Preprint ANL/MCS-P571-0396

Hierarchical Approaches to Automatic Differentiation”

Christian H. Bischof? Mohammad R. Haghighat?

Abstract

A mathematical function, specified by a computer program, can be differentiated
efficiently through the exploitation of its program structure. The important properties
of a program for an efficient derivative code are the asymmetries between the number
of inputs and outputs of program components at various levels of abstraction and the
mathematical complexity of the involved operators. Automatic generation of efficient
derivative codes thus requires analysis of programs for detection of such properties
and systematic methods for their exploitation in composing the derivative codes. We
suggest a hierarchical approach based on a partitioning of the computational or program
graph as a means to deduce workable solutions to this hard problem. Each partition
corresponds to a localized scope for derivative computation, and hierarchical partitions
provide a mechanism for exploiting program structure at various levels. As a particular
example, we discuss dynamic programming approaches for finding good one-dimensional
partitions and generalizations to arbitrary directed acyclic graphs that, by recycling
substructure information, allow one to determine the optimal elimination ordering for
a graph with n nodes with complexity O(2"), as compared with the O(n!) complexity of
a naive search. Lastly, we give a concrete example illustrating the hierarchical approach
on the driven cavity problem from the MINPACK-2 optimization test set collection.

1 Introduction

Traditionally, automatic differentiation of computer programs has been strongly influenced
by the view of the program as a computational graph or Kantorovich graph (see, for
example, [11, 14, 16, 20]). An example of a computer program and its corresponding
computational graph is shown in Figure 1. Note that the computational graph represents
the program only when the if-branch evaluates to false, as is the case if we instantiate x4
and x5 to 1 and 1.5, respectively. Further, note that each node corresponds to a unique
value v;, rather than a storage location and that loops were unrolled. Given the graph, we
can then evaluate the program in a data-flow fashion. The values thus computed are shown
in the table on the right side of Figure 1, with v; denoting the value computed at node 1.
Since the floating-point operations supported by traditional programming languages such
as Fortran 77, C, and Pascal are at the scalar level, the elementary operations represented

*This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-FEng-38, by the National Aerospace Agency under Purchase Order L25935D and by the
National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative
Agreement No. CCR-9120008.

tMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave.,
Argonne, IL 60439, bischof@mcs.anl. gov.

‘Microcomputer Research Labs, Intel Corporation, RN6-18, 2200 Mission College Blvd., Santa Clara,
CA 95052, mhaghigh@gomez.sc.intel.com. This work was performed while the author was a postdoctoral
associate at the Mathematics and Computer Science Division of Argonne National Laboratory.

1

2 BiscHOF AND HAGHIGHAT

if ((x1-2) > 0) then

a=xl 1] 1.00
else 2 [1.50
3 | 2.00

a = 2*x1 r =1 T 00
end 1if T 1.5 5 | 1.00
b=1 6 | 2.00
fori = 1:2do 7 | 3.00
b = b + sqrt(b)*a 81173
end for 13 212
yl = biXQ 11 | 4.31
y2 = a*x2 12 | 3.00

11 @ 12
y2

yl

Fic. 1. A computer program and its representation as a computational graph

in such computational graphs are typically scalar, with each node having at most two input
arcs.

From this graph, we can derive the linearized graph, where we label the arcs
corresponding to an elementary operation ® having inputs v and » with the elementary
derivatives 0®/0u and d®/dv. The linearized graph induced by the computational graph
in Figure 1 is shown on the left side of Figure 2. Since all operations have been linearized,
the operands associated with the nodes can be omitted.

As described by Griewank and Reese [16], the final Jacobian can then be computed by
a graph elimination approach. The elimination rule (shown on the right side of Figure 2)
involves making the neighbors of an eliminated node a clique, instantiating or augmenting
the weights on the clique arcs by the product of the path through the eliminated node. The
associativity of the chain rule of differential calculus implies that nodes can be eliminated in
arbitrary order, and the final Jacobian can be represented by the bipartite graph containing
only the input and output variables of the program.

