
Hierarchical Approaches to Automatic Di�erentiation�Christian H. Bischofy Mohammad R. HaghighatzPreprint ANL/MCS-P571-0396
AbstractA mathematical function, speci�ed by a computer program, can be di�erentiatede�ciently through the exploitation of its program structure. The important propertiesof a program for an e�cient derivative code are the asymmetries between the numberof inputs and outputs of program components at various levels of abstraction and themathematical complexity of the involved operators. Automatic generation of e�cientderivative codes thus requires analysis of programs for detection of such propertiesand systematic methods for their exploitation in composing the derivative codes. Wesuggest a hierarchical approach based on a partitioning of the computational or programgraph as a means to deduce workable solutions to this hard problem. Each partitioncorresponds to a localized scope for derivative computation, and hierarchical partitionsprovide a mechanism for exploiting program structure at various levels. As a particularexample, we discuss dynamic programmingapproaches for �nding good one-dimensionalpartitions and generalizations to arbitrary directed acyclic graphs that, by recyclingsubstructure information, allow one to determine the optimal elimination ordering fora graph with n nodes with complexityO(2n), as compared with the O(n!) complexity ofa naive search. Lastly, we give a concrete example illustrating the hierarchical approachon the driven cavity problem from the MINPACK-2 optimization test set collection.1 IntroductionTraditionally, automatic di�erentiation of computer programs has been strongly in
uencedby the view of the program as a computational graph or Kantorovich graph (see, forexample, [11, 14, 16, 20]). An example of a computer program and its correspondingcomputational graph is shown in Figure 1. Note that the computational graph representsthe program only when the if-branch evaluates to false, as is the case if we instantiate x1and x2 to 1 and 1.5, respectively. Further, note that each node corresponds to a uniquevalue vi, rather than a storage location and that loops were unrolled. Given the graph, wecan then evaluate the program in a data-
ow fashion. The values thus computed are shownin the table on the right side of Figure 1, with vi denoting the value computed at node i.Since the 
oating-point operations supported by traditional programming languages suchas Fortran 77, C, and Pascal are at the scalar level, the elementary operations represented�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D and by theNational Science Foundation, through the Center for Research on Parallel Computation, under CooperativeAgreement No. CCR-9120008.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave.,Argonne, IL 60439, bischof@mcs.anl.gov.zMicrocomputer Research Labs, Intel Corporation, RN6-18, 2200 Mission College Blvd., Santa Clara,CA 95052, mhaghigh@gomez.sc.intel.com. This work was performed while the author was a postdoctoralassociate at the Mathematics and Computer Science Division of Argonne National Laboratory.1



2 Bischof and Haghighatif ((x1 - 2) > 0) thena = x1elsea = 2*x1end ifb = 1for i = 1:2 dob = b + sqrt(b)*aend fory1 = b/x2y2 = a*x2 x1 = 1x2 = 1:5
1211

10

9

8

7

6

5

4

3

211

*

+

*

+

/ *

*2

y2y1

x1 x2

sqrt

sqrt

i vi1 1.002 1.503 2.004 1.005 1.006 2.007 3.008 1.739 3.4610 6.4611 4.3112 3.00Fig. 1. A computer program and its representation as a computational graphin such computational graphs are typically scalar, with each node having at most two inputarcs.From this graph, we can derive the linearized graph, where we label the arcscorresponding to an elementary operation � having inputs u and v with the elementaryderivatives @�=@u and @�=@v. The linearized graph induced by the computational graphin Figure 1 is shown on the left side of Figure 2. Since all operations have been linearized,the operands associated with the nodes can be omitted.As described by Griewank and Reese [16], the �nal Jacobian can then be computed bya graph elimination approach. The elimination rule (shown on the right side of Figure 2)involves making the neighbors of an eliminated node a clique, instantiating or augmentingthe weights on the clique arcs by the product of the path through the eliminated node. Theassociativity of the chain rule of di�erential calculus implies that nodes can be eliminated inarbitrary order, and the �nal Jacobian can be represented by the bipartite graph containingonly the input and output variables of the program.The forward mode of automatic di�erentiation generates the linearized graph andeliminates nodes in a fashion that is consistent with the order in which values are computedduring program execution. Hence, there is no need to actually build the computationalgraph. In contrast, the reverse mode of automatic di�erentiation eliminates the nodes bystarting at the output variables of the program, thus requiring storage of the computationalor linearized graph in some form. For example, ADOL-C [15] generates a \tape," encodingthe operands and operations in the order in which they were encountered during a programexecution; postprocessing utilities can then compute various varieties of derivatives o�-line. In contrast, JAKEF [18] stores the linearized graph directly. Note that each of theserepresentations captures only a particular execution path through the program. Once such



