Note that the algorithm in Figure 13 is for the first refinement
step; subsequent steps must assign triangles to V; and T; based on whether the
triangle resulted from a longest-edge bisection or not.

A group led by Bank [4] has developed a refinement algorithm based on regular
refinement with selected temporary bisections. This algorithm, given in Figure 14,
has been used in the software package PLTMG [3]. Triangles initially marked for
refinement are refined by using regular refinement. As refinement propagates, any
triangle with at least two nonconforming edges is also regularly refined. When only
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Fia. 12. The possible chidren of a triangle for the modified bisection algorithm of Rivara.
After the initial longest-edge bisection, the remaining two edges are bisected if they are noncon-
forming. Note that these edges may not be the longest edges in the bisected triangle.

Let Ty be the set of marked triangles
{ T will denote triangles not yet refined }
Vo = 0 { V will denote children of refined triangles }
=10
While ((T; U V;) # 0) do
Bisect triangles in T; across their longest edge
Bisect triangles in V; across a nonconforming edge
Let V; be the set of nonconforming triangles embedded in U;‘:()Ti
Let T; be the set of all other triangles
1=1+1
Enddo

Fia. 13. The modified bisection algorithm of Rivara

triangles with one or less nonconforming edges remain, the remaining nonconform-
ing edges are bisected. Prior to the next refinement, these bisected triangles are
merged. Thus, every triangle in M, either is similar to a triangle in the original
mesh or is similar to a triangle obtained by the bisection of a triangle in the original
mesh. Note that because the bisected triangles are temporary, the refined meshes
are not strictly nested.

In the modified version of Sewell’s algorithm proposed by Mitchell, triangles
are always bisected across the edge opposite the newest node in the triangles [22].
Triangles are refined only in compatible pairs; a neighboring pair is compatible if
the edge selected by each triangle is the same (see Figure 15). If a triangle to
be refined does not have a compatible neighbor, the neighbor opposite the newest
node is recursively refined until a compatible neighbor is created. Because an
angle is never divided twice, the angles generated by the algorithm are necessarily
bounded away from 0 and 7 (see Figure 16). Further, the length of the recursive
division of a neighbor is bounded [22].

Mitchell compared these refinement algorithms in several numerical experi-
ments [22]. He found that all these methods performed well. In general, the regular
refinement algorithm was preferable when the initial triangles are nearly equilat-
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All bisected triangles are merged

Let Ty be the set of marked triangles

=0

While (7; # () do
Regularly refine triangles in T;
Let T; be the set of triangles with at least two nonconforming edges
1=1+1

Enddo

Bisect remaining nonconforming triangles across nonconforming edge

Fig. 14. The regular refinement algorithm of Bank

N N N N
3 4 3 4
9 10
N|N
«N 1 2 ND»
N[N
7 8
5 6 5 6
N N N N

Fia. 15. An ezample demonstrating Sewell’s newest-node algorithm. In the mesh on the left,
only triangles 1 and 2 may be refined. After they are refined, all four pairs of triangles, e.g., b
and 7, may be refined.

eral, whereas bisection was slightly more efficient otherwise. He also found that
the longest-edge bisection algorithm and Rivara’s variant that uses simple bisection
perform nearly identically. In most of the test cases presented, the newest-node
algorithm and the longest-edge bisection algorithms were equivalent. In the other
test cases, the longest-edge bisection algorithm slightly outperformed the newest-
node algorithm. Mitchell notes that the newest-node algorithm does not require
any computations to select an edge for division. Further, he notes that the regular
refinement algorithm is the only one in which M;;; is not likely to be nested in
M;, because of the merger of bisected triangles prior to refinement.

3. Refinement in Three Dimensions. In this section we review algorithms
for the adaptive refinement of three-dimensional tetrahedral meshes. As we ob-
served in the two-dimensional case, a conforming mesh is required for use in finite-
element discretization. A tetrahedralization is conforming if the intersection of any
two tetrahedra in the the mesh is a triangle, a line segment connecting two nodal
points, a nodal point, or the empty set. In addition, the mesh should be graded in
the same sense as for the two-dimensional case; that is, the volumes of neighboring
tetrahedra should not differ dramatically.

