
To appear in Proc. of the 3rd Int'l Conf. of the Austrian Center for Parallel Computationwith special emphasis on Parallel Databases and Parallel I/O, Sept. 1996An Experimental Evaluation of the Parallel I/OSystems of the IBM SP and Intel ParagonUsing a Production Application?Rajeev Thakur, William Gropp, and Ewing LuskMathematics and Computer Science DivisionArgonne National Laboratory9700 S. Cass AvenueArgonne, IL 60439, USAfthakur, gropp, luskg @mcs.anl.govAbstract. We present the results of an experimental evaluation of theparallel I/O systems of the IBM SP and Intel Paragon using a real three-dimensional parallel application code. This application, developed by sci-entists at the University of Chicago, simulates the gravitational collapseof self-gravitating gaseous clouds. It performs parallel I/O by using li-brary routines that we developed and optimized separately for the SPand Paragon. The I/O routines perform two-phase I/O and use the par-allel �le systems PIOFS on the SP and PFS on the Paragon. We studiedthe I/O performance for two di�erent sizes of the application. In thesmall case, we found that I/O was much faster on the SP. In the largecase, open, close, and read operations were only slightly faster, and seekswere signi�cantly faster, on the SP; whereas, writes were slightly fasteron the Paragon. The communication required within our I/O routineswas faster on the Paragon in both cases. The highest read bandwidthobtained was 48Mbytes/sec., and the highest write bandwidth obtainedwas 31.6Mbytes/sec., both on the SP.1 IntroductionIt is widely recognized that, in addition to fast computation and communication,parallel machines must also provide fast parallel I/O. Researchers have proposedmany di�erent types of architectures and �le systems for parallel I/O, a fewof which are being used in current-generation parallel machines. There is noconsensus, however, as to what is the best type of parallel I/O architecture orparallel �le system.? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Computational and Technology Research,U.S. Department of Energy, under Contract W-31-109-Eng-38; and by the ScalableI/O Initiative, a multiagency project funded by the Advanced Research ProjectsAgency (contract number DABT63-94-C-0049), the Department of Energy, the Na-tional Aeronautics and Space Administration, and the National Science Foundation.



To better understand this issue, we evaluated the performance of the par-allel I/O systems of two di�erent state-of-the-art parallel machines, with a realapplication workload. The two machines we considered are the IBM SP at Ar-gonne National Laboratory and the Intel Paragon at Caltech. These machinesare also the two testbeds for the Scalable I/O Initiative2. The application weused is a three-dimensional production parallel code developed by scientists atthe University of Chicago to study the gravitational collapse of self-gravitatinggaseous clouds. The application performs parallel I/O by using library routinesthat we developed and optimized separately for the SP and Paragon. We in-strumented the I/O routines, ran two di�erent sizes of the application on bothsystems, and analyzed the resulting trace �les. We found that, in the small case,all I/O operations (open, close, read, write, seek) were much faster on the SP.In the large case, open, close, and read operations were only slightly faster, andseeks were signi�cantly faster, on the SP; whereas, writes were slightly faster onthe Paragon. The communication required within our parallel I/O routines wasfaster on the Paragon in both cases.The rest of this paper is organized as follows. Section 2 provides an overviewof related work. Section 3 describes the con�gurations of the two machines, theapplication, and the parallel I/O routines used in the application. Section 4provides details of the experiments performed. We present performance resultsin Section 5 and draw overall conclusions in Section 6.2 Related WorkWe discuss related work in the area of I/O characterization of parallel applica-tions and performance evaluation of parallel �le systems.Nieuwejaar et al. [17] performed a tracing study of all �le-related activity onthe Intel iPSC/860 at NASA Ames Research Center and the Thinking MachinesCM-5 at the National Center for Supercomputing Applications. They foundthat �le sizes were large, I/O request sizes were fairly small, data was accessedin sequence but with strides, and I/O was dominated by writes. Crandall etal. [7] analyzed the I/O characteristics of three parallel applications on the IntelParagon at Caltech. They found a wide variety of access patterns, including bothread-intensive and write-intensive phases, large as well as small request sizes, andboth sequential and irregular access patterns. Baylor and Wu [3] studied the I/Ocharacteristics of four parallel applications on an IBM SP using the Vesta paral-lel �le system. They found I/O request rates on the order of hundreds of requestsper second, mainly small request sizes, and strong temporal and spatial local-ity. Acharya et al. [1] report their experience in tuning the performance of fourapplications on an IBM SP. Del Rosario and Choudhary [9] provide an informalsummary of the I/O requirements of several Grand Challenge applications.Researchers have also studied the performance of parallel �le systems. Bor-dawekar et al. [4] performed a detailed performance evaluation of the Concurrent2 See http://www.cacr.caltech.edu/SIO/ for information on the Scalable I/OInitiative