The forward mode of automatic differentiation generates the linearized graph and
eliminates nodes in a fashion that is consistent with the order in which values are computed
during program execution. Hence, there is no need to actually build the computational
graph. In contrast, the reverse mode of automatic differentiation eliminates the nodes by
starting at the output variables of the program, thus requiring storage of the computational
or linearized graph in some form. For example, ADOL-C [15] generates a “tape,” encoding
the operands and operations in the order in which they were encountered during a program
execution; postprocessing utilities can then compute various varieties of derivatives off-
line. In contrast, JAKEF [18] stores the linearized graph directly. Note that each of these
representations captures only a particular execution path through the program. Once such

HiEraRcHICAL AUTOMATIC DIFFERENTIATION 3

Q\C
2.00 07?@ 33 %id*a
: :

Fic. 2. Linearized graph induced by computation shown in Figure 1 (left) and example of node

elimination rule for linearized graph (right)

a graph representation has been built, however, other elimination orderings are possible,
such as the Markowitz rule described in [16].

The drawback of this fine-grained graph view of automatic differentiation is that it does
not scale. Deriving computational graphs where nodes correspond to scalar additions and
multiplications is infeasible for large programs, since such a representation must occupy
storage on the order of the number of floating-point operations executed in a program.

One way to circumvent this difficulty is to increase the granularity of the elementary
operators in the underlying language. For example, the CODE system [21], as well as the
class definitions underlying the weather model described in [24], employs 3-D data structures
as elementary objects. Vectors are employed as base types in [26], and the elementary
objects are supported by an algebraic manipulation system in [22]. The reduction in
complexity of the computational graph can be dramatic, as illustrated in Figure 3, which
expresses computation at the matrix and vector levels (the matrix M is considered constant
with respect to differentiation). Here, up to O(n?) elementary operations are represented
by one node. Note that the elimination rule (Figure 2) still holds, if the multiplication is
interpreted as matrix multiply. For example, if we eliminate the node computing a, we
obtain db/dx = 2yzT € R™™. If we eliminate the node computing b first, we obtain
dv/0a =2(Mb)Ty € R and 07/dy = 2(Mb)TA € R™™. We note that an approach at
the matrix level was also used in [13] to optimize derivatives in the context of a symbolic
manipulation system.

If matrix and vector operations are represented as subroutine calls, the structure shown
in Figure 3 would correspond to the highest level of abstraction of the program graph (or
abstract syntax tree), which is the data structure that compilers typically use to represent
and manipulate programs. Recently, automatic differentiation has been approached as a
source transformation problem in the ADIFOR [4, 5], ADIC [8], AMC [12], and Odyssée [25]
tools. Instead of interpreting the computational graph on the fly or constructing it as a

4 BiscHOF AND HAGHIGHAT

R

2$T c R1><n

T a o .. a

a=z'z€R A= . . c R*"

y E Rnx\ a o .. a
b = ay c Rnxl

20Mb)T e RV
v=b"MbcR
Fia. 3. Computational graph employing matriz and vector operations and corresponding

“elementary” partial derivatives

byproduct of program execution, these tools generate a new code that, when executed,
computes the desired derivatives. As a result, the adjoint codes generated by Odyssée
or AMC can compute derivatives for all potential paths through the program, not just a
particular path.

2 Hierarchical Derivative Approaches, Graph Partitioning, and Interface
Contraction

Opportunities for decreasing the complexity of derivative computation arise when the
number of variables passing through a vertex separator (i.e., a group of vertices whose
removal from the program graph leads to two disjoint subgraphs) to the computational or
program graph is smaller than the number of independent or dependent variables to be
computed. Consider Figure 4. If either the forward or the reverse mode is used, node
elimination order requires 22 multiplications. On the other hand, if we first eliminate the
nodes above node s to compute ds/d(a,b,c), then eliminate the nodes below node s to
compute 0 (z,y,2)/ds, and finally eliminate s to arrive at d(a,b,c)/d(x,y,z), only 17
multiplications are required. Iri [20] referred to such a situation as a “vertex cut”; Hovland
et al. [19] called it an “interface contraction.”
This small example illustrates three important principles.

