
MPI-2: Extending the Message-Passing InterfaceAl Geist, ORNLWilliam Gropp, MCS Division, ANLSteve Huss-Lederman, ANL and the U. of Wis.Andrew Lumsdaine, U. of Notre DameEwing Lusk, MCS Div., ANLWilliam Saphir, NASTony Skjellum, Mississippi State U.Marc Snir, IBM Corp.AbstractThis paper describes current activities of the MPI-2 Forum. The MPI-2 Forum is agroup of parallel computer vendors, library writers, and application specialists workingtogether to de�ne a set of extensions to MPI (Message Passing Interface). MPI was de-�ned by the same process and now has many implementations, both vendor-proprietaryand publicly available, for a wide variety of parallel computing environments.In this paper we present the salient aspects of the evolving MPI-2 document as itnow stands. We discuss proposed extensions and enhancements to MPI in the areas ofdynamic process management, one-sided operations, collective operations, new languagebinding, real-time computing, external interfaces, and miscellaneous topics.1 IntroductionDuring 1993 and 1994, a group of parallel computer vendors, library writers, and applicationscientists met regularly to de�ne a standard interface for message-passing libraries. Theresult of this e�ort was MPI (Message-Passing Interface) [8]. Implementations of MPIare now widely available, including portable and freely available implementations [2, 4, 9]and specialized versions from vendors. General information on MPI is available at [1].For the purposes of this paper, it will be useful to refer to the result of the initial MPIstandardization e�ort as \MPI-1."MPI-1 de�ned an interface for a speci�c message-passing model of parallel computation,in which a �xed number of processes with disjoint address spaces communicate through a co-operative mechanism (when two processes communicate, one sends and the other receives).MPI provides many types of point-to-point communication, to incorporate requirements forrobustness, expressivity, and performance. Messages are strictly typed and scoped, allowingfor communication in a heterogeneous environment. MPI also contains an extensive set ofcollective operations, process topology functions, and a pro�ling interface.The most distinctive feature of the current MPI-2 proposals described in this paper isthat they go beyond the strict message-passing model de�ned above. In MPI-2, processesmay create other processes, so that the number of processes in an MPI computation canchange dynamically (Section 2). Processes can interact directly with the memory of other1



processes (Section 3). Extensions, semantic modi�cations, and subset de�nitions in supportof real-time and embedded systems (Section 4) also represent changes to the computationalmodel.Other topics being discussed in MPI-2 include extending MPI-1's collective operations tointercommunicators and nonblocking operations (Section 5), bindings for C++ and Fortran90 (Section 6), and interface de�nitions for some of MPI's opaque objects so that they canbe used more e�ectively in support of pro�ling and other libraries (Section 7). Finally, anumber of issues, such as interlanguage communication, a portable startup mechanism, andminor repairs to the MPI-1 speci�cation (Section 8), are under consideration in MPI-2.In the rest of this paper, we present an overview of each of these areas. We assumefamiliarity with the current MPI Standard. In the Conclusion we describe the currentstatus of these proposals and prospects for their early appearance in implementations.2 Dynamic Process ManagementMPI-1 describes how a group of processes can communicate with one another. It does notspecify how those processes are created, nor does it allow processes to enter or leave aparallel application after the application has started. This static process model enables thespeci�cation of deterministic semantics and facilitates e�cient implementations of MPI.Nevertheless, a number of important applications cannot use MPI-1 because of theconstraints imposed by its static process model. These include manager-worker applications,where the number and type of workers are not known until the manager has started, taskfarms, applications that can adapt to changing resources, applications with varying resourcerequirements, and client/server applications. Much of the impetus for relaxing the staticprocess model comes from the PVM community, which is familiar with PVM's relativelyrich support for dynamism.2.1 HistoryThe challenge for MPI-2 was to extend the MPI-1 model subject to the following constraints:� MPI-1 applications should continue to run unchanged.� MPI-2 should not compromise the performance or determinism of MPI-1.� MPI-2 functionality should be applicable to a very wide range of systems, from het-erogeneous networks of workstations to massively parallel processors.� MPI-2 should not take over operating system responsibilities.The last item turned out to be the most di�cult one to deal with. From the beginning,MPI-2 recognized as external to MPI the resource manager, which essentially decides wherea process is allowed to run, and the process manager, which starts and manages processes.The idea was that MPI would not perform the functions of the resource or process manager,but would interact with them through a simple interface.2