File System (CFS) on the Intel Touchstone Delta. Kwan and Reed [15] measuredthe performance of the CM-5 Scalable File System. Feitelson et al. [10] studiedthe performance of the Vesta �le system. Nieuwejaar and Kotz [16] present per-formance results for the Galley parallel �le system. Several researchers havemeasured the performance of the Concurrent File System (CFS) on the InteliPSC/2 and iPSC/860 hypercubes [5, 11, 18].In an earlier work, we studied the I/O characteristics of a di�erent appli-cation on the SP and Paragon [20]. For that study, we used a two-dimensionalastrophysics application that performs sequential I/O (only processor 0 performsall I/O) using the Unitree �le system on the SP and the PFS �le system on theParagon. In this paper, we consider a completely di�erent three-dimensional ap-plication that is much more I/O intensive and performs parallel I/O (two-phaseI/O) using the parallel �le systems PIOFS on the SP and PFS on the Paragon.3 Machine and Application DescriptionWe describe the SP and Paragon systems, the application, and the parallel I/Oroutines used in the application.3.1 Machine Speci�cationsWe used the IBM SP at Argonne National Laboratory and the Intel Paragon atCaltech, which are the two testbeds for the Scalable I/O Initiative.IBM SP. The SP at Argonne was con�gured as follows during our experiments.There were 120 compute nodes, each an RS/6000 Model 370 with 128Mbytes ofmemory, and eight I/O server nodes, each an RS/6000Model 970 with 256Mbytesof memory. All 128 nodes were interconnected by a high-performance omegaswitch. The operating system on each node was AIX 3.2.5. IBM's parallel �le sys-tem PIOFS provided parallel access to �les. Each I/O server node had 3Gbytesof local SCSI disks, resulting in a total PIOFS storage capacity of 24Gbytes.Users were not allowed to run compute jobs on the I/O server nodes.PIOFS distributes a �le across multiple I/O server nodes. A �le is logicallyorganized as a collection of cells: a cell is a piece of the �le stored on a particularserver node. A �le is divided into a number of basic striping units (BSUs), whichare assigned to cells in a round-robin manner. Cells in turn are assigned toserver nodes in a round-robin manner. The default number of cells is equal tothe number of server nodes, and the default BSU size is 32Kbytes.Intel Paragon. The Paragon at Caltech was con�gured as follows during ourexperiments. There were 512 compute nodes and 16 I/O nodes, each an Inteli860/XP microprocessor with 32Mbytes of memory. The nodes were connectedby a two-dimensional mesh interconnection network. The operating system on



the machine was Paragon/OSF R1.3.3. Each I/O node was connected to a 4.8-Gbyte RAID-3 disk array, and Intel's Parallel File System (PFS) provided par-allel access to �les. As on the SP, users were not allowed to run compute jobson the I/O nodes.A PFS �le system consists of one or more stripe directories. Each stripedirectory is usually the mount point of a separate Unix �le system. Just as aRAID subsystem collects several disks into a unit that behaves like a singlelarge disk, a PFS �le system collects several �le systems into a unit that behaveslike a single large �le system. PFS �les are divided into smaller stripe unitsand distributed in a round-robin fashion across the stripe directories that makeup the PFS �le system. During our experiments, the Paragon had 16 stripedirectories, and the default stripe unit was 64Kbytes.3.2 The ApplicationThe application we used is a production parallel code developed at the Uni-versity of Chicago. This application simulates the gravitational collapse of self-gravitating gaseous clouds due to a process known as Jeans instability. This pro-cess is the fundamental mechanism through which intergalactic gases condenseto form stars. The application solves the equations of compressible hydrodynam-ics with the inclusion of self-gravity. It uses the piecewise parabolic method [6] tosolve the compressible Euler equations and a multigrid elliptic solver to computethe gravitational potential.The application uses the Chameleon library for communication [13], which isportable. Originally, the application also used the Chameleon library for I/O [12],but we found that the Chameleon I/O routines were not well optimized forparallel I/O on the SP and Paragon. We therefore wrote special I/O routines,described below, with the same interface as the Chameleon I/O library, butseparately optimized for the SP and Paragon. The application performs all I/Ovia calls to these optimized routines; therefore, it is directly portable across thetwo machines. The application is written in Fortran, whereas the I/O routinesare in C.The application uses several three-dimensional arrays that are distributed ina (block,block,block) fashion among processors. All arrays �t in memory, butevery few iterations, several arrays must be written to �les for three purposes:data analysis, checkpointing (restart), and visualization. The application readsdata only while being restarted from a previously created checkpoint. The storageorder of data in all �les is required to be the same as it would be if the programwere run on a single processor.The data-analysis �le begins with six variables (real numbers) that have thesame values across all processors, followed by six arrays appended one after an-other. The arrays are stored in column-major (Fortran) order. The restart �lehas the same structure as the data-analysis �le. The application performs allcomputation in double precision, but writes single-precision data to the data-analysis and restart �les. The visualization data is written to four separate �les.Each of those �les begins with six variables (real numbers) that have the same



