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1 Introduction

In this article, we are concerned with the dynamical properties of solutions of
the time-dependent Ginzburg-Landau (TDGL) equations of superconductivity.
While the emphasis is on the formal mathematical aspects of the equations,
we make every effort to comply with the physical nature of the problem. We
make no simplifications for the convenience of mathematics, and our rigorous
treatment is motivated by known facts from physics. We show that the TDGL
equations define a dynamical process when the applied magnetic field varies
with time and a dynamical system when the applied magnetic field is station-
ary. We work consistently in the “¢ = —w(V - A)” gauge introduced in [1]
and [2] and deduce by logical arguments the ramifications for the zero-electric
potential gauge (¢ = 0). The “¢ = —w(V - A)” gauge enables us to rigorously
establish the large-time asymptotic behavior and make the connection with
solutions of the time-independent GL equations of superconductivity.

1.1 Ginzburg-Landau Model of Superconductivity

In the Ginzburg-Landau theory of phase transitions [3], the state of a super-
conducting material near the critical temperature is described by a complex-
valued order parameter 1, a real vector-valued vector potential A, and, when
the system changes with time, a real-valued scalar potential ¢. The latter is
a diagnostic variable; ¢» and A are prognostic variables, whose evolution is
governed by a system of coupled differential equations,

U(%+ili¢)¢:—<év—l—A)2¢—l—(1—|L/)|2)L/), (L.1)

A
aa—t—l—qu:—VxVxA—l—Js—l—VxH. (1.2)

The supercurrent density J, is a nonlinear function of ¢» and A,

T = T, A) = 5o (V= oV — [pPA = — Re [0 (2v+ 4) ).
(1.3)
The system of Eqgs. (1.1)—(1.3) must be satisfied everywhere in €, the region
occupied by the superconducting material, and at all times ¢ > 0. The bound-
ary conditions associated with the differential equations are

n-(£V—|—A)¢—|—£’y¢:0 and nx(VxA—-—H)=0 ondQ, (14)
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where 0f) is the boundary of §2 and n the local outer unit normal to 9Q2. They
must be satisfied at all times ¢ > 0. Henceforth, the term “TDGL equations”
refers to the system of Eqgs. (1.1)—(1.4).

We assume that  is a bounded domain in R™ with a boundary 99 of
class C'1'1. That is, Q is an open and connected set whose boundary 02 is
a compact (n — 1)-manifold described by Lipschitz-continuously differentiable
charts. We consider two- and three-dimensional problems (n = 2 and n = 3,
respectively). The vector potential A takes its values in R™. The vector H
represents the (externally) applied magnetic field, which is a given function of
space and time; like A, it takes its values in R™. The function 7 is defined
and Lipschitz continuous on 9€, and v(x) > 0 for € 9Q. The parameters
in the TDGL equations are n, a (dimensionless) friction coefficient, and &,
the (dimensionless) Ginzburg-Landau parameter. The former measures the
temporal rate of change, the latter the spatial rate of change of the order
parameter relative to the vector potential. As usual, V = grad, Vx = curl,
V. =div, and V? = V.V = A; i is the imaginary unit, and a superscript *
denotes complex conjugation. Sometimes, we use the symbol 9; to denote the
partial derivative d/0t.

The order parameter can be thought of as the wave function of the
center-of-mass motion of the “superelectrons” (Cooper pairs), whose density
is ny = [¢]* and whose flux is J,. The vector potential A determines the
electromagnetic field; E = —0; A — V¢ is the electric field and B =V x A the
magnetic induction. Fquation (1.2) is essentially Ampere’s law, V x B = J,
where J, the total current, is the sum of a “normal” current J, = FE, the
supercurrent Jg, and the transport current J; = V x H. The normal current
obeys Ohm’s law J,, = 0, F; the “normal conductivity” coefficient o,, is equal
to one in the adopted system of units. The difference M = B — H is known
as the magnetization. The trivial solution (¢» =0, B = H, E = 0) represents
the normal state, where all superconducting properties have been lost.

The TDGL equations generalize the original GL equations to the time-
dependent case. The GL equations themselves embody in a most simple way
the macroscopic quantum-mechanical nature of the superconducting state.
The generalization, first proposed by SCHMID [4], was analyzed by GOR’KOV
and ELIASHBERG [5] in the context of the microscopic Bardeen-Cooper-Schrief-
fer (BCS) theory of superconductivity. Although the validity of the TDGL
equations seems to be limited to a narrow range of temperatures near the crit-
ical temperature, T., the equations have been used extensively and success-
fully in large-scale numerical simulations to study vortex dynamics in type-II
superconductors; see [6, 7, 8, 9]. We refer the reader to the physics litera-
ture [10, 11, 12] for further details.



1.2 Previous Work and Outline of Present Work

The TDGL equations have been the object of several recent mathematical
studies. ELLIOTT and TANG [13] proved the existence and uniqueness of
solutions in two-dimensional domains under some complicated mathematical
boundary conditions, using a time-discretization procedure. Subsequently,
TANG applied the same methods to the TDGL equations with fixed total
magnetic flux [14]. DU [15], using a finite-element approach, established the
existence and uniqueness of weak solutions in two- and three-dimensional do-
mains, under the assumption that the order parameter is initially bounded
in L>=(f). The same results were obtained independently by CHEN, HOFF-
MANN, and LIANG [16], who used the Leray-Schauder fixed-point theorem. Du
adopted the zero-electric potential gauge (¢ = 0), Chen, Hoffmann, and Liang
the “¢ = =V - A” gauge for their analysis.

In [17], LIANG and TANG considered the dynamics of the TDGL equations
in bounded domains in R?, assuming the “V - A = 0” London gauge at all
times. They claimed to prove the existence of a dynamical system. But since
they failed to verify the continuous dependence of the solution operator on
the initial data, it is not evident that the solution operator actually defines

a dynamical system. Moreover, the limiting relation displayed in the proof
of [17, Theorem 6.1] does not follow from [18, Theorem 4.3.4], as claimed.

Recently, TANG and WANG [19] exploited the formal similarity between
the TDGL equations in the London gauge and the Navier-Stokes equations
for incompressible fluids. They applied the methods developed for the Navier-
Stokes equations to prove the existence of strong solutions in two and three
dimensions, weak solutions in two dimensions, and a global attractor for the

TDGL equations.