Developing a refinement scheme with guaranteed angle bounds is more prob-
lematic in three dimensions than in two dimensions. We first illustrate that the
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Let T' be the set of marked triangles
Call New_Refine(t,0)) for each triangle, ¢, in T

Procedure New_Refine(t,d)
Let n be the neighbor opposite the newest node in ¢

If (¢ is compatible with n)

If (n =d)
Return
Else

Bisect the pair to form ¢y, t; and children of n
Remove t and n (if necessary) from T
If (d £ 0)
Call New_Refine(s,d), where s is the triangle in #q, 5
that shares an edge with d
Endif
Return
Endif
Else
Call New_Refine(n,t)
Bisect t and its newly compatible neighbor
Remove t and neighbor (if necessary) from T'
Endif
Endif

Fia. 16. The modified newest-node refinement algorithm of Mitchell
two-dimensional measure of mesh quality, the angles of the triangulation formed

by the faces of the tetrahedra, is not an adequate mesh quality measure. Consider
a tetrahedra with the following coordinates:

(3.2) vo = (0,0,0),
v1 = (0,1,0),
vy = (0.5,0.5,¢),
vs = (0.5,—0.5,¢).

The face angles of this tetrahedron are good in the two-dimensional sense; they
are bounded away from 0 and 7 independent of e. However, as € — 0, the interior
solid angles and volume of the tetrahedron go to zero.

Many measures of tetrahedron quality have been proposed, most of which
have a maximum value for an equilateral tetrahedron and a minimum value for a
degenerate tetrahedron. One commonly used measure is the minimum solid angle.
The solid angle at a vertex is defined to be the surface area of the spherical triangle
on a unit sphere obtained by placing the vertex at the center of the sphere and
projecting the three edges originating at that vertex onto the sphere. Another
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measure is the aspect ratio of the tetrahedron: the ratio of the sphere contained
within the tetrahedron to the sphere containing the tetrahedron, divided by three.
A third measure, the mean ratio v, is defined in [19]; this measure is based on the
eigenvalues of the transformation of a given tetrahedron to a regular tetrahedron.
Joe and Liu show in [20] that each of these measures is equivalent in some sense.

Before describing specific refinement algorithms, we review the process of
bisection in three dimensions. To bisect a tetrahedra, ¢, composed of vertices
(vg,v1,v2,v3) across the edge (vg,v1), we first create the new vertex vg; at the
midpoint of (vg,v1). We bisect the tetrahedron with the plane defined by the new
vertex, vgr, and the vertices v, and v3. This bisection creates two new tetrahedra,
(vo, Vo1, V2, v3) and (vgr, v1,v2,v3), as shown in Figure 17. This operation bisects
faces (vg,v1,vq9) and (vg,v1,vs3) of ¢, which (unless these faces are on a domain
boundary) are each shared with adjacent tetrahedra. Thus, for correctness, any
bisection algorithm must uniquely define how a given face is to be bisected. Two
tetrahedra that share a face must agree on how it is to be bisected; otherwise a
nonconforming mesh will be constructed.

Fia. 17. The tetrahedron on the left is bisected to form two new tetrahedra

We note that a single bisection of tetrahedron can arbitrarily degrade the qual-
ity of a tetrahedron, whereas in two dimensions the minimum angle of a triangle
is decreased by no more than a factor of two. Consider the tetrahedron with the
following coordinates:

(3.3) vo = (0,¢,0),
vy (0, —¢,0),
ve = (1,0,¢),
U3 (1,0,—¢)

Bisection of the longest edge of this tetrahedron creates a new tetrahedron with a
minimum solid angle of order O(1/¢) times that of the initial minimum solid angle.

Rivara and Levin have suggested an extension of the longest-edge Rivara re-
finement algorithm to tetrahedra [32]. This algorithm corresponds to the two-
dimensional algorithm for longest-edge bisection given in §2. By splitting the
longest edge in the tetrahedron, we have that the longest edge on two shared faces
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is also split (ties can be broken by vertex labels). Thus, the bisection of the faces
of shared tetrahedra is uniquely defined. Unfortunately, it is an open question
whether the tetrahedra resulting from this algorithm have bounded solid angles
(or any other measure) [26]. Rivara and Levin provide experimental results show-
ing that the minimum angle in the tetrahedralization tends to converge to a fixed
point or at least does not drop below a fixed point [32]. These results suggest that,
at least in practice, this algorithm would not result in tetrahedra that continue to
degenerate in quality as a mesh is refined.