value across all processors, followed by one array of character data. The appli-cation creates one restart �le in all and new data-analysis and visualization �lesin each dump.3.3 Parallel I/O RoutinesRecall that, in this application, three-dimensional arrays are distributed amongprocessors in a (block,block,block) manner. Each array must be written to asingle �le such that the data in the �le corresponds to the global array in column-major (Fortran) order. The original Chameleon I/O routines perform this taskby having all processors send their data to processor 0, and only processor 0actually writes data to the �le. This approach is ine�cient for two reasons: thesequential nature of I/O and the communication bottleneck caused by the all-to-one communication pattern.To overcome these limitations, we wrote new routines that have the sameinterface as the Chameleon I/O routines, but perform I/O in parallel from allprocessors. Since the interface did not change, we did not have to change the ap-plication code. The new routines use PIOFS on the SP and PFS on the Paragon.We optimized the routines separately for the two systems; for example, on theParagon, the routines use the gopen() call for faster opens and the M ASYNCmode for faster reads and writes.In this application, the local array of each processor is not located contigu-ously in the �le. Therefore, an attempt by any processor to read/write its localarray directly would result in too many small read/write requests. We elimi-nated this problem by using two-phase I/O [8], a technique for reading/writingdistributed arrays e�ciently. In two-phase I/O, as the name suggests, a dis-tributed array is read or written in two phases. For writing a distributed array,in the �rst phase, the array is redistributed among processors such that, in thenew distribution, each processor's local data is located contiguously in the �le.In the second phase, processors write their local data at appropriate locationsin the �le concurrently, with a single write operation each. To read a distributedarray, each processor reads a contiguous block in the �rst phase and then re-distributes it in the second phase. This method eliminates the need for severalsmall I/O requests and also has a fairly balanced all-to-many communicationpattern.Figure 1 illustrates how our I/O routines use two-phase I/O to read/writea three-dimensional array distributed as (block,block,block). The write rou-tine �rst redistributes an array from (block,block,block) to (*,*,block). In otherwords, after the �rst phase, the array is distributed along the third dimensiononly. In the second phase, all processors write their local data simultaneouslyto the �le. Conversely, in the read routine, all processors �rst read their localdata assuming a (*,*,block) distribution and then redistribute it to the required(block,block,block) distribution.We note that the PIOFS �le system also supports logical partitioning of �les.A processor can specify a logical view of its local array in the global array �le andthen read/write the local array with a single operation, even though the local



Write Phase 2

Read Phase 1

Write Phase 1

Read Phase 2

Disks

4 5

10

(block,block,block)

0

(*,*,block)