Graph Partitioning: The identification of program sections whose derivatives with

respect to input and output variables should be computed “out of context,” that

is, ignoring the surrounding computations.

Hierarchical Chain Rule Application: The chain rule is applied at various levels of
abstraction.

Interface Contraction: Whenever we can identify a piece of the program whose number
of input arguments is smaller than the number of independent variables for differen-
tiation, the independent differentiation of these program pieces is likely to decrease
the derivative complexity in a global forward-mode approach. The same holds for the
output variables in a reverse-mode framework.

HiEraRcHICAL AUTOMATIC DIFFERENTIATION 5

AL

4) Subroutine
Tiling

Fia. 5. Program structure and hierarchical differentiation approaches

A hierarchical view of a program as well as a visualization of various approaches for
computing derivatives is shown in Figure 5. We make the following observations:

1. The structure of Figure 5 is, for the most part, invisible to programming systems
that perform automatic differentiation by redefining the elementary operators. Such
systems can be viewed as propagating at every step the derivatives of the value of an
expression with respect to the global independent variables (in the forward mode) or
the derivatives of the global dependent variables with respect to the value returned
by an expression (in the reverse mode).

6

BiscHOF AND HAGHIGHAT

2. Automatic differentiation (AD) systems employing compiler infrastructure can go

beyond this myopic view. This ability to redefine the scope of differentiation is the
biggest advantage of the source transformation approach to AD. For example, the
approach currently employed in ADIFOR and ADIC can be interpreted as a uniform
statement-level partitioning of the program graph. That is, for each assignment
statement, the derivative of the result with respect to the variables appearing on the
right-hand side is computed by using the reverse mode, and then these derivatives are
chained together by using the forward mode, ignoring the remainder of the program
structure. Note that, while the reverse mode is the better design choice for computing
the little statement gradients, the use of the forward mode will also have improved
performance as long as the number of variables on the right-hand side is smaller than
the number of independent variables to be computed globally.

3. Moving up in the program structure, we note that many solution approaches

for partial differential equations based on finite-difference approaches employ so-
called stencils to update the value at a particular grid point by computing a
function of a limited number of neighbors. For example, the seven-point stencil
computes the new value of x(¢,7, k) from x(¢, 5, k), z(¢ — 1,7, k), 2(¢+ 1,7, k), (4,7 —
1,k),z(¢,7+ 1,k),2(d,j,k — 1), and 2(i,7,k + 1). Such a stencil typically is the
body of a multidimensional loop, and it may well be profitable to declare it as
its own differentiation partition, perhaps by using statement-level partitioning in
the ADIFOR/ADIC fashion at a lower level. A concrete example of stencil-level
partitioning is given in the next section.

4. Moving up further in the program structure, we observe that subroutine boundaries

may be likely places for interface contraction. For example, in the application
described in [19], a subroutine that computed a scalar output value from two scalar
input values was called in a loop. By considering this subroutine as its own derivative
partition, computing its associated two-element gradient using ADIFOR, and then
chaining this resulting derivative back into the remainder of the program, the authors
obtained a derivative code whose performance was close to a hand-coded one. This
approach is the default used for Jacobian generation in Odyssée [10].

To reiterate, these examples achieved improvements by defining a portion of the program

(a “differentiation partition”), computing the derivatives of this program fragment in a

fashion that was oblivious of context, and applying the chain rule at this level of granularity.
In the resulting hierarchical program graph, this partitioning approach can be repeated at
many levels of abstraction. To find suitable partitions, we need to know the following
information.

Information bandwidth in and out of a candidate partition: The amount of infor-

mation passing in and out of a program fragment determines the cost of integrating the
derivatives determined by this program fragment in a forward- or backward-oriented
approach. Data flow and dependence analysis techniques, developed in the context of
parallelizing compilers (see, for example, [17, 23]), provide a strong foundation from
which such information can be derived.