The major difficulty in proving that the Rivara and Levin algorithm does not
continue to degrade mesh quality is that it is not known whether the algorithm
generates a finite number of similar tetrahedron. However, a bisection algorithm
first introduced by Bansch [5] does generate a finite number of similar tetrahedra.
Before describing the algorithm in detail, we sketch the proof given by Liu and Joe
[19] which motivates the algorithm.

\
3

\
01

0

Fia. 18. The first three levels of longest-edge bisection of the canonical tetrahedron. Note
that the tetrahedra generated at each level are similar. For the final level of refinement we show
only the four tetrahedra obtained from (vo,v1, v12,v3). Four similar tetrahedra are obtained from
(Uo, V12, V2, 1}3).

The key observation is that there exists an affine transformation that maps any
tetrahedron to a canonical tetrahedron for which longest-edge bisection generates
only a finite number of similarity classes of tetrahedra. Consider the canonical
tetrahedron with coordinates:

(3.4) v = (—1,0,0),
v = (1,0,0),
Vs (0,1/v/2,0),
Vs (0,0,1).

In Figure 18 we illustrate the first three levels of longest-edge bisection of the
canonical tetrahedron. It can be shown that all the tetrahedra generated at each
level of refinement are similar and that the eight tetrahedra generated after three
levels of refinement are similar to the initial tetrahedron.
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However, the inverse of the affine mapping does not map similar tetrahedra in
the canonical space into similar tetrahedra in the original space unless the similar
tetrahedra have the same orientation. Thus, Liu and Joe define two tetrahedra
to be in the same similarity class in the canonical space if they can be mapped
onto each other by a combination of scaling and translation. Liu and Joe show
by direct calculation that a finite number of similarity classes of tetrahedra are
generated by longest-edge bisection of the canonical tetrahedron. Therefore, if
this same bisection order is used in the original space, only a finite number of
similar tetrahedra are generated.

Both Bénsch [5] and Liu and Joe [21] give equivalent algorithms that generate
this bisection order. The algorithm proposed by Béansch is given in Figure 19. In
Bansch’s algorithm each face in every tetrahedra in the mesh has an edge marked
as a “refinement edge” such that (a) the marking on a face is consistent between the
two tetrahedra that share it, and (b) at least one edge in a tetrahedron is marked
by two faces (such a shared edge is called a “global refinement edge”). Béansch
notes that this requirement is initially accomplished by marking the longest edge
in every face (ties can be broken in any consistent manner; for example, by vertex
or edge label order). With this method there is a unique global refinement edge
for each tetrahedron.

Mark the refinement edge of every face in M;,
Let Ty be the set of marked tetrahedra
=10
While (7; # () do
Bisect tetrahedra in T; across their global refinement edge
In each new tetrahedron, mark the “old” edges in each bisected face
as refinement edges
Mark the refinement edges for the resulting new faces
Let T; be the set of nonconforming tetrahedra
1=1+1
Enddo

Fia. 19. The tetrahedra refinement algorithm of Bansch

In the Bansch algorithm given in Figure 19, tetrahedra marked for refinement
always are bisected across the global refinement edge. The unbisected edges in the
two bisected faces in each bisected tetrahedron are marked as refinement edges.
This bisection and marking process is shown in Figure 20, where an x represents
the marked side for a face and a * denotes that the marked side is unspecified
in a face. In these figures we have unfolded the faces of the tetrahedron to show
the marking of the face edges, as done in [5]. The bisection creates a new face
shared by the two new tetrahedra; the key to the algorithm is how to choose the
refinement edges for these new faces.