0

0

32

0 1

5

3

7

1
2

1
2

1Fig. 1. Two-phase I/O for reading/writing a three-dimensional array distributed as(block,block,block) and stored in column-major (Fortran) orderarray may not be located contiguously in the �le. However, we found that thisfeature can be mainly used for arrays distributed in two dimensions (includingthree-dimensional arrays distributed in two dimensions). We were unable to useit in this application, because the arrays are distributed in three dimensions.Therefore, we used our two-phase I/O routines even on the SP.The application also requires six variables (real numbers), with the samevalues across all processors, to be written in each dump and also read duringrestart. We wrote these variables by collecting all of them into a single bu�eron processor 0 and then writing the bu�er to the �le, from processor 0 only,in a single operation. We read the variables by reading all of them in a singleoperation from processor 0 only and then broadcasting them to other processors.4 Details of ExperimentsTo study the I/O behavior of the application, we instrumented the I/O routinesby using the Pablo instrumentation library [2, 19]. We instrumented all open,close, read, write, and seek calls, and also all communication required withinthe I/O routines. We ran the instrumented code on both the SP and Paragonand collected trace �les. The traces were visualized and analyzed by using Up-shot [14], a tool for studying parallel program behavior.The application only performs writes except when restarting from a check-point. To be able to measure the read performance as well, we restarted the codefrom a checkpoint each time. The application is iterative, and a complete runto convergence could take more than 10,000 iterations. To keep the trace �lesmanageable, we ran the code only for a few iterations, as speci�ed below. TheI/O behavior in the remaining iterations is assumed to be similar to that in the�rst few iterations.We considered two sizes of the application:1. Small. For this case, we used a 128 � 128 � 64 mesh on 8 processors. Werestarted the code from a previously created restart �le and ran it for 20



iterations, with all dumps performed every �ve iterations. The data analysisand restart �les were 24Mbytes each, and the visualization �les were 1Mbyteeach.2. Large. For this case, we used a 256�256�128mesh on 64 processors. Sinceonly 120 compute nodes were available on the SP and the application runsonly on a power-of-two number of processors, we could run it on a maximumof 64 processors on the SP. For a fair comparison, we used the same numberon the Paragon. We restarted the code from a previously created restart�le and ran it for �ve iterations, with all dumps performed after the �fthiteration. The data analysis and restart �les were 192Mbytes each, and thevisualization �les were 8Mbytes each.During our experiments, we did not have exclusive use of the system. Toeliminate spurious results due to interference from other users' jobs and system-related activities, we ran the application several times and recorded only the runwhich took the least time.5 Performance ResultsWe �rst discuss the results on the SP, followed by the results on the Paragon,and then compare the results on the two systems.5.1 Results on SPTable 1 shows the total number and total time for each type of I/O operation onthe SP for the small case. We calculated the average time per processor as thetotal time across all processors divided by the number of processors. There were200 open and close calls. The open calls were fairly expensive; close calls were not.There were 1225 seek calls that took a total time of 0.052 sec. In other words, thetime for an individual seek operation was almost negligible. There were a smallnumber of read operations during the restart. Write operations dominated theI/O, as the application is write intensive. Note that the write timings representthe time taken for the write calls to return. Data may or may not have reachedthe disks at the end of each write call, depending on the caching policy used bythe �le system. Communication for I/O (that is, the communication performedwithin our I/O routines) took even more time than the write operations. Thiswas not the case on the Paragon, however, as we discuss in Section 5.2.Table 2 shows the distribution of the sizes of individual read and write oper-ations in the small case. Most of the reads and writes were large, since we usedtwo-phase I/O. The few small requests were due to the reading and writing ofsix variables at the beginning of �les. As explained in Section 3.3, these variableswere read/written in a single operation by processor 0 only. The aggregate readbandwidth across all processors, computed as the total data read by all proces-sors divided by the average read time per processor, was 48Mbytes/sec. Theaggregate write bandwidth, computed similarly, was 31.6Mbytes/sec. We guess



Table 1. I/O operations on the SP for the small case|128 � 128 � 64 mesh on 8processors, 20 iterations Total Count Total Time (sec.) Average TimeOperation (all procs.) (all procs.) (sec.) (per proc.)Open 200 31.35 3.919Close 200 1.693 0.217Read 49 4.001 0.500Write 536 52.67 6.584Seek 1225 0.052 0.006Communication 5608 83.39 10.42(for I/O)Table 2. Details of read and write operations on the SP for the small caseSize Distribution Total Data AggregateOperation 24 B 128KB 512KB Transferred (MB) BW (MB/sec.)Read 1 0 48 � 24 48.00Write 24 128 384 � 208 31.59that the �le system may be using a read-modify-write algorithm to implementwrite operations, resulting in the lower write bandwidth.Tables 3 and 4 show the results for the large case on the SP. The overalltrend in the results was similar to that in the small case. Open operations wereagain very expensive. Close operations took a small amount of time, and seekoperations took negligible time. The most expensive operations were communi-cation for I/O and write. The sizes of individual read and write operations werethe same as in the small case: although the mesh size was eight times larger, thenumber of processors was also eight times larger. The aggregate read bandwidth(33.9Mbytes/sec.) and the aggregate write bandwidth (17.4Mbytes/sec.) wereboth lower than in the small case. The lower I/O bandwidth may be because, inthe large case, the ratio of compute nodes to I/O server nodes was 8 : 1, whereas,in the small case, the ratio was 1 : 1.5.2 Results on ParagonTables 5 and 6 show the results for the small case on the Paragon. The countsand sizes of I/O operations were the same as on the SP. Opens were very ex-pensive; close and seek operations were inexpensive. Communication for I/Otook less time than write operations, contrary to that on the SP. The aggregateread bandwidth was 28.6Mbytes/sec., and the aggregate write bandwidth was17.1Mbytes/sec. As on the SP, the write bandwidth was lower than the readbandwidth.