Hierarchical Automatic Differentiation 3
2.00

1.50

0.50

2.00
1.00

0.29

2.00

1.73

0.67

-2.87

1

1

1

1

2

a
b

c d

c*a b+d*a

Fig. 2. Linearized graph induced by computation shown in Figure 1 (left) and example of nodeelimination rule for linearized graph (right)a graph representation has been built, however, other elimination orderings are possible,such as the Markowitz rule described in [16].The drawback of this �ne-grained graph view of automatic di�erentiation is that it doesnot scale. Deriving computational graphs where nodes correspond to scalar additions andmultiplications is infeasible for large programs, since such a representation must occupystorage on the order of the number of 
oating-point operations executed in a program.One way to circumvent this di�culty is to increase the granularity of the elementaryoperators in the underlying language. For example, the CODE system [21], as well as theclass de�nitions underlying the weather model described in [24], employs 3-D data structuresas elementary objects. Vectors are employed as base types in [26], and the elementaryobjects are supported by an algebraic manipulation system in [22]. The reduction incomplexity of the computational graph can be dramatic, as illustrated in Figure 3, whichexpresses computation at the matrix and vector levels (the matrixM is considered constantwith respect to di�erentiation). Here, up to O(n2) elementary operations are representedby one node. Note that the elimination rule (Figure 2) still holds, if the multiplication isinterpreted as matrix multiply. For example, if we eliminate the node computing �, weobtain @ b=@ x = 2yxT 2 Rn�n. If we eliminate the node computing b �rst, we obtain@ 
=@ � = 2(Mb)Ty 2 R and @ 
=@ y = 2(Mb)TA 2 R1�n. We note that an approach atthe matrix level was also used in [13] to optimize derivatives in the context of a symbolicmanipulation system.If matrix and vector operations are represented as subroutine calls, the structure shownin Figure 3 would correspond to the highest level of abstraction of the program graph (orabstract syntax tree), which is the data structure that compilers typically use to representand manipulate programs. Recently, automatic di�erentiation has been approached as asource transformation problem in the ADIFOR [4, 5], ADIC [8], AMC [12], and Odyss�ee [25]tools. Instead of interpreting the computational graph on the 
y or constructing it as a



4 Bischof and Haghighat ? ����������
?JJJĴx 2 Rn�1 y 2 Rn�12xT 2 R1�n� = xTx 2 R A := 0BB@ a � � � a... ...a � � � a 1CCA 2 Rn�nb = �y 2 Rn�1y 2 Rn�1
 = bTMb 2 R2(Mb)T 2 R1�nFig. 3. Computational graph employing matrix and vector operations and corresponding\elementary" partial derivativesbyproduct of program execution, these tools generate a new code that, when executed,computes the desired derivatives. As a result, the adjoint codes generated by Odyss�eeor AMC can compute derivatives for all potential paths through the program, not just aparticular path.2 Hierarchical Derivative Approaches, Graph Partitioning, and InterfaceContractionOpportunities for decreasing the complexity of derivative computation arise when thenumber of variables passing through a vertex separator (i.e., a group of vertices whoseremoval from the program graph leads to two disjoint subgraphs) to the computational orprogram graph is smaller than the number of independent or dependent variables to becomputed. Consider Figure 4. If either the forward or the reverse mode is used, nodeelimination order requires 22 multiplications. On the other hand, if we �rst eliminate thenodes above node s to compute @ s=@ (a; b; c), then eliminate the nodes below node s tocompute @ (x; y; z)=@ s, and �nally eliminate s to arrive at @ (a; b; c)=@ (x; y; z), only 17multiplications are required. Iri [20] referred to such a situation as a \vertex cut"; Hovlandet al. [19] called it an \interface contraction."This small example illustrates three important principles.Graph Partitioning: The identi�cation of program sections whose derivatives withrespect to input and output variables should be computed \out of context," thatis, ignoring the surrounding computations.Hierarchical Chain Rule Application: The chain rule is applied at various levels ofabstraction.Interface Contraction: Whenever we can identify a piece of the program whose numberof input arguments is smaller than the number of independent variables for di�eren-tiation, the independent di�erentiation of these program pieces is likely to decreasethe derivative complexity in a global forward-mode approach. The same holds for theoutput variables in a reverse-mode framework.