Estimate of complexity of computing the derivatives of a candidate partition:

The cost of derivatives of a program fragment depends on many factors, such as

¢ the memory and floating-point resources,

HiEraRcHICAL AUTOMATIC DIFFERENTIATION 7

/[V:L VJV:B]\
[v2,v3] v2 [vl v3] v2 [viv2]
V3 Vl
[v1] [v2] [v3]
done

Fia. 6. Illustration of information reuse in node elimination

o the degree of nonlinearity in the computation, and
e the degree of derivative sparsity (see, for example, [7, 3]).

Data flow and dependence analysis tools, static performance analyzers, runtime tools

for gathering program statistics, and user interaction may all contribute to this phase.

While we could conceivably partition a computer program in an arbitrary fashion, we

believe that the program structure shown in Figure 5 provides useful guidance for choosing
candidate partitions and greatly restricts the potential partitions to be considered.

3 Generalizations of Dynamic Programming for Determining Accumula-
tion Orderings

The discussion in the preceding section leads, at every level of partitioning, to the following
subproblem: Given a directed acyclic graph (DAG) G with n nodes v;, say, where the
derivatives of each node with respect to any of its predecessors are known, derive the optimal
ordering for accumulating the derivatives defined by this DAG. The total number of different
elimination orderings is n! ~ (n/e)", the enumeration of which is clearly impractical unless
n is small. However, as illustrated in Figure 3, a hierarchical view of the program may well
lead to small graphs.

For linear DAGs, dynamic programming [1, pp. 67-69] arrives at an O(n?) algorithm for
finding the minimum-cost node elimination ordering by realizing that the optimal solution
is composed of optimal solutions to subproblems. That is, if we define C'(k : j) to be the
minimum cost of computing the derivatives associated with the DAG consisting of vy to
vj, and b; to be the number of values passed from v; to v4q1 (b is the number of inputs to
v1), we have

Clk:j)= krilzlil](c(k l=1) 4+ C(I+1:7)+ 2brbib;).
The O(n?) complexity is achieved by tabulating the solutions in the order of increasing
k — j. This approach can be applied to the general case, as illustrated in Figure 6.

Given a graph with three nodes, we can eliminate any of them first, leading to the
three subproblems shown at the next level. Eliminating the next node leads to three
one-node subproblems, each of which appears twice. If we tabulate in this fashion for n»
nodes, the number of nodes of the enumeration graph in Figure 6 will adhere to the binomial
sequence, resulting in 2" nodes and n2"~! edges overall. Thus, we can arrive at the optimal

8 BiscHOF AND HAGHIGHAT

doi=1, ny

pbl = x(k-nx-1)
pb = x(k-nx)
pbb = x(k-2*nx)
pbr = x(k-nx+1)
pl = x(k-1)
pll = x(k-2)
pr = x(k+1)
prr = x(k+2)
ptl = x(k+nx-1)
pt = x(k+nx)
ptt = x(k+2*nx)
ptr = x(k+nx+1)

dpdy = (pt-pb)/(two*hy)

dpdx = (pr-pl)/(two*hx)

pblap = (pbr-two*pb+pbl)/hx2 + (p-two*pb+pbb)/hy2
pllap = (p-two*pl+pll)/hx2 + (ptl-two*pl+pbl)/hy2
plap = (pr-two#*p+pl)/hx2 + (pt-two*p+pb)/hy2
prlap = (prr-two*pr+p)/hx2 + (ptr-twoxpr+pbr)/hy2
ptlap = (ptr-two*pt+ptl)/hx2 + (ptt-twoxpt+p)/hy2
fvec(k) = (prlap-two*plap+pllap)/hx2 +

+ (ptlap-two*plap+pblap)/hy2 -

+ r* (dpdy* (prlap-pllap)/(two*hx) -

+ dpdx#* (ptlap-pblap)/(two*hy))
enddo

enddo

Fia. 7. Main loop inside of MINPACK-2’s driven cavity problem

solution strategy far more rapidly than with the naive approach. For example, for n = 10,
n! = 3,628,800, whereas 2" = 1,024.