Table 3. I/O operations on the SP for the large case|256 � 256 � 128 mesh on 64processors, 5 iterations Total Count Total Time (sec.) Average TimeOperation (all procs.) (all procs.) (sec.) (per proc.)Open 448 358.5 5.601Close 448 26.96 0.421Read 385 362.5 5.664Write 1030 1533 23.95Seek 3235 0.138 0.002Communication 109888 2142 33.47(for I/O)Table 4. Details of read and write operations on the SP for the large caseSize Distribution Total Data AggregateOperation 24B 128KB 512KB Transferred (MB) BW (MB/sec.)Read 1 0 384 � 192 33.90Write 6 256 768 � 416 17.37Table 5. I/O operations on the Paragon for the small caseTotal Count Total Time (sec.) Average TimeOperation (all procs.) (all procs.) (sec.) (per proc.)Open 200 90.37 11.29Close 200 7.586 0.948Read 49 6.712 0.839Write 536 97.16 12.15Seek 1225 6.938 0.867Communication 5608 70.17 8.771(for I/O)Table 6. Details of read and write operations on the Paragon for the small caseSize Distribution Total Data AggregateOperation 24B 128KB 512KB Transferred (MB) BW (MB/sec.)Read 1 0 48 � 24 28.61Write 24 128 384 � 208 17.12



Tables 7 and 8 show the results for the large case on the Paragon. The overalltrend in the results was the same as in the small case. Opens were again veryexpensive. The aggregate read bandwidth (33.6Mbytes/sec.) and the aggregatewrite bandwidth (18.6Mbytes/sec.) were higher than in the small case, contraryto that on the SP. The reason may be that the Paragon had more I/O nodes(16) to service requests from 64 compute nodes.Table 7. I/O operations on the Paragon for the large caseTotal Count Total Time (sec.) Average TimeOperation (all procs.) (all procs.) (sec.) (per proc.)Open 448 402.5 6.289Close 448 36.68 0.573Read 385 365.7 5.714Write 1030 1429 22.33Seek 3235 68.97 1.078Communication 109888 1020 15.94(for I/O)Table 8. Details of read and write operations on the Paragon for the large caseSize Distribution Total Data AggregateOperation 24 B 128KB 512KB Transferred (MB) BW (MB/sec.)Read 1 0 384 � 192 33.60Write 6 256 768 � 416 18.635.3 Comparison of SP and Paragon ResultsIn the small case, all I/O operations (open, close, read, write, and seek) weremuch slower on the Paragon. The aggregate read and write bandwidths on theParagon were 60% and 55% of the bandwidths on the SP, respectively. However,the communication required within the I/O routines was faster on the Paragon.In the large case, open, close, and read operations took only slightly longeron the Paragon. Seeks took signi�cantly longer on the Paragon. On the otherhand, writes were slightly faster, and communication for I/O was twice faster,on the Paragon.On both machines, the time for opening common �les from all processorswas very high in both the small and large cases. We do not know the reason for