One might think that, with Ref. [19], the issues of existence, uniqueness,
and large-time asymptotic behavior for the TDGL equations had been set-
tled. However, not only are there lacunae in the proofs, but we claim that the
methods developed for the Navier-Stokes equations are most unnatural for the
TDGL equations. By imposing the London gauge and forcing the TDGL equa-
tions into the framework of the Navier-Stokes equations, one turns a standard
semilinear parabolic equation into something much more complicated. Al-
though it is true, as our work will show, that the London gauge is the appro-
priate gauge for the time-independent GL equations, the “¢p = —V - A” gauge
is a natural gauge for the TDGL equations. As first noted by TAKAC [2],
the TDGL equations generate a dynamical system in this gauge, and every
stationary solution satisfies the London gauge.



In this article, we use a generalization of the “¢p = —V - A” gauge, which
was introduced by FLECKINGER—PELLE and KKAPER in [1]. The “¢ = —w(V -
A)” gauge, where w is any nonnegative number, generalizes the standard “¢ =
—V - A” gauge and reduces to the zero-electric potential gauge (¢ = 0) in the
limit w = 0. The zero-electric potential gauge, which is the preferred choice
for numerical calculations, yields a form of the TDGL equations that does
not fit the framework of the Navier-Stokes equations and is not covered by
the analysis of Ref. [19]. Applying the methods developed by TAKAC in [2],
we establish rigorously the existence of a dynamical process for the TDGL
equations in the case where the applied magnetic field is time dependent and
the existence of a dynamical system in the case where it is time independent.
In the latter case, we prove that every solution of the TDGL equations is
attracted to a set of stationary solutions, which are divergence free if w > 0.
This result indicates how the stationary solutions of the TDGL equations can
be connected to the solutions of the time-independent GL equations. The case
w = 0 is degenerate and needs to be treated separately; in this case, we cannot
conclude that the stationary solutions are divergence free.

Following is an outline of the article. Section 2 contains preliminary ma-
terial. We derive some auxiliary identities from the TDGL equations (Sec-
tion 2.1), introduce the “¢ = —w(V - A)” gauge (Section 2.2), and give var-
ious estimates that follow from an energy-type functional (Section 2.3). Sec-
tion 3 gives the formulation of the TDGL equations as an abstract initial-value
problem in a Hilbert space. We first introduce the notation (Section 3.1), ho-
mogenize the boundary conditions by means of the applied vector potential
(Section 3.2), and define the abstract initial-value problem (Section 3.3). In
Section 3.4 we prove a regularity result for an integral involving the applied
vector potential, which eventually determines the regularity of a mild solu-
tion of the abstract initial-value problem. Section 4 summarizes the results
of our analysis in three theorems, each with a corollary. Theorem 1 gives
an existence and uniqueness result (Section 4.1), Theorem 2 a regularity re-
sult (Section 4.2). Both theorems hold when the applied magnetic field varies
with time. A corollary of Theorem 2 is the existence of a dynamical process.
Specializing to the case of a time-independent magnetic field, we obtain a dy-
namical system whose properties are given in Theorem 3 (Section 4.3). The
degenerate case w = 0 is discussed in Section 4.4. The proofs of the theorems
are given in Section 5.



2 Preliminaries

In this section we establish several auxiliary identities, which follow from the
TDGL equations (1.1)—(1.4). We also introduce the gauge choice and define
an energy-type functional for the TDGL equations.

2.1 Auxiliary Identities

The TDGL model of superconductivity is a system of semilinear parabolic
equations. This is most easily seen if, in Eqs. (1.1) and (1.2), one uses the
identities

~(AVHA) w= Av - 2Ty A e A gl @)

and

_VxVxA=AA—V(V-A). (2.2)

Many of the methods developed for such systems are indeed applicable to the
TDGL equations. But, as we will see in the following analysis, the TDGL
equations have several distinct features that make them mathematically inter-
esting in their own right and different from, say, the Navier-Stokes equations.

The curl of a gradient vanishes, so the TDGL equations do not change if
we replace H by H' = H+V ®, for any (sufficiently smooth) real scalar-valued
function ® of position and time. If ® = 0 on 99, we also have n x H = nx H'
on ), so the boundary conditions do not change either. In particular, if
we take ® at any time as the (unique) solution of the Dirichlet problem for
Poisson’s equation A® = —V - H, we have V- H' = 0 at all times. Hence,
there is no loss of generality if, from now on, we assume that the applied
magnetic field H is divergence free,

V-H=0 inQ. (2.3)

The quantity ns = [¢|? corresponds to the superelectron density. Its evolution
is governed by the equation

Al —erelor (Tvsa) w2 (-pp) e e

or, equivalently,

WA Lappp —2|(Lv+ a)

2

+2(1—[oP) g (25)
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Clearly, if the inequality |¢)| < 1 is satisfied on Q at ¢ = 0, it is satisfied at all
later times. Note that the scalar potential ¢ does not figure in Eq. (2.4).

The divergence of a curl vanishes, so Eq. (1.2) implies the identity

v-(%—?+v¢):v-15 in Q. (2.6)

An expression for V- J is easily obtained by taking the divergence of Eq. (1.3),

V.J, = —&Im [w (év + A)2 ;z;] . (2.7)

From this expression and Eq. (1.1) we obtain the more interesting expression

2 1 * 877/) 877/)* 2
A R [ﬂ(ﬁja— at)ww]. (23)
An immediate consequence of the definition (1.3) of J and the first boundary
condition in Eq. (1.4) is that n-Js = 0 on 9). By assumption, 0 is locally the
level surface (or curve) of a C''"'-function ® : R® — R. Hence, the unit normal
vector is given by n = |[V®|7!'V®, where V& is nonvanishing and Lipschitz
continuous near every point of J{). Consequently, n - (V x n) = 0 on 0.
According to the second boundary condition in Eq. (1.4), Vx A— H and n are
colinear on ). Therefore, it must be the case that n-Vx(VxA—H)=0on
). When we combine this identity and the identity n-J, = 0 with Eq. (1.2),
we see that n - (0;A + V) = 0 on JQ. Therefore, any solution of the TDGL

equations is such that

n-(aa—?—l—qu):O and n-J,=0 on 0f. (2.9)

These identities express the physical fact that the electric field and the super-
current are always tangential to the surface of the superconductor.