To accomplish the choice of refinement edges for new faces, Bansch classifies
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F1G. 20. The tetrahedron on the left is bisected along edge (vg, v1) to form the two tetrahedra
on the right.

tetrahedra as either red or black; see Figures 21 and 22 for the definition of each
type. For each of the types in these figures, edge (vg,v1) is the global refinement
edge, and the new face is (vo1,vq,v3). Let t be the bisected tetrahedron and { be
the parent, if any, of ¢. The refinement edge for the new face is chosen according
to the following rules:

e if ¢ is red, then choose edge (vy,v3);

o if ¢ is black and # is red, then choose edge (vy,v3);

e if 7 is black and ¢ is either black case 1 or black case 2, choose edges

(v2,v01) and (vo1, v3), respectively; and

o if ¢ is black and # does not exist, choose edge (vy, vs).
In every case, the new tetrahedra are either black or red. Note that in the initial
mesh, it is possible for some tetrahedra to be neither black nor red. In this case
edge (vq, v3) is chosen, andythe resulting tetrahedra age either red or black.

v 2 V. Vv 2 v
3 3 3 3
X X X X
X v X
\ Vv Y
o\ % 1 0 X 1

\'
V3 3
Fia. 21. Tetrahedra classified as red; case 1 is on the left, and case 2 s on the right.
\' Vv
v 2 (VAY 2 v
3 3 3 3
X X X X
X v X
\Y \ \)
o\ X 1 0 X 1
\'
V3 3

Fia. 22. Tetrahedra classified as black; case 1 is on the left, and case 2 is on the right.

Detailed examination of this algorithm shows that tetrahedra are bisected in
the same manner as the canonical tetrahedron bisection depicted in Figure 18.
14



Bansch proves that this algorithm results in a conforming mesh in a finite number
of steps. He further claims that only a finite number of similar tetrahedra are
generated in the refined mesh, although the proof is incomplete. A complete proof
of this result is given by Liu and Joe [19]. The conclusion of this result is that
the angles of all resulting tetrahedra are bounded independently of the number of
levels of refinement [5].

Liu and Joe have a more detailed description and analysis of this algorithm
from a different perspective and prove additional properties of the algorithm [19]
[21]. They show that the shape measure, v, of any child, ¢;, formed with this
algorithm from a tetrahedron ¢ is bounded independently of the number of levels
of refinement as
(3.5) v(t;)) > cv(t),
where ¢ ~ 0.0974. In addition, they show that two tetrahedra sharing a face in
a mesh refined with this algorithm can differ by at most two levels of refinement.
They further show that any two tetrahedra sharing an edge in such a mesh will
differ by at most four levels of refinement. This fact implies that, in some sense,
the resulting mesh should be smooth [21].

Liu and Joe experimentally compared meshes formed by longest-edge bisection
as in [32] with meshes obtained from their algorithm [21]. They found that the
longest-edge bisection algorithm often results in meshes with many more tetrahedra
than generated by their algorithm.

4. Coarsening and Refinement on Curved Surfaces. It is often useful,
particularly in time-dependent computations, to unrefine regions of the mesh that
were refined in previous steps of the computation. For example, if a shock front is
moving across the domain, one might wish to refine around the wave and unrefine in
its wake. Reversing the refinement algorithms presented in the preceding sections

has been considered [5] [31].

@ @ ®

Fia. 23. The triangulation in step 1 is refined to form the triangulation in step 2. However
the unrefinement suggested in step 3 does not form a legal triangulation.

Reversing the refinement cannot be done arbitrarily, however. One must ex-
actly reverse the process because triangles or tetrahedra cannot be arbitrarily
merged and still be guaranteed to form a conforming triangulation. For exam-
ple, consider Figure 23 where triangle X and Y are merged and a quadrilateral is
formed rather than a triangle. In Figure 24 note that the vertex in the center of
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Fia. 24. The triangulation wn step 1 s refined to form the triangulation in step 2 and then

further refined to form the triangulation in step 3. However, the unrefinement suggested in step
4 does not form a conforming triangulation.

triangles A, B, C, D, I is removed and the triangles are merged, yet a conforming
triangulation has not been formed. Rivara describes a labeling algorithm that cor-

rectly allows for the unrefinement of a adaptive mesh created with the bisection
algorithm [31].

® ° ./.\o

v
A v, Vo 1

Fia. 25. The curved domain on the left is approzimated by the line segment connecting vy
and vi. When the line the segment is bisected, vertex vgy s the new midpoint.

