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the others, although many of the general semantics were similar. The proliferation ofmessage-passing library designs from both vendors and users was appropriate for a while,but eventually it was seen that enough consensus on requirements and general semanticsfor message-passing had been reached that an attempt at standardization might usefully beundertaken.The process of creating a standard to enable portability of message-passing applica-tions codes began at a workshop on Message Passing Standardization in April 1992, andthe Message Passing Interface (MPI) Forum organized itself at the Supercomputing '92Conference. During the next eighteen months the MPI Forum met regularly, and Version1.0 of the MPI Standard was completed in May 1994 [16, 36]. Some clari�cations and re-�nements were made in the spring of 1995, and Version 1.1 of the MPI Standard is nowavailable [17]. For a detailed presentation of the Standard itself, see [42]; for a tutorialapproach to MPI, see [29]. In this paper we assume that the reader is relatively familiarwith the MPI speci�cation, but we provide a brief overview in Section 2.2.The project to provide a portable implementation of MPI began at the same time asthe MPI de�nition process itself. The idea was to provide early feedback on decisions beingmade by the MPI Forum and provide an early implementation to allow users to experimentwith the de�nitions even as they were being developed. Targets for the implementation wereto include all systems capable of supporting the message-passing model. MPICH is a freelyavailable, complete implementation of the MPI speci�cation, designed to be both portableand e�cient. The \CH" in MPICH stands for \Chameleon," symbol of adaptability toone's environment and thus of portability. Chameleons are fast, and from the beginning asecondary goal was to give up as little e�ciency as possible for the portability.MPICH is thus both a research project and a software development project. As aresearch project, its goal is to explore methods for narrowing the gap between the program-mer of a parallel computer and the performance deliverable by its hardware. In MPICH,we adopt the constraint that the programming interface will be MPI, reject constraints onthe architecture of the target machine, and retain high performance (measured in terms ofbandwidth and latency for message-passing operations) as a goal. As a software project,MPICH's goal is to promote the adoption of the MPI Standard by providing users witha free, high-performance implementation on a diversity of platforms, while aiding vendorsin providing their own customized implementations. The extent to which these goals havebeen achieved is the main thrust of this paper.The rest of this paper is organized as follows. Section 2 gives a short overview of MPIand briey describes the precursor systems that inuenced MPICH and enabled it to comeinto existence so quickly. In Section 3 we document the extent of MPICH's portability andpresent results of a number of performance measurements. In Section 4 we describe in somedetail the software architecture of MPICH, which comprises the results of our research incombining portability and performance. In Section 5 we present several speci�c aspectsof the implementation that merit more detailed analysis. Section 6 describes a family ofsupporting programs that surround the core MPI implementation and turn MPICH into aportable environment for developing parallel applications. In Section 7 we describe how weas a small, distributed group have combined a number of freely available tools in the Unixenvironment to enable us to develop, distribute, and maintain MPICH with a minimumof resources. In the course of developing MPICH, we have learned a number of lessons2



from the challenges posed (both accidentally and deliberately) for MPI implementors bythe MPI speci�cation; these lessons are discussed in Section 8. Finally, Section 9 describesthe current status of MPICH (Version 1.0.12 as of February 1996) and outlines our plansfor future development.2 BackgroundIn this section we give an overview of MPI itself, describe briey the systems on whichthe �rst versions of MPICH were built, and review the history of the development of theproject.2.1 Precursor SystemsMPICH came into being quickly because it could build on stable code from existing systems.These systems pre�gured in various ways the portability, performance, and some of the otherfeatures of MPICH. Although most of that original code has been extensively reworked,MPICH still owes some of its design to those earlier systems, which we briey describehere.P4 [8] is a third-generation parallel programming library, including both message-passingand shared-memory components, portable to a great many parallel computing environments,including heterogeneous networks. Although p4 contributed much of the code for TCP/IPnetworks and shared-memory multiprocessors for the early versions of MPICH, most of thathas been rewritten. P4 remains one of the \devices" on which MPICH can be built (seeSection 4), but in most cases more customized alternatives are available.Chameleon [31] is a high-performance portability package for message passing on par-allel supercomputers. It is implemented as a thin layer (mostly C macros) over vendormessage-passing systems (Intel's NX, TMC's CMMD, IBM's MPL) for performance andover publicly available systems (p4 and PVM) for portability. A substantial amount ofChameleon technology is incorporated into MPICH(as detailed in Section 4).Zipcode [41] is a portable system for writing scalable libraries. It contributed severalconcepts to the design of the MPI Standard|in particular contexts, groups, and mailers (theequivalent of MPI communicators). Zipcode also contains extensive collective operationswith group scope as well as virtual topologies, and this code was heavily borrowed from inthe �rst version of MPICH.2.2 Brief Overview of MPIMPI is a message-passing application programmer interface, together with protocol andsemantic speci�cations for how its features must behave in any implementation (such asa message bu�ering and message delivery progress requirement). MPI includes point-to-point message passing and collective (global) operations, all scoped to a user-speci�ed groupof processes. Furthermore, MPI provides abstractions for processes at two levels. First,processes are named according to the rank of the group in which the communication is being3



performed. Second, virtual topologies allow for graph or Cartesian naming of processesthat help relate the application semantics to the message passing semantics in a convenient,e�cient way. Communicators, which house groups and communication context (scoping)information, provide an important measure of safety that is necessary and useful for buildingup library-oriented parallel code.MPI also provides three additional classes of services: environmental inquiry, basictiming information for application performance measurement, and a pro�ling interface forexternal performance monitoring. MPI makes heterogeneous data conversion a transparentpart of its services by requiring datatype speci�cation for all communication operations.Both built-in and user-de�ned datatypes are provided.MPI accomplishes its functionality with opaque objects, with well-de�ned constructorsand destructors, giving MPI an object-based look and feel. Opaque objects include groups(the fundamental container for processes), communicators (which contain groups and areused as arguments to communication calls), and request objects for asynchronous opera-tions. User-de�ned and prede�ned datatypes allow for heterogeneous communication andelegant description of gather/scatter semantics in send/receive operations as well as in col-lective operations.MPI provides support for both the SPMD and MPMD modes of parallel programming.Furthermore, MPI can support interapplication computations through intercommunicatoroperations, which support communication between groups rather than within a single group.Dataow-style computations also can be constructed from intercommunicators. MPI pro-vides a thread-safe application programming interface (API), which will be useful in multi-threaded environments as implementations mature and support thread safety themselves.2.3 Development History of MPICHAt the organizational meeting of the MPI Forum at the Supercomputing '92 conference,Gropp and Lusk volunteered to develop an immediate implementation that would trackthe Standard de�nition as it evolved. The purpose was to quickly expose problems thatthe speci�cation might pose for implementors and to provide early experimenters with anopportunity to try ideas being proposed for MPI before they became �xed. The �rst versionof MPICH, in fact, implemented the prespeci�cation described in [46] within a few days.The speed with which this version was completed was due to the existing portable systemsp4 and Chameleon. This �rst MPICH, which o�ered quite reasonable performance andportability, is described in [30].Starting in spring 1993, this implementation was gradually modi�ed to provide increasedperformance and portability. At the same time the system was greatly expanded to includeall of the MPI speci�cation. Algorithms for the collective operations and topologies, togetherwith code for attribute management, were borrowed from Zipcode and tuned as the monthswent by.What made this project unique was that we had committed to following the MPI spec-i�cation as it developed|and it changed at every MPI Forum meeting. Most system im-plementors wait for a stable speci�cation. The goals of this project dictated that, in theshort term, we deliberately choose a constantly changing speci�cation. The payo� came,4



of course, when the MPI Standard was released in May 1994: the MPICH implementationwas complete, portable, fast, and available immediately. It is worthwhile to contrast thissituation with what happened in the case of the High-Performance Fortran (HPF) Stan-dard. The HPF Forum (which started and �nished a year before the MPI Forum) producedtheir standard speci�cation in much the same way that the MPI Forum did. However, sinceimplementation was left entirely to the vendors, who naturally waited until the speci�cationwas complete before beginning to invest implementation e�ort, HPF implementations areonly now (February 1996) becoming available, whereas a large community has been usingMPI for over a year.For the past year, with the MPI Standard stable, MPICH has continued to evolve inseveral directions. First, the Abstract Device Interface (ADI) architecture, described inSection 4 and central to the performance, has developed and stabilized. Second, individualvendors and others have begun taking advantage of this interface to develop their own highlyspecialized implementations of it; as a result, extremely e�cient implementations of MPIexist on a greater variety of machines than we would have been able to tune MPICH forourselves. In particular, Convex, Intel, SGI, and Meiko have produced implementations ofthe ADI that produce excellent performance on their own machines, while taking advantageof the portability of the great majority of the code in MPICH above the ADI layer. Third,the set of tools that form part of the MPICH parallel programming environment has beenextended; these are described in Section 6.2.4 Related WorkThe publication of the MPI Standard provided many implementation groups with a clearspeci�cation; and several freely available, partially portable implementations have appeared.Like MPICH, their initial versions were built on existing portable message-passing systems.They di�er from MPICH in that they focus on the workstation environment, where softwareperformance is necessarily limited by Unix socket functionality. Some of these systems areas follows:� LAM [7] is available from the Ohio Supercomputer Center and runs on heterogeneousnetworks of Sun, DEC, SGI, IBM, and HP workstations.� CHIMP-MPI [5] is available from the Edinburgh Parallel Computing Center and runson Sun, SGI, DEC, IBM, and HP workstations, the Meiko Computing Surface ma-chines, and the Fujitsu AP-1000. It is based on CHIMP [9].� At the Technical University of Munich, research has been done on a system for check-pointing message-passing jobs, including MPI. See [43] and [44].� Unify [45], available from Mississippi State University, layers MPI on a version ofPVM [20] that has been modi�ed to support contexts and static groups. Unify allowsmixed MPI and PVM calls in the same program.Proprietary and platform-speci�c implementations provided by vendors are described inSection 9. 5