2.2 Gauge Choice

The TDGL equations are invariant under the gauge transformation
Gyt (8, A, ) (Y™, A+ Vx,6— 0. (2.10)

The gauge x can be any (sufficiently smooth) real scalar-valued function of
position and time. For the present investigation we adopt the “¢ = —w(V-A)”
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gauge, where w is a real nonnegative parameter. This gauge, introduced in [1],
is determined by taking x = x.(x,?) as the (unique) solution of the boundary-
value problem

(0 —wA)x=¢+w(V-A) inQx(0,00), (2.11)

wn-Vy)=—-wm-A) on I x (0,00), (2.12)

subject to a suitable initial condition, x(-,0) = xo in Q. (See the remark
following Eq. (4.6).)

In the “¢ = —w(V - A)” gauge, we have, at all times ¢ > 0, the identities

d+wV-A)=0 in(, wn-A)=0 on 09. (2.13)

The second identity can be strengthened. If w > 0, it simplifieston - A =0
on df). If w = 0, the first identity reduces to ¢ = 0 in ; hence, n- V¢ = 0 on
0. But then it follows from the first identity in Eq. (2.9) that n - 9,4 = 0,
son-A=mn-Aon Jf, where Ay = A(-,0). By appropriately choosing xo,
we can realize the identity n - A = 0 on 99 for all times ¢ > 0, the same as
for w > 0. Instead of (2.13), we thus have, at all times ¢ > 0,

d+wV-A)=0 in(Q, n-A=0 on 0. (2.14)

In the “¢ = —w(V-A)” gauge, the differential equations (1.1) and (1.2) reduce
to

9 ' : .
na_f:_(%v+A) binret (V- A)+ (1= [6[2) & in @x(0,00), (2.15)
DA .
W:—VXVXA—I—LUV(V-A)—I—JS—I—VXH in  x(0,00), (2.16)

where J; is again given by Eq. (1.3), and the boundary conditions (1.4) to
nVi+yp =0, nA=0, nx(VxA—-—H)=0 ond0Qx(0,00). (2.17)

Henceforth, the term “gauged TDGL equations” refers to the TDGL equations
in the “¢ = —w(V - A)” gauge, given by the system of Eqs. (2.15)—(2.17).

The gauged TDGL equations govern the evolution of the pair (¢, A) from
the initial data,
=19 and A=Ay on Q x {0}, (2.18)

where 1y and Ag are given. The boundary-value problem (2.15)—(2.17) is
strongly parabolic for w > 0. It becomes degenerate for w = 0.

The scalar potential ¢ does not figure in the evolution equation (2.4), so
the gauge choice does not affect the observation that |¢)] <1 on  at all times

8



t > 0 if the inequality is satisfied at ¢ = 0. (Cf. the “maximum modulus
principle” in Section 4.1, Theorem 1.)

In the “¢ = —w(V - A)” gauge, the auxiliary identity (2.6), the expres-
sion (2.8), and the identities (2.9) reduce to

(0, —wA)(V-A)=V-J, inQ, (2.19)

(oY
Vg (0 - ) B 4] e

wn-V)(V-A)=0 and n-J;,=0 on 0. (2.21)

2.3 Energy-Type Functionals

Consider the functional £, = £, [y, A],

sival= (i +4)»

+|V x A~ HJ| d:z;—l—/m’y

2

+%(1— ) 4+ 2(V - A)?

2 do(x). (2.22)

If v and A satisfy the gauged TDGL equations the time derivative of F, is

—2/ (Vx A— H)daz. (2.23)

_— / [ k(Y - A) g V(V- A)|] de

If 0,H = 0 (stationary apphed magnetic field), the expression in the right
member is negative semidefinite, and E,(t) < F,(0) for all ¢ > 0. In general,
the applied magnetic field is not stationary, and £, is not necessarily bounded
by a constant. However, as the following lemma shows, E,(t) can still be
estimated in terms of the quantity P(t),

¢ 1/2
P = | (/ 0.H (. s)[* d:z;) ds. (2.24)
0o \Ja
Lemma 1 If E, = E,(t) exists and is finite, and P(T) < oo for some T > 0,
then
aAl® 2 ,
+2/ / g —mw(v A) +| 55|+ VIV A | dedt

9



< ((B0)2 4 P(1))" . te0,T]. (2.25)

Proof. It follows from Eq. (2.23) and the Cauchy-Schwarz inequality that

dE‘*’<2 /
dt — Q

1/2
H| 2 dp
a_‘ d:z;) (/Q IV x A — H|2d:z;) <290 ()2,

ot dt
(2.26)
Hence, dEY/?/dt < dP/dt. Upon integration, we obtain
E(t) < ((B0)2 + P(1))", t€[0.T]. (2.27)

To obtain the inequality (2.25), we use Eq. (2.23) again, this time including
the first integral, and apply the estimate (2.27),

dEw 8 . ? aA ? 2 2
m —|—2/Q[77‘a—i)—mw¢(v-z4) —I_W +w |V(V-A)|]d:1;
ap e AP L
<2 (BL(1) /7 < 2= ((E.(0))2+ P(1)) . (2.28)

The inequality (2.25) follows upon integration. 1

Lemma 2 Assume that M = ess sup{|¢(x,t)]| : (2,t) € Q x (0,T)} < oo.

Then
i d
o[/ o

< B+ gitwl?t) ((ELO)Y? + P(1)", te0,T], (2.29)

2

L oA
ot

2
+ W V(V- A)|2] da dt’

whenever the terms in the inequality are well defined.