Although a considerable improvement over the naive search, this exponential enumera-
tion may still require significant effort, especially for large n. Thus, we expect that heuristics
will continue to play an important role. For example, we can reduce the general DAG case
to the linear DAG case by ordering DAG nodes in a topological fashion and considering all
nodes at a given level as a “supernode.” Since nodes in a supernode are independent, they
can actually be eliminated in parallel, an approach that was explored at the elementary
operation level in [9].

4 A Case Study

We now provide a concrete example illustrating that hierarchical approaches to derivative
generation can do considerably better than either of the “monolithic” approaches largely
underlying current AD tools. To this end, we employ the driven cavity problem in the
MINPACK-2 test set collection [2]. Its main computational kernel (ignoring boundary
conditions) is the loop shown in Figure 7, which computes an n = nx * ny vector fvec
from an n-vector x.

Let us assume that we are interested in computing D := dfvec/dx * 5, where S is an
n X p matrix with p < n matrix. If we apply a mainly forward-mode tool such as ADIFOR

HiEraRcHICAL AUTOMATIC DIFFERENTIATION 9

2.0 [5] to compute D, the derivative cost will be linear in p. Applying a reverse-mode tool
such as Odyssée [25] overall does not make sense, since its complexity would be linear in
n > p.

To do better, we realize that the loop body can be viewed as a mapping of 13 distinct
elements of the array x to fvec(k). Thus, as long as p < 13, we have an instance of interface
contraction. We can isolate the stencil update (the lines of code from the definition of dpdy
through the update of fvec(k)) in a subroutine loopbody, say, and apply an automatic
differentiation tool to generate a code to compute the derivatives ¢ := d fvec(k)/d p*, where
p# is shorthand for “all variables starting with p.”

If we use ADIFOR to generate code for the computation of g, we obtain the derivative
code shown in Figure 8. To fit the code on one page, we have taken some liberty with
alignment of Fortran continuation and comment characters. Since neither of the values of
the array x is overwritten inside the loop, we moved the initialization of the seed matrices for
the computation of the 13-element gradient outside of the loop. The variable p corresponds
to the number of columns of the global seed matrix 5. The number 13 in the call to
g-loopbody is the number of derivatives we wish to compute in this call. For more details
on the use of ADIFOR-generated code, see [6].

On the other hand, the code inside loopbody is a perfect candidate for the use of the
reverse mode. We are interested only in the derivatives with respect to one dependent
variable, and no loops or branches complicate the generation of the reverse mode. If we
employ Odyssée to generate code for g, we obtain the code shown in Figure 9. Note
that while g_loopbody and loopbodyad require different initializations and use different
approaches to computing the gradient g, the chain rule “glue code” remains unchanged.

Executing the code generated by a global application of ADIFOR 2.0, as well as the
codes shown in Figure 8 and 9, on a Sun SPARCstation iPX, with nz = ny = 120 and p
ranging from 5 to 60, we obtain the results shown in Figure 10.

The behavior of the global ADIFOR and the ADIFOR version with interface contraction
is as expected, with a crossover around p = 15, close to the number of variables (13) involved
in the loopbody interface. For p < 13, our approach actually leads to an interface expansion
and performs worse than the global ADIFOR approach.

The performance of the version that uses the Odyssée-generated reverse mode to
compute the small gradient ¢ is even better. Because of the simple structure of the
underlying code, the reverse mode can be implemented without any overhead for storing
(or recomputing) values that are overwritten, or directions of branches taken. Thus, the
resulting code outperforms the ADIFOR approach for computing the small gradient ¢
by a considerable margin. Somewhat surprising, the “interface contraction with Odyssée
approach” outperforms the global ADIFOR approach even for p = 5, illustrating the
potential power of hierarchical approaches coupled with context-sensitive differentiation
strategies.