Hierarchical Automatic Differentiation 5
b c

s

x y z

a

Fig. 4. Example demonstrating the global Inadequacy of either forward or reverse mode
Basic Block

Procedure

Loop Nest

Program

Loop Body

Statement

Expression

Overloading
1) Operator

4) Subroutine

2) ADIFOR/ADIC
Approach 3) Stencil Tiling

Tiling

Fig. 5. Program structure and hierarchical di�erentiation approachesA hierarchical view of a program as well as a visualization of various approaches forcomputing derivatives is shown in Figure 5. We make the following observations:1. The structure of Figure 5 is, for the most part, invisible to programming systemsthat perform automatic di�erentiation by rede�ning the elementary operators. Suchsystems can be viewed as propagating at every step the derivatives of the value of anexpression with respect to the global independent variables (in the forward mode) orthe derivatives of the global dependent variables with respect to the value returnedby an expression (in the reverse mode).



6 Bischof and Haghighat2. Automatic di�erentiation (AD) systems employing compiler infrastructure can gobeyond this myopic view. This ability to rede�ne the scope of di�erentiation is thebiggest advantage of the source transformation approach to AD. For example, theapproach currently employed in ADIFOR and ADIC can be interpreted as a uniformstatement-level partitioning of the program graph. That is, for each assignmentstatement, the derivative of the result with respect to the variables appearing on theright-hand side is computed by using the reverse mode, and then these derivatives arechained together by using the forward mode, ignoring the remainder of the programstructure. Note that, while the reverse mode is the better design choice for computingthe little statement gradients, the use of the forward mode will also have improvedperformance as long as the number of variables on the right-hand side is smaller thanthe number of independent variables to be computed globally.3. Moving up in the program structure, we note that many solution approachesfor partial di�erential equations based on �nite-di�erence approaches employ so-called stencils to update the value at a particular grid point by computing afunction of a limited number of neighbors. For example, the seven-point stencilcomputes the new value of x(i; j; k) from x(i; j; k); x(i� 1; j; k); x(i+ 1; j; k); x(i; j�1; k); x(i; j + 1; k); x(i; j; k � 1), and x(i; j; k + 1). Such a stencil typically is thebody of a multidimensional loop, and it may well be pro�table to declare it asits own di�erentiation partition, perhaps by using statement-level partitioning inthe ADIFOR/ADIC fashion at a lower level. A concrete example of stencil-levelpartitioning is given in the next section.4. Moving up further in the program structure, we observe that subroutine boundariesmay be likely places for interface contraction. For example, in the applicationdescribed in [19], a subroutine that computed a scalar output value from two scalarinput values was called in a loop. By considering this subroutine as its own derivativepartition, computing its associated two-element gradient using ADIFOR, and thenchaining this resulting derivative back into the remainder of the program, the authorsobtained a derivative code whose performance was close to a hand-coded one. Thisapproach is the default used for Jacobian generation in Odyss�ee [10].To reiterate, these examples achieved improvements by de�ning a portion of the program(a \di�erentiation partition"), computing the derivatives of this program fragment in afashion that was oblivious of context, and applying the chain rule at this level of granularity.In the resulting hierarchical program graph, this partitioning approach can be repeated atmany levels of abstraction. To �nd suitable partitions, we need to know the followinginformation.Information bandwidth in and out of a candidate partition: The amount of infor-mation passing in and out of a program fragment determines the cost of integrating thederivatives determined by this program fragment in a forward- or backward-orientedapproach. Data 
ow and dependence analysis techniques, developed in the context ofparallelizing compilers (see, for example, [17, 23]), provide a strong foundation fromwhich such information can be derived.Estimate of complexity of computing the derivatives of a candidate partition:The cost of derivatives of a program fragment depends on many factors, such as� the memory and 
oating-point resources,