Proof. Using the elementary inequality |a|* < 2(Ja — b]* + |b|*) and the
inequality (2.25), we obtain

Rl

where

2 1
dedt’ < ((Ew(()))l/?—|—P(t))2—|-77/<;2wM2/ /Zw(V-A)de ar',
0 JQ

/Ot/gm(v.A)dedtfg /Ot B " <t ((E,(0))7 + P(1))".
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The remaining terms have already been estimated by ((Ew(()))l/2 + P(t))2 in
Lemma 1, in the inequality (2.25). 11

The term 2w(V - A)? in the functional E, has no basis in physics. Indeed,
E, is not an energy functional unless w = 0. If w = 0, F, reduces to the
Ginzburg-Landau free-energy functional,

2

Eo[%/),A]:/QUGV—I—A)LZJ —|—%(1—|¢|2)2+|V><A—H|2] da

2

i;/) do(x). (2.30)

K

+ /[ v
20

The gauge restriction (2.14) reduces to ¢ = 0 in 2, and the Euler equations
and natural boundary conditions associated with Fy are

—<£V+A)2¢—|—(1—|¢|2)¢:0 in Q. (2.31)
~VXxVXA+J,+VxH=0 in(, (2.32)

n. (év+A)¢+yé¢:o and mx(VxA—H)=0 ondQ. (2.33)
These are the time-independent Ginzburg-Landau (GL) equations of super-
conductivity. The relationship between stationary solutions of the TDGL

equations and solutions of the time-independent GL equations is discussed
in a forthcoming article [20].

3 Functional Formulation

In this section, we formulate the gauged TDGL equations as an abstract evo-
lution equation in a Hilbert space.

3.1 Notation

The symbol €' denotes a generic positive constant, not necessarily the same
at different instances. All Banach spaces are real; the (real) dual of a Banach
space X is denoted by X'.

11



LP(Q), for 1 < p < oo, is the usual Lebesgue space, with norm || - ||1»;
(+,-) is the inner product in L*(2). W™2(Q), for nonnegative integer m, is
the usual Sobolev space, with norm || - ||yme2; W™2*(Q) is a Hilbert space for
the inner product (-,-)m.2, given by (u,v)ma2 = Xjaj<m (97U, 0%v) for u,v €
W™2(Q). Fractional Sobolev spaces W*?2(£1), with noninteger s, are defined
by interpolation [21, Chapter VII].

CY(Q2), for v > 0, v = m+ A with 0 < XA < 1, is the space of m times
continuously differentiable functions on §2, whose mth order derivatives satisfy
a Holder condition with exponent A if v is not an integer; the norm || - ||cv is
defined in the usual way.

The definitions extend to spaces of vector-valued functions in the standard
way, with the caveat that the inner product in [L*(Q)]" is defined by (u,v) =
Jq u-v, where - indicates the scalar product in R". Complex-valued functions
are interpreted as vector-valued functions with two real components.

Functions that vary in space and time, like the order parameter and the
vector potential, are considered as mappings from the time domain, which
is a subinterval of [0, 00), into spaces of complex- or vector-valued functions
defined in Q. Let X = (X, | - |[x) be a Banach space of functions defined in
Q). Then functions of space and time defined on © x (0,7T), for T' > 0, may be
considered as elements of LF(0,7; X), for 1 < p < oo, or W™2(0,T; X), for
nonnegative integer m, or C'*(0,7;X), for v >0, v =m+ A with 0 < X < L.
Detailed definitions can be found, for example, in [18].

Obviously, function spaces of ordered pairs (¢, A), where ¢ : @ — R?
and A : Q@ — R" (n = 2,3), play an important role in the study of the
gauged TDGL equations. We therefore adopt the following special notation:
X = [X(Q)) x [X(Q)]"* for any Banach space X () of real-valued functions
defined in Q. Here, [X(Q2)]* and [X(Q)]" are the underlying Banach spaces
for the order parameter ¢» and the vector potential A, respectively. A suitable
framework for the functional analysis of the gauged TDGL equations is the
Cartesian product W't*? = [W!'t*2(Q)]? x [W'*2(Q)]" with £ < a < 1.
This space is continuously imbedded in W12 N £,

3.2 Reduction to Homogeneous Form

When H # 0, the boundary conditions (2.17) are inhomogeneous, and it is
necessary to first reduce them to homogeneous form.

Assume H # 0 and H € [L*(Q)]". Let Ag be a minimizer of the convex

12



quadratic form J, = J,[A],
T[A] = / W(V- AP+ |V x A-HP| da, (3.1)
Q

on the domain

D(J,)={AcW"Q)]":n-A=0o0n N}

Lemma 3 The functional J, has a unique minimizer Ag on D(J,) if w > 0,
and this minimizer has the property V- Ag = 0 in Q. The functional Jy has
a unique minimizer Ag on the closed linear subspace Do(Jy) = {A € D(Jp) :
V-A=0inQ} of D(Jy).

Proof. Assumew > 0. Then J,[A] — oo as || A]|wi12 — o0; see [22, Chapter I,
Eq. (5.45)]. Also, J, is strictly convex and weakly lower semicontinuous. Stan-
dard methods of the calculus of variations yield the existence of a unique mini-
mizer. This minimizer, Ay, is necessarily divergence free; otherwise, we could
replace it by Ag+V® without changing the term V x A — H and, by taking ®
as the solution of the Neumann problem for Poisson’s equation A® = —V- Ay
in Q, reduce the value of the functional to J,[Ag+V®] = [ |V x Au—H|? dz,
which is strictly less than J,[An]. The case w = 0 is similar. 1

The lemma shows that the property V- Ag =0 1in Q is a consequence of
the fact that Ay minimizes the functional J, if w > 0. If w = 0, we impose
the condition V- Ag = 0. In either case, Ay is the (unique) weak solution of
the strongly elliptic boundary-value problem

VxVXxAg=VxH and V-Ag=0 inQ, (3.2)

n-Ap=0 and nx(VxAg—H)=0 on 0. (3.3)
We refer to Ay as the applied vector potential.

Lemma 4 If H € [L*(Q)]", then Aux € D(J,). The mapping H > Ag is
linear, time independent, and continuous from [W%(Q)]" to [W*92(Q)]", for
0<6<1.