5 Conclusions

This paper explored hierarchical approaches to automatic differentiation. We showed how
interface asymmetries between the number of derivatives to be computed and the amount
of information flowing in or out of a program segment can be used profitably to decrease
derivative complexity. The resulting approach can be viewed as a hierarchical partitioning of
the program graph, with individual partitions corresponding to program segments for which
derivatives are computed ignoring their computational context and then spliced into the

10 BiscHOF AND HAGHIGHAT

3

*# Initialization of ‘‘subroutine seed matrices’’

* NOT SHOWN HERE TO SAVE SPACE: The initialization of

* lg pbl(1:13), 1g_pb(1:13), 1g_pbb(1:13), 1lg_pbr(1:13), 1lg_pl(1:13),
* 1g_pll(1:13), 1g_p(1:13), 1g_pr(1:13), 1g_prr(1:13), 1g_ptl(1:13),
* 1g pt(1:13), 1g_ptt(1:13), and 1g_ptr(1:13) to zero

lg_pbl(1) = 1.0d0

lg_pb(2) = 1.0d0

lg_pbb(3) = 1.0d0

lg_pbr(4) = 1.0d40

lg_pl(5) = 1.0d0

lg_pll(6) = 1.0d0

1g_.p(7) = 1.0d0

lg_pr(8) = 1.0d0

lg_prr(9) = 1.0d0

lg_pt1(10) = 1.0d0

lg_pt(11) = 1.0d0

lg_ptt(12) = 1.0d0

lg_ptr(13) = 1.0d0

do 99998 i = 3, ny - 2
do 99999 j = 3, nx - 2
k=(i-1) % nx + j

* Computation of gradient defined by loop body

call g_loopbody(13,

+ x(k - nx - 1), 1g_pbl, x(k - nx), lg_pb,

+ x(k - 2 * nx), 1lg_pbb, x(k - nx + 1), 1lg_pbr,
+ x(k - 1), lg.pl, x(k - 2), lg_pll,
+ x(k), lg_p, x(k + 1), lg_pr,

+ x(k + 2), lg_prr, x(k + nx - 1), lg_ptl,
+ x(k + nx), lg_pt, x(k + 2 * nx), lg_ptt,
+ x(k + nx + 1), 1lg_ptr, fvec(k), lg_fval,
+ hx, hy, r)

* Derivative chain rule to update derivatives of fvec(k) using
gradient of loop body and derivatives of variables entering
* loop body.

*

doii=1, p
g_fvec(ii,k) =

+ lg_fval(1l) * g_x(ii,k-nx-1) + 1lg_fval(2) * g_x(ii, k-nx) +
+ lg_fval(3) # g_x(ii, k-2*nx) + 1lg_fval(4) =* g_x(ii, k-nx+1) +
+ lg_fval(5) *# g_x(ii, k - 1) + 1lg_fval(6) * g_x(ii, k-2) +
+ lg_fval(7) * g_x(ii,k) + 1lg_fval(8) * g_x(ii, k+1) +
+ lg_fval(9) =* g_x(ii, k + 2) + 1g_fval(10) * g_x(ii, k+nx-1) +
+ lg_fval(11) * g_x(ii, k + nx)+ 1g_fval(12) * g_x(ii, k+2*nx) +
+ lg_fval(13) * g_x(ii, k + nx + 1)
enddo
99999 continue

99998 continue

Fia. 8. Sample derivative code employing ADIFOR-generated code to compute the gradient
associated with the loop body

HiErARCHICAL AUTOMATIC DIFFERENTIATION 11

do 99998 i 3, ny - 2
do 99999 j = 3, nx - 2
k=(i-1) *nx + j

fvalad 1.040

do ii =1, 13
lg_fval(ii) = 0.0d40

enddo

call loopbodyad(

+ x(k - nx - 1), x(k - nx), x(k - 2 * nx),
+ x(k -nx + 1), x(tk - 1), x(k - 2),
+ x(k), x(k + 1), x(k + 2), x(k + nx - 1),
+ x(k + nx), x(k+ 2 * nx), x(k + nx + 1),
+ fvec(k), hx, hy, r, 1g_fval(1l), 1g_fval(2),
+ lg_fval(3), lg_fval(4), 1lg_fval(5), lg_fval(6),
+ lg_fval(7), 1lg_fval(8), 1lg_fval(9), 1lg_fval(10),
+ lg_fval(11), 1g_fval(12), 1lg_fval(13), fvalad)
* Derivative chain rule to update derivatives of fvec(k) using
*# gradient of loop body and derivatives of variables entering
* loop body.