Hierarchical Automatic Differentiation 7
[v1,v2,v3]

[v2,v3] [v1,v3] [v1,v2]

[v1] [v3][v2]

done

v1
v2

v3

v3 v1

v2v3v2 v1Fig. 6. Illustration of information reuse in node elimination� the degree of nonlinearity in the computation, and� the degree of derivative sparsity (see, for example, [7, 3]).Data 
ow and dependence analysis tools, static performance analyzers, runtime toolsfor gathering program statistics, and user interaction may all contribute to this phase.While we could conceivably partition a computer program in an arbitrary fashion, webelieve that the program structure shown in Figure 5 provides useful guidance for choosingcandidate partitions and greatly restricts the potential partitions to be considered.3 Generalizations of Dynamic Programming for Determining Accumula-tion OrderingsThe discussion in the preceding section leads, at every level of partitioning, to the followingsubproblem: Given a directed acyclic graph (DAG) G with n nodes vi, say, where thederivatives of each node with respect to any of its predecessors are known, derive the optimalordering for accumulating the derivatives de�ned by this DAG. The total number of di�erentelimination orderings is n! � (n=e)n, the enumeration of which is clearly impractical unlessn is small. However, as illustrated in Figure 3, a hierarchical view of the program may welllead to small graphs.For linear DAGs, dynamic programming [1, pp. 67{69] arrives at an O(n3) algorithm for�nding the minimum-cost node elimination ordering by realizing that the optimal solutionis composed of optimal solutions to subproblems. That is, if we de�ne C(k : j) to be theminimum cost of computing the derivatives associated with the DAG consisting of vk tovj , and bi to be the number of values passed from vi to vi+1 (b0 is the number of inputs tov1), we have C(k : j) = mink<l<j(C(k : l � 1) + C(l+ 1 : j) + 2bkblbj):The O(n3) complexity is achieved by tabulating the solutions in the order of increasingk � j. This approach can be applied to the general case, as illustrated in Figure 6.Given a graph with three nodes, we can eliminate any of them �rst, leading to thethree subproblems shown at the next level. Eliminating the next node leads to threeone-node subproblems, each of which appears twice. If we tabulate in this fashion for nnodes, the number of nodes of the enumeration graph in Figure 6 will adhere to the binomialsequence, resulting in 2n nodes and n2n�1 edges overall. Thus, we can arrive at the optimal