13



Proof. The continuity of the mapping H — Ay follows from the regularity
results in GEORGESCU [23]. 1§

We now introduce the reduced vector potential A’
A=A - Ay. (3.4)

In terms of ¢ and A’, the gauged TDGL equations assume the form

o 1 :

e Ay =¢ in Q x (0,00), (3.5)
oA’ / / .
T +VXxVxA -wV(V-A)Y=F inQ x(0,00), (3.6)

n-V+9p=0, n-A'=0, nx(VxA)=0 ondQx(0,00). (3.7)

Here, ¢ and F' are nonlinear functions of ¢> and A’,

¢ = oltv, A) = [ (Vo) (A" + Aw)
L1 (VA = LA+ Aul (=) 0], 6)
F=F(ty,A) = J — [¢|*Ax — 0,An. (3.9)

Here we have used the abbreviation J, = J (¢, A"), where J; is the ex-
pression for the supercurrent density, given by Eq. (1.3). The equations are
supplemented by initial data, which follow from Eqs. (2.18) and (3.4),

=1 and A'= Ag— An(0) on Q x {0}. (3.10)

In the next section we connect the evolution of the solution (¢, A") of the
system of Egs. (3.5)=(3.7) from the initial data (1o, Ao — Au(0)) with the
dynamics of a vector u in the Hilbert space £* = [L*(2)]? x [L*(Q)]".

3.3 Gauged TDGL Equations

The following analysis is restricted to the case w > 0; we comment on the case
w = 0 in Section 4.4.

Let the vector u : [0,00) — £ represent the pair (¢, A),
u=(,A")=(,A— An), (3.11)
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and let A be the linear selfadjoint operator in £2 associated with the quadratic

form @, = Q. [u],

_ 1 21wV AN 121 da T p)? do(x
Qulil = [ [ o5 IF0F + o7 47 4V AT de+ [T o doa),
(3.12)

on the domain
D(Q.) =D(A?) ={u=(¥,A) e W’ :n- A" =0ond0}.

The quadratic form @, is nonnegative. Furthermore, since w > 0, Q, [/, A'] +
c||¥]|zz is coercive on W'? for any constant ¢ > 0. Hence, A is positive
definite in £? [22, Chapter I, Eq. (5.45)]. If no confusion is possible, we use
the same symbol A for the restrictions A, and Aa of A to the respective linear
subspaces [L*(Q)]* = [L*(Q)])? x {0} (for ¢) and [L*(Q)]" = {0} x [L*(Q)]"
(for A) of L2,

Now, consider the initial-value problem

d
d—;‘ 4 Au=F(tu(t)) fort>0; w(0)=u, (3.13)
in £?, where F(t,u) =
uo = (o, Ao — An(0)).

With % < a < 1and ug € W2, we say that u is a mild solution of
Eq. (3.13) on the interval [0,7], for some T' > 0, if w : [0,T] — W2 ig

continuous and

(p, F), ¢ and F given by Eqs. (3.8) and (3.9), and

¢
u(t) = e Ay —I—/ M=) Fs,u(s))ds for0<t<T (3.14)
0

in £2. A mild solution of the initial-value problem (3.13) defines a weak solu-
tion (¢, A") of the boundary-value problem (3.5)(3.7), which in turn defines
a weak solution (¢, A) of the gauged TDGL equations, provided Ay is suffi-
ciently regular.

Given any f = (¢, F') € L?, the equation Au = f in £? is equivalent with
a system of uncoupled boundary-value problems,

1
——AYp=¢p inQ, n-Vi+yp=0 on d; (3.15)
nK
VxVxA —wV(V-A)=F inQ, n-A'=0nx(VxA)=0 on 00.

(3.16)
(More precisely, the system of Eqgs. (3.15)—(3.16) holds in the dual space D(Q,,)’
of D(Q,,) with respect to the inner product in £2.) Boundary-value problems
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of this type have been studied by GEORGESCU [23]. Applying his results,
we see that D(A) is a closed linear subspace of W?#2. Since A is positive
definite on L%, its fractional powers A? are well defined for all # € R; they
are unbounded for § > 0. Interpolation theory shows that D(A%) is a closed
linear subspace of W22 for 0 < 0 < 1.

3.4 Smoothing of the Applied Vector Potential

The term 0;An in Eq. (3.9) introduces an integral Ju(?) in Eq. (3.14),

t 0A
jH(t):/O e Alt=9) 8tH(S) ds, (3.17)

where Ju(t) € [L* ()] = {0} x [L*(Q)]" C L* for ¢ € (0,T). The regularity
of this integral determines the regularity of the solution u of Eq. (3.13).

Lemma 5 If H € WY(0,T;[L*(Q)]"), then Ju(t) € D(AMI2) for 0 <
a < 1, for every t € (0,T), and Jg € CP0,T;[WH*2Q)]") for 0 < 3 <
(1 —a).

1
2

Proof. Assume that 0 < o < 1 and 0 < 3 < (1 — ). The proof of the
lemma uses the inequalities

HAQ/Qe_ASH,Cz <Cs™? for0<s<T, (3.18)

H(e_AS — [)A_ﬁng <Cs? for0<s<T, (3.19)
where the positive constants €' do not depend on s; see [18, Theorem 1.4.3].
Because 0, H € L*(0,T;[L*(2)]"), it follows immediately from Lemma 4
that d,Amg € L*(0,T;[W'*(Q)]"). Standard arguments lead to the continu-
ity of Ju : [0,T] — [W'T*2(Q)]"; cf. [18, Proof of Theorem 3.3.4]. Also,
AV20, Ay € L*(0,T;[L*(Q)]") and
0An
ot

in [L*(Q)]". Applying the estimate (3.18), we obtain

t
A2 70 (1) = / A0S 2a=Alt=s) g1/2 (s)ds for0<¢<T (3.20)
0

t 0A
HA(I-l—oz)/2jH(t)HL2 S/O HAa/2e—AsH£2 HAI/Z —H(t—S)

d
ot S

12
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0An

AN 0An,, —a)2
A A 5 ——(t—s) ; 3 ds
1/2
t 2 t 1/2
<o [ |arz28u,_ g1 a4 (/'s—ads)
0 ot I 0

9 1/2
ds) : (3.21)

L

__ ¢ awp
(1 —a)t?

so Ju(t) € D(AMF/2) a closed subspace of [W'+*2(Q)]*, for every t € [0,T].