3 Portability and PerformanceThe challenge of the MPICH project is to combine both portability and performance. Inthis section we �rst survey the range of environments in which MPICH can be used, andthen present performance data for a representative sample of those environments.3.1 Portability of MPICHThe MPI standard itself addresses the message-passing model of parallel computation. Inthis model, processes with separate address spaces (like Unix processes) communicate withone another by sending and receiving messages. A number of di�erent hardware platformssupport such a model.3.1.1 Exploiting High-Performance SwitchesThe most obvious hardware platform for MPI is a distributed-memory parallel supercom-puter, in which each process can be run on a separate node of the machine, and com-munication occurs over a high-performance switch of some kind. In this category are theIntel Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2, and Cray T3D.(Although the Cray T3D provides some hardware that allows one to treat it as a shared-memory machine, it falls primarily into this category; see [4].) Details of how MPICH isimplemented on each of these machines are given in Section 4, and performance results forthe Paragon and SP2 are given in Section 3.2.3.1.2 Exploiting Shared-Memory ArchitecturesA number of architectures support a shared-memory programming model, in which a mem-ory location can be both read and written to by multiple processes. Although this isnot part of MPI's computational model, an MPI implementation may take advantage ofcapabilities in this area o�ered by the hardware/software combination to provide partic-ularly e�cient message-passing operations. Current machines o�ering this model includethe SGI Onyx, Challenge, Power Challenge, and Power Challenge Array machines, IBMSMP's (symmetric multiprocessors), the Convex Exemplar, and the Sequent Symmetry.MPICH is implemented using shared memory for e�ciency on all of these machines (detailsin Section 4). Performance measurements for the SGI are given in Section 3.2.6.3.1.3 Exploiting Networks of WorkstationsOne of the most common parallel computing environments is a network of workstations.Many institutions use Ethernet-connected personal workstations as a \free" computationalresource, and at many universities laboratories equipped with Unix workstations provideboth shared Unix services for students and an inexpensive parallel computing environmentfor instruction. In many cases, the workstation collection includes machines from multiplevendors. Interoperability is provided by the TCP/IP standard. MPICH runs on worksta-tions from Sun (both SunOS and Solaris), DEC, Hewlett-Packard, SGI, and IBM. Recently,6



the Intel 486 and Pentium compatible machines have been able to join the Unix worksta-tion family by running one of the common free implementations of Unix, such as FreeBSD,NetBSD, or Linux. MPICH runs on all of these workstations and on heterogeneous collec-tions of them. Details of how heterogeneity is handled are presented in Section 4, and someperformance �gures for Ethernet-connected workstations are given in Section 3.2.An important family of non-Unix operating systems is supported by Microsoft. MPICHhas been ported to Windows 3.1 (where it simulates multiprocessing on a single processor);the system is called WinMPI [37, 38].3.2 Performance of MPICHThe MPI speci�cation was designed to allow high performance in the sense that semanticrestrictions on optimization were avoided wherever user convenience would not be severelyimpacted. Furthermore, a number of features were added to enable users to take advantageof optimizations that some systems o�ered, without a�ecting portability to other systemsthat did not have such optimizations available. In MPICH we have tried to take advantageof those features in the Standard that allow for extra optimization, but we have not doneso in every possible case.Performance on one's own application is, of course, what counts most. Nonetheless,useful predictions of application performance can be made, based on the results of speciallyconstructed benchmark programs. In this section, we �rst describe some of the di�cultiesthat arise in benchmarking message-passing systems, then discuss the programs we have de-veloped to address these di�culties and �nally present results from running the benchmarkson a representative sample of the environments supported by MPICH.The MPICH implementation includes two MPI programs, mpptest and goptest, thatprovide reliable tests of the performance of an MPI implementation. The program mpptestprovides testing of both point-to-point and collective operations on a speci�ed number ofprocessors; the program goptest can be used to study the scalability of collective routinesas a function of number of processors.3.2.1 Performance Measurement Problems and PitfallsOne common problem with simple performance measurement programs is that the resultsare di�erent each time the program is run, even on the same system. A number of factors areresponsible, ranging from assuming that the clock calls have no cost and in�nite resolutionto the e�ects of other jobs running on the same machine. A good performance test willgive the same (to the clock's precision) answer each time. The mpptest and goptestprograms distributed with MPICH compute the average time for a number of iterations ofan operation (thus handling the cost and granularity of the clock) and then run the sametest over several times and take the minimum of those times (thus reducing the e�ects ofother jobs). The programs can also provide information about the mean and worst-caseperformance.More subtle are issues of which test to run. The simplest \ping-pong" test, which sendsthe same data (using the same data bu�er) between two processes, allows data to reside7



entirely in the memory cache. In many real applications, however, neither bu�er will al-ready be mapped into cache, and this situation can a�ect the performance of the operation.Similarly, data transfers that are not properly aligned on word boundaries can be moreexpensive than those that are. MPI also has noncontiguous datatypes; the performanceof an implementation with these datatypes may be signi�cantly slower than for contiguousdata. Another parameter is the number of processors used, even if only two are communi-cating. Certain implementations will include a latency cost proportional to the number ofprocessors. This gives the best performance on the two-processor ping-pong test at the costof (possibly) lower performance on real applications. Mpptest and goptest include tests tomeasure these e�ects.3.2.2 Benchmarks for Point-to-Point OperationsIn this section we present some of the simplest benchmarks for performance of MPICH onvarious platforms. The performance test programs mpptest and goptest can produce awealth of information; the script basetest, provided with the MPICH implementation, canbe used to get a more complete picture of the behavior of a particular system. Here, wepresent only the most basic data: short- and long-message performance.For the short-message graphs, the only options used with mpptest are -auto and -size0 1000 40. The option -auto tells mpptest to choose the sizes of the messages so as toreveal the exact message size where there is any sudden change in behavior (for example,at an internal packet-size boundary). The -size option selects messages with sizes from 0to 1000 bytes in increments of 40 bytes. The short-message graphs give a good picture ofthe latency of message passing.For the long-message graphs, a few more options are used. Some make the test runsmore e�cient. The size range of message is set with -size 1000 77000 4000, which selectsmessages of sizes between about 1K and 80K, sampled every 4000 bytes.These tests provide a picture of the best achievable bandwidth performance. Morerealistic tests can be performed by using -cachesize (to force the use of di�erent dataareas), -overlap (for communication and computation overlap), -async (for nonblockingcommunications), and -vector (for noncontiguous communication). Using-givedy gives information on the range of performance, displaying both the mean andworst-case performance.3.2.3 Performance of MPICH Compared with Native Vendor SystemsOne question that can be asked about MPI is how its performance compares with propri-etary vendor systems. Fortunately, the mpptest program was designed to work with manymessage-passing systems and can be built to call a vendor's system directly. In Figure 1,we compare MPI and Intel's NX message-passing. The MPICH implementation for the In-tel Paragon, while implemented with a special ADI, still relies on message-passing servicesprovided by NX. Despite this fact, the MPI performance is quite good and can probablybe improved with the second-generation ADI, planned for a later release of MPICH. Weuse this as a representative example to demonstrate that the apparently elaborate structureshown in Figures 7 and 8 does not impose serious performance overheads beyond those of8



Figure 1: MPICH vs. NX on the Paragonthe underlying, vendor-speci�c message-passing layer.3.2.4 Paragon MeasurementsThe Intel Paragon has a classic distributed-memory architecture with a (cut-through routed)2-D mesh topology. Latency and bandwidth performance are shown in Figure 2. TheParagon performance measurements shown in Figure 2 were taken while other users wereon the system. This explains why the right side of Figure 2 is \rougher" than the curve inFigure 1, although the peak bandwidth shown is similar.3.2.5 IBM SP2 measurementsThe IBM SP2 at Argonne National Laboratory has Power-1 nodes (the same as in the IBMSP1) and the SP2 high-performance switch. Measurements on IBM SP2 with Power-2 nodes(thin or wide) will be di�erent. The latencies shown in Figure 3 reect the slower speed ofthe Power-1 nodes. Note the obvious packet boundaries in the short-message plot.3.2.6 SGI Power Challenge MeasurementsThe SGI Power Challenge is a symmetric multiprocessor. The latency and bandwidthperformance as shown in Figure 4 indicate the performance for the ch_shmem device, a9