doii=1, p

g_fvec(ii,k) =
+ lg_fval(1l) * g_x(ii,k-nx-1) + 1lg_fval(2) #* g_x(ii, k-nx) +
+ lg_fval(3) * g_x(ii, k-2%nx) + 1lg_fval(4) #* g_x(ii, k-nx+1) +
+ lg_fval(5) * g_x(ii, k - 1) + 1lg_fval(6) #* g_x(ii, k-2) +
+ lg_fval(7) * g_x(ii,k) + 1g_fval(8) * g_x(ii, k+1) +
+ lg_fval(9) * g_x(ii, k + 2) + 1g_fval(10) * g_x(ii, k+nx-1) +
+ lg_fval(11) * g_x(ii, k + nx)+ 1g_fval(12) * g_x(ii, k+2*nx) +
+ lg_fval(13) * g_x(ii, k + nx + 1)

enddo
99999 continue

99998 continue

Fia. 9. Sample derivative code employing Odyssée-generated code to compute the gradient
assoctiated with the loop body

surrounding computation by an application of the chain rule at a higher level of granularity.
We suggested approaches for choosing such partitions in computational graphs, and we
gave a concrete example illustrating a partitioning at the loop-body level, using different
approaches for generating the loop-body derivatives.

Work is under way to provide a largely language-independent intermediate representa-
tion of program fragments that would facilitate easy experimentation with different parti-
tion strategies and context-sensitivity differentiation approaches, thus allowing the explo-
ration of the combinatorial richness created by the associativity of the derivative chain rule.
We believe that, because of the simplicity of the current approaches, the resulting algorith-
mic improvements will result in order of magnitude saving even for moderate differentiation
problems.

Acknowledgments

We thank Alan Carle and Lucas Roh for illuminating discussions on the subject, and Nicole
Rostaing-Schmidt for processing the example code with Odyssée.

12 BiscHOF AND HAGHIGHAT
60 T T T T T
50r : 1
(&)
E
l_
=40
Re)
©
S ~Global
L
o
230t]
=
b
=
& JURSICES
) _ _
o 20 Contraction w/ADIFOR 1
g oo
o
—. 4
o~ ° - °
10f Contraction w/ QDYSSEE 1
IR
_o- 9
o
0 Il Il Il Il Il
0 10 20 30 40 50 60
Number of Global Derivatives
Fia. 10. Result of Application of Interface Contraction to Driven Cavity Problem
References

(1]
[2]

A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue, The MINPACK-2 test problem
collection, Tech. Rep. ANL/MCS-TM-150, Rev. 1, Mathematics and Computer Science
Division, Argonne National Laboratory, 1992.

C. Bischof, A. Bouaricha, P. Khademi, and J. Moré, Computing gradients in large-scale
optimization using automatic differentiation, Preprint MCS-P488-0195, Mathematics and
Computer Science Division, Argonne National Laboratory, 1995.

C. Bischof| A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generating derivative
codes from Fortran programs, Scientific Programming, 1 (1992), pp. 11-29.

C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system for the automatic
differentiation of Fortran 77 programs, 1994. Preprint MCS-P481-1194, Mathematics and
Computer Science Division, Argonne National Laboratory, and CRPC-TR94491, Center for
Research on Parallel Computation, Rice University. To appear in IEEE Computational Science
& Engineering.

C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland, ADIFOR 2.0 user’s guide,
Technical Memorandum ANL/MCS-TM-192, Mathematics and Computer Science Division,
Argonne National Laboratory, 1994. CRPC Technical Report CRPC-95516-S.