A1/2 o (S)

To prove the Holder continuity of Jg, we take 0 < ¢ < ¢/ < T and
use the following identity in [L?(€)]", which follows immediately from the
definition (3.17),

AU (T (1) — Tu(1))

— Jos? [/t/ o—Al=5) 4172 aA_H(S)dS _ /t o= All=5) 41/2 aﬂ(s)ds
0 0

ot ot
= Ji(t, 1) + Ja(t, 1), (3.22)
where v 9A
no_ T fqa/2.—As q1/2 H
mmm_A Aol g1 R (Y — ) ds,
no_ —A(t' — t af2 —A(t—s 1/2 aAH
Toltt) = (7400 — 1) [ Ao/ 029 41/ Z2 () s

We estimate the [L*(Q)]"-norms of J(¢,t') and J(¢,t') as in (3.21), making
use of the inequalities (3.18) and (3.19),

0An

A1/2 o ()

1/2
C
E) e < ——— ¢ — ¢|(1-2)/2 d 2
| T1(t, )| < (1_a)1/2| | t . s , (3.23)

, 1
a1 )z = | (A0 = 1) 2 [ Pt A= 12 S28 )
0 L?
C . aA 9 1/2
< {=a) /2=y _ 415 / 12 R ds) . (3.24
T R—TE | | ; A En (s) . s (3.24)

Here, the positive constants C' depend only on A, o, and 3. The statement of
the lemma follows. 1
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4 Results

We present our results in the form of three theorems, each with a corollary.
The proofs are deferred until Section 5. Unless indicated otherwise, we assume
that the data entering the equations satisfy the following hypotheses:

(H1) © C R™ (n = 2 or 3) is bounded, with 99 of class C'*'. (That is,
0 is a compact (n — 1)-manifold described by Lipschitz-continuously
differentiable charts.)

(H2) ~:0Q — R is Lipschitz continuous, with y(z) > 0 for all « € 9Q.

(H3) w,T,a,8 € R are constants such that 0 < w < o0, 0 < T < o0,
%<0z<1,and0§ﬁ<%(1—0z).

(H4) H € L=(0,T; [W*2(Q)]") 0 W20, T3 [LX(Q)]").

4.1 Existence and Uniqueness

Our first theorem gives the existence and uniqueness of a mild solution of the
initial-value problem (3.13).

Theorem 1 Let the initial data (1o, Ag) be such that ug = (o, Ay) = (o, Ao
—Au(0)) is in D(AVTII2) " Then the initial-value problem (3.13) has a unique
mild solution u = (¢, A') = (v, A — Am) such that v € C(0,T;W'*t*?). The

order parameter 1 of this solution satisfies the “maximum modulus principle,”
(2. 1) < max {1, |[YollLe@} forall (x,t) € x [0,T].  (4.1)
Also, (¢, A) € WH20,T; L) and V- A € L*(0,T; [WH(Q)]").

The proof of Theorem 1 is given in Section 5.1.

Observe that the theorem states that (¢, A") € C'(0,T; W't*2). To ob-
tain a comparable result for (¢, A), we need the continuity Ay in time, which,
according to Lemma 4, is controlled by the continuity of H in time. In the
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hypothesis (H4), we have imposed a minimum condition on H. If (H4) is
strengthened to H € C(0,T;[W*?*Q)]"), then (¢, A) € C(0,T; W't>2),

Theorem 1 implies the existence and uniqueness of a weak solution of the
gauged TDGL equations.

Corollary 1 The pair (1, A") obtained in Theorem 1 is a weak solution of the
gauged TDGL equations; Egs. (3.5) and (3.6) are satisfied in the L*(2x(0,T))-
sense, Bq. (3.7) in the sense of traces in L=(0,T; Wo=1/22(9Q)).
Theorem 1 justifies the introduction of a solution map Sy : D(AM+2)/2) —
C(0,T; WH*2) by the definition
u(t) = So(t)uo, o € D(AMTI?) te0,7]. (4.2)

The properties of Sy are considered in more detail in the following section.

4.2 Regularity

The following theorem improves the continuous dependence of the solution u
on the initial data ug. Let the map Sg : D(.A(H'a/)/z) — CF(0, T; Wit*2) be
defined by the identity

P ult) = SplO)uo, wo € D), 1 € [0,T], (43)
for suitable exponents «, o', 3, and 3.

Theorem 2 Assume that ; < o/ < a < 1,0 <3 < (1 —a), and §' =

B+1i(a—a’). Then the mapping Sy defined in Eq. (4.3) is uniformly Lipschitz

continuous on bounded subsets of D(AI+)/2),

The proof of Theorem 2 is given in Section 5.2.

Observe that the theorem states a regularity result for (¢, A’). To obtain
a comparable result for (¢, A), we need sufficient regularity of Ag. According
to Lemma 4, the regularity of Ag is controlled by the regularity of H. In
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the hypothesis (H4), we have imposed minimum regularity on H. If (H4) is
strengthened to H € Cﬁ(O,T; [W*2(Q)]™), then (i, A) € Cﬁ(O,T; Wity

Theorem 2 implies the existence of a dynamical process for the gauged
TDGL equations with a time-dependent applied magnetic field; cf. [25, Sec-
tion 3.6].

Corollary 2 The mild solutions u(t) of Fq. (3.13) obtained in Theorem I
generate a dynamical process U = {U(t,s) : 0 < s <t < T} on D(AI+/2)
by the definition

u(t) =Ul(t,s)u(s) for0<s<t<T. (4.4)

Moreover, for 0 < s <t < T, each U(t,s) : D(AIFT)/2) 5 D(AFTI/2) maps

bounded sets into relatively compact sets.

4.3 Large-Time Asymptotic Behavior

Next, we investigate the asymptotic behavior of the mild solution u(t) of
Eq. (3.13) as t — co. We restrict ourselves to the case of a time-independent
applied magnetic field H.

If 9,H = 0, the hypothesis (H4) reduces to H € [W*?(Q)]", the quantity
P defined in Eq. (2.24) is zero, and the inequality (2.25) simplifies to

2

0A
_I__

crl e
Ew(t)—l—Q/O/Q[n‘a—f—mw@b(V-A) =

2
+ W V(V- A)|2] da dt’

< E(0), te[0,T). (4.5)

The dynamical process U = {U(t,s) : 0 < s <1 < T} on D(AM)/2) intro-
duced in Corollary 2 is defined for every T' > 0 (see Lemma 1) and becomes a
dynamical system S = {S(t) : t > 0} on D(AMF*)/2) by the definition

St—s)=U(t,s) fort>s>0. (4.6)

Note that the definition of the dynamical system S is not feasible if one imposes
the condition V- Ag = 0 at ¢ = 0 because the linear space

{Ac[WH)]":V-A=0inQ, n-A=0ondN}
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is not invariant under the action of S. Consequently, one is not free to choose
the initial data xo for the gauge v, defined in Eqs. (2.11) and (2.12), such that
AXO =-V- AO n Q.