Figure 2: Short and long messages on the Paragon
Figure 3: Short and long messages on the IBM SP2generic shared-memory device supplied with the MPICH implementation.3.2.7 Cray T3D MeasurementsThe Cray T3D supports a shared memory interface (the shmem library). For MPICH, thislibrary is used to support MPI message-passing semantics. The latency and bandwidthperformance are shown in Figure 5. 10



Figure 4: Short and long messages on the SGI Power Challenge
Figure 5: Short and long messages on the Cray T3D3.2.8 Workstation Network MeasurementsWorkstation networks connected by simple Ethernet are common. The performance ofMPICH for two Sun SPARCStations, on a shared Ethernet, are shown in Figure 6.11



Figure 6: Short and Long Messages on a workstation network4 Architecture of MPICHIn this section we describe in detail how the software architecture of MPICH supportsthe conicting goals of portability and high performance. The design was guided by twoprinciples. First, we wished to maximize the amount of code that can be shared withoutcompromising performance. A large amount of the code in any implementation is systemindependent. Implementation of most of the MPI opaque objects, including datatypes,groups, attributes, and even communicators, is platform-independent. Many of the complexcommunication operations can be expressed portably in terms of lower-level ones. Second,we wished to provide a structure whereby MPICH could be ported to a new platformquickly, and then gradually tuned for that platform by replacing parts of the shared codeby platform-speci�c code. As an example, we present in Section 4.3 a case study showinghow MPICH was quickly ported and then incrementally tuned for peak performance on SGIshared-memory systems.The central mechanism for achieving the goals of portability and performance is a speci�-cation we call the abstract device interface (ADI) [24]. All MPI functions are implementedin terms of the macros and functions that make up the ADI. All such code is portable.Hence, MPICH contains many implementations of the ADI, which provide portability, easeof implementation, and an incremental approach to trading portability for performance.One implementation of the ADI is in terms of a lower level (yet still portable) interface wecall the channel interface [28]. The channel interface can be extremely small (�ve functionsat minimum) and provides the quickest way to port MPICH to a new environment. Sucha port can then be expanded gradually to include specialized implementation of more ofthe ADI functionality. The architectural decisions in MPICH are those that relegate theimplementation of various functions to the channel interface, the ADI, or the applicationprogrammer interface (API), which in our case is MPI.12



4.1 The Abstract Device InterfaceThe design of the ADI is complex because we wish to allow for, but not require, a range ofpossible functions of the device. For example, the device may implement its own message-queuing and data-transfer functions. In addition, the speci�c environment in which thedevice operates can strongly a�ect the choice of implementation, particularly with regardto how data is transferred to and from the user's memory space. For example, if the devicecode runs in the user's address space, then it can easily copy data to and from the user'sspace. If it runs as part of the user's process (for example, as library routines on top of asimple hardware device), then the \device" and the API can easily communicate, callingeach other to perform services. If, on the other hand, the device is operating as a separateprocess and requires a context switch to exchange data or requests, then switching betweenprocesses can be very expensive, and it becomes important to minimize the number of suchexchanges by providing all information needed with a single call.Although MPI is a relatively large speci�cation, the device-dependent parts are small.By implementing MPI using the ADI, we were able to provide code that can be sharedamong many implementations. E�ciency could be obtained by vendor-speci�c proprietaryimplementations of the abstract device. For this approach to be successful, the semantics ofthe ADI must not preclude maximally e�cient instantiations using modern message-passinghardware. While the ADI has been designed to provide a portable MPI implementation,nothing about this part of the design is speci�c to the MPI library; our de�nition of anabstract device can be used to implement any high-level message-passing library.To help in understanding the design, it is useful to look at some abstract devices forother operations, for example, for graphical display or for printing. Most graphical displaysprovide for drawing a single pixel at an arbitrary location; any other graphical functioncan be built by using this single, elegant primitive. However, high-performance graphicaldisplays o�er a wide variety of additional functions, ranging from block copy and line draw-ing to 3-D surface shading. One approach for allowing an API (application programmerinterface) to access the full power of the most sophisticated graphics devices, without sac-ri�cing portability to less capable devices, is to de�ne an abstract device with a rich set offunctions, and then provide software emulations of any functions not implemented by thegraphics device. We use the same approach in de�ning our message-passing ADI.A message-passing ADI must provide four sets of functions: specifying a message to besent or received, moving data between the API and the message-passing hardware, managinglists of pending messages (both sent and received), and providing basic information aboutthe execution environment (e.g., how many tasks are there). The MPICH ADI provides allof these functions; however, many message-passing hardware systems may not provide listmanagement or elaborate data-transfer abilities. These functions are emulated through theuse of auxiliary routines, described in [24].The abstract device interface is a set of function de�nitions (which may be realized aseither C functions or macro de�nitions) in terms of which the user-callable standard MPIfunctions may be expressed. As such, it provides the message-passing protocols that dis-tinguish MPICH from other implementations of MPI. In particular, the ADI layer containsthe code for packetizing messages and attaching header information, managing multiplebu�ering policies, matching posted receives with incoming messages or queuing them if13



necessary, and handling heterogeneous communications. For details of the exact interfaceand the algorithms used, see [24].
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that signal that they are available. These include various forms of blocking and nonblock-ing operations for both envelopes and data.These operations are based on a simple capability to send data from one process toanother process. No more functionality is required than what is provided by Unix in theselect, read, and write operations. The ADI code uses these simple operations to providethe operations, such as MPID_Post_recv, that are used by the MPI implementation.The issue of bu�ering is a di�cult one. We could have de�ned an interface that assumedno bu�ering, requiring the ADI that calls this interface to perform the necessary bu�ermanagement and ow control. The rationale for not making this choice is that many of thesystems used for implementing the interface de�ned here do maintain their own internalbu�ers and ow controls, and implementing another layer of bu�er management wouldimpose an unnecessary performance penalty.The channel interface implements three di�erent data exchange mechanisms.Eager In the eager protocol, data is sent to the destination immediately. If the destinationis not expecting the data (e.g., no MPI_Recv has yet been issued for it), the receivermust allocate some space to store the data locally.This choice often o�ers the highest performance, particularly when the underlyingimplementation provides suitable bu�ering and handshakes. However, it can causeproblems when large amounts of data are sent before their matching receives areposted, causing memory to be exhausted on the receiving processors.This is the default choice in MPICH.Rendezvous In the rendezvous protocol, data is sent to the destination only when re-quested (the control information describing the message is always sent). When areceive is posted that matches the message, the destination sends the source a requestfor the data. In addition, it provides a way for the sender to return the data.This choice is the most robust but, depending on the underlying system software, maybe less e�cient than the eager protocol. Some legacy programs may fail when runusing a rendezvous protocol if an algorithm is unsafely expressed in terms of MPI_Send.Such a program can be safely expressed in terms of MPI_Bsend, but at a possible cost ine�ciency. That is, the user may desire the semantics of an eager protocol (messagesare bu�ered on the receiver) with the performance of the rendezvous protocol (nocopying) but since bu�er space is exhaustible and MPI_Bsend may have to copy, theuser may not always be satis�ed.MPICH can be con�gured to use this protocol by specifying -use_rndv during con-�guration.Get In the get protocol, data is read directly by the receiver. This choice requires amethod to directly transfer data from one process's memory to another. A typicalimplementation might use memcpy.This choice o�ers the highest performance but requires special hardware support suchas shared memory or remote memory operations. In many ways, it functions like therendezvous protocol, but uses a di�erent set of routines to transfer the data.15



To implement this protocol, special routines must be provided to prepare the addressfor remote access and to perform the transfer. The implementation of this protocolallows data to be transferred in several pieces, for example, allowing arbitrarily sizedmessages to be transferred using a limited amount of shared memory. The routineMPID_SetupGetAddress is called by the sender to determine the address to send tothe destination. In shared-memory systems, this may simply be the address of thedata (if all memory is visible to all processes) or the address in shared-memory whereall (or some) of the data has been copied. In systems with special hardware for movingdata between processors, it may be the appropriate handle or object.MPICH includes multiple implementations of the channel interface (see Figure 8).
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Figure 8: Lower layers of MPICHChameleon Perhaps the most signi�cant implementation is the Chameleon version, whichwas particularly important during the initial phase of MPICH implementation. Byimplementing the channel interface in terms of Chameleon [31] macros, we provideportability to a number of systems at one stroke, with no additional overhead, sinceChameleon macros are resolved at compile time. Chameleon macros exist for mostvendor message-passing systems, and also for p4, which in turn is portable to verymany systems. A newer implementation of the channel interface is a direct TCP/IPinterface, not involving p4.Shared memory A completely di�erent implementation of the channel interface has beendone (portably) for a shared-memory abstraction, in terms of a shared-memory malloc16