8 Bischof and Haghighatdo i = 1, nydo j = 1, nxk = (i-1)*nx + jpbl = x(k-nx-1)pb = x(k-nx)pbb = x(k-2*nx)pbr = x(k-nx+1)pl = x(k-1)pll = x(k-2)pr = x(k+1)prr = x(k+2)ptl = x(k+nx-1)pt = x(k+nx)ptt = x(k+2*nx)ptr = x(k+nx+1)dpdy = (pt-pb)/(two*hy)dpdx = (pr-pl)/(two*hx)pblap = (pbr-two*pb+pbl)/hx2 + (p-two*pb+pbb)/hy2pllap = (p-two*pl+pll)/hx2 + (ptl-two*pl+pbl)/hy2plap = (pr-two*p+pl)/hx2 + (pt-two*p+pb)/hy2prlap = (prr-two*pr+p)/hx2 + (ptr-two*pr+pbr)/hy2ptlap = (ptr-two*pt+ptl)/hx2 + (ptt-two*pt+p)/hy2fvec(k) = (prlap-two*plap+pllap)/hx2 ++ (ptlap-two*plap+pblap)/hy2 -+ r*(dpdy*(prlap-pllap)/(two*hx)-+ dpdx*(ptlap-pblap)/(two*hy))enddoenddo Fig. 7. Main loop inside of MINPACK-2's driven cavity problemsolution strategy far more rapidly than with the naive approach. For example, for n = 10,n! = 3; 628; 800, whereas 2n = 1; 024.Although a considerable improvement over the naive search, this exponential enumera-tion may still require signi�cant e�ort, especially for large n. Thus, we expect that heuristicswill continue to play an important role. For example, we can reduce the general DAG caseto the linear DAG case by ordering DAG nodes in a topological fashion and considering allnodes at a given level as a \supernode." Since nodes in a supernode are independent, theycan actually be eliminated in parallel, an approach that was explored at the elementaryoperation level in [9].4 A Case StudyWe now provide a concrete example illustrating that hierarchical approaches to derivativegeneration can do considerably better than either of the \monolithic" approaches largelyunderlying current AD tools. To this end, we employ the driven cavity problem in theMINPACK-2 test set collection [2]. Its main computational kernel (ignoring boundaryconditions) is the loop shown in Figure 7, which computes an n = nx * ny vector fvecfrom an n-vector x.Let us assume that we are interested in computing D := d fvec=d x � S, where S is ann� p matrix with p � n matrix. If we apply a mainly forward-mode tool such as ADIFOR



Hierarchical Automatic Differentiation 92.0 [5] to compute D, the derivative cost will be linear in p. Applying a reverse-mode toolsuch as Odyss�ee [25] overall does not make sense, since its complexity would be linear inn � p.To do better, we realize that the loop body can be viewed as a mapping of 13 distinctelements of the array x to fvec(k). Thus, as long as p < 13, we have an instance of interfacecontraction. We can isolate the stencil update (the lines of code from the de�nition of dpdythrough the update of fvec(k)) in a subroutine loopbody, say, and apply an automaticdi�erentiation tool to generate a code to compute the derivatives g := d fvec(k)=d p�, wherep� is shorthand for \all variables starting with p."If we use ADIFOR to generate code for the computation of g, we obtain the derivativecode shown in Figure 8. To �t the code on one page, we have taken some liberty withalignment of Fortran continuation and comment characters. Since neither of the values ofthe array x is overwritten inside the loop, we moved the initialization of the seed matrices forthe computation of the 13-element gradient outside of the loop. The variable p correspondsto the number of columns of the global seed matrix S. The number 13 in the call tog loopbody is the number of derivatives we wish to compute in this call. For more detailson the use of ADIFOR-generated code, see [6].On the other hand, the code inside loopbody is a perfect candidate for the use of thereverse mode. We are interested only in the derivatives with respect to one dependentvariable, and no loops or branches complicate the generation of the reverse mode. If weemploy Odyss�ee to generate code for g, we obtain the code shown in Figure 9. Notethat while g loopbody and loopbodyad require di�erent initializations and use di�erentapproaches to computing the gradient g, the chain rule \glue code" remains unchanged.Executing the code generated by a global application of ADIFOR 2.0, as well as thecodes shown in Figure 8 and 9, on a Sun SPARCstation iPX, with nx = ny = 120 and pranging from 5 to 60, we obtain the results shown in Figure 10.The behavior of the global ADIFOR and the ADIFOR version with interface contractionis as expected, with a crossover around p = 15, close to the number of variables (13) involvedin the loopbody interface. For p < 13, our approach actually leads to an interface expansionand performs worse than the global ADIFOR approach.The performance of the version that uses the Odyss�ee-generated reverse mode tocompute the small gradient g is even better. Because of the simple structure of theunderlying code, the reverse mode can be implemented without any overhead for storing(or recomputing) values that are overwritten, or directions of branches taken. Thus, theresulting code outperforms the ADIFOR approach for computing the small gradient gby a considerable margin. Somewhat surprising, the \interface contraction with Odyss�eeapproach" outperforms the global ADIFOR approach even for p = 5, illustrating thepotential power of hierarchical approaches coupled with context-sensitive di�erentiationstrategies.5 ConclusionsThis paper explored hierarchical approaches to automatic di�erentiation. We showed howinterface asymmetries between the number of derivatives to be computed and the amountof information 
owing in or out of a program segment can be used pro�tably to decreasederivative complexity. The resulting approach can be viewed as a hierarchical partitioning ofthe program graph, with individual partitions corresponding to program segments for whichderivatives are computed ignoring their computational context and then spliced into the