The set {S(¢)ug : t > 0} is called the (forward) orbit of ug € D(.A(l"'a)/?)
under S. We denote the set of all limit points (as t — oo) of the orbit of ug
by w(ug) and call it the omega-limit set of wq.

The following theorem shows that the functional F, is a Liapunov func-
tional for the dynamical system S in the following sense (cf. [24, Chapter VII,
Definition 4.1]): (i) E, : D(AU+*)/2) — R is continuous, (ii) for every
ug € D(A(l"'a)/z), the function t — FE,[S(t)u] is nonincreasing, and (iii) if
ug € D(A(l"'a)/z) is such that F,[S(t)uo] = F,[uo] for some t > 0, then wug is
a stationary point for S.

Theorem 3 The dynamical system S defined in Eq. (4.6) has the following

properties:
(i) E, is a Liapunov functional for S.
(ii) The orbit of each uy € D(AMTN/?) has compact closure in W2,

(iii) The omega-limit set of each uy € D(AMT?) is a nonempty compact

connected set of divergence-free equilibria.

The proof of Theorem 3 is given in Section 5.3.

Property (iii) of Theorem 3 says, in effect, that every element of any
omega-limit set is a solution of the time-independent GL equations (2.31)-
(2.33) in the London gauge.

An attractor for the dynamical system 5 is the omega-limit set of one of
its open neighborhoods. An attractor is called a global attractor if it attracts
all its open bounded neighborhoods. The existence of a global attractor for
the dynamical system S follows from Corollary 2 and Theorem 3; see [25,
Theorem 3.4.8] and [19, Theorem 4.4]. The structure of the global attractor
follows from Theorem 3; see [24, Chapter VII, Theorem 4.1].

Corollary 3 The dynamical system S has a global attractor, A. If the set

21



E of all stationary points of S is discrete, then A is the union of € and the

heteroclinic orbits between points of &.

4.4 Zero-Electric Potential Gauge

Beginning with the functional formulation of the gauged TDGL equations in
Section 3.3, we restricted the parameter w in the “¢ = —w(V - A)” gauge
to positive values. If w = 0, the quadratic form Q,[¢’, A'] + ¢||¥||z2 is no
longer coercive on W2 for any constant ¢ > 0, because Qo[0, Vx| = 0 for any
x € W22(Q) satisfying n- Vy = 0 on JQ. The initial-value problem (3.13) is
degenerate, and much of the regularity of its solution is lost. This loss is evident
when the solution (¢, A, ¢) of the TDGL equations, with ¢ = —w(V - A)
and w > 0, is transformed to its gauge-equivalent form in the zero-electric
potential gauge. The gauge x that accomplishes this transformation is found
by integrating the equation dyy = —w(V - A) from an initial condition y = xo.
The resulting expression for the vector potential is

1
A(t) + Vo — w/ V(V-A) )t for t > 0.
0

Since V- A(t) € [WH2(Q)]" for every t > 0 (see Theorem 1), the time integral
is only in [L*(Q)]" for any fixed ¢.

5 Proofs

In this section we give the proofs of the theorems presented in the preceding
section. We begin by recalling some general properties of the fractional powers
of the operator A defined in Eq. (3.12); see [18, Section 1.4] for details.

The fractional powers A? of the second-order elliptic differential operator
A defined in Eq. (3.12) are well defined for all # € R. They are unbounded for
0 > 0. The domain D(A) is a closed linear subspace of W?%2 for 0 < 0 < 1;
hence, C#(0,T;D(A%)) is a closed linear subspace of C?(0,T;W?"?) for this
range of values of §. Furthermore, for % < 0 <2 (and n = 2 or 3), the traces of
Vi, A, and V x A belong to the spaces [W9=3/22(9Q)]2", [W=1/22(9Q)]", and
[WO=3/22(9Q)]", respectively, and satisfy the boundary conditions specified in
Egs. (3.15) and (3.16). Similarly, the applied vector potential Ay and its curl
V x Ag satisfy the boundary conditions (3.3) if H € [W/=12(Q)]".
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5.1 Proof of Theorem 1

Proof. (i) Local existence and uniqueness. The proof is based on the contrac-
tion mapping principle applied to Eq. (3.14) in the space C'(0,T; W't*?) for
T sufficiently small positive. The choice of the target space W12 is justified
because W2 is continuously imbedded in W2 N £ for % <o <l

It suffices to prove that F(s,-) is locally Lipschitz for each s € [0,7T],
where T' may depend on the Lipschitz constant. Each term in F is estimated

separately. For example, for any two elements u; = (¢1, A}) and uy = (3, A3)
of WITe:2 we have

107V — 3V aba| o < b1 ||pee |01 — Wallwre + [[02|[wiz (11 — 2o

S CHu1 — UQHV\;1+O¢,27

where (' is a positive constant, which depends only on the norms of u; and wuy
in W2 Similar estimates hold for the other terms in F.

Let Br be the ball of radius R centered at the origin in W'*t*2. Then,
for any pair uy, us € Bp,

[F (s, u1) = Fls,un)l[e2 < Cllun = woflwrraz, s €[0,T],  (5.1)

where the Lipschitz constant C' depends on R, but not on s. The remainder
of the proof is standard; see [18, Theorem 3.3.3].

(ii) Global existence. The maximum modulus principle (4.1) is a conse-
quence of the maximum principle applied to Eq. (2.5). (Every constant M
with M > 1 is a supersolution of Eq. (2.5).)

The functional F,[¢, A] defined in Eq. (2.22) is coercive on W?; see [22,
Chapter I, Eq. (5.45)]. Given a weak solution (¢, A") = (1, A — Ag) of the
gauged TDGL equations, we let F,(t) = E,[¢(t), A(t)]. The function E, is
bounded on every interval [0, T'], according to Lemma 1. Its coercivity property
then implies

€ L0, T; [WH(Q)])?) and A € L0, T;[WhH(Q)]").