In practice, these refinement algorithms can be used not only on polygonal
regions, but also on regions with curved boundaries and surfaces. One can associate
line segments of the initial triangulation with portions of the curved boundaries.
Then, for example, if line segment (v, v1) is to be refined and it lies on the curved
boundary, rather than using average of the positions of the points as the midpoint,
we would use the point midway between vg and v that lies on the curved surface.
This process is depicted in Figure 25. Care must be taken, however, since several
potential pitfalls exist. First, the angle bounds by the refinement algorithms for
polygonal regions do not hold for these curved boundaries. Second, this approach
can result in illegal triangulations. Below, we give two examples of such problems.
However, given that the initial triangulation is a good approximation of the domain
being discretized, these problems usually can be avoided and good results obtained.

In Figure 26 we give an example of how a concave boundary can result in
triangles with negative area. The domain to be discretized is shown in step 1. In

16



Fia. 26. Triangles of negative area resulting from the refinement of a concave boundary.
Bisection of the longest edge of triangle ts introduces two children, triangles t7 and tg, that are
wmverted because of the creation of a new verter along the concave boundary.

@A 2 3

Fia. 27. Triangles with potentially very large angles resulting from the refinement of a conver
boundary

step 2, an initial triangulation is provided by some method of grid generation. In
step 3 this triangulation is refined further, maintaining a legal triangulation. Note
that the upper edge of tg corresponds to the concave boundary of the domain. In
step 4, triangle tg is refined with the midpoint of the refined side defined by the
midpoint of the concave boundary. This refinement results in ¢g being refined into
two triangles of negative area.

In Figure 27 we give an example of how a convex boundary can result in
triangles with large angles. The domain to be discretized is shown in step 1. In
step 2, an initial triangulation is provided; note that the triangular region on the
top, denoted by the dotted X, is not covered by the initial triangulation. We see
that the refinement of triangle Y results in a potentially large angle in the two
child triangles in step 3.

5. Parallel Algorithms for Refinement. Many scientific computations are
demanding both in terms of processor time and memory. The use of massively
parallel computing can make previously intractable computations possible. In a
parallel environment, however, aspects of the computation are more interrelated
than in a sequential setting. For example, the mesh partitioning must be dynamic
to ensure correct load balancing when refining and then solving the resulting linear
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systems. We do not discuss these other problem aspects here; however, they must
be considered in the same context of the refinement algorithm. We note that much
work has been done on the parallel solution of linear systems, using both iterative
methods [17] and direct methods [14] [29].

In this section, we review recent work on algorithms for the parallel refinement
of unstructured meshes. We limit our discussion to triangulations; however, both
of the methods described apply to tetrahedra as well. In addition, we describe the
methods primarily with respect to bisection, but these approaches apply to all the
local refinement algorithms discussed in this paper.

Fia. 28. Neighboring triangles X and Y are assigned to different processors. They share an
edge marked by both for refinement. A parallel refinement algorithm must ensure that a redundant
copy of the new vertex v on this edge is not created.

Two primary problems need to be addressed to maintain a correct parallel
mesh data structure when constructing a local refinement algorithm. First, when
two triangles on different processors share an edge marked for refinement, they
must avoid (or undo) creation of a redundant vertex. This problem is illustrated
in Figure 28. Second, triangles in the mesh must maintain correct neighbor infor-
mation. When two adjacent triangles on different processors are simultaneously
refined, one must ensure that the neighborhood information is maintained cor-
rectly. This problem is illustrated in Figure 29.

<
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Fia. 29. On the left, triangles X and Y are marked for refinement and assigned to different
processors. After refinement, we get the triangles on the right, where the new triangle X5 ts now
neighboring the new triangle Yo. The parallel refinement algorithm must ensure that this netghbor
mformation s maintained correctly during refinement.

Williams [37] [39] has given an approach for parallel mesh refinement and
has implemented it in the parallel software package DIME. To address the two
questions above, he maintains a parallel vozel database, using vertex coordinate
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information to help resolve point identity and triangle neighborhood information.
He does not, however, present a running time analysis of the algorithm.

An alternative approach has been taken by Jones and Plassmann [18]. In this
approach, independent sets of triangles are maintained to ensure that neighboring
triangles are never simultaneously refined on different processors. Recall that a
set of triangles is said to be independent if they do not share an edge. The in-
dependent sets can be efficiently chosen in parallel by a randomization strategy.
Random numbers are assigned to every triangle marked for refinement; a trian-
gle is in the independent set if its random number is larger than any neighboring
marked triangles. The expected running time of this algorithm under the PRAM
computational model is O(ﬁog—]\,) + O(L), where N is the number of triangles
marked for refinement and L is the number of propagation steps required for the
refinement algorithm (see §2). Recall that the PRAM computational model as-
sumes that processors communicate through a common shared memory; the above
analysis assumes that we have as many processors as we have triangles.