and locks. There are, in turn, multiple (macro) implementations of the shared-memoryimplementation of the channel interface. This is represented as the p2 box in Figure 8.Specialized Some vendors (SGI and HP-Convex, at present) have implemented the chan-nel interface directly, without going through the shared-memory portability layer.This approach takes advantage of particular memory models and operating systemfeatures that the shared-memory implementation of the channel interface does notassume are present.SCI A specialized implementation of the channel interface has been developed for an imple-mentation of the Scalable Coherent Interface [40] from Dolphin Interconnect Solutions,which provides portability to a number of systems that use it [39].Contrary to some descriptions of MPICH that have appeared elsewhere, MPICH hasnever relied on the p4 version of the channel interface for portability to massively parallelprocessors. From the beginning, the MPP (IBM SP, Intel Paragon, TMC CM-5) versionsused the macros provided by Chameleon. We rely on the p4 implementation only for theworkstation networks, and a p4-independent version for TCP/IP will be available soon.4.3 A Case StudyOne of the bene�ts of a system architecture like that shown in Figures 7 and 8 is the ex-ibility provided in choosing where to insert vendor-speci�c optimizations. One illustrationof how this exibility was used is given by the evolution of the Silicon Graphics version ofMPICH.Since Chameleon had been ported to p4 and p4 had been ported to SGI workstations longbefore the MPICH project began, MPICH ran on SGI machines from the very beginning.This is the box shown as SGI(0) in Figure 8. This implementation used TCP/IP socketsbetween workstations and standard Unix System V shared memory operations for messagepassing within a multiprocessor like the SGI Onyx.The SGI(1) box in Figure 8 illustrates an enhanced version achieved by using a simple,portable shared-memory interface we call p2 (half of p4). In this version, shared memoryoperations use special SGI operations for shared-memory functions instead of the less robustSystem V operations.SGI(2) in Figure 8 is a direct implementation of the channel interface that we did incollaboration with SGI. It uses SGI-speci�c mechanisms for memory sharing that allowsingle-copy data movement between processes (as opposed to copying into and out of anintermediate shared bu�er), and it uses lock-free shared queue management routines thattake advantage of special assembler language instructions of the MIPS microprocessor.SGI next developed a direct implementation of the ADI that did not use the channel in-terface model (SGI(3) in Figure 7), and then bypassed the ADI altogether to produce a veryhigh-performance MPI implementation for the Power Challenge Array product, combiningboth shared-memory operations and message-passing over the HiPPI connections betweenshared-memory clusters. Even at this specialized level, it retains much of the upper lev-els of MPICH that are implemented either independently of, or completely on top of, themessage-passing layer, such as the collective operations and topology functions.17



At all times, SGI users had access to a complete MPI implementation, and their pro-grams did not need to change in any way as the implementation improved.5 Selected SubsystemsA detailed description of all the design decisions that went into MPICH would be tedious.Here we focus on several of the salient features of this implementation that distinguish itfrom other implementations of MPI.5.1 GroupsThe basis of an MPICH process group is an ordered list of process identi�ers, stored as aninteger array. A process's rank in a group refers to its index in this list. Stored in the listis an address in a format the underlying device can use and understand. This is often therank in MPI_COMM_WORLD, but need not be.5.2 CommunicatorsThe Standard describes two types of communicators, intracommunicators and intercommu-nicators, which consist of two basic components, namely process groups and communicationcontexts. MPICH intracommunicators and intercommunicators use this same structure.The Standard describes how intracommunicators and intercommunicators are related(see Section 5.6 of the Standard). We take advantage of this similarity to reduce the com-plexity of functions that operate on both intracommunicators and intercommunicators (e.g.,communicator accessors, point-to-point operations). Most functions in the portable layerof MPICH do not need to distinguish between an intracommunicator and an intercommu-nicator. For example, each communicator has a local group (local_group) and a remotegroup (group) as described in the de�nition of an intercommunicator. For intracommu-nicators, these two groups are identical (reference counting is used to reduce the amountof overhead associated with keeping two copies of a group; see Section 5.1); however, forintercommunicators, these two groups are disjoint.Another similarity between intracommunicators and intercommunicators is the use ofcontexts. Each communicator has a send context (send_context) and a receive context(recv_context). For intracommunicators, these two contexts are equal; for intercommu-nicators, these contexts may be di�erent. Regardless of the type of communicator, MPIpoint-to-point operations attach the send_context to all outgoing messages and use therecv_context when matching contexts upon receipt of a message.For most MPICH devices, contexts are integers. Contexts for new communicators areallocated through a collective operation over the group of processes involved in the com-municator construction. Through this collective operation, all processes involved agree ona context that is currently not in use by any of the processes. One of the algorithms usedto allocate contexts involves passing the highest context currently used by a process to anMPI Allreduce with the MPI MAX operation to �nd the smallest context (an integer) unused18



by any of the participants.In order to provide safe point-to-point communications within a collective operation, anadditional \collective" context is allocated for each communicator. This collective contextis used during communicator construction to create a \hidden" communicator (comm_coll)that cannot be accessed directly by the user. This is necessary so that point-to-pointoperations used to implement a collective operation do not interfere with user-initiatedpoint-to-point operations.Other important elements of the communicator data structure include the following:np, local rank, lrank to grank Used to provide more convenient access to local groupinformation.collops Array of pointers to functions implementing the collective operations for the com-municator (see Section 5.3).5.3 Collective OperationsAs noted in the preceding section, MPICH collective operations are implemented on topof MPICH point-to-point operations. MPICH collective operations retrieve the hiddencommunicator from the communicator passed in the argument list and then use standardMPI point-to-point calls with this hidden communicator. We use straightforward \power-of-two"-based algorithms to provide scalability; however, considerable opportunities for furtheroptimization remain.Although the basic implementation of MPICH collective operations uses point-to-pointoperations, special versions of MPICH collective operations exist. These special versionsinclude both vendor-supplied and shared-memory versions. In order to allow the use of thesespecial versions on a communicator-by-communicator basis, each communicator contains alist of function pointers that point to the functions that implement the collectives for thatparticular communicator. Each communicator structure contains a reference count so thatcommunicators can share the same list of pointers.typedef struct MPIR_COLLOPS {int (*Barrier) (MPI_Comm comm );int (*Bcast) (void* buffer, int count, MPI_Datatype datatype,int root, MPI_Comm comm );... other function pointers ...int ref_count; /* So we can share it */} MPIR_COLLOPS;Each MPI collective operation checks the validity of the input arguments, then forwardsthe function arguments to the dereferenced function for the particular communicator. Thisapproach allows vendors to substitute system-speci�c implementations for all or some ofthe collective routines. Currently, Meiko, Intel, and Convex have provided vendor-speci�ccollective implementations. These implementations follow system-speci�c strategies; for19



example, the Convex SPP collective routines makes use both of shared memory and of thememory hierarchies in the SPP.5.4 AttributesAttribute caching on communicators is implemented by using a height-balanced tree (HBTor AVL tree) [35]. Each communicator has an HBT associated with it, although initiallythe HBT may be an empty or null tree. Caching an attribute on a communicator is simplyan insertion into the HBT; retrieving an attribute is simply searching the tree and returningthe cached attribute.MPI keyvals are created by passing the attribute's copy function and destructor as wellas any extra state needed to the keyval constructor. Pointers to these are kept in thekeyval structure that is passed to attribute functions.Additional elements of a keyval include a ag denoting whether C or Fortran callingconventions are to be used for the copy function (the attribute input argument to the copyfunction is passed by value in C and passed by reference in Fortran).Caching on other types of MPI handles is being considered for inclusion in the MPI-2standard. The MPICH HBT implementation of caching can be used almost exactly as isfor implementing caching on other types of MPI handles by simply adding an HBT to theother types of handles.5.5 TopologiesSupport for topologies is layered on the communicator attribute mechanism. Because ofthis con�guration, the code implementing topologies is almost entirely portable even toother MPI implementations. For communicators with associated topology information,the communicator's cache contains a structure describing the topology (either a Cartesiantopology or a graph topology). The MPI topology functions access the cached topologyinformation as needed (using standard MPI calls), then use this information to perform therequested operation.5.6 The Pro�ling InterfaceThe MPI Forum wished to promote the development of tools for understanding programbehavior, but considered it premature to standardize any speci�c tool interface. The MPIspeci�cation provides instead a general mechanism for intercepting calls to MPI functions.Thus both end users and tool developers can develop portable performance analyzers andother tools without access to the MPI implementation source code. The only requirementis that every MPI function be callable (in both C and Fortran) by an alternate name(PMPI Xxxx as well as the usual MPI Xxxx.). In some environments (those supporting \weaksymbols") the additional entry points can be supplied in the source code. In MPICH wetake the less elegant but more portable approach of building a duplicate MPI library inwhich all functions are known by their PMPI names. Of course, only one copy of the sourcecode is maintained. Users can interpose their own \pro�ling wrappers" for MPI functions by20