An early draft of the MPI-2 dynamic process chapter contained new opaque objects,MPI Resource and MPI Process, which played a key role in the interface to resource andprocess managers. The resource management discussion foundered on the di�culty of de-vising an interface that allowed meaningful interaction with the wide variety of resourcemanagement systems. These range from traditional batch systems on MPPs, to load shar-ing systems, to parallel operating systems, to a user using rsh.In the end, the Forum decided to remove resource objects and all the routines for manag-ing resources within MPI. Resource management can take place through direct interactionwith the resource manager, rather than through MPI routines. Process objects were alsoremoved, and replaced by the MPI-1 (group, rank) process representation. Much of the pro-cess management interface remains in MPI, largely to facilitate the management of non-MPIprocesses in task farms.A continuing challenge for MPI-2 is to explain why MPI still does not provide thefunctionality of PVM{in particular, the ability to manage a virtual machine. The answer isthat PVM is really two products in one{a message passing library and a parallel operatingsystem. MPI addresses message passing, but consciously does not address operating systemissues. An intriguing (and plausible) scenario is a portable MPI-2 application, with MPI'se�cient and robust message passing, running on a network of workstations managed byPVM. The MPI application could run almost unchanged in another environment wherePVM is not fully supported or appropriate.2.2 The InterfaceAs currently proposed, the MPI-2 dynamic process interface allows MPI applications tostart new processes (including non-MPI processes), send them signals, and �nd out whenthey die or become unreachable. The interface also provides a mechanism to establishcommunication between two independently running MPI applications.A fundamental concept in MPI-1 is MPI COMM WORLD, which de�nes the communicationspace containing all processes in an MPI application. With MPI-2's ability to add moreprocesses to an application, the de�nition is modi�ed to be the communication space con-taining all processes started together. Groups of newly started processes each have theirown unique MPI COMM WORLD, but they also have an intercommunicator that allows them tomerge with their parent group, forming a single bigger communicator. MPI-2 also providesan attribute, MPI UNIVERSE SIZE, that suggests how many new processes might usefully bespawned in the environment.Separate methods are proposed for starting MPI processes and non-MPI processes.MPI SPAWN starts MPI processes and establishes communication with them, returning anintercommunicator. MPI SPAWN INDEPENDENT starts processes (which may or may not beMPI processes) but does not establish communication with them. It returns a group. Theseare blocking routines that start multiple copies of a single binary. MPI-2 includes severalvariants of these routines. Some versions, for example, start several di�erent binaries (or thesame binary with di�erent arguments) under the same MPI COMM WORLD. All these routineshave nonblocking variants to allow processes to do useful work while processes are beingspawned. 3



In order to manage processes and to provide simple fault tolerance, an MPI applicationmust be able to be noti�ed when a process exits and to send signals to running processes.Two new functions do not require communicators and thus can be used with non-MPIprocesses as well. The function MPI SIGNAL is expected to be able to deliver the full rangeof POSIX signals to an arbitrary group, but MPI-2 mandates only that the KILL signal besupported. The function MPI NOTIFY provides a general method for an MPI process to benoti�ed when a process exits or becomes unreachable. The noti�cation can be instigatedby a hardware failure, software error, or normal exit on completion.A powerful new functionality being added to MPI-2 is the ability to establish contactbetween two groups of processes that initially do not share a communicator and may havebeen started independently. This functionality would be useful, for example, in enabling avisualization tool to start up and attach to a running simulation, or in enabling two partsof a large application, started separately at two di�erent sites to communicate with eachother. The collective functions MPI CONNECT and MPI IACCEPT create an intercommunicatorthat allows the two groups to communicate.3 Remote Memory AccessThe message-passing communication paradigm requires explicit involvement of two pro-cesses (sender and receiver), in order to transfer data from the memory of one to thememory of another. Remote Memory Access (RMA) extends the communication mecha-nisms of MPI by allowing the transfer to occur with the explicit involvement of only one ofthe two processes.3.1 MotivationRemote memory access facilitates the coding of some applications with irregular communi-cation patterns. One situation occurs when a distributed-memory application needs somerandomly accessed read-only shared memory (for large shared tables). Some of the processescan be used as \memory servers", while the other processes access the data by using getcalls. Another situation occurs with a distributed-memory code where the data distributionis �xed or slowly changing, but where the pattern of use changes dynamically. Each processcan compute what data it needs from remote processes and generate the required receives.To generate the matching sends, one needs to compute the inverse of the receive mapping,a time-consuming process that requires all processes to coordinate the data exchange. Theuse of get calls avoids the need for sends. A generic example is the execution of an assign-ment of the form A = B(map), where map is a permutation vector, and A, B, and map aredistributed in the same manner.RMA can be supported on distributed memory systems by an \RMA agent" at thetarget node that accepts RMA requests and performs the required read or write accesses inthe memory of the target process. A portable implementation might use an asynchronousreceive handler to implement this RMA agent. Systems with dedicated put/get hardware(for example, the Cray T3D) could take advantage of that hardware, at least for simpletransfers. Systems with communication coprocessors can take advantage of that coprocessor4