10 Bischof and Haghighat* Initialization of ``subroutine seed matrices''* NOT SHOWN HERE TO SAVE SPACE: The initialization of* lg_pbl(1:13), lg_pb(1:13), lg_pbb(1:13), lg_pbr(1:13), lg_pl(1:13),* lg_pll(1:13), lg_p(1:13), lg_pr(1:13), lg_prr(1:13), lg_ptl(1:13),* lg_pt(1:13), lg_ptt(1:13), and lg_ptr(1:13) to zerolg_pbl(1) = 1.0d0lg_pb(2) = 1.0d0lg_pbb(3) = 1.0d0lg_pbr(4) = 1.0d0lg_pl(5) = 1.0d0lg_pll(6) = 1.0d0lg_p(7) = 1.0d0lg_pr(8) = 1.0d0lg_prr(9) = 1.0d0lg_ptl(10) = 1.0d0lg_pt(11) = 1.0d0lg_ptt(12) = 1.0d0lg_ptr(13) = 1.0d0do 99998 i = 3, ny - 2do 99999 j = 3, nx - 2k = (i - 1) * nx + j* Computation of gradient defined by loop bodycall g_loopbody(13,+ x(k - nx - 1), lg_pbl, x(k - nx), lg_pb,+ x(k - 2 * nx), lg_pbb, x(k - nx + 1), lg_pbr,+ x(k - 1), lg_pl, x(k - 2), lg_pll,+ x(k), lg_p, x(k + 1), lg_pr,+ x(k + 2), lg_prr, x(k + nx - 1), lg_ptl,+ x(k + nx), lg_pt, x(k + 2 * nx), lg_ptt,+ x(k + nx + 1), lg_ptr, fvec(k), lg_fval,+ hx, hy, r)* Derivative chain rule to update derivatives of fvec(k) using* gradient of loop body and derivatives of variables entering* loop body.do ii = 1, pg_fvec(ii,k) =+ lg_fval(1) * g_x(ii,k-nx-1) + lg_fval(2) * g_x(ii, k-nx) ++ lg_fval(3) * g_x(ii, k-2*nx) + lg_fval(4) * g_x(ii, k-nx+1) ++ lg_fval(5) * g_x(ii, k - 1) + lg_fval(6) * g_x(ii, k-2) ++ lg_fval(7) * g_x(ii,k) + lg_fval(8) * g_x(ii, k+1) ++ lg_fval(9) * g_x(ii, k + 2) + lg_fval(10) * g_x(ii, k+nx-1) ++ lg_fval(11) * g_x(ii, k + nx)+ lg_fval(12) * g_x(ii, k+2*nx) ++ lg_fval(13) * g_x(ii, k + nx + 1)enddo99999 continue99998 continueFig. 8. Sample derivative code employing ADIFOR-generated code to compute the gradientassociated with the loop body