linking with their own wrappers, the standard version of the MPI library, and the pro�lingversion of the MPI library in the proper order. MPICH also supplies a number of prebuiltpro�ling libraries; these are described in Section 6.3.1.5.7 The Fortran InterfaceMPI is a language-independent speci�cation with separate language bindings. The MPI-1.1standard speci�es a C and a Fortran 77 binding. Since these bindings are quite similar,we decided to implement MPI in C, with the Fortran implementation simply calling theC routines. This strategy requires some care, however, because some C routines take ar-guments by value while all Fortran routines take arguments by reference. In addition, theMPICH implementation uses pointers for the MPI opaque objects (such as MPI_Requestand MPI_Comm); Fortran has no native pointer datatype, and the MPI standard uses theFortran INTEGER type for these objects. Rather than manually create each interface routine,we used a program that had been developed at Argonne for just this purpose.The program, bfort [21], reads the C source �le and uses structured comments toidentify routines for which to generate interfaces. Special options allow it to handle opaquetypes, choose how to handle C pointers, and provide name mapping. In many cases, this wasall that was necessary to create the Fortran interfaces. In cases where routine-speci�c codewas needed (for example, in MPI_Waitsome where zero-origin indexing is used in C and one-origin is used in Fortran), the automatically generated code was a good base to use for thecustom code. Using the automatic tool also simpli�es updating all of the interfaces whena system with a previously unknown Fortran-C interface is encountered. This situationarose the �rst time we ported MPICH to a system that used the program f2c [14] as a wayto provide a Fortran compiler; f2c generates unusual external names for Fortran routinenames. We needed only to rerun bfort to update the Fortran interfaces. This interfacehandles the issues of pointer conversions between C and Fortran (see Section 8.5) as wellas the mapping of Fortran external names to C external names. The determination ofthe name format (e.g., whether Fortran externals are upper or lower case and whether theyhave underscore characters appended to them) is handled by our configure program, whichcompiles a test program with the user's selected Fortran compiler and extracts the externalname from the generated object �le. This allows us to handle di�erent Fortran compilersand options on the same platform.5.8 Job StartupThe MPI Forum did not standardize the mechanism for starting jobs. This decision wasentirely appropriate; by way of comparison, the Fortran standard does not specify how tostart Fortran programs. Nonetheless, the extreme diversity of the environments in whichMPICH runs and the diversity of job-starting mechanisms in those environments (specialcommands like prun, poe, or mexec, settings of various environment variables, or specialcommand-line arguments to the program being started) suggested to us that we shouldencapsulate the knowledge of how to run a job on various machines in a single command.We named it mpirun. In all environments, an MPI program, say myprog, can be run with,say, 12 processes by issuing the command 21



mpirun -np 12 myprogNote that this might not be the only way to start a program, and additional arguments mightusefully be passed to both mpirun and myprog (see Section 6.4), but the mpirun commandwill always work, even if the starting of a job requires complex interaction with a resourcemanager. For example, at Argonne we use a home-grown scheduler called EASY instead ofIBM's LoadLeveler to start jobs on our IBM SP; interaction with EASY is encapsulated inmpirun.A number of other MPI implementations and environments have also decided to use thename mpirun to start MPI jobs. The MPI Forum is discussing whether this command canbe at least partially standardized for MPI-2 (see Section 9.4).5.9 Building MPICHAn important component of MPICH's portability is the ability to build it in the sameway in many di�erent environments. We rely on the existence of a Bourne shell sh (orsuperset) and Unix-style make on the user's machine. The sh script that the user runsis constructed by GNU's autoconf, which we need in our development environment, butwhich the user does not need. At least a vanilla version of MPICH can be built in any ofMPICH's target environments by going to the top-level directory of the distribution andissuing the commandsconfiguremakeThe con�gure script will determine aspects of the environment (such as the location of cer-tain include �les), perform tests of the environment to ensure that all components requiredfor the correct compilation and execution of MPICH programs are present, and construct theappropriate Makefiles in many directories, so that the make command will build MPICH.After being built and tested, MPICH can be installed in a publicly available location suchas /usr/local with make install. Painless building and installation has become one ofour pet goals for MPICH.5.10 DocumentationMPICH comes with both an installation guide [25] and a user's guide [27]. Although thereis some overlap, and therefore some duplication, we consider separating them to be a betterapproach than combining them. Although many users obtain and use MPICH just for theirown use, an increasing number of them are linking their own programs to a system-wide copyof the libraries that have been installed in a publicly accessible place. For such users theinformation in the installation guide is a distraction. Conversely, the user's guide contains acollection of helpful hints for users who may be experiencing di�culties getting applicationsto run. These di�culties might well never be encountered by systems administrators whomerely install MPICH. 22



An important but frequently overlooked part of a software project (particular for re-search software) is the generation of documentation, particularly Unix-style man pages.2 Weuse a tool called doctext [22] that generates man pages (as well as WWW and LaTeX doc-umentation) directly from simple, structured comments in the source code. Using this toolallowed us to deliver MPICH with complete documentation from the beginning. Examples ofthe documentation can be accessed on theWWWat http://www.mcs.anl.gov/mpi/www/index.html.6 Toward a Portable Parallel Programming EnvironmentAlthough MPI speci�es a standard library interface and therefore describes what a portableparallel program will look like, it says nothing about the environment in which the programwill run. MPICH is a portable implementation of the MPI standard, but also attemptsto provide more for programmers. We have already discussed mpirun, which provides aportable way to run programs. In this section we describe briey some of the other toolsprovided in MPICH along with the basic MPI implementation.6.1 The MPE Extension LibraryMPE (Multi-Processing Environment) is a loosely structured library of routines designedto be \handy" for the parallel programmer in an MPI environment. That is, most of theMPE functions assume the presence of some implementation of MPI, but not necessarily ofMPICH. MPE routines fall into several categories.Parallel X graphics There are routines to provide all processes with access to a sharedX display. These routines are easier to use than the corresponding native Xlib rou-tines and make it quite convenient to provide graphical output for parallel programs.Routines are provided to set up the display (probably the hardest part) and drawtext, rectangles, circles, lines, etc. on it. It is not the case that the various processescommunicate with one process that draws on the display; rather, the display is sharedby all the processes. This library is described in [23].Logging One of the most common tools for analyzing parallel program performance is atime-stamped event trace �le. The MPE library provides simple calls to produce sucha �le. It uses MPI calls to obtain the time-stamps and to merge separate log �lestogether at the end of a job. It also automatically handles the misalignment and driftof clocks on multiple processors, if the system does not provide a synchronized clock.The log�le format is that of upshot [33]. This is the library for a user who wishesto de�ne his own events and program states. Automatic generation of events by MPIroutines is described in Section 6.3.1.Sequential Sections Sometimes, a section of code that is executed on a set of processesmust be executed by only one process at a time, in rank order. The MPE libraryprovides functions to ensure that this type of execution occurs.2This is not to say that the format of man pages cannot be improved; rather, every Unix user knows howto get information this way and rightly expects man pages to be provided.23



Error Handling The MPI speci�cation provides a mechanism whereby a user can controlhow the implementation responds to run-time errors, including the ability to installone's own error handler. One error handler that we found convenient for developingMPICH starts the dbx debugger in a popup xterm when an error is encountered.Thus, the user can examine the stack trace and values of program variables at thetime of the error. To obtain this behavior, the user must1. Compile and link with the -g option, as usual when using dbx.2. (a) Link with the MPE library.CallMPI_Errhandler_set( comm, MPE_Errors_call_dbx_in_xterm )early in the program,OR(b) Pass the -mpedbg argument to mpirun (if MPICH con�gured with -mpedbg).6.2 Command-Line Arguments and Standard I/OThe MPI standard says little about command-line arguments to programs, other than thatin C they are to be passed to MPI_Init, which removes the command line arguments it rec-ognizes. MPICH ensures that on each process, the command-line arguments returned fromMPI_Init are the same on all processes, thus relieving the user of the necessity of broad-casting the command-line arguments to the rest of the processes from whichever processactually was passed them as arguments to main.The MPI Standard also says little about I/O, other than that if at least one process hasaccess to stdin, stdout, and stderr, the user can �nd out which process this is by queryingthe attribute MPI_IO on MPI_COMM_WORLD. In MPICH, all processes have access to stdin,stdout, and stderr, and on networks these I/O streams are routed back to the processwith rank 0 in MPI_COMM_WORLD. On most systems, these streams also can be redirectedthrough mpirun, as follows.mpirun -np 64 myprog -myarg 13 < data.in > results.outHere we assume that \-myarg 13" are command-line arguments processed by the applica-tion myprog. After MPI_Init, each process will have these arguments in its argv. (This isan MPICH feature, not an MPI requirement.) On batch systems where stdin may not beavailable, one can use an argument to mpirun, as follows.mpirun -np 64 -stdin data.in myprog -myarg 13 > results.outThe latter form may always be used.6.3 Support for Performance Analysis and DebuggingThe MPI pro�ling interface allows the convenient construction of portable tools that rely onintercepting calls to the MPI library. Such tools are \ultra portable" in the sense that they24