This bound implies that, in practice, the running time of the algorithm is a
slowing growing function of the number of processors. This fact is verified ex-
perimentally in [18] where scalable performance is demonstrated by the algorithm
on the Intel DELTA parallel computer. In [16] the performance of the adaptive
refinement algorithm is examined in the context of solving problems involving
higher-order shell elements. The computational cost of the algorithm is shown to
be small relative to the time required for mesh partitioning, matrix assembly, and
linear system solution.

Fia. 30. An ilustration of the set of vertices and elements maintained by one processor. The
set of vertices assigned to processor is shown as the set of filled vertices, and the set of shaded
triangles are the assigned elements. The union of the set of shaded and unshaded triangles is the
set of elements required to assemble the portion of the linear system corresponding to the assigned
verter unknowns. The dashed lines demonstrate one way to partition the vertices; in this case,
geometric cuts were used.

In Figure 30 we illustrate the information that must be maintained by each
processor for a parallel implementation of the finite-element method. The mesh
vertices and elements must be partitioned among the processors; we assume that
the processor assignments are unique. In the figure, vertices that are assigned to
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a processor are shown as solid, and triangles assigned to the same processor are
shown as shaded. To assemble the matrix row corresponding to the unknown at
a mesh vertex, a processor must have information from all elements sharing that
vertex. Elements in this set not assigned to the processor are shown as unshaded,
and additional vertices in these elements are shown as unfilled circles.

To assemble the linear system in parallel, one can either (1) evaluate only
elements assigned to a processor and communicate element stiffness matrices for
row assembly, or (2) keep all the element information necessary to assemble rows
corresponding to the assigned vertices and avoid this communication. The former
approach requires interprocessor communication; the latter approach requires no
communication, but redundant element evaluation and more processor memory.
The latter approach was used for the results given in [16].

Note that the efficient parallel performance of the methods discussed in this
section rely on good mesh partitions. The initial mesh must be partitioned to
equalize the load on each processor and to minimize the number of triangles that
share edges but are assigned to different processors. An additional problem is
that as the computation proceeds, some processors are more likely than other
processors to refine triangles. Thus, the mesh must be dynamically rebalanced to
maintain the same load distribution as the initial partitioning, while minimizing
the interprocessor communication required to move triangles between processors.
Many effective partitioning heuristics have been proposed in the literature [15];
Williams compares several partitioning methods [38]. The choice of partitioning
methods strongly depends on the sparse solver used. If a direct sparse factorization
is used, minimization of the separator size is of primary importance, and spectral
methods produce excellent results [27].

Finally, we note that interesting work has been done on the parallelization of
alternative adaptive schemes to those discussed in this paper. Devine et al. has
considered a parallel p-refinement approach on regular grids [11], and Bell et al.
[7] have considered parallel adaptive methods for explicit finite-volume schemes
on nested orthogonal meshes. Parallel hp-refinement finite-element methods have
been considered by Oden and Patra [25].

6. Summary and Concluding Remarks. Adaptive refinement of finite-
element meshes can significantly improve the computational efficiency of scientific
and engineering calculations involving solutions with large gradients, complicated
geometries, and other special problem characteristics. In this paper we have re-
viewed a number of algorithms that generate nested, or nearly nested, adaptive
finite-element meshes. These algorithm ensure the generation of meshes whose
quality is within a constant factor to the initial mesh quality in two-dimensions.
In three dimensions, the theoretical bounds are not as good, and a number of open
problems remain. However, good experimental results have been obtained for these
algorithms [21], [32].

Parallel algorithms for adaptive refinement are encouraging. However, a paral-
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lel implementation requires consideration of other aspects of the problems solution,
such as the partitioning of elements to processors and linear system solution. Pre-
liminary results indicate that these problems can be solved effectively on large-scale
parallel machines. Nevertheless, much more effort is required for the development
of portable and efficient software to solve these problems.
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