Hierarchical Automatic Differentiation 11do 99998 i = 3, ny - 2do 99999 j = 3, nx - 2k = (i - 1) * nx + jfvalad = 1.0d0do ii = 1, 13lg_fval(ii) = 0.0d0enddocall loopbodyad(+ x(k - nx - 1), x(k - nx), x(k - 2 * nx),+ x(k - nx + 1), x(k - 1), x(k - 2),+ x(k), x(k + 1), x(k + 2), x(k + nx - 1),+ x(k + nx), x(k + 2 * nx), x(k + nx + 1),+ fvec(k), hx, hy, r, lg_fval(1), lg_fval(2),+ lg_fval(3), lg_fval(4), lg_fval(5), lg_fval(6),+ lg_fval(7), lg_fval(8), lg_fval(9), lg_fval(10),+ lg_fval(11), lg_fval(12), lg_fval(13), fvalad)* Derivative chain rule to update derivatives of fvec(k) using* gradient of loop body and derivatives of variables entering* loop body.do ii = 1, pg_fvec(ii,k) =+ lg_fval(1) * g_x(ii,k-nx-1) + lg_fval(2) * g_x(ii, k-nx) ++ lg_fval(3) * g_x(ii, k-2*nx) + lg_fval(4) * g_x(ii, k-nx+1) ++ lg_fval(5) * g_x(ii, k - 1) + lg_fval(6) * g_x(ii, k-2) ++ lg_fval(7) * g_x(ii,k) + lg_fval(8) * g_x(ii, k+1) ++ lg_fval(9) * g_x(ii, k + 2) + lg_fval(10) * g_x(ii, k+nx-1) ++ lg_fval(11) * g_x(ii, k + nx)+ lg_fval(12) * g_x(ii, k+2*nx) ++ lg_fval(13) * g_x(ii, k + nx + 1)enddo99999 continue99998 continueFig. 9. Sample derivative code employing Odyss�ee-generated code to compute the gradientassociated with the loop bodysurrounding computation by an application of the chain rule at a higher level of granularity.We suggested approaches for choosing such partitions in computational graphs, and wegave a concrete example illustrating a partitioning at the loop-body level, using di�erentapproaches for generating the loop-body derivatives.Work is under way to provide a largely language-independent intermediate representa-tion of program fragments that would facilitate easy experimentation with di�erent parti-tion strategies and context-sensitivity di�erentiation approaches, thus allowing the explo-ration of the combinatorial richness created by the associativity of the derivative chain rule.We believe that, because of the simplicity of the current approaches, the resulting algorith-mic improvements will result in order of magnitude saving even for moderate di�erentiationproblems.AcknowledgmentsWe thank Alan Carle and Lucas Roh for illuminating discussions on the subject, and NicoleRostaing-Schmidt for processing the example code with Odyss�ee.



12 Bischof and Haghighat
0 10 20 30 40 50 60

0

10

20

30

40

50

60

Number of Global Derivatives

R
at

io
 D

er
iv

at
iv

e 
to

 F
un

ct
io

n 
T

im
e

Global ADIFOR

Contraction w/ ADIFOR

Contraction w/ ODYSSEEFig. 10. Result of Application of Interface Contraction to Driven Cavity ProblemReferences[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,Addison-Wesley, Reading, Mass., 1974.[2] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue, The MINPACK-2 test problemcollection, Tech. Rep. ANL/MCS-TM-150, Rev. 1, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1992.[3] C. Bischof, A. Bouaricha, P. Khademi, and J. Mor�e, Computing gradients in large-scaleoptimization using automatic di�erentiation, Preprint MCS-P488-0195, Mathematics andComputer Science Division, Argonne National Laboratory, 1995.[4] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generating derivativecodes from Fortran programs, Scienti�c Programming, 1 (1992), pp. 11{29.[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system for the automaticdi�erentiation of Fortran 77 programs, 1994. Preprint MCS-P481-1194, Mathematics andComputer Science Division, Argonne National Laboratory, and CRPC-TR94491, Center forResearch on Parallel Computation, Rice University. To appear in IEEE Computational Science& Engineering.[6] C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland, ADIFOR 2.0 user's guide,Technical Memorandum ANL/MCS-TM-192, Mathematics and Computer Science Division,Argonne National Laboratory, 1994. CRPC Technical Report CRPC-95516-S.[7] C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, Computation of gradients and Jacobiansby transparent exploitation of sparsity in automatic di�erentiation, 1995. Preprint MCS-P519-0595, Mathematics and Computer Science Division, Argonne National Laboratory, andCRPC-TR95583, Center for Research on Parallel Computation, Rice University. Accepted forpublication in Optimization Methods and Software.[8] C. Bischof, L. Roh, and A. Mauer, unpublished information, Argonne National Laboratory,1996.