in order to run the RMA agent without interfering with the application processor at thetarget node.On shared-memory systems, if the caller can directly access the memory of the targetprocess, RMA can be implemented without an RMA agent: the caller process can directlycopy data to or from the memory of the target process.3.2 Interface SummaryThe current MPI-2 draft proposes the following RMA operations:Put: transfer data from caller memory to target memoryGet: transfer data from target memory to caller memoryAccumulate: update variables in target memory by values from the caller memory. Theupdate operation is an associative operation such as addition or minimum.Read-Modify-Write: update variables in target memory by values from the caller mem-ory, and return the initial value of the target memory variables. With a suitable choiceof the update operation, one obtains synchronization operations such as test-and-set,fetch-and-add, or compare-and-swap.In addition, a generic asynchronous handler mechanism is provided. This mechanism canbe used for a software implementation of remote memory access, as well as for implementingmany other communication paradigms. However, the very generality of this mechanismprevents many implementation optimizations that are possible for the more speci�c RMAoperations.3.3 IssuesMany design choices must considered in choosing a speci�c syntax and semantics for RMAoperations. We list below some of the issues being debated in the MPI-2 forum.Allocation of RMA windows: On shared-memory systems, it may be e�cient to re-strict RMA to dynamically allocated, shared-memory segments. On distributed-memorysystems, it is more natural to open RMA windows into memory areas that have been al-ready allocated. Both approaches are supported in the current proposal.Scatter/gather: On systems where communication is relatively expensive, it is impor-tant to provide a scatter/gather capability, so that one communication can access data innoncontiguous locations at either ends. The current proposal uses MPI derived datatypesfor that purpose. The disadvantage is that more complex scatter/gather patterns may needto be implemented in software. 5



Synchronization: A message-passing communication achieves both data movement andsynchronization of sender and receiver. In contrast, pure shared-memory communicationseparates data movement from synchronization. Which approach should we follow for RMA?The former choice makes more sense for systems where communication is relatively expen-sive. The current proposal allows a synchronization counter at the target process memoryto be incremented, as part of the RMA operation.Heterogeneous systems: Like all of MPI, the RMA functions should be supported onheterogeneous systems. This requires that a process be able to describe data layouts (forscatter/gather) in another's process memory, even if that other process runs on a di�erentprocessor architecture. To achieve this goal, we restrict each RMA window to consist of anhomogeneous array of single type entries.4 Real-Time Extensions to MPIMPI has helped to promote performance-portable programming of traditional high-performancecomputing and cluster systems. It has also proven desirable to leverage the success of MPIon parallel applications in the real-time community.Taking advantage of this opportunity, a number of new organizations and the existingMPI Forum participants initiated an e�ort to explore what \real-time MPI" might looklike. It is not expected that real-time MPI will be a required part of the MPI-2 Standardor that all HPC and cluster MPI implementations will support the real-time pro�les.4.1 Current DiscussionsThree speci�c pro�les have been identi�ed as targets for further exploration: time-based,priority-based, and event-based real-time MPI. Most work so far has focused on the �rst twopro�les. Event-based real-time MPI, which is perceived to be a superset of the time-basedpro�le, is beyond the scope of the current discussions.4.2 Current IssuesFor both pro�les, the API's are under development. In this section, we briey outline whathas been discussed and decided so far.Time-Based Pro�le For the time-based pro�le, it has been tacitly accepted that anoutside calendar must be provided, in addition to the MPI services, in order to schedulethe computations associated with this pro�le of MPI/RT. The calendar will specify whento start MPI communication. The anticipated strategy is to extend the MPI interfaceby using persistent communications that support this timed startup of communication.Timeout-based communication also will be supported in this way.6