C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, Computation of gradients and Jacobians
by transparent exploitation of sparsity in automatic differentiation, 1995. Preprint MCS-
P519-0595, Mathematics and Computer Science Division, Argonne National Laboratory, and
CRPC-TR95583, Center for Research on Parallel Computation, Rice University. Accepted for
publication in Optimization Methods and Software.

C. Bischof, L. Roh, and A. Mauer, unpublished information, Argonne National Laboratory,
1996.

[9]

[10]

HiErARCHICAL AUTOMATIC DIFFERENTIATION 13

C. H. Bischof, Issues in parallel automatic differentiation, in Automatic Differentiation of
Algorithms, A. Griewank and G. Corliss, eds., Philadelphia, PA; 1991, STAM, pp. 100-113.
B. Mohammadi, J.-M. Malé, and N. Rostaing-Schmidt, Automatic Differentiation in Direct and
Reverse Modes: Application to Optimum Shape Design in Fluid Mechanics, in Computational
Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and
A. Griewank, eds., STAM, Philadelphia, Penn., 1996. To appear.

L. C. W. Dixon, Use of automatic differentiation for calculating Hessians and Newton
steps, in Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
A. Griewank and G. F. Corliss, eds., STAM, Philadelphia, Penn., 1991, pp. 114 — 125.

R. Giering, Adjoint model compiler, manual version 0.2, AMC version 2.04, tech. rep., Max-
Planck Institut fur Meteorologie, August 1992.

V. V. Goldman, J. Molenkamp, and J. A. van Hulzen, Efficient numerical program generation
and computer algebra environments, in Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, A. Griewank and G. F. Corliss, eds., STAM, Philadelphia,
1991, pp. 74-83.

A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Develop-
ments and Applications, Amsterdam, 1989, Kluwer Academic Publishers, pp. 83-108.

A. Griewank, D. Juedes, and J. Srinivas. ADOL-C, a package for the automatic differentiation
of algorithms writlen in C/C++, Preprint MCS-P180-1190, Mathematics and Computer
Science Division, Argonne National Laboratory, 1990.

A. Griewank and S. Reese, On the calculation of Jacobian matrices by the Markowitz
rule, in Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
A. Griewank and G. F. Corliss, eds., STAM, Philadelphia, 1991, pp. 126-135.

M. R. Haghighat, Symbolic Analysis for Parallelizing Compilers, Kluwer Academic Publishers,
Dordrecht, 1995.

K. E. Hillstrom, JAKEF - a portable symbolic differentiator of functions giwen by algorithms,
Technical Report ANL/82-48 Mathematics and Computer Science Division, Argonne National
Laboratory, 1982.

P. Hovland, C. Bischof, D. Spiegelman, and M. Casella, Efficient derivative codes through
automatic differentiation and interface contraction: An application in biostatistics, Preprint
MCS-P491-0195, Mathematics and Computer Science Division, Argonne National Laboratory,
1995. To appear in STAM J. Scientific Computing.

M. Iri, History of automatic differentiation and rounding esttmation, in Automatic Differentia-
tion of Algorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss,
eds., STAM, Philadelphia, Penn., 1991, pp. 1-16.

A. John and J. C. Browne, A constraint-based parallel programming language, Tech. Rep.
TRY95-42, Department of Computer Science, University of Texas at Austin, 1995.

M. Monagan, An implementation of automatic differentiation in Maple, 1995. Personal
Communication. Software available in the MAPLE Share library.

C. Polychronopoulos, Parallel Programming and Compilers, Kluwer Academic Publishers,
Boston, Massachusetts, 1988.

A. Rhodin, U. Callies, and D. Eppel, GESIMA 90 — An object-oriented approach to program a
mesoscale model and its adjoint, 1994. Talk presented at the General Assembly of the European
Geophysical Society at Grenoble, April 25-29.

N. Rostaing, S. Dalmas, and A. Galligo, Automatic differentiation in Odyssee, Tellus, 4ba
(1993), pp. 558-568.

D. Shiriaev, Fast automatic differentiation for vector processors and reduction of the spatial
complexity in a source translation environment, PhD thesis, Department of Mathematics,
Universitat Karlsruhe, 1993.