Hierarchical Automatic Differentiation 13[9] C. H. Bischof, Issues in parallel automatic di�erentiation, in Automatic Di�erentiation ofAlgorithms, A. Griewank and G. Corliss, eds., Philadelphia, PA, 1991, SIAM, pp. 100{113.[10] B. Mohammadi, J.-M. Mal�e, and N. Rostaing-Schmidt,Automatic Di�erentiation in Direct andReverse Modes: Application to Optimum Shape Design in Fluid Mechanics, in ComputationalDi�erentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, andA. Griewank, eds., SIAM, Philadelphia, Penn., 1996. To appear.[11] L. C. W. Dixon, Use of automatic di�erentiation for calculating Hessians and Newtonsteps, in Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application,A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia, Penn., 1991, pp. 114 { 125.[12] R. Giering, Adjoint model compiler, manual version 0.2, AMC version 2.04, tech. rep., Max-Planck Institut f�ur Meteorologie, August 1992.[13] V. V. Goldman, J. Molenkamp, and J. A. van Hulzen, E�cient numerical program generationand computer algebra environments, in Automatic Di�erentiation of Algorithms: Theory,Implementation, and Application, A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia,1991, pp. 74{83.[14] A. Griewank, On automatic di�erentiation, in Mathematical Programming: Recent Develop-ments and Applications, Amsterdam, 1989, Kluwer Academic Publishers, pp. 83{108.[15] A. Griewank, D. Juedes, and J. Srinivas. ADOL-C, a package for the automatic di�erentiationof algorithms written in C/C++, Preprint MCS-P180-1190, Mathematics and ComputerScience Division, Argonne National Laboratory, 1990.[16] A. Griewank and S. Reese, On the calculation of Jacobian matrices by the Markowitzrule, in Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application,A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia, 1991, pp. 126{135.[17] M. R. Haghighat, Symbolic Analysis for Parallelizing Compilers, Kluwer Academic Publishers,Dordrecht, 1995.[18] K. E. Hillstrom, JAKEF - a portable symbolic di�erentiator of functions given by algorithms,Technical Report ANL/82{48, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1982.[19] P. Hovland, C. Bischof, D. Spiegelman, and M. Casella, E�cient derivative codes throughautomatic di�erentiation and interface contraction: An application in biostatistics, PreprintMCS-P491-0195, Mathematics and Computer Science Division, Argonne National Laboratory,1995. To appear in SIAM J. Scienti�c Computing.[20] M. Iri, History of automatic di�erentiation and rounding estimation, in Automatic Di�erentia-tion of Algorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss,eds., SIAM, Philadelphia, Penn., 1991, pp. 1{16.[21] A. John and J. C. Browne, A constraint-based parallel programming language, Tech. Rep.TR95-42, Department of Computer Science, University of Texas at Austin, 1995.[22] M. Monagan, An implementation of automatic di�erentiation in Maple, 1995. PersonalCommunication. Software available in the MAPLE Share library.[23] C. Polychronopoulos, Parallel Programming and Compilers, Kluwer Academic Publishers,Boston, Massachusetts, 1988.[24] A. Rhodin, U. Callies, and D. Eppel, GESIMA 90 { An object-oriented approach to program amesoscale model and its adjoint, 1994. Talk presented at the General Assembly of the EuropeanGeophysical Society at Grenoble, April 25-29.[25] N. Rostaing, S. Dalmas, and A. Galligo, Automatic di�erentiation in Odyssee, Tellus, 45a(1993), pp. 558{568.[26] D. Shiriaev, Fast automatic di�erentiation for vector processors and reduction of the spatialcomplexity in a source translation environment, PhD thesis, Department of Mathematics,Universit�at Karlsruhe, 1993.