can be used with any MPI implementation, not just a speci�c portable MPI implementation.6.3.1 Pro�ling LibrariesThe MPI speci�cation makes it possible, but not particularly convenient, for users to buildtheir own \pro�ling libraries," which intercept all MPI library calls. MPICH comes withthree pro�ling libraries already constructed; we have found them useful in debugging andin performance analysis.tracing The tracing library simply prints (on stdout) a trace of each MPI library call.Each line is identi�ed with its process number (rank in MPI_COMM_WORLD). Sincestdout from all processes is collected, even on a network of workstations, all out-put comes out on the console. A sample is shown here....[1] Starting MPI_Bcast...[0] Starting MPI_Bcast...[0] Ending MPI_Bcast[2] Starting MPI_Bcast...[2] Ending MPI_Bcast[1] Ending MPI_Bcast...logging The logging library uses the mpe logging routines described in Section 6.1 to writea log�le with events for entry to and exit from each MPI function. Then upshot (seeSection 6.3.2) can be used to display the computation, and its colored bars will showthe frequency and duration of each MPI call. (See Figure 9.)animation The animation library uses the mpe graphics routines to provide a simple ani-mation of the message passing that occurs in an application, via a shared X display.Further description of these libraries can be found in [34].6.3.2 UpshotOne of the most useful tools for understanding parallel program behavior is a graphicaldisplay of parallel timelines with colored bars to indicate the state of each process at anygiven time. A number of tools developed by various groups do this. One of the earliest ofthese was upshot [33]. Since then upshot has been reimplemented in Tcl/Tk, and this ver-sion [34] is distributed with MPICH. It can read log �les generated either by Paragraph [32]or by the mpe logging routines, which are in turn used by the logging pro�ling library. Asample screen dump is shown in Figure 9. 25
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5 Figure 9: Upshot output6.3.3 Support for Adding New Pro�ling LibrariesThe most obvious way to use the pro�ling library is to choose some family of calls tointercept, and then treat each of them in a special way. Typically, one performs someaction (adds to a counter, prints a message, writes a log record), calls the \real" MPIfunction using its alternate name PMPI Xxxx, perhaps performs another action (e.g., writesanother log record), and then returns to the application, propagating the return code fromthe PMPI routine.MPICH includes a utility called wrappergen that lets a user specify \templates" forpro�ling routines and a list of routines to create, and then automatically creates the pro-�ling versions of the speci�ed routines. Thus the work required by a user to add a newpro�ling library is reduced to writing individual MPI_Init and MPI_Finalize routines andone template routine. The libraries described above in Section 6.3.1 are all produced in thisway. Details of how to use wrappergen can be found in [27].6.4 Useful CommandsAspects of the environment required for correct compilation and linking are encapsulatedin the Makefiles produced when the user runs configure. Users may set up Makefile fortheir own applications by copying one from an MPI examples directory and modifying itas needed. The resultant Makefile may not be portable, but this may not be a primaryconsideration.An even easier and more portable way to build a simple application, and one that �tswithin existing complex Makefiles, is to use the commands mpicc or mpif77, constructed inthe MPICH `bin' directory by configure. These scripts are used like the usual commandsto invoke the C and Fortran compilers and the linker. Extra arguments to these commandslink with the designated versions of pro�ling libraries. For example,mpicc -c myprog.ccompiles a C program, automatically �nding the include libraries that were con�gured whenMPICH was installed. The commandmpif77 -mpilog -o myprog myprog.f26



compiles and links a Fortran program that, when run, will produce a log �le that can beexamined with upshot. The commandmpicc -mpitrace -o myprog myprog.ccompiles and links a C program that displays a trace of its execution on stdout.The mpirun command has already been mentioned. It has more exibility than we havedescribed so far. In particular, in heterogeneous environments, the commandmpirun -arch sun4 -np 4 -arch rs6000 -np 3 myprogstarts myprog on four Sun4's and three RS/6000's, where the speci�c hosts have been storedin MPICH's \machines" �le.Special arguments for the application program can be used to make MPICH providehelpful debugging information. For example,mpirun -np 4 myprog -mpedbg -mpiqueueautomatically installs the error handler described in Section 6.3.1 that starts dbx on errors,and display all message queues when MPI_Finalize is called. This latter option is usefulin locating \lost" messages.Details on all of these commands can be found in the user's guide [27].6.5 Network Management ToolsAlthough not strictly part of MPICH itself, the Scalable Unix Tools (SUT) [26] are a usefulpart of the MPICH programming environment on workstation clusters. Basically, SUTimplements parallel versions of common Unix commands such as ls, ps, cp, or rm. Perhapsthe most useful is a cross between find and ps that we call pfps (parallel �nd in the processspace). For example, one can �nd and send a KILL signal to runaway jobs on a workstationnetwork during a debugging session withpfps -all -tn myprog -kill KILLor locate all of one's own jobs on the network that have been running for more than anhour withpfps -all -o me -and -rtime 1:00 -printGraphical displays also show the load on each workstation and can help one choose thesub-collection of machines to run an MPICH job on. Details can be found in [26].27



6.6 Example ProgramsMPICH comes with a fairly rich collection of example programs to illustrate its features. Inaddition to the extensive test suite and benchmark programs, there are example programsfor Mandelbrot computations, solving the Mastermind puzzle, and the game of life thatillustrate the use of the mpe library in an entertaining way. A number of simple examplesillustrate speci�c features of the MPI Standard (topologies, for example) and have beendeveloped for use in classes and tutorials. Many of the examples from [29] are included. Forall of these examples, configure prepares the appropriate Makefiles, but they have to beindividually built as the user wishes. One example is a moderately large complete nuclearphysics Monte Carlo integration application in Fortran.7 Software Management Techniques and ToolsMPICH was written by a small, distributed team sharing the workload. We had the expectedproblems of coordinating both development and maintenance of a moderately large (130,000lines of C) and complex system. We have worked to distribute new releases in an orderlyfashion, track and respond to bug reports, and maintain contact with a growing body ofusers. In doing so, we have used existing tools, engineered some of our own, and developedprocedures that have served us well. In this section we report on our experiences, in thehope that some of our tools and methods will be useful to other system developers. Allsoftware described here is freely available, either from well-known sources or included inMPICH.7.1 Con�guring for Di�erent SystemsWe have tried, as a sort of pet goal, to make building MPICH completely painless, despitethe variety of target environments. This is a challenge. In earlier systems, such as p4,Chameleon, and Zipcode, it was assumed that a particular vendor name or operating systemversion was enough to determine how to build the system. This is too simplistic a view:� The same hardware may run multiple operating systems (Solaris or SunOS on suns,LINUX or FreeBSD on x86's)� Di�erent versions of the same operating system may di�er radically (SGI IRIX 5 is 32bit, whereas IRIX 6 is 64; the number of parameters to some system calls in Solarisdepends on the minor version number).� Di�erent compilers may use di�erent includes, datatype sizes, and libraries.In addition, it is rare that a system is completely free of bugs; in particular, since wedistribute source code, it is imperative that the C compiler produce correct object code.In distributing MPICH, we found that many users did not have correctly functioning Ccompilers. It is best to determine this problem at con�gure time.We use the GNU autoconf system to build a shell script (configure), which in turnexecutes various commands (including building and running programs) to determine the28



user's environment. It then creates Makefiles from make�le templates, as well as creatingsome scripts that contain site-speci�c information (such as the location of thewish interpreter).The autoconf system as distributed provides commands for checking the part of asystem that the GNU tools need; in MPICH, we have de�ned an additional set of operationsthat we found we needed in this and other projects. These include commands to test thatthe compiler produces correct code and to choose a vendor's compiler (with the correctoptions; this is particularly important for the massively parallel systems). In short, theconfigure script distributed with MPICH has evolved into a knowledge base about a widevariety of vendor environments.7.2 Source Code ManagementTo allow us all to work on the code without interfering with one another, we used RCS viathe Emacs VC interface.7.3 TestingTesting is often a lengthy and boring process. MPICH contains a test suite that attempts totest the implementation of each MPI routine. While not as systematic as some commercialtesting systems, which can dwarf the size of the original package, our test suite has proveninvaluable to us in identifying problems before new releases. Many of the test programsoriginated as bug-demonstration programs sent to us by our users. In MPICH, we automatethe testing process through the use of scripts that build, test, and generate a document thatsummarizes the tests, including the con�guration, correctness, and performance results. Thetesting system is provided as part of the distribution.7.4 Tracking and Responding to Problem ReportsWe realized early on that simply leaving bug reports in our email list would not work. Weneeded a system that would allow all of the developers to keep track of reports, includingwhat had been done (dialog with problem submitter, answers, etc.). It also had to be simplefor users to use and for us to install. We chose the req system [13]. This system allowsusers to send mail (without any format restrictions) to mpi-bugs@mcs.anl.gov; the bugreport is kept in a separate system as well as being forwarded to a list of developers. BothGUI and command-line access to the bug reports is provided.Over time, it became clear that some problems were much more common than others.We developed a database of common problems, searchable by keyword, which is also inte-grated into the manual. When a user sends in a bug report, we can query the database fora standard response to the problem. For example, if a user complains about getting themessage \Try Again," the command> mpich/help/bin/fmsg 'Try Again'29