Priority-Based Pro�le Priority-based messaging and threading are commonly occurringstrategies in real-time and non-real-time systems. Priority levels are supported by variousoperating systems and by certain message-passing networks, though not widely. Further-more, some network systems support virtual channels, which themselves may provide amechanism of reservation, if not priority, for given \ows" of data.For this pro�le, the types of priority are mapped into two categories: per communicatorand per send-receive pair. Both categories have advantages. Priorities based on communica-tors (the MPI-relevant view) seem foreign to real-time programmers; yet there is a potentialfor providing priority inheritance between communicators in a systematic way currently notdone in practice. The less controversial approach, pairwise message priority , is closer toexisting practice.The subcommittee is trying to draw analogies from other existing e�orts, includingPOSIX e�orts, for real-time strategies. Many other messaging approaches for real-timesystems are being reviewed as well.Furthermore, a minimal process model will have to be speci�ed in which processesthemselves have priority. In the current MPI system, one can imagine that all processes haveequal priority. Introducing a minimal process model may cause deadlocks and performanceanomalies such as priority inversion e�ects, but is essential to making a meaningful pro�le.Combined Pro�le Support From the perspective of a time-division multiplexing of par-allel hardware, and scheduling of a backplane for communication, it is conceivable to envisionpriorities as well. Hence, one may eventually consider having both time- and priority-basedsupport in concert. This is beyond what the committee currently is considering.4.3 Other Possible OutcomesThe growth of multimedia systems, including simultaneous video and sound, have led toextensions of Internet protocols. The RTP (Realtime Protocol) [11] is a good example.Developing RTP analogs for MPI-2 or beyond is a likely task for the real-time subcommittee,but such features may well have wider appeal and move into the main part of MPI-2 orlater e�orts. For instance, the RTP approach to message passing supports lossy protocols.This feature is useful in systems where dropping an occasional video frame, for instance, isacceptable.5 Collective Communication ExtensionsMPI-1 has a rich set of collective operations, but they are subject to a number of restrictions.MPI-2 is considering generalizing them is a number of directions.5.1 Asynchronous OperationsIn the current draft, each collective operation speci�ed by MPI-2 has an asynchronousanalog. A wide variety of MPI-2 features use asynchronous collective operations on both7



intracommunicators and intercommunicators.At present, only one particularly thorny issue remains. Given an intracommunicator(and its underlying process group), should it be possible to have part of the group use theasynchronous collective operation, whereas the rest of the group uses the blocking form?The argument advanced in favor of this mode of operation is ease of use by programmers;the argument against it is that this mode of operation could compromise the ability ofblocking collective operations to be optimized in certain respects. The analog of this issue,for intercommunicators, has also not been resolved.5.2 In-place OperationsA number of collective operations that use both input and output bu�ers could be respeci�edor extended to support overwriting of bu�ers. This issue is sometimes coupled with aliasingissues of speci�c programming languages, which sometimes disallow it (as in Fortran 77).Nonetheless, there is a signi�cant interest and value in considering these operations, whichhave been speci�ed in the intracommunicator form and also mentioned in the context ofintercommunicators.The purpose of in-place operations is to allow the user of the collective communicationto specify the needed memory for the operation without having to obtain additional bu�erstorage.5.3 Intercommunicator Collective OperationsThe purpose of intercommunicator collective operations is to support broadcast, reductions,and other operations, extended to include the two-group model of parallel processing o�eredin MPI-1 by intercommunicators.Original proposals for extending intercommunicators to support collective operations,in addition to their MPI-1 point-to-point facilities, were �rst based on [12], which includedmodel implementations.The additional functionality came in three forms: more collective constructors and ma-nipulators, what is now called \half-duplex" intercommunicator operations that extendintracommmunicator collective operations, and virtual topology-oriented versions of boththe constructors and the communication procedures.The half-duplex operations have been augmented recently by a full-duplex strategy. Thefull-duplex strategy is to subsume the half-duplex approach once details concerning the APIand these operations have been worked out. Asynchronous versions of these operations, asdiscussed above for intracommunicators, will also be speci�ed.5.4 Other Possible OutcomesSince the intercommunicator operations can be considered in the domain of dataow pro-gramming (e.g., for signal processing), where they can be used to advantage, issues ofunderlying protocols, bu�ering, and synchronization have been raised. These issues tie in8