Also, Ag € L*=(0,T;[W"*(Q)]"), because of the hypothesis (H4). Hence,
w= (b, A') € L(0,T; WH2).

It follows from the inequality (2.29) that (¢, A) € W'2(0,7T;L*) and
VA e L¥*0,T;[W'(Q)]"). We also have Ag € Wh(0,T;[L*(Q)]"), again
because of the hypothesis (H4). Therefore, v € W2(0,T; L?)
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We improve this regularity result by taking advantage of the smoothing
action of the semigroup e~*f. This smoothing action has already been demon-
strated on the term 0, Ay in Section 3.4. We first treat A" and then use the
result to improve the regularity of ¢. Each term in J' needs to be estimated
separately. For example,

10"V l[z2 < 1o lllwez < Cllufwes.

Here, C' = max{l, ||too]|re}, which is independent of ¢>. Similar estimates hold
for the other terms in J', so J € L*(0,T;[L*(Q)]"). Therefore,

(1 [ X IRy as) € Clo. s,

so A" € C(0,T; [Wt=2(Q)]™).

Next, we improve the regularity of ¥». Again, each term in ¢ needs to be
estimated separately. For example,

(V) - (A + A2 < (V) - Amllze + (V) - Al 12,
where
1(V6) - Aulle < IVl Asllze < Cllullwre | Asllyrees

and

10V4) - Al < IVl Al < Cllullwaa | A llwives.

(To obtain the last estimate, we used the Sobolev imbedding theorem.) Sim-
ilar estimates hold for the other terms in ¢, so ¢ € L>(0,T;[L*(Q)]*) and,
therefore, o € C(0,T; [W'*2(Q)]?). Tt follows that v € C(0,T; W'*T*?) | as

claimed. 1

5.2 Proof of Theorem 2
Proof. We use Eq. (3.14) to prove the regularity of the solution u of the
initial-value problem (3.13).

Let Br be the ball of radius R centered at the origin in W'T®?2, Let u; €
Br and uy € Bp satisfy Eq. (3.14) with initial data w9 and uag, respectively.
Define v = uy — uy and vy = ujp — uze. Combining the inequality (5.1) with
Eq. (3.14), we obtain

lo()llwrsaz < fle™ wreas [[vollwrea
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40 [ AR AC o) e (52)
Applying Gronwall’s inequality, we find
o) wras < Clloolhpisns, 0<¢<T, (53)
so the mapping Sy defined in Eq. (4.2) is Lipschitz continuous on Bp.
Set f(s) = F(s,u1(s)) — F(s,uz(s)). Then, for 0 <t <t/ <T,

, t'—t
o(t) —v(t) = (e_A(t -t _ [) e~ Ay + / e_ASf(t' —s)ds
0

) ¢
+ (e_A(t —t) _ [) / e_A(t_S)f(s) ds.
0

Taking «, o/, 3, and (3’ subject to the conditions of the theorem, we obtain

AWFIR(0(11) — v (1))
_ (e—A(t’—t) _ [) AP P oAt g1 2, H-t AU+ 2645 141 _ o) ds
0

+ (e — 1) AP /0 AP 26 A=) £( ) ds,
Using the inequalities (3.18) and (3.19), we deduce the estimates
AT (0(t') = o(t) e < C(t" = )77 AT 20y | 22
+C, ((t’ — ) (=d/2 gy t)ﬁt“—a)/?—ﬁ) esssup{|| f(s)|lz2 : 0 <s < T}

<O =177 (|[vollwisare + Csup{|jo(s)[lwiz : 0 < s < T}).

But, as we have seen, the solution map Sy defined in (4.2) is Lipschitz con-
tinuous, so sup{|[v(s)|lwrz : 0 < s < T} < C|lvo||wrz. Therefore, the map-
ping (4.3) is Lipschitz continous, as claimed. 11

5.3 Proof of Theorem 3

Proof. (i) The continuity of the functional F, follows from the continuous
imbedding of W't*? into W'? N L>. The identity (2.23) shows that the
function ¢ — E,[S()uo] is nonincreasing, for every ug € D(.A(H'a)/z).

Let ug = (¢, A— An) € D(A(l"'a)/z) be such that F,[S(t)uo] = E.[uo] for
some t > 0. From the inequality (4.5), we obtain immediately the identities
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0;A = 0 and wV(V-A) =0 in Q x (0,t). The first identity implies that
0(V-A) =0in Q x (0,7). From this and the second identity we deduce
that w(V - A) = cin Q x (0,1), where ¢ is a real constant. We conclude from
Eq. (2.19) that V- J, = 0. Also, the inequality (4.5) implies 0yt = iket) in
[L2(2 % (0,¢))]?, so Eq. (2.20) reduces to c[t)|* = 0 in Q x (0,¢). We claim that
c=0.

Suppose ¢ # 0. Then it must be the case that ¢» = 0 in Q x (0,¢).
Equations (2.16)—(2.17) reduce to the boundary-value problem (3.2)—(3.3) for
Apn. Therefore, A = Ag and A"’ =0in Q x (0,¢), s0 ¢ = w(V - Ag) = 0, and

we have a contradiction.

The identity dyp = 0 in ©Q x (0,t), together with the identity ;A = 0
established above, implies that S(¢')ug = ug for all ¢ € (0,1).

(ii) An immediate consequence of Corollary 2.

(iii) It follows from (ii) that the omega-limit set of each ug € D(AI+)/2)
is nonempty and compact. We prove by contradiction that w(ug) is connected.
Suppose w(ug) is not connected. Then w(ug) = K1 U Ky, where K and K,
are compact and disjoint. Hence, there exist two disjoint open neighborhoods
Ny and Ny of K and K5, respectively, in D(.A(H'a)ﬂ) and tg > 0, such that
S(t)ug € Ny U Ny for all t > tg. But {S(t)ug : t > to}, being the image of the
interval [tg,00), is connected, so we have a contradiction.

The proof that all points of the omega-limit set of uy are equilibrium
points is standard; cf. [24, Chapter VII, Proof of Theorem 4.1].

If w=(¢¥,A— An) € w(ug), then E,[S(t)w] = E,[w] for all ¢t > 0, and
the same argument as in (i) above leads to the conclusion that w(V-A) =10
in €. Since w > 0, A must be divergence free. 1
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