gives the information from the user's guide on the message \Try Again" (which comes notfrom MPICH but from rshd).Announcements about new releases are sent to a mailing list (managed by majordomo)to which users are encouraged to subscribe when they �rst run the configure script.7.5 Preparing a New ReleasePreparing a new release for a package as portable as MPICH requires testing on a widevariety of platforms. To help test a new release of MPICH, we use several programs andscripts that build and test the release on a new platform. The doc/port program includedin the MPICH distribution performs a build, checking for errors from the make, followed byboth performance and correctness tests. The output from this program is a postscript �lethat describes the results of the build and tests; this postscript �le is then made availableon the WWW in a table at http://www.mcs.anl.gov/mpi/mpich/porting/portversion-number.html. Another program then is used to do an installation and to check that bothMPICH and the other tools (such as upshot and mpicc) work correctly. For networks ofworkstations, additional tests (also managed by a separate program) test heterogeneouscollections of workstations. By automating much of the testing, we ensure that the testingis reasonably complete and that the most glaring oversights are caught before a releasegoes out. Unfortunately, because the space of possible tests is so large, these programs andscripts have been built primarily by testing for past mistakes.8 Lessons LearnedOne of the purposes of doing an early implementation was to understand the implications ofdecisions made during the development of the Standard. As expected, the implementationprocess and early experiences of users shed light on the consequences of choices made atMPI Forum meetings.8.1 Language BindingsOne of the earliest lessons learned had to do with the language bindings and choices ofC datatypes for some items in the MPI Standard. For example, the 1.0 version passedthe MPI_Status structure itself, rather than a pointer to the structure, to the routinesMPI_Get_count, MPI_Get_elements, and MPI_Test_cancelled. The C bindings used intin some places where an int might not be large enough to hold the result; most of these(except for MPI_Type_size) were changed to MPI_Aint.In the MPI_Keyval_create function, the prede�ned \null" functions MPI_NULL_COPY_FNand MPI_NULL_DELETE_FNwere originally both MPI_NULL_FN; unfortunately, neither of theseis exactly a null function (both have mandatory return values and the copy function alsosets a ag). Experience with the implementation helped the MPI Forum to repair theseproblems in the 1.1 version of the MPI Standard.A related issue was the desire of the Forum to make the same attribute copy and delete30



functions usable from both C and Fortran; for this reason, addresses were used in the 1.0standard for some items in C that were more naturally values. Unfortunately, when the sizeof the C int datatype is di�erent from that of the Fortran INTEGER datatype, this approachdoes not work. In a surprise move, the MPI Forum exploited this in the 1.1 Standard,changing the bindings of the functions in C to use values instead of addresses.Another issue is the Fortran bindings of all of the routines that take bu�ers. Thesebu�ers can be of any Fortran datatype (e.g., INTEGER, REAL, or CHARACTER). This wascommon practice in most previous message-passing systems but is in violation of the FortranStandard [15]. The MPI Forum voted to follow standard practice. In most cases, Fortrancompilers pass all items by reference, and few complain when a routine is called withdi�erent datatypes. Unfortunately, several standard-conforming Fortran implementationsuse a di�erent representation for CHARACTER data than for numeric data, and in these casesit is di�cult to build an MPI implementation that works with CHARACTER data in Fortran.The MPI Forum is attempting to address this problem in the MPI-2 proposal.The MPI Forum provided a way for users to interrogate the environment to �nd out, forexample, what was the largest valid message tag. This was done in an elegant fashion byusing \attributes," a general mechanism for users to attach information to a communicator.The system attributes are attached to the initial MPI_COMM_WORLD communicator. Theproblem is that, in general, users need to set as well as get attributes. Some users did infact try to set MPI_TAG_UB. MPICH now detects this as an illegal operation, and the MPIForum clari�ed this in the 1.1 Standard.8.2 PerformanceOne of the goals of MPI was to de�ne the semantics of the message passing operations sothat no unnecessary data motion was required. The MPICH implementation has shownthis goal to be achievable. On two di�erent shared-memory systems, MPICH achieves asingle copy directly from user-bu�er to user-bu�er. In both cases, the operating system hadto be modi�ed slightly to allow a process to directly access the address space of anotherprocess. On distributed memory systems, two vendors were able to achieve the same resultby providing vendor-speci�c implementations of the ADI.In actual use, some users have noticed some performance irregularities; these indicateareas where more work needs to be done in implementations. For example, the implemen-tation of MPI_Bsend in MPICH always copies data into the user-provided bu�er; for smallmessages, such copying is not always necessary (it may be possible to deliver the messagewithout blocking). This can have a signi�cant e�ect on latency-sensitive calculations. Dif-ferent methods for handling short, intermediate, and long messages are also needed and areunder development.Another source of some performance di�culties is seemingly innocuous requirementsthat a�ect the lowest levels of the implementation. For example, the following is legal inMPI:MPI_Isend( ..., &request );MPI_Request_free( &request ); 31



The user need not (must not, actually) use a wait or test on the request. This functionalitycan be complex to implement when well-separated software layers are used in the MPIimplementation. In particular, it requires that either the completion of the operation startedby the MPI_Isend change data maintained by the MPI implementation or that the MPIimplementation periodically check to see whether some request has completed. The problemwith this functionality is that it may not match well with the services that are implementingthe actual data transport, and can be the source of unanticipated latency.Despite these problems, the MPICH implementation does achieve its goal of high per-formance and portability. In particular, the use of a carefully layered design, where thelayers can be implemented as macros (or removed entirely, as one vendor has done), waskey in the success of MPICH.8.3 Resource LimitsThe MPI speci�cation is careful not to constrain implementations with speci�c resourceguarantees. For many uses, programmers can work within the limits of any \reasonable"implementation. However, many existing message-passing systems provide some (usuallyunspeci�ed) amount of bu�ering for messages sent but not yet received. This allows a userto send messages without worrying about the process blocking waiting for the destinationto receive them or worrying about waiting on nonblocking send operations. The problemwith this approach is that if the system is responsible for managing the bu�er space, userprograms can fail in mysterious ways. A better approach is to allow the user to specifythe amount of bu�ering desired. The MPI Forum, recognizing this need, added routineswith user-provided bu�er space: MPI_Bsend, MPI_Buffer_attach, and MPI_Buffer_detach(and nonblocking versions). These routines specify that all of the space needed by the MPIimplementation can be found in the user-provided bu�er, including the space used to managethe user's messages. Unfortunately, this made it impossible for users to determine how biga bu�er they needed to provide, since there was no way to know how much space the MPIimplementation needed to manage each message. The MPI Forum addedMPI_BSEND_OVERHEAD to provide this information in the 1.1 version of the Standard.One remaining problem that some users are now experiencing is the limit on the num-ber of outstanding MPI_Requests that are allowed. Currently, no a priori way exists todetermine or provide the number of allowed requests.8.4 Heterogeneity and InteroperabilityPacked data needs to be sent with a \packed data" bit; this means that datatypes need toknow whether any part of the datatype is MPI_PACKED. The only other option is to alwaysuse the same format, for example, network byte order, at the cost of maximum performance.Many systems can be handled by using byte swapping; with data extension (e.g., 32-bitto and from 64-bit integers), most systems can be handled. In some cases, only oatingpoint requires special treatment; in these cases, XDR may be used where IEEE format isnot guaranteed.The MPI speci�cation provides MPI_PACK and MPI_UNPACK functions; unfortunately,32



these are not the functions that are needed to implement the point-to-point operations. Thereason is that these functions produce data that can be sent to anyone in a communicator(including the sender), whereas when sending to a single, other process, there is morefreedom in choosing the data representation.3 The MPICH implementation uses internalversions of MPI_PACK and MPI_UNPACK that work with data intended either for a speci�cprocess or for all members of a communicator.8.5 64-bit IssuesThe development of MPICH coincided with the emergence of a number of \64-bit systems."Many programmers, remembering the problems moving code from 16- to 32-bit platforms,expressed concern over the problem of porting applications to the 64-bit systems. Ourexperience with MPICH was that, with some care in using C properly (void * and not intfor addresses, for example), there was little problem in porting MPICH from 32- to 64-bitsystems. In fact, with the exception discussed below, MPICH has no special code for 32-or 64-bit systems.The exception is in the Fortran-C interface, and this requires an understanding of therules of the Fortran 77 Standard. While C makes few statements about the length ofdatatypes (for example, sizeof(int) and sizeof(float) are unrelated), Fortran de�nesthe ratios of the sizes of the numeric datatypes. Speci�cally, the sizes of INTEGER and REALdata are the same, and are half the size of DOUBLE PRECISION [15]. This is important inFortran 77, where there is no memory allocation in the language and programmers oftenhave to reuse data areas for di�erent types of data. Further, using 64-bit IEEE oating pointfor DOUBLE PRECISION requires that INTEGER be 32 bits. This is true even if sizeof(int)(in C) is 64 bits.In the Fortran-C interface, this problem appears when we look at the representation ofMPI opaque objects. In MPICH, they are pointers; if these are 64 bits in size, then theycannot be stored in a Fortran INTEGER. (If opaque objects were ints, it would not helpmuch; we would still need to convert from a 64-bit to 32-bit integer.) Thus, on systemswhere addresses are 64 bits and Fortran INTEGERs are shorter, something must be done.The MPICH implementation handles this problem by translating the C pointers to andfrom small Fortran integers (which represent the index in a table that holds the pointer).This translation is inserted automatically into the Fortran interface code by the Fortraninterface generator bfort (discussed in section 5.7).Another problem involves the routine MPI_Address, which returns an \address" of anitem. This \address" may be used in only two ways: relative to another \address" fromMPI_Address or relative to the \constant" MPI_BOTTOM. In C, the obvious implementationis to set MPI_BOTTOM to zero and use something like (long)(char *)ptr to get the addressthat ptr represents. But in Fortran, the value MPI_BOTTOM is a variable (at a knownlocation). Since all arguments to routines in Fortran are passed by address,4 the bestapproach is to have the Fortran version of MPI_Address return addresses relative to theaddress of MPI_BOTTOM. The advantage of this approach is that even when absolute addresses3Strangely, the MPI Forum considered but did not accept the functions needed for packing and unpackingdata sent between two speci�c processes; this decision may have been because there was less experience withheterogeneous environments.4Value-result if one must be picky; in practice, the addresses are passed.33