closely with the programming requirements such systems. One potential outcome is that aparallel, stream-oriented protocol be considered in addition to the message-oriented proto-col of MPI. This is consistent with [11] but most probably beyond the scope of MPI-2. Itindicates the need for continued research and study, and possible standardization at a laterdate.Another area of consideration for MPI-2 is the addition of persistent collective opera-tions. Persistent collective operations, like their point-to-point counterparts, would supportreuse of setup information, allowing some implementations to create a \planned collectivetransfer" paradigm.6 Language BindingsMPI-1 speci�es a procedural interface for both C and Fortran 77. The C interface is robust,but the Fortran 77 interface necessarily violates some Fortran 77 rules, due to limitationsin the language. Both languages are being superseded by their modern supersets C++ andFortran 90. MPI-2 provides language bindings that allow an MPI program to be writtenin either of these languages. Both C++ and Fortran 90 are extremely powerful languages:each provides one with ample opportunity for error. The designs for the bindings for theselanguages were therefore guided by the requirement that there be a simple and clear one-to-one correspondence between the language-independent speci�cation of MPI functions andthe language-speci�c bindings of those functions.6.1 C++ BindingsThe C++ language is an object-oriented extension to the C programming language and hasbecome the most popular object-oriented language in use today [3, 13]. Since C++ is asuperset of C, one approach to providing C++ bindings is to simply reuse the C bindings.However, this approach discards much of the expressive power of C++. On the other hand,the C++ interface to MPI could take the form of an actual class library. While such anapproach might be attractive for C++ programmers, a class library is too high-level to beconsidered as an actual set of bindings. The approach taken by MPI-2 for C++ bindingsfalls between these two extremes.The design of MPI itself is very much object-based, and the C++ bindings are basedon the underlying object-based design principles. The bindings de�ne a small set of classescorresponding to the fundamental object types in MPI with the functionality of MPI pro-vided as member functions of these objects. This interface is fairly lightweight and seeksto meet the requirements of a language binding while still using advanced features of thetarget language. For instance, MPI error codes are still returned by function calls, no newtypes of objects are introduced, and the type arguments to function calls must be explic-itly provided. Thus, only minimal use of advanced features of C++ such as polymorphismwould be available to MPI programmers. This is an approach similar to that taken in [7]. Afull-edged class library that uses such advanced features has been developed in conjunctionwith the bindings and can be found at [10]. 9



6.2 Fortran 90 InterfaceFortran 90 adds a wide range of features to Fortran 77. These include the module facility,derived types, array syntax, dynamic memory allocation, \pointers", the ability to do stricttype checking, and function overloading. At �rst glance, it seems that MPI-2 should beable to make wide use of these new features. Unfortunately, most of them are too \highlevel" for MPI to use, and many in fact cause more problems than they solve.The MPI-2 approach to Fortran 90 bindings therefore focuses more on trying to avoidintroducing new problems than on trying to solve old ones. Perhaps the most importantaddition is a requirement for an \MPI" module for the Fortran 90 interface. Since Fortran 90is a superset of Fortran 77, it takes the Fortran 77 bindings and data structures as a startingpoint. A few problems introduced by Fortran 90 are quite di�cult to solve. For instance,when a Fortran 90 array section is passed to a \Fortran 77" function (one with no interfaceblock), it is generally copied in and out. This procedure makes it impossible for MPI'snonblocking calls to work, because they rely on knowing the address of the original data|something that is unknowable inside the Fortran 77 routine. The MPI Forum is currentlyexploring ways to address this particular problem, possibly with a set of overloaded F90functions for each intrinsic type.7 External InterfacesMPI-1 has a number of features that allow users to layer various capabilities on top of MPI.For example, user-de�ned reduction operations allow the programmer to use MPI for allcommunication requirements but still perform specialized reduction operations.7.1 Generalized RequestsMPI-1 had nonblocking operations for basic point-to-point send and receive calls. MPI-2is proposing nonblocking calls for all collective operations, many one-sided operations, anddynamic spawning. Although these signi�cantly expand the areas covered by nonblockingoperations, users still may want additional nonblocking operations. For example, in the cur-rent MPI-IO e�ort [5, 6], nonblocking read and write operations are proposed. It would beadvantageous to o�er a standard MPI mechanism to perform these additional nonblockingoperations. This would allow the use of other MPI features such as MPI WAIT, reducingthe e�ort in creating such requests and allowing one to control both types of nonblockingoperations together.To this end, MPI-2 has adopted a generalized request mechanism. It allows users tocreate new nonblocking operations inside of MPI. Such a request is created and freed inan analogous way to how cached information is placed on communicators in MPI-1. Atthe time of request creation, the user supplies functions that are called when the requestis initialized, started, completed, and freed. These callback functions specify what actionsneed to be taken for the speci�ed nonblocking operation. For example, suppose one wishesto create a specialized nonblocking permutation using the MPI-2 put mechanism. When itis started, it will need to begin nonblocking put operations. This task can be done with the10