the high open time, since it is related to the underlying implementation of thePIOFS and PFS �le systems. On the SP, the read and write bandwidths obtainedwere higher in the small case, whereas, on the Paragon, they were higher in thelarge case, possibly because there were 16 I/O nodes on the Paragon versus only8 on the SP.6 ConclusionsWe have presented the results of an experimental evaluation of the parallel I/Osystems of the IBM SP and Intel Paragon using a production parallel application.We found that the relative performance of the two systems depends on theproblem size. For the small case, all I/O operations were much faster on the SP.For the large case, open, close, and read operations were only slightly faster,and seeks were considerably faster, on the SP. Writes, however, were slightlyfaster on the Paragon. In both cases, communication for I/O was faster on theParagon.We note that the results in this paper are speci�c to the I/O access pat-tern of this application and should not be interpreted as a general performancecomparison of the two systems. For some other access patterns, the results maybe di�erent. We also note that the results are for the particular hardware andsoftware con�gurations speci�ed in Section 3.1.In all our experiments on both systems, we found that the time for openingcommon �les from all processors was very high. Therefore, we recommend thatparallel-�le-system designers must also aim to reduce �le-open time, in additionto reducing read and write times.AcknowledgmentsWe thank Andrea Malagoli for giving us the source code of the application andRuth Aydt for helping us understand how to use Pablo.References1. A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth,J. Saltz, and A. Sussman. Tuning the Performance of I/O Intensive Parallel Ap-plications. In Proceedings of Fourth Workshop on Input/Output in Parallel andDistributed Systems, pages 15{27, May 1996.2. R. Aydt. A User's Guide to Pablo I/O Instrumentation. Technical report, Dept.of Computer Science, University of Illinois at Urbana-Champaign, December 1994.3. S. Baylor and C. Wu. Parallel I/O Workload Characteristics Using Vesta. InR. Jain, J. Werth, and J. Browne, editors, Input/Output in Parallel and DistributedComputer Systems, chapter 7, pages 167{185. Kluwer Academic Publishers, 1996.4. R. Bordawekar, A. Choudhary, and J. del Rosario. An Experimental PerformanceEvaluation of Touchstone Delta Concurrent File System. In Proceedings of the 7thACM International Conference on Supercomputing, pages 367{376, July 1993.



5. D. Bradley and D. Reed. Performance of the Intel iPSC/2 Input/Output System.In Fourth Conference on Hypercube Concurrent Computers and Applications, pages141{144, 1989.6. P. Colella and P. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics, 54(1):174{201, April1984.7. P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output Characteristics ofScalable Parallel Applications. In Proceedings of Supercomputing '95, December1995.8. J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via aTwo-Phase Runtime Access Strategy. In Proceedings of the Workshop on I/O inParallel Computer Systems at IPPS '93, pages 56{70, April 1993.9. J. del Rosario and A. Choudhary. High Performance I/O for Parallel Computers:Problems and Prospects. IEEE Computer, pages 59{68, March 1994.10. D. Feitelson, P. Corbett, and J. Prost. Performance of the Vesta Parallel FileSystem. In Proceedings of the Ninth International Parallel Processing Symposium,pages 150{158, April 1995.11. J. French, T. Pratt, and M. Das. Performance Measurement of the ConcurrentFile System of the Intel iPSC/2 Hypercube. Journal of Parallel and DistributedComputing, 17(1{2):115{121, January and February 1993.12. N. Galbreath, W. Gropp, and D. Levine. Applications-Driven Parallel I/O. InProceedings of Supercomputing '93, pages 462{471, November 1993.13. W. Gropp and B. Smith. Chameleon Parallel Programming Tools User's Man-ual. Technical Report ANL{93/23, Mathematics and Computer Science Division,Argonne National Laboratory, March 1993.14. V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Upshot. Tech-nical Report ANL{91/15, Mathematics and Computer Science Division, ArgonneNational Laboratory, August 1991.15. T. Kwan and D. Reed. Performance of the CM-5 Scalable File System. In Proceed-ings of the 8th ACM International Conference on Supercomputing, pages 156{165,July 1994.16. N. Nieuwejaar and D. Kotz. Performance of the Galley Parallel File System. InProceedings of Fourth Workshop on Input/Output in Parallel and Distributed Sys-tems, pages 83{94, May 1996.17. N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File-AccessCharacteristics of Parallel Scienti�c Workloads. Technical Report PCS{TR95{263,Dept. of Computer Science, Dartmouth College, August 1995.18. B. Nitzberg. Performance of the iPSC/860 Concurrent File System. TechnicalReport RND-92-020, NAS Systems Division, NASA Ames, December 1992.19. D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L. Tavera. Scal-able Performance Analysis: The Pablo Performance Analysis Environment. InProceedings of the Scalable Parallel Libraries Conference, pages 104{113, October1993.20. R. Thakur, E. Lusk, and W. Gropp. I/O Characterization of a Portable Astro-physics Application on the IBM SP and Intel Paragon. Technical Report MCS{P534{0895, Mathematics and Computer Science Division, Argonne National Lab-oratory, Revised October 1995.This article was processed using the LaTEX macro package with LLNCS style