are too large to �t in an INTEGER, in many cases the address relative to a location in theuser's program (i.e., MPI_BOTTOM) will �t in an INTEGER. This is the approach used inMPICH; if the address does not �t, an error is returned (of class MPI_ERR_ARG, with anerror code indicating that the address won't �t).As a �nal step in ensuring portability to 64-bit systems, our configure program runssome programs to determine whether the system is 32 or 64 bits. This allows MPICH toport to unknown systems or to systems like SGI's IRIX that change from 32-bit (IRIX 5)to 64-bit (IRIX 6) without any changes to the code.8.6 Unresolved IssuesThe MPI Forum did not address any mixed-language programming issues. At least for MPI-1, Fortran programs must pass messages to Fortran programs, and the same for C. Yet, it isclearly possible to support both C-to-C and Fortran-to-Fortran message passing in a singleapplication. We call this a \horizontal mixed-language portability." As long as there is nointerest in transferring anything other than user data between Fortran and C strata of theparallel application, the horizontal model can be satis�ed, provided that MPI_Init providesa consistent single initialization of MPI for both languages, regardless of which language isused actually to initialize MPI. Current practice centers on this \horizontal" model, but itis clearly insu�cient, as we have observed from user feedback.Two additional levels of support are possible, staying still with the restriction of C andFortran 77 as the mixed languages. The �rst is the ability to pass MPI opaque objectslocally within a process between C and Fortran. As noted earlier, C and Fortran repre-sentations for MPI objects will often be arbitrarily di�erent, as will addresses. Althoughuser-accessible interoperable functions already are required in MPICH (for the bene�t of itsFortran interface), the MPI Standard does not require them. Such functionality is likely toappear in MPI-2 (as a result of our users' experience) and with other MPI systems as well.Such functionality has the added bene�t of enhancing the ability of third parties to provideadd-on tools for both C and Fortran users, without working with inside knowledge of theMPICH implementation (for instance, see [6]).The second level of \vertical" support is to allow a C routine to transmit data to a For-tran routine. This requires some correspondence between C and Fortran datatypes, as wellas a common format for performing the MPI operations (e.g., the C and Fortran implemen-tations must agree on how to send control information and perform collective operations).The MPI Forum is preparing a proposal that addresses the issues of interlanguage use ofMPI datatypes for MPI-2.9 Status and PlansWe begin this section by describing the current use of MPICH by vendors (as a componentof their own MPI implementations) and others. We then describe some of our plans forimproving MPICH both by optimizing some of its algorithms for better performance andby extending its portability into other environments.34



9.1 Vendor InteractionsAs described above, one of the motivations for MPICH's architecture was to allow ven-dors to use MPICH in developing their own proprietary MPI implementations. MPICH iscopyrighted, but freely given away and automatically licensed to anyone for further devel-opment. It is not restricted to noncommercial use. This approach has worked well, andvendor implementations are now appearing, many incorporating major portions of MPICHcode.� IBM obtained an explicit license for MPICH and collaborated with us in testingand debugging early versions. During this time, MPI-F [19] appeared. This IBMimplementation does not use the ADI, but maps MPI functions directly onto aninternal IBM abstract device interface. Our contact at IBM was Hubertus Franke.� SGI worked closely with us (see Section 4.3) to improve the implementation of theADI for their Challenge and Power Challenge machines. Functions were added toIRIX to enable single-copy interprocess data movement, and SGI gave us lock-freequeue-management routines in assembler language. Those involved at SGI were GregChesson and Eric Salo.� Convex worked closely with us to optimize an implementation of the channel interfaceand then of the ADI. We worked with Paco Romero, Dan Golan, Gary Applegate,and Raja Daoud.� Intel contributed a version of the ADI written directly for NX, bypassing the channelinterface. The Intel person responsible was Joel Clarke.� Meiko also contributed to the publicly distributed version a Meiko device, thanks tothe e�orts of Jim Cownie.� Laurie Costello helped us adapt MPICH for the Cray vector machines.� DEC has used MPICH as the foundation of a memory-channel-based MPI for Alphaclusters.We obviously do not claim credit for the vendor implementations, but it does appear thatwe met our original goal of accelerating the adoption of MPI by vendors through providingthem a running start on their implementations. The architecture of MPICH, which providedmultiple layers without impact on performance, was the key.9.2 Other UsersSince we make MPICH publicly available by ftp, we do not have precise counts on the num-ber of users. It is downloaded about 300 times per month from our ftp site, ftp.mcs.anl.gov,which is also mirrored at Mississippi State, ftp.erc.msstate.edu. Judging from the bugreports and subscriptions to the mpi-users mailing list, we estimate that between �vehundred and one thousand people are currently active in their use of MPICH.35



9.3 Planned EnhancementsWe are pursuing several directions for future work based on MPICH.New ADI To further reduce latencies, particularly on systems where latency is alreadyquite low, we plan an enhanced ADI that will enable MPICH to take advantage oflow-level device capabilities.Better collective algorithms As mentioned in Section 5.3, the current collective opera-tions are implemented in a straightforward way. We would like to incorporate someof the ideas in [1] for improved performance.Thread safety The MPI speci�cation is thread-safe, and considerable e�ort has gone intoproviding for thread safety in MPICH, but this has not been seriously tested. Theprimary obstacle here is the availability of a test suite for thread safety of MPI oper-ations.Dynamic, lighter-weight TCP/IP device We are nearing completion of a portable de-vice that will replace p4 as our primary device for TCP/IP networks. It will be lighterweight than p4 and will support dynamic process management, which p4 does not.RDP/UDP device We are working on a reliable data protocol device approach, built onUDP/IP (User datagram protocol), which extends and leverages the initial work doneby D. Brightwell [3].Multiprotocol support Currently MPICH can use only one of its \devices" at a time.Although two of those devices, the one based on Nexus [18] and the one based on p4,are to a certain extent multiprotocol devices, we need a general mechanism for allowingmultiple devices to be active at the same time. We are designing such a mechanismnow. This will allow, for example, two MPPs to be used at the same time, each usingits own switches for internal communication and TCP/IP for communication betweenthe two machines.Ports to more machines We are working with several groups to port MPICH to inter-esting new environments. These include� the Parsytec machine;� NEC SX-4 and Cenju-3;� Microsoft Windows NT, both for multiprocessor servers and across the manydi�erent kinds of networks that NT will support; and� Network protocols that are more e�cient than TCP/IP, both standard (for ex-ample, MessageWay [10]) and proprietary (for example, Myrinet [2]).Parallel I/O We have recently begun a project to determine whether the concepts of theADI can be extended to include parallel I/O. If this proves successful, we will includean experimental implementation of parts of MPI-IO [11, 12] into MPICH.36



9.4 MPI-2In March 1995, the MPI Forum resumed meeting, with many of its original participants, toconsider extensions to the original MPI Standard. The extensions fall into several categories:� Dynamic creation of processes (e.g., MPI SPAWN).� One-sided operations (e.g., MPI PUT).� Extended collective operations, such as collective operations on intercommunicators.� External interfaces (portable access to �elds in MPI opaque objects).� C++ and Fortran-90 bindings.� Extensions for real-time environments.� Miscellaneous topics, such as the standardization of mpirun, new datatypes, and lan-guage interoperability.The MPICH project began as a commitment to implement the MPI-1 Standard, withthe aim of assisting in the adoption of MPI by both vendors and users. In this goal it hasbeen successful. The degree to which MPI-2 functionality will be incorporated into MPICHdepends on several factors:� The actual content of MPI-2, which is far from settled at this time.� The degree to which the MPI-2 speci�cation mandates features whose implementationwould be feasible only with major changes to MPICH internals.� The enthusiasm of MPICH users for the individual MPI-2 features.At this writing, it seems highly likely that we will extend MPICH to include dynamicprocess management as de�ned by the MPI-2 Forum, at least for the workstation envi-ronment. This extension will not be di�cult to do with the new implementation of thechannel interface for TCP/IP networks, and it is the feature most desired by those de-veloping workstation-network applications. We expect also to aid tool builders (includingourselves) by providing access to MPICH internals speci�ed in the MPI-2 \external inter-faces" speci�cation. For the other parts of MPI-2, we will wait and see.10 SummaryWe have described MPICH, a portable implementation of the MPI Standard that o�ersperformance close to what specialized vendor message-passing libraries have been able todeliver. We believe that MPICH has succeeded in popularizing the MPI Standard andencouraging vendors to provide MPI to their customers, �rst, by helping to create demand,and second, by o�ering them a convenient starting point for proprietary implementations.We have also described the programming environment that is distributed with MPICH.The simple commands 37
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