function that is speci�ed to be called when the operation is started.As with persistent requests, generalized requests are begun with the current MPI STARTfunctions and completed with MPI fWAITjTESTg functions. Actions to be taken when parts ofthe nonblocking operation complete are performed by the communication handlers proposedin MPI-2. The generalized request completes when the user calls MPI REQUEST MARK COMPLETEduring one of the communication handler calls.7.2 Access to Opaque ObjectsFrom the beginning, the MPI Forum has encouraged development of tools that are layeredon top of MPI. For example, in MPI-1, the pro�ling interface was designed to allow pro�lersto be easily layered on top of MPI. The success of MPI-1 has led to the development ofseveral pro�ling tools. Many other tools and libraries are also being layered on top of MPI.One area that has caused di�culties in writing portable tools is the information storedwith opaque objects. MPI-1 was deliberately designed with opaque objects. These allowexibility in implementations and allow for future enhancements without changing the user'sview of objects already present in MPI. To allow users to gain access to needed informationin opaque objects, MPI has a number of accessor functions. For example, MPI GET COUNTwill return the number of entries received as stored in the opaque part of the status object.One drawback to this approach is that only information with explicit accessor functions canbe obtained in an easy and portable way from an MPI implementation. In MPI-1, the MPIForum included all the accessor functions that seemed to be needed by users. However, toolwriters have noted that they need access to information not typically needed by users. Forexample, a pro�ling library often needs the length of a message begun by MPI START for apersistent request.To enable these tools to be truly portable, MPI-2 includes a number of functions toexpose information stored in opaque objects. These functions are as follows:� Determination of request type (MPI REQUEST CLASS). This call returns the type ofrequest represented by the object. This is useful, for example, to �nd out what typeof request completes in a call to MPI WAIT.� Communicator ID (MPI COMMUNICATOR ID). This call returns an integer ID for thecommunicator given. Since implementations do not currently have to keep a uniqueID for each communicator, the function MPI COMMUNICATOR ID UNIQUE can be used to�nd out if the ID given is unique. If MPI required a unique ID, an MPI implementationmight be slower in creating communicators. Thus, a balance was struck between theneeds of tool writers and the performance of MPI.� Items associated with a send or receive request. Pro�lers need information associatedwith requests to be able to e�ciently log the information pertaining to a persistentrequest when it is started. This same information can be obtained easily from thesend or receive call for non-persistent requests. The information available in MPI-2 isthe tag (MPI REQUEST TAG), the partner (destination in a send and source in a receive)(MPI REQUEST PARTNER), and the message length (MPI REQUEST LENGTH).11



� Composition of a derived datatype. Many tools and users wish to be able to decodea derived datatype in order to determine what are its components. A string representa-tion can be gotten from (MPI GET CHAR DATA TYPE) or put into (MPI DATA TYPE FROM CHAR)an MPI datatype.� True extent of a datatype (MPI TRUE EXTENT). Since the extent of a derived datatypecan be manipulated via MPI UB and MPI LB, it can be di�cult to know the amount ofmemory required to store a given derived datatype. This call returns the \true" sizeof a datatype so that this information is available.Finally, the external interface de�nition in MPI-2 allows a generalization of the MPI-1caching mechanism to allow caching on additional handles. The same calls are used but inMPI-2 apply to MPI COMM, MPI DATATYPE, and MPI GROUP.8 MiscellaneousA number of topics are being considered by the MPI-2 Forum that do not fall into thecategories above.8.1 Interlanguage communicationIn MPI-1, although both C and Fortran-77 bindings were de�ned, nothing was speci�edregarding the interoperability of these two languages. Interoperability comprises at leastthree subareas: initialization, passing of MPI opaque objects from one language to another,and sending a message from one language and having it received in the other.Only one form of MPI INIT need be called. After the call, the MPI library will becompletely initialized for all supported languages.In order to deal with the portability of MPI opaque objects, such as datatypes, com-municators, and requests, conversion functions will be provided that convert the language-dependent \handles" to 32-bit integers and back again. These integers will be portable(among languages) versions of the objects they reference.Sending a message from a Fortran program to a C program or vice versa will be explic-itly allowed, as long as the signatures of the datatypes match. Here we are aided by thefact that the elementary datatypes de�ned in MPI-1 are distinct in the two languages, andno equivalence (such as one that might exist between the C datatype int and the Fortrandatatype INTEGER on some machines) is assumed. Thus, in sending messages between pro-grams written in di�erent languages, one sends data of a given MPI datatype; no automaticconversion takes place.8.2 Other TopicsNew Datatypes The MPI-1 Standard speci�es that when there are \holes" in an MPIderived datatype, the holes may not be overwritten when the message is received. This12



is appropriate behavior when the holes represent gaps in a strided datatype, for instance,but not when they represent the padding that arises in structures. Performance could beincreased if the implementation is allowed to consider such datatypes contiguous. In orderto convey to the MPI implementation that the holes are not signi�cant, and can be bothsend and received, the new datatype MPI Type contiguous struct has been introduced.mpirun Most systems require some special command in order to start parallel programs,and a number of MPI implementations already use mpirun. It is proposed that there be aportable mechanism for starting MPI programs. For example,mpirun -np 64 a.outshould be at least one way to start an MPI program a.out with an MPI COMM WORLD of 64processes on any MPI system.Repairs to MPI-1 A number of small changes to MPI-1 are being contemplated, partic-ularly in bindings for character string arguments in Fortran. These changes can be tracedto the fact that the Fortran-77 bindings for MPI-1 are at variance with the o�cial Fortranstandard.Version Numbers The MPI Standard is not immutable, though we might wish it so.Already minor di�erences exist between MPI 1.0 and MPI 1.1. It appears likely that usersand especially library writers will need to know both at compile time and at run timethe version of the MPI speci�cation that their implementation supports. Constants andfunctions will be supplied for this purpose.9 ConclusionWe have described the current state (February, 1996) of MPI-2 discussions. The precisecontent of MPI-2 remains to be decided in the coming months. Although a few implementorsare beginning to experiment with some of the notions described here, most are waiting tosee what the �nal speci�cation will look like. The MPI-2 features will be more di�cult toimplement than those of MPI-1. Nonetheless, enough discussion has taken place that it ispossible to discern the likely scope of the functionality that MPI-2 will add to MPI-1. Inthis paper we have described that functionality.References[1] World Wide Web MPI home page. http://www.mcs.anl.gov/mpi/standard.html.[2] R. Alasdair, A. Bruce, James G. Mills, and A. Gordon Smith. CHIMP/MPI user guide.Technical Report EPCC-KTP-CHIMP-V2-USER 1.2, Edinburgh Parallel ComputingCentre, June 1994. 13



[3] Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-mings, 1994.[4] Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment forMPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium '94, pages379{386. University of Toronto, 1994.[5] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, SamFineberg, Bill Nitzberg, Bernard Traversat, and Parkson Wong. MPI-IO: A parallel�le I/O interface for MPI, version 0.3. Technical Report NAS-95-002, NAS, January1995.[6] Peter Corbett, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill Nitzberg,Bernard Traversat, Parkson Wong, and Dror Feitelson. MPI-IO: A parallel �le I/Ointerface for MPI, version 0.4. http://lovelace.nas.nasa.gov/MPI-IO, December1995.[7] Nathan E. Doss, Purushotam V. Bangalore, and Anthony Skjellum. MPI++ : Issuesand Features. In Proceedings of OONSKI '94, January 1994.[8] The MPI Forum. The MPI message-passing interface standard.http://www.mcs.anl.gov/mpi/standard.html, May 1995.[9] William Gropp and Ewing Lusk. User's guide for mpich, a portable implementation ofMPI. Technical Report ANL-95/6, Argonne National Laboratory, 1996.[10] Andrew Lumsdaine, Brian M. McCandless, and Je�rey M. Squyres. Object-orientedMPI, 1996. http://www.cse.nd.edu/~lsc/research/oompi/.[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocolfor Real-Time Applications, January 1996. Internet Engineering Task Force RFC 1889;Network Working Group { Standards Track.[12] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicatorextensions to MPI in the MPIX (MPI eXtension) Library. Technical report, MississippiState University | Dept. of Computer Science, April 1994. Draft version.[13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mas-sachusetts, second edition, 1991.This work was supported in part by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 14


